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Research on antimicrobial peptides is in part driven by urgent medical needs such as the steady increase in path-
ogens being resistant to antibiotics. Despite the wealth of information compelling structure-function relation-
ships are still scarce and thus the interfacial activity model has been proposed to bridge this gap. This model
also applies to other interfacially active (membrane active) peptides such as cytolytic, cell penetrating or antitu-
mor peptides. One parameter that is strongly linked to interfacial activity is the spontaneous lipid curvature,
which is experimentally directly accessible. We discuss different parameters such as H-bonding, electrostatic
repulsion, changes in monolayer surface area and lateral pressure that affect induction of membrane curvature,
but also vice versa how membrane curvature triggers peptide response. In addition, the impact of membrane
lipid composition on the formation of curved membrane structures and its relevance for diverse mode of action
of interfacially active peptides and in turn biological activity are described. This article is part of a Special Issue
entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
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distearoyl phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine;
SUVs, small unilamellar vesicles; GUVs, giant unilamellar vesicles; LUVs, large unilamellar

1. Introduction

vesicles; BSM, brain sphingomyelin; MPER, glycoprotein 41 membrane-proximal external
region; TP-1, tachyplesin-1; PG-1, protegrin-1; CB3, cecropin B3; Beta-17, 17 3-amino acid
oligomer; CCT, CTP:phosphocholine cytidylyltransferase
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Research on antimicrobial peptides (AMPs), effector molecules of
innate immunity that provide a first line of defense against a substantial
array of pathogenic microorganisms [1,2], is in part driven by the med-
ical need to find alternative agents to conventional antibiotics [3,4]. The
development of novel antibiotics is a pressing need in light of the rapid
increase of multidrug resistant bacteria and the steady decline of
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approval of novel compounds since the early 1980s. Thus considerable
efforts have been made to elucidate the molecular mechanism(s) of
action of AMPs in model and in vitro studies, in order to provide both,
a sound basis for rationale peptide design and parameters for high-
throughput screening approaches [4-10]. Thereby, numerous studies
have demonstrated that AMPs interfere with the integrity of bacterial
membranes via diverse mechanisms (for reviews see e.g. [3,11-13]).
In one of his recent reviews Wimley [14] pointed out that despite the
large volume of data available, compelling structure-function relation-
ships are still very rare and further described a paradigm to bridge the
gap between biophysical and biological activity: the interfacial activity
model. Thereby, “interfacial activity” was described as “the ability of a
molecule to bind to a membrane, partition into the membrane-water
interface, and to alter the packing and organization of the lipids” ([6],
and contribution in this special issue), which depends mainly on the
appropriate balance of hydrophobic and electrostatic interactions
between peptides, water, and lipids. In fact, a number of publications
suggest that antimicrobial activity is not dependent on specific amino
acid sequences or on specific peptide structures [15-18], but rather
depends on the physical chemical properties of AMPs [19]. Thereby
the variety and distribution of amino acids determine the peptide prop-
erties in respect to charge, amphiphilicity, hydrophobicity, flexibility,
H-bonding capacity and secondary structure, to mention some. Howev-
er, there is consensus that the positive charge of the peptide is essential
for initial binding to the negatively charged bacterial membrane surface,
which allows discrimination between bacterial and host cell membrane,
and that hydrophobicity is needed for insertion into and disruption of
the membrane (e.g. [20,21]). Although most of the examples given in
this review refer to antimicrobial peptides, these features are not only
related to their activity, but are also of importance for other membrane
active peptides, such as cytolytic peptides with melittin from bee venom
being the most prominent representative, or antitumor peptides
[22-24]. Furthermore, cell penetrating peptides share also some prop-
erties with antimicrobial peptides. They are typically composed of 5-
30 amino acids and mostly cationic, have in general no sequence homol-
ogy, but can exhibit an amphipathic character and frequently show
structural plasticity. Therefore, it is not surprising that one may find
cell penetrating peptides that exhibit antimicrobial activity and vice
versa antimicrobial peptides that translocate through cell membranes
[25,26].

2. The role of spatial arrangement of amino acids within a peptide

The importance of spatial arrangement of polar, charged and hydro-
phobic amino acids on membrane interaction and its correlation with
antimicrobial as well as hemolytic activity has been addressed in a num-
ber of studies. Within this review only few examples will be described
to emphasize the complexity of this topic. A systematic study in White's
laboratory challenged the impact of peptide amphiphilicity compared
to hydrophobicity for the interaction with zwitterionic and anionic
lipid model systems [27]. For this purpose six different peptides with a
length of seventeen residues, composed only of Ala, Leu and GIn flanked
with Trp at the C-terminus to facilitate measurements of partitioning
free energy, were synthesized. The peptides were all uncharged and
differed only in amphiphilicity, but not in total hydrophobicity. The
study revealed that helicity in water and interface was higher for
amphiphilic peptides, which affects the partitioning of peptides to the
membrane interface [27]. However, the free energy reduction per resi-
due (AGies) turned out to be independent from the hydrophobic mo-
ment (amphiphilicity) of peptides, which only influences the a-helical
content but not the energy gain of folding per residue [28]. As first
noted by Wimley et al., AG,es is driven by hydrogen bonding of
the peptide backbone [29]. Therefore the spatial arrangement of
hydrophilic, charged and hydrophobic residues within a peptide
may represent an important factor, apart from others affecting the

electrostatic or hydrophobic interactions of peptides with lipid
membranes.

The complexity to predict the consequences of amino acid rear-
rangement is also outlined by a recent study from the laboratory of
Vogel [30]. This group designed three different variants of Trp-rich
peptides derived from the HIV glycoprotein, gp41, with the purpose to
increase the antimicrobial activity owing to an increase of the net posi-
tive charge and amphiphilicity of the helical peptide. The parent peptide
interacted with dipalmitoyl-PC and -PG (DPPC, DPPG) model systems,
whereas it was inactive against bacteria, which was attributed to oligo-
merization in aqueous solution. In the variant gp41w-4R four polar res-
idues were replaced by cationic Arg. While the antimicrobial activity of
the peptide was not increased, the peptide elicited extremely high
hemolytic activity. Haney et al. [30] related this observation to the
even distribution of the positively charged residues along the a-helix.
Therefore, in case of negatively charged lipid head groups, as found in
bacterial membranes, the peptide stays bound to the surface due to
strong electrostatic interactions. In contrast, in neutral or zwitterionic
lipid systems, as found in erythrocytes, Van der Waals interaction be-
tween the hydrophobic residues and the hydrophobic core of the lipid
bilayer are strong enough to promote the insertion of the peptide into
the bilayer, causing severe membrane destabilization. Using the vari-
ants gp41w-KA and gp41w-FKA, where the positively charged residues
were located on one side of the helix, the hemolytic activity was re-
duced, most likely because deeper insertion was prevented by the con-
centration of the charged amino acid residues on one side of the peptide.
Finally, three Trp residues were replaced by Phe in case of gp41w-FKA,
which resulted in reasonable antimicrobial activity. This was not ex-
pected, because Trp due to its bulky, uncharged side chain is considered
to be important for the activity of AMPs [31-34]. In contrast to Phe Trp
does not reside deeply in the hydrocarbon chain region, but preferen-
tially locates at the polar/apolar interface. This ambivalence is attributed
to the m-electron system of Trp, which facilitates cation-m interactions
of the Trp electron cloud with any positively charged species (ions, pos-
itively charged amino acids, etc.) [32,35]. The importance of the vectori-
al arrangement of tryptophan, i.e. the arrangement on the same face of
the a-helix, as well as the importance of the positioning of the aromatic
residues, i.e. flanking one or both termini of the peptide, for antimicro-
bial activity were recently shown [36]. This study demonstrated that
orientation of Trp on the same side of the a-helix facilitated their
concomitant insertion and thereby alleviated the adoption of the
a-helical structure, which is diminished in a peptide that excluded a si-
multaneous arrangement of the Trp residues at one side of the a-helix.
Moreover, Trp residues flanking both termini of the peptide rigidly an-
chored the peptide in the interfacial region, thereby impeding insertion
into the hydrophobic region [36].

To conclude, small differences in the spatial arrangement of amino
acids can cause big changes in the interaction of peptides with lipid
membranes mostly affecting peptide orientation and/or depth of mem-
brane insertion. The orientation of a peptide in the membrane is consid-
ered to be a key parameter determining the mechanism of action, as for
example the toroidal pore mechanism presumes vertical orientation
[37,38] and the carpet mechanism initially presumes horizontal orienta-
tion [39]. Also, the depth of insertion is a critical parameter, as it is cor-
related with the insertion of a certain peptide volume in a certain region
of the bilayer, which can induce different “voids” and in turn may give
rise to local membrane curvature or at high peptide concentration to in-
terdigitated lipid structures [3]. Insertion of a volume in the membrane
interface may cause lateral pressure in this region facilitating positive
membrane curvature, while insertion of a volume in the hydrophobic
core region may cause lateral pressure in the acyl chain region facilitat-
ing negative membrane curvature (see Fig. 2). The few examples
mentioned above emphasize that the concerted sum of all properties
determines the interaction with lipid systems, which in turn also com-
prise crucial differences depending on the lipid species as for example
demonstrated for the human cathelicidin LL-37 [40,41].
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3. Membrane interface and its relation to membrane curvature

The balance of entropy and shielding of the hydrophobic entities
leads to an optimized packing of the lipid molecules, i.e. the free energy
with respect to the lipid area/molecule is minimized [42]. Owing to the
variation of lateral intramolecular interactions along the bilayer normal,
a lateral pressure field emerges, known as the lateral pressure profile,
which strongly depends on the nature of lipids [43,44]. It is composed
essentially of three regimes: (i) headgroup, (ii) polar/apolar interface
and (iii) hydrocarbon chain region [43]. Repulsion exists in the lipid
headgroup region resulting from electrostatic interactions and entropic
effects as well as in the hydrocarbon chain region of the membrane,
where mutual repulsion of the hydrocarbon chains dominates. At the
polar/apolar interface, the hydrophobic free energy density (or interfa-
cial tension) associated with the exposure of the apolar hydrocarbon
regime leads to a significant lateral attraction, i.e. to @ minimization of
the interaction of the lipid chains with water. The components of the in-
ternal lateral pressure in a membrane and their transmembrane profiles
are not accessible to direct measurement, because the net lateral pres-
sure in a membrane at equilibrium is zero. In order to relate the effects
of the lateral pressure profile e.g. on membrane protein conformational
equilibria or interaction with membrane active compounds to experi-
mentally accessible quantities it is necessary to introduce the elastic
constants for membrane bending. This includes especially the spontane-
ous (or intrinsic) lipid curvature, ¢y [43,45-47], which for a tubular/
cylindrical system like the inverse hexagonal phase, Hy, is directly relat-
ed to the spontaneous radius of curvature. Usually, this parameter is
measured in fully hydrated Hy; phases in the presence of excess hydro-
carbons using X-ray diffraction [43,48,49], where outward curvatures,
i.e. bending of the membrane surface away from the aqueous phase
(oil-in-water), are defined as positive and inward curvatures, i.e. bend-
ing of the membrane surface towards the aqueous phase (water-in-oil),
as negative curvatures (see Fig. 1). The spontaneous curvature of a
planar configuration is always zero.

The spontaneous lipid curvature ¢, also appears in the Helfrich
description of membrane elasticity [50], where the free energy per
unit area, gc is

ge =2 (H—co)” + Kk ()

where K, is the bending rigidity, k, is the Gaussian modulus of the
curvatures of the lipid monolayers (because the integral is over half of
the bilayer); H is the mean curvature and K is the total or Gaussian cur-
vature (see, e.g. [51]). The latter are related to the planes of principal
curvatures ¢; and ¢, at a given point P (Fig. 1) on the surface by:

H={(c;+¢)/2 2)
K=ci+c 3)

where the mean curvature, H, is the average of the principal curvatures
and the total or Gaussian curvature, K, is the product of the principal
curvatures. The two principal curvatures determine the local shape of
a point on a surface, ¢; characterizing the rate of maximum bending of
the surface and the tangent direction in which it occurs, while ¢, charac-
terizes the rate and tangent direction of minimum bending. The mean
curvatures H > 0 denote curvature towards the chain region, whereas
H < 0 denotes curvature towards the water region. The Gaussian curva-
ture is a more fundamental property of the interface than the mean cur-
vature since it determines the qualitative nature of the membrane
surface. For example, surfaces for which K is positive describe a micelle
or an inverted micelle, whereas K is zero, when either one or both of the
principal curvatures are zero, which is the case for cylindrical/tubular
(e.g. Hy) and planar structures (e.g. lamellar phases). When the

Co = positive

normal vector

Co = negative

Fig. 1. Schematic representation of the planes of principal curvatures ¢, and c, for a micelle
(top) or tubular structure such as the inverse hexagonal phase (bottom). The Gaussian
curvature, K, is positive for the former and zero for the latter. Note, the spontaneous
curvature, ¢y, is also positive for a micelle, but negative for the H;, phase.

principal curvatures c¢; and c, are of opposite sign K is negative as
observed for the saddle-shaped surface of cubic phases [52,53].

4. Modulation of membrane curvature

In general, the action of interfacially active peptides is often accom-
panied by membrane deformations as a result in changes of local and
global membrane curvature. In a recent review, Haney et al. [54] gave
a comprehensive overview on peptides inducing membrane curvature,
whereby positive curvature was largely associated with toroidal pore
formation or micellization and negative curvature with the peptide ag-
gregation model and peptide translocation via non-bilayer intermediate
structures. In this section we want to discuss the following aspects relat-
ed to membrane curvature: (i) intrinsic properties of lipids to adopt pla-
nar or curved lipid structures (lipid molecular shape), (ii) differences in
inner and outer membrane leaflet leading to membrane curvature and
(iii) physical chemical parameters facilitating the formation of mem-
brane curvature. These parameters are very often interrelated. For ex-
ample, one may envision that induction of curvature by a peptide in a
lipid membrane of complex composition could concomitantly induce
phase separation and enrichment of lipid species fitting the local steric
requirements best. Further binding of interfacially active peptides at
the outer leaflet of a lipid membrane may induce a difference in inner
and outer bilayer area and thereby induce curvature.

4.1. Molecular shape of lipids and curvature

The nature of lipids determines the intrinsic tendency to form distinct
phases in relaxed systems mostly explained by the molecular shape of the
lipids [55,56,57]. Op den Kamp demonstrated that a mixture of phospha-
tidylcholine (PC) and phosphatidylethanolamine (PE) when sonicated
forms small unilamellar vesicles (SUVs) with an asymmetrical lipid distri-
bution [55]. Most of PE was located in the inner monolayer and PC in the
outer monolayer. This observation suggested a physical parameter that
enables PE and PC to adapt to different membrane curvatures to a differ-
ent extent. Cullis and de Kruijff suggested that the shape of the lipid mol-
ecules determines the morphology of lipid aggregates [56]. PC is



D. Koller, K. Lohner / Biochimica et Biophysica Acta 1838 (2014) 2250-2259 2253

characterized by a cylindrical molecular shape, while PE is characterized
by a truncated cone shape because of its small head group area as com-
pared to the cross-section of its hydrocarbon chains [56]. Thus PC is
prone to form bilayers and PE an inverse hexagonal phase. A dimension-
less packing parameter to describe the molecular shape of lipids and in
turn the preferred lipid phase was introduced by Israelachvili [57] and
Cevc pointed out that the effective area per lipid chain correlates with
the ease of bilayer vesicle formation and bilayer deformability [92] em-
phasizing that the lipid composition of a biological membrane is of impor-
tance for its interaction with membrane active peptides.

The implication of the different lipid molecular shapes is also of in-
terest for the biological activity of AMPs [20,58]. In microorganisms
like Escherichia coli or Acholeplasma laidlawii the amount of lamellar to
non-lamellar phase preferring lipids is strictly regulated [59-61]. The
presence of cone-shaped lipids such as PE, a predominant component
of the cytoplasmic bacterial membrane, increases the lateral hydrocar-
bon chain pressure in the center of the bilayer. In contrast, lamellar
phase forming lipids such as PG or PC with a cylindrical shape exhibit
a more uniform lateral pressure throughout the hydrocarbon chain re-
gion. These differences in packing properties may also affect membrane
functions. For example, it has been suggested that the lateral hydrocar-
bon chain pressure regulates the functionality of integral membrane
proteins [62], which is in line with the observations that non-lamellar
lipids are often required for functional reconstitution of membrane pro-
teins [63] and that PE is found in protein rich domains [64]. One may
speculate that AMPs could induce membrane rupture by lowering the
lamellar to non-lamellar phase boundary, as demonstrated with lipid
extracts of E. coli and A. laidlawii treated with gramicidin S [65]. It was

proposed that the limited flexibility of the B-turn of the peptide as
well as the clustered location of the ornithine side chains confer the
peptide a molecular shape similar to PE. Thus, incorporation of this pep-
tide in the lipid membrane promotes formation of negative curvature.
Implication on lipid morphology was also shown for other AMPs in PE
model systems ([54] and see also Table 1). In sum, an increasing number
of studies outline the relevance of the lipid matrix and the physical
properties of different lipid species for the mode of action of AMPs
[20].

There are also examples emphasizing the role of membrane
curvature for biological processes, e.g. in lipid sorting and fission of
membrane tubules. Roux et al. [66] demonstrated that different lipid
species respond differently to membrane curvature strain. The group
performed experiments with fluorescence labeled giant unilamellar
vesicles (GUVs), which consisted of an equimolar mixture of brain
sphingomyelin (BSM), cholesterol and dioleoyl-PC (DOPC). GM1 served
as fluorescence label for a liquid ordered phase enriched in BSM
and BODIPYg, -Cs-HPC served as a label for a liquid disordered phase
enriched in DOPC. Both labels were distributed homogenously within
the bilayer of the GUVs. However, when tubular structures were pulled
out of the GUVs, and thereby regions of high curvature were created, an
increase of BODIPYg -Cs-HPC in the tubes as compared to GUVs was
observed. Therefore, the authors concluded that these tubes were
enriched in DOPC but were depleted of both cholesterol and BSM.
These results demonstrate that induction of membrane curvature may
lead to an enrichment of lipid species that fit the curvature require-
ments best. Furthermore, it was suggested that these processes are of
importance for biological systems like the Golgi apparatus [66].

Table 1

Selection of peptides inducing membrane curvature in different lipid model systems.
Peptide Lipid system/observation Proposed mechanism Ref.
Induction of positive mean curvature
Surfactin DMPC:DMPS/vesicularization Electrostatic repulsion [80]
Temporins Band L POPC:POPG/tubule formation - [123]

TRP3 DPPA, DPPG/vesicularization Increased surface pressure [124]
M2 pep. DMPC; VM-vesicles/isotropic phase Increased surface pressure [96]
Duramycin, cinnamycin PE/tubule formation Increased surface pressure [97]
MPER DPPC:Chol Surface area increase [68]
Acylated/nonacylated-LF11 variants POPE/Tyy; increase - [125,126]
PG-1 PC:PG/micellization Increased surface pressure [84],
POPC, DLPC, DPPC/micellization Hydrophobic mismatch [127]
MSI-367 DiPoPE/Tyy; increase Increase interface pressure [128]
MSI-843 DiPoPE/Tyy; increase - [129]
MSI-594, MSI-78 POPC: H, phase formation - [130]
POPG: H, phase formation
RL16 DiPoPE/Tyy; increase - [131]
Oxkil DEPE/Tyy; increase - [132]
0Oxki2 DEPE/Tyy; increase - [132]
DMPC/micellization
Melittin POPE/Tyy; increase [133]
Induction of negative mean curvature
Phenylene ethylene AMOs PE/Tyy shift - [134]
TP-1 POPG:POPE/isotrop. NMR sig. Increased hyd. core pressure [84]
Oritavancin CL:POPE/Tyyy decrease Red. of electrostat. repulsion [135]
Penetratin DiPoPE/Tyy; decrease - [131]
Polyphemusin I PE/Tyy decrease Steric mechanism [136]
RMAF4; R/K-RMAD4 DOPS:DOPE:DOPC/Tyy; decrease Arg/Lys H-bonding [75]
Crp4 DOPS:DOPE:DOPC/Tyy; decrease Arg H-bonding [75]
NK-2 POPE/Tyy; decrease Steric mechanism [137]
Nisin DOPE, POPE/H;; phase formation Increased hyd. core pressure [88]
Beta-17 PE/Tyy decrease Increased hyd. core pressure [90]
Induction of negative Gaussian curvature
R/K-Crp4 DOPS:DOPE:DOPC/Tqy shift Lys H-bonding [75]
SMAMPs PE/Qy phase formation - [138]
Alamethicin PE/Qy phase formation - [139,103,140]
Gramicidin S POPE, E. coli, A. laidlawii lipid extract/Qy phase formation - [65,133]
PGLa, PG-1 POPE/Q; phase formation - [133]
LF-11 variants E. coli-lipid extract/Q phase formation - [125,126]
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4.2. Membrane curvature through differences in inner and outer membrane
leaflet area

A more general, physical approach to membrane curvature is
described by Zimmerberg and Kozlov [52] and is based on the work of
Helfrich on the elastic properties of lipid bilayers [50]. The radius of a
membrane curvature is described as a function of the lateral tension -y
and the membrane bending rigidity kg and thereby depends on the
monolayer asymmetry. This model describes how changes in the area
of the inner or outer bilayer leaflet results in lateral tension and mem-
brane curvature. This mechanism was in particular used to describe
the influence of flippases on the curvature of biological membranes
[67] and may be of special interest to describe long range curvatures
like cell shapes but also to describe the effects of interfacially active pep-
tides in some cases [68]. A chemo-mechanical view on lipid membranes
with certain similarities was presented as “balanced-spring model”,
where a planar lipid membrane was described as plane structure com-
prising frustrated monolayer curvatures. It was hypothesized that inser-
tion of a peptide in one monolayer could release intrinsic tension and
thereby induce formation of membrane curvature [69].

4.3. Membrane curvature induced by interfacially active peptides

The action of AMPs or more generally interfacially active peptides on
lipid membranes is often accompanied by the induction of membrane
curvature, as revealed by a number of studies on model systems
(see Table 1). Incorporation of such molecules in a bilayer can induce
a curvature strain, which under certain experimental conditions such
as high peptide concentrations or elevated temperatures may lead to in-
duction of membrane curvature (see Fig. 2). Experimentally this was
shown mostly on the basis of changes in the transition temperature
from the fluid L, phase to inverse hexagonal phase of PE lipid systems.
Changes in Hy; phase transition temperature are technically easily acces-
sible through differential scanning calorimetry and present the most
common parameter describing the curvature behavior of interfacially
active peptides [70]. As outlined above PE comprises a conical shape
and therefore undergoes the transition of L, to Hy at characteristic
temperatures depending on the nature of the hydrocarbon chain [71].
Incorporation of AMPs that lead to an increase of Hy; phase transition
temperature indicates promotion of positive spontaneous curvature
and a decrease of Hy; phase transition temperature indicates promotion
of negative spontaneous curvature [72]. One has to emphasize that
induction of curvature in PE lipid systems by a peptide cannot be

spontaneous (intrinsic) curvature < 0

curvature=0

lat. pressure

lat. pressure
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generalized for other lipid systems. For example, PE comprises the pos-
sibility of H-bonding, which can largely influence the behavior of a pep-
tide in respect to curvature induction. Especially Arg and Lys residues
can lead to negative mean or Gaussian curvature through H-bonding
with the PE head group [73]. As different lipid head groups differ in
the ability of H-bonding or charge, the curvature induction by a peptide
may differ for different lipid systems. Several factors were proposed to
be important for peptides inducing curvature such as (i) H-bonding,
(ii) electrostatic repulsion, (iii) monolayer surface area and (iv) lateral
pressure, which will be discussed below.

4.3.1. H-bonding

PE and phosphatidylserine (PS) are capable of both, serving as
H-bond donors with their amino group and serving as H-bond acceptors
with their phosphate and carboxyl groups. This distinguishes them from
other lipids like PC or PG, which can only serve as H-bond acceptors.
For this reason, H-bonding with the hydroxyl-, thiol-, amido-, amino-,
and guanidinium groups of polar and basic amino acids like Arg, Lys,
Asn and GIn is more pronounced with PE and PS compared to other
lipids [74]. In addition, the chemical structure of the amino acids and
thereby their ability to act as multiple or single donors or acceptors
can affect the morphology of PE or PS bilayers. The impact of the differ-
ent H-bonding capacity of Arg compared to Lys and consequences on
non-lamellar phase induction has been most systematically studied by
the group of Wong (see also contribution of Wong in this special
issue). Here, we only refer to one of their recent studies, where all Arg
residues of the peptides Crp4 and RMAD4 were replaced by Lys residues
[75]. Arg is capable to maintain H-bonds with multiple lipid headgroups
through its guanidinium group, whereas Lys can only interact with
one PE headgroup, Schmidt et al. [75] claimed that Arg can induce a
negative Gaussian curvature (saddle shaped structures), while Lys is
limited to a negative mean curvature. Thus Arg residues should promote
bicontinuous cubic (Qy) phase formation and Lys H;; phase formation,
respectively. Interestingly, the lysine variant of RMAD4 showed no
difference in non-lamellar phase induction compared to the parent pep-
tide. The authors attributed this observation to the relatively dense spa-
tial arrangement of Lys on RMAD4 and hypothesized that a clustering of
lysine residues may be able to mimic the multi-dentate H-bonding of
Arg and therefore may also be capable of inducing negative Gaussian
curvature as required for cubic lipid phases [75].

The hypothesis that Arg-to-Lys substitution would shift the ability of
a peptide to induce Qy phase formation was also not fully reflected in
the phase diagram of R/K-Crp4, as the lysine variant was capable to
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Fig. 2. Sketch of a molecule preferentially inserting in the hydrocarbon chain region (top) and headgroup region (bottom), respectively, inducing changes in lateral pressure and hence

curvature strain, which can lead to induction of negative or positive membrane curvature.
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induce a Q; phase already at lower PE content. This observation may be
related to the fact that the Lae—Hy; phase transition can be accompanied
by the formation of cubic phases [76-78]. In addition, the evolution of a
bicontinuous cubic lattice can proceed very slowly [79]. These circum-
stances may impede a clear distinction of the peptide induction of Qy
versus Hy phase formation under certain conditions. In terms of biolog-
ical activity big differences were detected between Crp4 and R/K-Crp4,
whereby the parent peptide was more toxic against E. coli ML35 than
the variant. The authors assumed that the ability of peptides to promote
negative Gaussian curvature is evolutionarily adapted to the lipid com-
position of bacterial membranes and disposition of Arg by Lys could
shift the peptide activity out of the optimal range [75].

4.3.2. Electrostatic repulsion

Antimicrobial peptides mostly comprise positive charges and there-
by exhibit higher affinity to negatively charged lipid membranes.
Binding of cationic peptides thereby decreases the electrostatic field of
negatively charged headgroups and diminishes the electrostatic repul-
sion. In turn, peptides may induce negative spontaneous curvature
through a decrease in the mean headgroup area. In contrast, Buchoux
et al. report on a relatively rare case of a peptide inducing electrostatic
repulsion in the headgroup region [80]. Surfactin, a negatively charged
lipopeptide secreted by Bacillus subtilis, contains a B-hydroxy fatty
acid with a chain length varying from 12 to 14 carbon atoms. Obvious,
favorable Van der Waals interactions of the fatty acid chain with the hy-
drophobic core of lipid membranes enable the insertion of the peptide
even into negatively charged lipid systems. The electrostatic repulsion
of peptide molecules and lipid headgroups induces positive curvature
strain resulting in membrane vesicularization, which was not observed
in zwitterionic lipid systems emphasizing that membranolysis is due to
electrostatic repulsion between peptides and lipids [80].

4.3.3. Increase of monolayer surface area

Ivankin et al. [68] investigated the interaction of the glycoprotein
41 membrane-proximal external region (MPER) on POPC/cholesterol
membranes. Grazing incidence X-ray diffraction experiments showed
that the peptide was located deeply into the acyl-chain region below
the membrane surface at low cholesterol content, whereas it was locat-
ed in the interface at high cholesterol content. Location at the interface
was accompanied by an increase of the area occupied by the peptide
and a reduction of monolayer thickness due to void compensation.
The authors assume that the asymmetric increase in monolayer surface
generates elastic stress and curvature, according to the model of Kozlov
and Zimmerberg [52]. Induction of “free volume” (void) by incorpora-
tion of peptides aligned parallel at the membrane interface and various
modes of compensation was also suggested to represent one mode of
action of AMPs [3].

4.3.4. Increase of lateral pressure in headgroup and hydrocarbon chain
region, respectively

Curvature induction of interfacially active peptides is often referred
to changes in lateral pressure (see above). Thereby, insertion of a
peptide into the headgroup region of a membrane may enhance posi-
tive spontaneous curvature whereas insertion into the hydrophobic
core may enhance negative spontaneous curvature (see Fig. 2). In this
model, the membrane compensates the curvature strain induced by
a peptide through the formation of curvature. In this context, it is of in-
terest to note the coupling between membrane lateral pressure and
membrane protein function that is often strongly influenced by the mo-
lecular composition of the bilayer in which the protein is embedded
[81,82]. Cantor suggested that a shift of the lateral pressure in a bilayer
due to changes in lipid composition alters the amount of mechanical
work of a protein conformational transition. Furthermore, he predicted
that besides variations in lipid chain length, degree and position of chain
unsaturation as well as headgroup repulsion incorporation of interfacially
active molecules can result in large redistributions of lateral pressure [83].

A study of Doherty et al. [84] addresses the effect of lateral pressure at dif-
ferent regions of the bilayer in the presence of peptides. In this study the
-hairpin AMPs tachyplesin-1 (TP-1) inducing negative spontaneous cur-
vature, and protegrin-1 (PG-1) inducing positive spontaneous curvature,
are discussed. PG-1 was shown to insert into the lipid bilayer near the
membrane surface [85,86] and thereby expands the surface area. In
contrast, the conformation of TP-1 displays an increased hydrophobic ac-
cessible surface area [87] and thereby may increase the peptide volume in
the hydrophobic region of the bilayer. A similar behavior like TP-1 was re-
ported for nisin, lowering the Lo to Hy phase transition in POPE [88].
Insertion of its large hydrophobic volume in the bilayer interior would
promote negative spontaneous curvature, hence the formation of
inverted non-lamellar structures. The same mechanism of action can
also be deduced from studies on a cecropin B analog (CB3) [89] and a
17 B-amino acid oligomer (beta-17) [90]. Nevertheless, this mechanism
of curvature induction emphasizes the importance of the location of pep-
tides within the bilayer, and change of lateral pressure in the correspond-
ing membrane region. These parameters are not always easily accessible
and more detailed information on this topic will be necessary.

5. Membrane curvature triggering peptide response

Effects of membrane curvature and hence interfacial properties on
peptide binding and secondary structure formation were investigated
recently. For example, Bozelli et al. [91] reported that the conformation
of TRP3 is highly independent from the membrane lipid composition,
but differs strongly between large unilamellar vesicles (LUVs) and
micelles. Furthermore, TRP3 bound preferentially to LUVs containing
negatively charged lipids, whereas it bound to micelles irrespective of
headgroup charge. This observation suggests that in highly positively
curved membranes such as micelles other intermolecular interactions,
presumably Van der Waals forces, than electrostatic interactions be-
come predominant. In this view, the authors attributed the different
peptide behavior to the looser molecular packing of micelles and
proposed implications for toroidal pore formation by TRP3 [91].
Membrane curvature dependent binding was also observed for the an-
timicrobial peptides duramycin and cinnamycin [97], which bound to
PE-containing liposomes with about 40 nm in size, but not 700 nm in
size. Further, Tabaei et al. [95] described that an antiviral amphipathic
a-helical peptide, derived from the NS5A protein N-terminus of the
hepatitis C virus, induced pore formation in vesicles of 70 nm size 10
times faster than in vesicles of 200 nm in size. The authors suggested
that this difference in kinetics may be due to curvature dependent bind-
ing affinities.

Some studies also report on membrane curvature influencing the
secondary structure of peptides. For example, Sani et al. [94] measured
a decreased oa-helical fraction of maculatin 1.1 in SUVs compared to
LUVs. Further, Galanth et al. [98] discussed that the observed hinge
region in the a-helix of Drs B2 may be due to the high degree of positive
surface curvature of SDS micelles. Such a flexible structure may allow the
peptide to adapt to this unusual curvature by insertion of the hydropho-
bic N- and C-termini into the hydrophobic core of the micelle [98]. Final-
ly, Hong and Tamm [99] demonstrated that urea-induced unfolding of
the B-barrel outer membrane protein OmpA was reversible in small
unilamellar vesicles with a mean diameter of 30 nm. Urea unfolded
OmpA inserted and refolded spontaneously into SUVs composed of
phosphatidylcholines independent on acyl chain length. In contrast,
OmpA did not insert into large unilamellar vesicles unless the acyl
chain length of the constituent lipid was twelve C-atoms or less. In
SUVs, the lipids of the outer monolayer adopt a positive curvature,
whereas those of the inner monolayer possess a rather strong negative
curvature. Examination of the intramembranous shape of OmpA
revealed that this peptide favors lipid membranes with negative curva-
ture [99,100]. This circumstance was attributed in part to the two belts
of aromatic side chains (containing especially Trp) that are located at
the polar-apolar interfaces of the membrane [101].
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In sum, these results suggest that both scenarios occur: peptides can
induce curvature strain in lipid membranes and thereby facilitate the
formation of certain curved morphologies, or curved membrane regions
can facilitate the attachment of curvature-sensitive peptides or influ-
ence their structure in the bilayer.

6. Determination of membrane curvature in the presence of peptides

The importance of membrane curvature and hence the impact of the
individual lipid spontaneous curvature was nicely demonstrated in stud-
ies on the ionophoric peptide alamethicin and CTP:phosphocholine
cytidylyltransferase (CCT), emphasizing the importance of being able
to measure the respective parameters quantitatively. Lewis and Cafiso
pointed out that the Gibbs free energy of the peptide-bilayer partitioning
of alamethicin, a channel forming peptide, depends linearly on the mole
fraction of DOPE [102]. Upon increase of the mole fraction of DOPE in
mixtures of DOPC/DOPE the binding of alamethicin decreased. Hence,
the authors suggested that alamethicin is sensitive to the membrane
spontaneous curvature, and that a negative spontaneous curvature
(introduced by the cone shape of DOPE) counteracts the insertion of
the peptide into the bilayer. EPR-experiments with site directed spin-
labeling [102] together with diffraction studies [103] showed that
alamethicin is spanning the lipid membrane as a vertical a-helix [104].
Thereby the hydrophobic helical segment is shorter than the normal
DOPC/DOPE bilayer thickness, resulting in membrane thinning. Such a
bilayer distortion requires that lipids in the vicinity of the peptide as-
sume a positive curvature, which becomes energetically less favorable
when the fraction of PE is increased [102,105]. The same results were ob-
tained with the methyl-derivative of DOPE, which is characterized by the
same spontaneous lipid curvature. This observation demonstrates that
the impact of spontaneous curvature is independent from the chemical
nature of the lipids [43].

The study performed on CCT, an enzyme that is involved in lipid bio-
synthesis and is activated through binding to lipid membranes, supports
the notion that spontaneous curvature is also a controlling factor in pro-
tein/peptide-lipid interactions [106,107]. Attard et al. [106] demon-
strated that lipids with spontaneous curvatures of opposite signs show
different effects on protein-lipid association: increased membrane as-
sociation of CCT was measured with DOPC/DOPE mixtures as compared
to dimyristoyl phosphatidylcholine (DMPC)/DOPE mixtures. DOPC is
characterized by a negative spontaneous curvature due to its long, un-
saturated acyl chains, whereas DMPC comprises a positive spontaneous
curvature. One has to mention that the bilayer thickness in the fluid
phase of both PC lipids does not differ significantly.

In addition, Strandberg et al. showed that the orientation of
magainin 2 and PGLa is influenced by the degree of acyl chain saturation
and related this effect to the molecular shape of the lipids [93]. As men-
tioned above unsaturated acyl chains confer a more negative cone shape
to the lipid molecule as compared to saturated acyl chains. For this
reason, oriented planar PC bilayers differing in the degree of acyl chain
saturation may comprise different lateral pressures in the hydrocarbon
chain region, as the bilayers are not able to relax the lateral pressure by
undergoing a curvature. Strandberg et al. [93] observed that magainin 2
and PGLa remained flat on the surface in oriented planar PC bilayers
comprising unsaturated hydrocarbon chains, regardless of the chain
length. A different behavior was observed in phospholipids with fully
saturated dimyristoyl and dipalmitoyl hydrocarbon chains: PGLa alone
adopted a tilted orientation but a transmembrane alignment in the
presence of magainin 2, whereas magainin 2 stays only slightly tilted
on the surface, either alone or in the presence of PGLa. The authors pro-
posed that the orientation and insertion of the peptides depend on the
nature of the hydrocarbon chains and thereby reflect their impact of
the molecular shape of the lipids [93,108,109]. Nevertheless, one has
to mention that the oriental behavior of magainin 2 and PGLa is still a
matter of debate, as this system seems to be very sensitive to experi-
mental conditions like peptide concentration, lipid species and chain

length [110-112]. More detailed and quantitative information on the
spontaneous curvature of the single lipid species will be helpful in
understanding such processes.

In regard to lipid shape as an important parameter for bilayer—
peptide interaction, we want to point out a recent article from our lab-
oratory addressing the measurement of the spontaneous lipid curvature
[49]. This study presents a modification of the method to determine
the spontaneous curvature of bilayer forming lipids by using DOPE
liposomes as a template. The spontaneous curvature for cholesterol,
egg sphingomyelin, DOPE and POPE as well as a number of PCs with
di(un)saturated and mixed acyl chains of varying length were obtained
using small-angle X-ray scattering. The monolayer spontaneous curva-
ture was determined under stress-free conditions by locating the
neutral plane from electron density maps of Hy; phases. For a detailed
discussion of the properties and location of the neutral plane in compar-
ison to the pivotal plane and hence relevance in defining curvature elas-
ticity and spontaneous curvature of lipid systems the reader is referred
to an excellent recent publication of Marsh [113]. In the approach used
by Kollmitzer et al. [49] the lipid of interest (guest lipid) was mixed
with the Hy; forming template lipid (DOPE; host lipid) and changes in
the neutral plane, which coincide with the glycerol backbone, were de-
termined and the monolayer spontaneous curvature was calculated
(see Fig. 3). Interestingly, within the investigated lipids DPPC was the
only bilayer-forming lipid with a small positive curvature, while for
example distearoyl phosphatidylcholine (DSPC), a lipid with the same
headgroup but longer chains, comprises a negative spontaneous curva-
ture. For phosphatidylcholines it is known that mismatch in lateral areas
of heads and chains causes chain tilt and the ripple phase in a certain
range of chain lengths, which in part may be responsible for this obser-
vation [114]. It can be envisaged that this methodology can also be
applied to measure quantitatively changes in membrane curvature
upon incorporation of interfacially active peptides into the DOPE host
matrix (see Fig. 3).

7. Concluding remarks

We discussed the mutual dependence of membrane curvature on
the interaction with interfacially active peptides and vice versa how
such peptides can change membrane curvature. Thus, analysis of the de-
pendence of peptide insertion on membrane spontaneous curvature
will add further information on the molecular modes of action, although
not all responses of membrane proteins or peptides to lipid composition
are necessarily attributable to membrane curvature strain like hydro-
phobic matching [115,116]. Marsh [43] suggested two features to be
diagnostic for lipid curvature contributions: (i) systematic response
to DOPC-DOPE mixtures, because these two lipids differ markedly in
their spontaneous curvature, while diffraction results show their lipid
thicknesses in Hy-phases to be practically identical [117] and (ii) oppo-
site response induced by lipids, which have opposite spontaneous
curvatures.

It is also of interest to study the spontaneous curvature in terms of
membrane lipid composition, which differs strongly between different
cell types, e.g. bacteria and mammalian plasma cell membranes [58].
Hence different modes of peptide-lipid interaction can be expected de-
pending on the amount of non-lamellar phase forming lipids being
present in the target membrane. Dymond and Attard [118] proposed
that the antineoplastic properties observed in vivo for alkyl-lipids are
a direct consequence of the reduction of membrane stored elastic stress,
i.e. curvature strain, induced by these amphiphiles and noted that sever-
al of the cationic surfactant compounds were also potent antibacterial
and antifungal agents. The similarity of structure-activity relationships
for these amphiphilic molecules against microorganisms and those in
eukaryotic cell lines led the authors to suggest a common mechanism
of action. The authors proposed that the biological activity may be due
to modulation of membrane stored elastic stress. The latter can be relat-
ed to the ratio of lamellar and non-lamellar phase forming lipids present
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©C1  Host lipid
@ — Guest lipid

Fig. 3. Change of spontaneous curvature (Jo) upon incorporation of a guest lipid into a host lipid matrix forming a Hy; phase. In analogy, the influence on spontaneous lipid curvature and
hence preference for a given membrane curvature may be measured for interfacially active peptides (here gramicidin S) upon insertion into the host lipid matrix.

Adapted and modified from [49].

in the membrane and thus governs the response towards interaction
with amphiphiles such as interfacially active peptides. For example,
the cytoplasmic membrane of Gram-negative bacteria is rich in lipids
like PE, exhibiting a negative spontaneous curvature, and therefore
may be more prone to membrane disruption by such a mechanism
than mammalian plasma membranes, which contain a high amount of
bilayer forming lipids.

Finally, the different packing properties of non-lamellar and bilayer
stabilizing lipids may also have implications for membrane function. It
was suggested that the high lateral hydrocarbon chain pressure exhibit-
ed by non-lamellar phase preferring lipids supposedly controls the
conformation of integral membrane proteins [62]. In accordance with
this assumption are observations that for example (i) functioning of
transport proteins [119] as well as protein translocation [120] was
severely impaired in E. coli mutants lacking PE, (ii) non-lamellar lipids
are often required for functional reconstitution of membrane proteins
[63] and (iii) PE is found in protein-rich membrane domains [64].
Very recently, we have shown in our laboratory that AMPs derived
from human LF-11 interfere with the lipid domain organization of
E. coli membranes preventing cell division [121]. Moreover, mechanical
coupling of bulk membrane properties to the conformation of an ion
channel was shown to be strongly dependent on compounds that insert
into the membrane [122]. Upon insertion a change of the lateral pres-
sure profile leads to a new conformational equilibrium of the pore
protein. This will be most effective, if the compound inserts close to
the polar/apolar interface, where the lateral pressure profile exhibits
the largest changes. Therefore, AMPs that change the spontaneous
curvature of lipid membranes will affect the lateral hydrocarbon chain
pressure and in turn may lead as a secondary effect to conformational
changes of integral membrane proteins and hence to impairment of
membrane function. This may be an additional mechanism to - or a con-
sequence of - the interfacial activity by which antimicrobial peptides
kill bacteria.
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