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Abstract

In this paper we present improved approximation algorithms for two classes of maximization prob-
lems defined in Barland et al. (J. Comput. SystemSci. 57(2) (1998) 144). Our factors of approximation
substantially improve the previous known results and are close to the best possible. On the other hand,
we show that the approximation results in the framework of Barland et al. hold also in the parallel
setting, and thus we have a new common framework for both computational settings.We prove almost
tight non-approximability results, thus solving a main open question of Barland et al.
We obtain the results through the constraint satisfaction problem over multi-valued domains, for

which we develop approximation algorithms and show non-approximability results. Our parallel
approximation algorithms are based on linear programming and random rounding; they are better
than previously known sequential algorithms. The non-approximability results are based on new
recent progress in the fields of probabilistically checkable proofs and multi-prover one-round proof
systems.
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1. Introduction

Expressing combinatorial optimization problems as integer linear programs (ILP) has
several applications. In particular, several approximation algorithms start from the linear
programming relaxation of the ILP formulation, and then use randomized rounding[25,11],
primal-dual methods[12], or more sophisticated methods[21,10].
An interesting newstructural use of Integer Linear Programming has been taken in a

recent paper of Barland et al.[2], wheresyntactic classesof maximization problems are
introduced. A problem belongs to one such class if it can be expressed by an ILP with
a certain restricted format. The approximability properties of the problem in a class are
then implied by the approximability of the respective prototypical ILP. The main goal of
[2] was to overcome some limitations of the standard way of defining syntactic classes,
namely the approach of logical definability[24,23,18,19]. The latter approach, indeed, fails
to explain why problems with similar logical definability, such as MAX k–DIMENSIONAL
MATCHING and MAX CLIQUE have very different approximability properties. Furthermore,
using ILP, classes are defined in terms of a single parameter that determines the hardness of
the problems. This parameter is either the maximum number of occurrences of any variable
or the maximum size of the domain of the variables. The latter kind of restriction gives
rise to a family of classes that Barland et al. call Max FSBLIP (for-maximum feasible
subsystem of bounded layered integer program). Essentially, these classes consist of linear
integer programs withsyntacticrestrictions on the range of the variables, the number of
occurrences of a variable (e.g. the variables of the objective function can appear a bounded
numberof times in theprogram)and thedominanceconditionon theconstraints—asyntactic
criterion that try to capture the arithmetic nature of a constraint. Letting the variables to
take values in a constant, logarithmic, or polynomial range allowed Barland et al. to capture
syntactic maximization classes that are constant-approximable, polylog-approximable and
poly-approximable, respectively.An interesting question iswhether these three classes form
a proper hierarchy. Barland et al. did not completely resolve this point and left improved
non-approximability results as an open question.
In this paper our interest is twofold. In one hand, we use the integer programming as a

framework for parallel approximability, aiming to obtain improved parallel approximation
results. It is known that all the problems contained in logically defined syntactic classes
that are constant-factor approximable, are also constant-factor approximable2 in NC. This
feature of logically defined syntactic classes is desirable for at least two reasons: it re-
duces the study of sequential and parallel approximability to the same framework, and is
in accordance with the fact that almost all the constant-factor approximation algorithms
that are known also admit a parallel version with a comparable approximation ratio (see,
e.g.[29]). The issue of parallel approximability is not raised in the paper of Barland et al.
Our parallel results state that in the new framework of integer programming the sequential
results hold as well as in the parallel setting; thus, again we have a common framework for
both computational settings. Having this outcome, the second question that we consider is

2 In this paper we useNC to denote the class of problems that can be solved by an algorithm that runs in
poly-logarithmic time on a parallel shared-memory machine with a polynomial number of processors. See, e.g.
[8].
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what are the limits of parallel, as well as sequential, approximability for these problems.
We show that our approximation factors are nearly the best possible by providing some new
non-approximability results (the non-approximability results will also hold for sequential
algorithms.) In both cases, our main results will be expressed in terms of the multi-valued
constraint satisfaction problem, and then translated, by means of reductions, in terms of the
model of Barland et al.
Our results and comparison to previous results. In the following, we state our results and

we discuss their relation with previously known ones.
In this paper, a crucial role is played by the constraint satisfaction problem over multi-

valued domains. In an instance of this problem, we are given a set of constraints of arity
at mostk over multi-values variables where a constraint is a boolean valued function over
{0,1, . . . , d−1}k and is givenapositiveweight.Wecan think of ak-ary domain-d constraint
as a set ofk-tuples values (i.e. a relation over{0,1, . . . , d−1}k) and say that an assignment
satisfies the constraint if the corresponding values to the variables of the constraint form a
k-tuple belonging to the relation. The goal is to find an assignment to the variables that max-
imizes the total weight of satisfied constraints. This problem is a common generalization of
several known and well-studied problems. To begin with, it is a natural generalization of the
boolean constraint satisfaction problem MAX kCSP, introduced by Khanna et al.[16] and
then studied in[7,28,17](in theboolean case, thedomain is{0,1}, that is,d = 2.) It also gen-
eralizes multi-prover one-round proof systems and the MAX CAPACITY REPRESENTATIVES
problem (introduced by Bellare[3] and further considered by Barland et al.). The version
over multi-valued domain has been studied in the restricted case of binary constraints[20]
and that of “planar instances”[15]. In this paper we address, for the first time, the approx-
imability of the problem in its full generality.We present a parallel approximation, based on
linear programming and random rounding, that achieves an approximation factor 1/dk−1.
The algorithm can be efficiently parallelized and de-randomized. Our major contribution
here is the definition and the analysis of an appropriate random rounding scheme. The
parallelization mimics a similar proof in[28], but is not entirely straightforward. For the
special case of binary constraint(k = 2), our approximation guarantee is twice better than
the 1/2d-approximate algorithm of[20].
We also prove several non-approximability results under different complexity assump-

tions. Such results, follow from recent advances in the fields of probabilistically checkable
proofs[13] and of multi-prover one-round proof systems[27,26,1]and from the fact that
multi-valued constraint satisfaction problems generalize both models.
In a recent paper, Engebretsen[9] considered theMAX kCSP-G problem -the generaliza-

tion of theMAX kCSP over a finite abelian groupG− and showed thatMAX kCSP-G cannot
be approximated within|G|k−O(

√
k)−�, for any constant�, unless P= NP. This lower bound

matches with our upper bound|G|k−1 for the problem.
We use reductions from the multi-valued constraint satisfaction problem to derive neg-

ative approximation results for the rest of the problems of interest. In terms of the class
FSBLIP, our result states that the classesMax FSBLIP(2), Max FSBLIP(log) andMax
FSBLIP(poly) form a proper hierarchy (the separation of the two last classes derives from
a result of Bellare[3] stating that MAX CAPACITY REPRESENTATIVESwhich belongs toMax
FSBLIP(poly) is not log-approximable; we separate the first two classes by proving that
MAX CAPACITY REPRESENTATIVES(log) is not constant-approximable.)
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We also consider the class of integer programsMax FMIP (for maximum feasible
majority-integer program) for which MAX MAJORITY SAT is a canonical problem. Bar-
land et al.[2] showed that this class contains only constant-approximable problems. For
the generalMax FMIP problem, we present a slight improvement and simplification over
their approximation result. The latter result does not depend on the constraint satisfaction
problem.We also prove an almost tight non-approximability result for the problems of this
class by reducing from the boolean constraint satisfaction problem.
Organization of the paper. The paper is organized as follows. In Section 2 we give formal

definitions of the problems and of the classes of maximization problems we study. Some of
the definitions are accompanied by examples so to facilitate the reading. Section 3 contains
reductions from the multi-valued constraint satisfaction problem, which enable us to infer
approximability and non-approximability results to the rest of problems. The main results
of the paper are given in Sections 4 and 5 where we give, respectively, approximability and
non-approximability results. We conclude with some remarks in Section 6.

2. Preliminaries

For an integern, we denote by[n] the set{0, . . . , n − 1}. A combinatorial optimization
problem is characterized by the set ofinstances, by the finite set offeasible solutions
associated to any instance, and by ameasurefunction that associates a non-negativecost
to any feasible solution of a given instance. We refer, e.g. to[6] for the formal definition of
NP Optimization problem.

Definition 1 (MAX CAPACITY REPRESENTATIVES-d). For a functiond defined over positive
integers,d : Z+ → Z+, MAX CAPACITY REPRESENTATIVES-(d(n)) problem is defined as
follows:
Instance: A partition of{1, . . . , n} into setsS1, . . . , Sm, each, of cardinality at mostd; and
weightswi,j �0 for any two elements belonging to different sets of the partition.

Solution: The choice of a representative in any set.
Measure: The sum of the weightswi,j for anyi andj that are representatives in different
sets of the partition.

Note that a feasible solution to the problem consists of exactly one “representative”
element from each set, also called system of representatives, and we want to maximize the
edgeweight of them-clique induced by the representatives. This problemwas introduced by
Bellare[3] who showed that 2P1R (two prover, one round proof systems) reduces to MAX

CAPACITY REPRESENTATIVES-d and consequently the problem cannot be approximated in
polynomial timewithin 2�(log1/c n), unlessNP ⊆ ∪d>0DTIME(nd log

c n). In particular the
problem is not log-approximable modulo this assumption.

Definition 2 (k-ary domain-d constraint). A k-ary domain-d constraint over variables
x1, . . . , xn is a pair(f, (i1, . . . , ik)) wheref : [d]k → {0,1} andij ∈ {1, . . . , n} for j =
1, . . . , k. A constraintC = (f, (i1, . . . , ik)) is satisfied by an assignmenta = a1, . . . , an

to x1, . . . , xn if C(a) def= f (ai1, . . . , aik) = 1.
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We say that a functionf : [d]k → {0,1} is conjunctiveif it can be expressed as a
conjunction of equations, i.e. there are valuesv1, . . . , vk ∈ [d],

f (x1, . . . , xk) = 1 if and only if [x1 = v1] ∧ . . . ∧ [xk = vk].
When thiswill not causeconfusion,wewill sometimesblur the important differencebetween
a constraint(f, (i1, . . . , ik)) and the functionf . For example we say that a constraint
(f, (i1, . . . , ik)) is conjunctive if functionf is, and so on.

Definition 3 (MAX kCSP-d andMAX kCONJ-d). For any integer k�1 and function
d = d(n), the MAX kCSP-d is defined as follows:
Instance: A set{C1, . . . , Cm} of domain-d constraints of arity at mostk overx1, . . . , xn,
and associated non-negative weightsw1, . . . , wm.

Solution: An assignmenta = (a1, . . . , an) ∈ [d]n to the variablesx1, . . . , xn.
Measure: The total weight of satisfied constraints.
MAX kCONJ-d is the restriction of MAX kCSP-d to instances where all the constraints are

conjunctive.

Some special cases of the problem are as follows. For the case ofk = 2, we have
binary constraints (e.g. MAX 2CONJ-d), and ford = 2 we have constraints over boolean
variables (e.g.MAX kCONJ-2). The generalMAX kCSP-d for d = 2 is the standard constraint
satisfaction problem, denoted MAX kCSP.

Definition 4 (Integer linear programming). TheILP is as follows:
Instance: A matrixA ∈ Zm×n and two vectorsc ∈ Zn andb ∈ Zm.
Solution: A vectorx ∈ Zn satisfyingAx�b.
Measure: c · x.

Note that in this formulation, the goal is to maximize the measurec · x. The variables
appearing (withnon-zerocoefficients) in theobjective functionarecalledobjectivevariables
and those appearing only in the linear constraints areprogram variables. Thewidth of a
constraint is equal to the number of its variables. Moreover, we will assume that program
variables take integer values from the interval[0, d(n)) for some functiond.

Definition 5 (Constraint dominance). Given a linear constraintC of the form�(1− t) +
a · q�b, wheret is 0/1 variable and� > 0, it is said thatt dominates the constraint if

��
( ∑
aj<0

(d − 1)|aj |
)

+ b.

It should be observed that the constraint dominance can be stated as: “t dominates the
constraintC iff for t = 0 the constraint is satisfied whatever is the assignment to the rest of
variables”. Obviously, if an assignment satisfiesa · q�b, then the constraint is satisfied for
any value oft .

Definition 6 (Max FSBLIP(d(n)) (Barland et al.[2] )). For a given functiond(n), the class
Max FSBLIP(d(n)) contains all the optimization problems� for which there are positive
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integer constantsl, m, o′ (that only depend on�) such that every instance of� can be
expressed as an ILP with the following structure:
• The program variables can take values in{0,1, . . . , d(n) − 1}.
• Each objective variableti takes either 0 or 1 and occurs only in constraints of the form
(1− ti ) + qi,1 + · · · + qi,z�1 dominated byti , wherez ∈ N can be polynomial inn,
and eachqi,j ,1�j�z is a 0/1 program variable associated with the objective variable
ti . These constraints are referred to as objective constraints.

• Eachvariableqi,j appearing inanobjective constraint occurs inatmostl other constraints
and dominates each of them.

• All constraints that are not objective ones have widthm and are dominated by someqi,j
associated with some objective variableti .

• Each objective variableti appears in at mosto objective constraints.

For a flavor of how the problems of this class are, let us consider the ILP for MAX SAT
problem which belongs to the classMax FS-BLIP(2). Given an instanceC of MAX SAT
consisting ofm clausesC1, . . . , Cm on n variablesx1, . . . , xn, we let ti be a 0/1 variable
corresponding to whether theith clause is false/true; to theith clause there are associatedn

variablesqi,1, . . . , qi,n. Further, to any variablexj of the formula, there is associated a 0/1
variable depending whether the variable is assigned to false or true, respectively. For any
clauseCi and any variablexj is introduced a 0/1 constantpi,j assigned to 1 ifxj appears
positively in clauseCi and 0 otherwise. Similarly the constantsni,j are defined, that is,ni,j
is assigned to 1 ifxj appears negatively in clauseCi and 0 otherwise. The ILP[2] is as
follows:

max t1 + t2 + · · · + tm

s.t.

(1− ti ) + qi,1 + qi,2 + · · · + qi,n�1,

(1− qi,j ) + pi,j + ni,j �1,

(1− qi,j ) + (1− pi,j ) + vj �1,

(1− qi,j ) + (1− ni,j ) + (1− vj )�1,

ti , vj , qi,j ∈ {0,1},
1� i�m, 1�j�n.

(1)

Notice that for this program we haved = 2, eachti dominates the constraint (1) andqi,j
dominates the rest of constraints. For anyi andj ,qi,j appears in four constraints in the entire
integer program; the constraints which are not objective ones have width 3 and, finally, for
anyi, ti appears in only one objective constraint.
The second class is that ofMax FMIP (maximum feasible majority IP) for which MAX

MAJORITY SAT is a canonical problem.

Definition 7 (Max FMIP (Barland et al.[2] )). An optimization problem� belongs to the
class MAX FEASIBLE MAJORITY IP (in short,Max FMIP) if there exist positive constants
k,� and a polynomialp such that for any instance I of� we can find a set of linear
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inequalities over the integers

Ax�b,

x ∈ {−k,−k + 1, . . . , k − 1, k}n,
wherebj ��, the entries ofA are integers of absolute value at mostp(n), and the optimum
of I is precisely the maximum number of inequalities that are simultaneously satisfiable.
Variables are allowed to take integer values from the interval[−k, k] or [−k, k] − {0}.

Asanexample, let usconsider theproblemMAX MAJORITYSAT.We recall that an instance
of MAX MAJORITY SAT is an instance of SAT with the additional condition that a clause is
satisfied if at least half of its literals are true. Now wematch the above definition as follows.
For any boolean variable, introduce a (numeric) variable taking values in{−1,1}. To any
clause there is associated an inequality linear restriction. The left-hand side of the inequality
is the sum of the variables corresponding to the variables of the clause with coefficients±1
depending whether they appear positively or negated in the clause; the right-hand side is 0.
For example, to the instance(x,¬y,¬z), (x, y,¬z) corresponds the following program:

x − y − z�0,

x + y − z�0,

x, y, z ∈ {−1,1}
and we want to find values tox, y, z that maximize the number of satisfied inequalities.
We will make use of a version of linear programming that is efficiently approximable in

NC.

Definition 8 (Positive linear programming (Luby and Nisan[22] )). A maximization
linear program is said to be an instance ofpositive linear programming(PLP for short)
if it is written as max{cTx : Ax�b, x�0} where all the entries ofA, b andc are non-
negative.

Maximization positive linear programs are also calledfractional packingproblems. Luby
and Nisan developed a very efficient algorithm for approximating positive linear program-
ming problems.

Theorem 1(Luby and Nisan[22] ). There exists a parallel algorithm that given in input
a maximization instance P of PLP and a rational� > 0 returns a feasible solution for P
whose cost is at least(1− �) times the optimum. Furthermore, the algorithm runs in time
polynomial in1/� and logN usingO(N) processors, where N is the number of non-zero
entries in P.

3. Reductions among problems

Theorem 2. For any constant k and functiond(n), MAX kCONJ-d(n) belongs to
Max FSBLIP(d(n)).
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Proof. Our formulation is similar to that of MAX CAPACITY REPRESENTATIVESgiven in
[2, Section 3]. Let {C1, . . . , Cm} be a set ofk-ary domain-d conjunctive constraints over
x1, . . . , xn, andw1, . . . , wm be associated non-negative weights. We use two 0/1 variables
tj andfj for any constraint, and we use ad-valued variableyi for any variablexi . The ILP
is

max
∑

j wj ti

s.t.
(1− tj ) + fj �1 ∀ j = 1, . . . , m,

d(1− fj ) + yi �v ∀ j = 1, . . . , m ∀[xi = v] ∈ Cj ,

d(1− fj ) − yi � − v ∀ j = 1, . . . , m ∀[xi = v] ∈ Cj .

Notice that each objective variabletj appears in a unique objective constraint, each variable
fj in an objective constraints occurs in at most 2k other constraints dominating each of
them, and, finally, any constraints has width 2.�

Theorem 3. If MAX kCONJ-d is r-approximate(in NC) and dk = poly(n), thenMAX

kCSP-d is r-approximable(in NC).

Proof. For any constraintCj of weightwj , let s be the number of satisfying assignments to
its variables (note thats�dk). Then we can expressCj as the disjunction ofs conjunctive
constraintsK1

j , . . . , K
s
j , each one enforcing one of the satisfying assignments ofCj . Ob-

serve that any (global) assignment, satisfies at most one of theKi
j constraints and satisfies

one if and only if satisfiesCj . Let us substituteCj with theK1
j , . . . , K

s
j constraints, and

give weightwj to all of them. We repeat the same substitution for any constraint. The new
instance is equivalent to the former, in the sense that they share the same set of feasible
solutions, and the cost of each solution is always the same. Observe that the substitution
process can be done also in parallel for all the constraints.�

Theorem 4. MAX 2CONJ-d is r-approximable(in NC) if and only if MAX CAPACITY
REPRESENTATIVES-d is r-approximable(in NC).

Proof. It is easy to see that the two problems are equal. Without loss of generality we
can assume that any set in a MAX CAPACITY REPRESENTATIVES-d instance has exactlyd
elements (add dummy elements and give weight zero to the pairs corresponding to such
elements) and that in a MAX 2CONJ-d instance withn variables there are all the possible(
n
2

)
d2 conjunctive constraints (add the missing constraints with weight zero). Now, the

equivalence is immediate: every setSi in MAX CAPACITY REPRESENTATIVES-d corresponds
to ad-valued variablesi = a, a = 0,1, . . . , d − 1, meaning that the representative of set
Si is a; the choice of a representative corresponds to the value assigned to the variable;
to a pair of representatives in different setsSi , Sj corresponds a conjunctive constraint
si = a ∧ sj = b; the weight of a constraint is that of the edge from which it was derived.
Clearly, starting from an instance of MAX CAPACITY REPRESENTATIVES-d we construct (in
NC) an instance of MAX 2CONJ-d such that its feasible solutions are also feasible solutions
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of the same cost for MAX CAPACITY REPRESENTATIVES-d and vice versa. The theorem thus
readily follows. �

Theorem 5. MAX kCONJ-2 can be expressed as aMax FMIP problem withp(n) = 1,
k′ = 1 and� = k.

Proof. Let � be an instance of MAX kCONJ-2. We have a variableyi ∈ {−1,1} for any
variablexi of �. For any constraintCj , letPj (resp.Nj ) be the set of indices of variables
that are assigned to 1 (resp. 0) inCj . Let kj be the arity ofCj . ThenCj is expressible as

∧
i∈Pj

[xi = 1] ∧ ∧
i∈Nj

[xi = 0].

We translateCj into the constraint
∑

i∈Pj
yi + ∑

i∈Nj
−yi �kj . Under the understanding

that {−1,1} assignments toyi should be mapped to{0,1} assignments forxi (i.e. xi =
(1+ yi)/2), the two constraints are equivalent.We repeat the translation for any constraint,
and the theorem thus follows.�

4. Positive results: algorithms

In this section we give approximation algorithms for the problems of the classes
Max FSBLIP(d(n)) andMax FMIP. The approximation results for the problems of the
first class are obtained through the approximability of MAX kCONJ-d while for the second
class the method we use is straightforward.

4.1. The approximability of MAX kCONJ-d Problem

We now consider a linear programming relaxation of MAX kCONJ-d. We have a variable
zj for any constraintCj , with the intended meaning thatzj = 1 whenCj is satisfied and
zj = 0 otherwise. We also have a variableti,v for any variablexi and any valuev ∈ [d],
meaning thatti,v = 1 if xi = v andti,v = 0 otherwise.

max
∑
j

wj zj

s.t.
zj � ti,v ∀ i, v, [xi = v] ∈ Cj ,∑
v∈[d]

ti,v = 1,

0� ti,v�1 ∀ i ∈ [n], ∀v ∈ [d].
(CONJ)

Lemma 1. The linear program(CONJ)is (1− o(1))-approximable inNC.
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Proof.The proof is a generalization of a result of[28].We reformulate (CONJ) in a slightly
different way.

max
∑
j

wj zj

s.t.
zj + ∑

u�=v

ti,u�1 ∀ i, v, [xi = v] ∈ Cj ,∑
v∈[d]

ti,v = 1,

0� ti,v�1 ∀ i ∈ [n], ∀v ∈ [d].
(CONJ1)

We just used the fact that

ti,v = 1− ∑
u�=v

ti,u.

Observe that (CONJ1) would be in PLP form if it had no equality constraints. For any
i, let occi be the total weights of the constraintsj where a variableti,v occurs together
with zj , that is occi = ∑

j,v:xi=v occurs incj wj . Let also defineocc = ∑
i occi ; we

observe thatocc�k
∑

j wj , and that the optimum of (CONJ) and (CONJ1) is at least∑
j wj/d�occ/kd. Let us consider the PLP

max
∑
j

wj zj + ∑
i

occi
∑
v

ti,v

s.t.
zj + ∑

u�=v

ti,u�1 ∀ i, v, [xi = v] ∈ Cj ,∑
v∈[d]

ti,v�1,

0� ti,v�1 ∀ i ∈ [n], ∀v ∈ [d].
(CONJ2)

Claim 6. If (z, t) is feasible for(CONJ1)and has cost c, then it is also feasible for(CONJ2)
and has costc + occ.

Claim 7. Given (z, t) feasible for(CONJ2) of costc + occ, then we can find inNC a
solution(z′, t ′) of cost c that is feasible for(CONJ1).

Proof (Of the Claim). We definet ′i,0 = 1 − ∑
v �=0 ti,v and t ′i,v = ti,v for v �= 0; and,

furthermore, we define

z′
j = min{zj , min[xi=v]∈Cj

ti,v}.



M. Serna et al. / Theoretical Computer Science 332 (2005) 123–139 133

The solution(z′, t ′) is clearly computable inNC given(z, t), and is feasible for (CONJ1)
and (CONJ). To prove the claim, it remains to show

∑
j

wj z
′
j � ∑

j

wj zj + ∑
i

(
occi

∑
v

ti,v

)
− occ. (2)

Let J be the set of indicesj such thatz′
j < zj . For anyj ∈ J we clearly havez′

j =
min[xi=v]∈Cj

ti,v. We calli(j) andv(j) the index and the value such thatz′
j = ti(j),v(j). By

the feasibility of(z, t), we havezj �1− ∑
u�=v ti,u�1− ∑

u�=v(j) ti(j),u. We prove Eq. (2)
in two steps.∑

j

wj (zj − z′
j ) = ∑

j∈J
wj (zj − z′

j )

� ∑
j∈J

wj

(
1−

( ∑
u�=v(j)

ti(j),u

)
− ti(j),v(j))

)

= ∑
j∈J

wj

(
1− ∑

v

ti(j),v

)
.

On the other hand,

occ − ∑
i

(
occi

∑
v

ti,v

)
= ∑

i

occi

(
1− ∑

v

ti,v

)

= ∑
i

∑
j :xi occurs incj

wj

(
1− ∑

v

ti,v

)

= ∑
i

∑
i:xi occurs incj

wj

(
1− ∑

v

ti,v

)

� ∑
j∈J

wj

(
1− ∑

v

ti(j),v

)
.

We have therefore established

occ − ∑
i

(
occi

∑
v

ti,v

)
� ∑

j

wj (zj − z′
j ),

which is equivalent to (2). �

Thus, the optimum of (CONJ2) isoccplus the optimum of (CONJl), i.e. it is at most
(kd + 1) times the optimum of (CONJl). As in[28], the lemma now follows by finding
a (1− o(1))-approximate solution for (CONJ2), converting it into a solution for (CONJl)
(and thus (CONJ)) and observing that it is still(1− o(1))-approximate. �

Remark 1. The above lemma shows that the linear programming relaxations derived from
LP’sofMax FSBLIPproblemsareapproximable inparallelwithinanyconstant.Since these
linear programming relaxations are instances of Positive Linear Programming, we have that
this class of LP relaxations can be seen as an extension of positive linear programming.

Lemma 2 (Random rounding forMAX kCONJ-d). Let (z, t) be a feasible solution for
(CONJ).Consider the random assignment obtained by setting, for any i, v

Pr[xi = v] = (k − 1)/dk + ti,v/k.
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Then such an assignment has an average cost at least1
dk−1

∑
j wj zj . The analysis only

assumes that the distribution is k-wise independent.

Proof. It is sufficient to prove that any constraintCj is satisfied with probability at least
1

dk−1 zj ; the lemma will then follow by the linearity of expectation. Observe that if the atom
[xi = v] occurs inCj thenzj � ti,v. Then

Pr[Cj is satisfied]�
(
k − 1

dk
+ 1

k
zj

)k

� 1

dk−1 zj . (3)

For the last inequality, we consider the function

f (z) =
(
k−1
dk

+ 1
k
z
)k

z

in the interval 0�z�1, compute its first derivative, and show thatf has a minimum in
z = 1/d, that isf (z)�f (1/d) = 1/dk−1, ∀z,0�z�1. In the first inequality of Eq. (3)
we have assumed that the random variables induced by the clauseCj are independent.�

Remark 2. The above analysis is tight and establishes that the integrality gap of (CONJ)
is dk−1. The bound is achieved, e.g. by the instance consisting of clausesC1, C2, . . . , Cdk

that are all possible sizek (domain-d) conjunctions of{x1, . . . , xk}.

Theorem 8. For any d = d(n) and k = k(n) such thatdk = nO(1), there is anNC
(1/dk−1 − o(1))-approximate algorithm forMAX kCSP-d. In particular, there is a
(1/d − o(1))-approximateNC algorithm forMAX CAPACITY REPRESENTATIVES-d.

Proof. The first statement of the theorem follows from Theorem 3 and the Lemma 2, and
the second statement follows from the Theorem 4.�

4.2. TheMax FSBLIP problems

Borland et al.[2] have shown the following approximation result for the problems of the
classMax FSBLIP(d(n)).

Theorem 9(Barland et al.[2] ). For every problem in the classMax FSBLIP(d(n)), there
is a constant p such that the problem is1/d(n)p-approximable.

Their proof is a generalization of the greedy technique used for the approximation of the
Max NP problems in[24]. Note that the constantp in Theorem 9 isp = l · m, wherem
is the width of a constraint andl is the maximum number of occurrences of any objective
variable in the rest of program constraints (recall the definition ofMax FSBLIP).
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Now, if we take a MAX kCSP-d problem, and we want to express it as aMax FSBLIP(d),
and then we use the FSBLIP approximation algorithm of Barland et al., what we get is
– in the translation from MAX kCSP-d toMax FSBLIP(d) we havel = 2k,m = 2, o = 1
(Theorem 2).

– the Barland et al. algorithm will have approximation ratio 1/dlm which is 1/d4k which
is worse than our approximation ratio 1/dk−1.

So, given a Max kCSP-d instance, it is better to use our algorithm than to translate the
instance into an instance ofMax FSBLIP(d) and then use Barland’s algorithm on it. In
particular, forMAX CAPACITY REPRESENTATIVES-dwehavem = 2andl = 1.Thesequential
factor of[2] is 1/d2 while our factor is(1/d−�). This improvement is quite natural because
the sequential result is obtained via a uniform probability distribution while we have used
a distribution obtained from the fractional solution of the linear programming relaxation to
the problem. Finally, sinceMax NP is properly contained inMax FSBLIP(2) [2] we derive
also constant parallel approximability of improved factors for theMax NP problems.

4.3. TheMax FMIP problems

A prototypical problem inMax FMIP is MAX MAJORITY SAT, which is the variation of
MAX SAT where a clause is satisfied if at least half the literals (rather than at least one)
are satisfied. Barland et al.[2] showed that this class contains only constant-approximable
problems (using,oncemore, thesyntactic structureof integerprograms)andgaveastructural
explanation of this result.
It is easy to find a 2-approximate solution for MAX MAJORITY SAT. Any clause is either

satisfied by the assignmentxi = 0, ∀i, or by the assignmentxi = 1, ∀i. Thus one of the
two assignments satisfies at least half the clauses.3

For theMax FMIP problem in its general setting, we present a slight improvement and
simplification over the approximation result of Barland et al.[2].

Theorem 10. Given an instance of aMax FMIP problem, the random assignment where
each variable is set to−k or to kwith probability1/2 independently at randomsatisfies each
constraint with probability at least1/21+��/k�, provided that the constraint is satisfiable.

Proof. Consider a constraint
∑

i aixi �b. If the constraint is satisfiable, then
∑

i |ai |k�b.
Since theai are integers, theremust be a setJ of at most�b/k� indices such that∑i∈J |ai |k
�b. Under the uniform distribution, with probability at least 1/2|J | �1/2�b/k� wewill have∑

i∈J aixi �b. lt is also easy to see that, by symmetry, with probability at least 1/2 we have∑
i /∈J aixi �0.
The theorem thus follows since for the whole set of constraints,bj ��, ∀j . �

The above theorem can be derandomized inNC through the techniques of Karger and
Koller [14].

3 This nice idea is due to Michel Goemans.
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Notice that the factor of approximationgivenby theabove theorem improves the constant-
factor approximation of Barland et al. Indeed, Barland et al.[2] find an assignment to
variables of the program that satisfies any restriction with probability at least 1/(2 · 3�),
while we find a solution that satisfies any restriction with probability at least 1/(2 · 2��/k�).
Finally, we remark that our proof is quite simple compared to that of[2] (they use again
a greedy technique which results a bit more complicated than the case ofMax FSBLIP
problems, since the constraints have no bounded width anymore).

5. Negative results: hardness of approximation

We first define Probabilistically Checkable Proof Systems and Multi-Prover One-Round
Proof Systems. Our notationmerges the notations of[4] and[5]. For an integerd, we denote
by [d]∗ the set of all strings over[d].

Definition 9 (Verifier). A verifierV for a languageL is a randomizedpolynomial timeoracle
Turing machine.V receives in input a stringx and has oracle access to a string� that is an
alleged proof thatx ∈ L.

Definition 10 (PCP andMIP). Letc, s, r, q, d : Z+ → Z+ such that 0�s(n) < c(n)�1
for anyn; we say that a languageL belongs toPCPc,s[r, q, d] if there exists a verifierVsuch
that
(1) For any input stringx and oracle proof� ∈ [d(n)]∗,V queries at mostq(n) entries of�

and uses at most O(r(n)) random bits;
(2) For anyx ∈ L, there exists a� ∈ [d(n)]∗ such that the probability thatVacceptsxwith

oracle� is at leastc(n);
(3) For anyx /∈ L, for any� ∈ [d(n)]∗; the probability thatV acceptsxwith oracle� is at

mosts(n).
The classMlPc,s[r, q, d] is similar, with the only difference that� is presented as a sequence
of q strings�1, . . . ,�q , where�i ∈ [d]∗, andV has the further restriction that it can read at
most one entry of any�i .

From the above definition it follows thatMIPc,s[r, q, d] ⊆ PCPc,s[r, q, d] for any choice
of the parameters. The following result is folklore.

Theorem 11. If MAX kCSP-(d(n)) is�(n)-approximable, then, for anyc(n) ands(n) such
that s(n)/c(n) < �(nO(1)2O(r(n))), it holds

PCPc(n),s(n)[r(n), k(n), d(n)] ⊆ DTIME(2O(r(n)+k(n) logd(n))).

We prove several non-approximability results in the following theorem.

Theorem 12. The following statements hold(n is the size of the input):
(1) A constantc > 0 exists such that, for any constantd�2, it is NP-hard to approximate

MAX 2CSP-d within1/dc. Furthermore, for any� > 0, it is infeasible to approximate
MAX 2CSP-(logn) within 2log

1−� n unlessNP ⊆ DTIME(nlog
O(1/�)n

).
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(2) For any constant d, for any k�3, for any � > 0, it is NP-hard to approximateMAX

kCSP-d within1/d�k/3� + �.
(3) Constants k and c exist such that it isNP-hard to approximateMAX kCSP-(logn)within

1/ lognc.
(4) For anyk�5,any� > 0, it is NP-hard to approximateMAX kCSPwithin 2log

1/3−� n.
(5) For any � > 0, a constantk = O(1/�) exists such that it isNP-hard to approximate

MAX kCSPwithin 2log
1−� n.

(6) For any� > 0,Max FMIP problems are hard to approximate within1/2��/3� + �.

Proof (Sketch).For (1), Raz[26] has shown that a constantc′ > 0 exists such that, for anyk :
Z+ → Z+,NP ⊆ MIP1,2−ck(n)[k(n) logn,2,3k(n)].Thefirst part of theclaim followsbyset-
ting k(n) = �log3 d(n)�; the second part by settingk(n) = logO(1/�)(n). Next, for (2), Hås-
tad [13] has shown that for any� > 0, for any fixed prime p,
NP = PCP1−�,1/p+�[log,3, p]. The claim follows by choosingp = d and repeating the
proof k/3 times. Further, (3)–(5) are re-statements of the results of Raz and Safra[27],
and Arora and Sudan[1] using Theorem 2. Finally, (6) follows from the hardness of MAX

kCSP-2 and from Theorem 5.�

From the above theorem we easily deduce a couple of corollaries. First, from part (1) of
Theorems 3 and 4 we have

Corollary 13. MAX CAPACITY REPRESENTATIVES(logn) is not constant-approximable.

This result solves an open question of Barland et al. namely whether the problem MAX

CAPACITY REPRESENTATIVES(logn) is constant-approximable.
From Corollary 13 we derive easily the following structural result.

Corollary 14. The classesMax FSBLIP(2),Max FSBLIP(log) andMax FSBLIP(poly)
form a proper hierarchy.

Note that we separate the first two classes since MAX CAPACITY REPRESENTATIVES(log)
is not constant-approximable, the separation of the two last classes derives from a result
of Bellare[3] stating that MAX CAPACITY REPRESENTATIVESwhich belongs toMax FS-
BLIP(poly) is not log-approximable.
Finally, it isworth tomention the almost tight non-approximability result for the problems

of classMax FMIP.

6. Concluding remarks

We show that the sequential results of Barland et al. obtained in the framework of
integer programs of restricted format hold also in the parallel setting and thus we come
out with a new common framework for both settings (a previous common framework is
that of logical definability of Papadimitriou and Yannakakis). Moreover, we give substan-
tial improvements in two directions. First, our factors of approximation are close to the
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best possible while the ones in Barland et al. were far from, due to the use of the greedy
technique they employed. Secondly, we show tight non-approximability results for NON-
BOOLEAN CONSTRAINTSATISFACTION and MAX CAPACITY REPRESENTATIVES. (This is the
first time the approximability and non-approximability of both problems is addressed in
its full generality.) The non-approximability result of the last problem allow us to establish
that the classesMax FSBLIP(2),Max FSBLIP(log) andMax FSBLIP(poly) form a proper
hierarchy.
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