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Abstract

In this paper we present improved approximation algorithms for two classes of maximization prob-
lems defined in Barland et al. (3. Comput. System Sci. 57(2) (1998) 144). Our factors of approximation
substantially improve the previous known results and are close to the best possible. On the other hand,
we show that the approximation results in the framework of Barland et al. hold also in the parallel
setting, and thus we have a new common framework for both computational settings. We prove almost
tight non-approximability results, thus solving a main open question of Barland et al.

We obtain the results through the constraint satisfaction problem over multi-valued domains, for
which we develop approximation algorithms and show non-approximability results. Our parallel
approximation algorithms are based on linear programming and random rounding; they are better
than previously known sequential algorithms. The non-approximability results are based on new
recent progress in the fields of probabilistically checkable proofs and multi-prover one-round proof
systems.
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1. Introduction

Expressing combinatorial optimization problems as integer linear programs (ILP) has
several applications. In particular, several approximation algorithms start from the linear
programming relaxation of the ILP formulation, and then use randomized rouja%iyidl ],
primal-dual methodgL2], or more sophisticated methofl,10].

An interesting newstructural use of Integer Linear Programming has been taken in a
recent paper of Barland et gR], wheresyntactic classesf maximization problems are
introduced. A problem belongs to one such class if it can be expressed by an ILP with
a certain restricted format. The approximability properties of the problem in a class are
then implied by the approximability of the respective prototypical ILP. The main goal of
[2] was to overcome some limitations of the standard way of defining syntactic classes,
namely the approach of logical definabil[B4,23,18,19] The latter approach, indeed, fails
to explain why problems with similar logical definability, such asXVk—DIMENSIONAL
MATCHING and Max CLIQUE have very different approximability properties. Furthermore,
using ILP, classes are defined in terms of a single parameter that determines the hardness of
the problems. This parameter is either the maximum number of occurrences of any variable
or the maximum size of the domain of the variables. The latter kind of restriction gives
rise to a family of classes that Barland et al. cabMFSBLIP (for-maximum feasible
subsystem of bounded layered integer program). Essentially, these classes consist of linear
integer programs witlsyntacticrestrictions on the range of the variables, the number of
occurrences of a variable (e.g. the variables of the objective function can appear a bounded
number of timesinthe program) and tieminanceondition on the constraints—a syntactic
criterion that try to capture the arithmetic nature of a constraint. Letting the variables to
take values in a constant, logarithmic, or polynomial range allowed Barland et al. to capture
syntactic maximization classes that are constant-approximable, polylog-approximable and
poly-approximable, respectively. An interesting question is whether these three classes form
a proper hierarchy. Barland et al. did not completely resolve this point and left improved
non-approximability results as an open question.

In this paper our interest is twofold. In one hand, we use the integer programming as a
framework for parallel approximability, aiming to obtain improved parallel approximation
results. It is known that all the problems contained in logically defined syntactic classes
that are constant-factor approximable, are also constant-factor approxfmale. This
feature of logically defined syntactic classes is desirable for at least two reasons: it re-
duces the study of sequential and parallel approximability to the same framework, and is
in accordance with the fact that almost all the constant-factor approximation algorithms
that are known also admit a parallel version with a comparable approximation ratio (see,
e.g.[29]). The issue of parallel approximability is not raised in the paper of Barland et al.
Our parallel results state that in the new framework of integer programming the sequential
results hold as well as in the parallel setting; thus, again we have a common framework for
both computational settings. Having this outcome, the second question that we consider is

2n this paper we us@&lC to denote the class of problems that can be solved by an algorithm that runs in
poly-logarithmic time on a parallel shared-memory machine with a polynomial number of processors. See, e.qg.

(8].
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what are the limits of parallel, as well as sequential, approximability for these problems.
We show that our approximation factors are nearly the best possible by providing some new
non-approximability results (the non-approximability results will also hold for sequential
algorithms.) In both cases, our main results will be expressed in terms of the multi-valued
constraint satisfaction problem, and then translated, by means of reductions, in terms of the
model of Barland et al.

Our results and comparison to previous resulisthe following, we state our results and
we discuss their relation with previously known ones.

In this paper, a crucial role is played by the constraint satisfaction problem over multi-
valued domains. In an instance of this problem, we are given a set of constraints of arity
at mostk over multi-values variables where a constraint is a boolean valued function over
{0, 1, ...,d—1}* andis given a positive weight. We can think df-ary domaind constraint
as a set of-tuples values (i.e. arelation oV, 1, . . ., d — 1}¥) and say that an assignment
satisfies the constraint if the corresponding values to the variables of the constraint form a
k-tuple belonging to the relation. The goal is to find an assignment to the variables that max-
imizes the total weight of satisfied constraints. This problem is a common generalization of
several known and well-studied problems. To begin with, itis a natural generalization of the
boolean constraint satisfaction problemkCSP, introduced by Khanna et fl6] and
then studied ifi7,28,17](in the boolean case, the domaif@s 1}, thatisd = 2.) Italso gen-
eralizes multi-prover one-round proof systems and the MAPACITY REPRESENTATIVES
problem (introduced by Bellar@] and further considered by Barland et al.). The version
over multi-valued domain has been studied in the restricted case of binary congg@jnts
and that of “planar instance§15]. In this paper we address, for the first time, the approx-
imability of the problem in its full generality. We present a parallel approximation, based on
linear programming and random rounding, that achieves an approximation fagtor'1
The algorithm can be efficiently parallelized and de-randomized. Our major contribution
here is the definition and the analysis of an appropriate random rounding scheme. The
parallelization mimics a similar proof if28], but is not entirely straightforward. For the
special case of binary constrait= 2), our approximation guarantee is twice better than
the 1/2d-approximate algorithm dR0].

We also prove several non-approximability results under different complexity assump-
tions. Such results, follow from recent advances in the fields of probabilistically checkable
proofs[13] and of multi-prover one-round proof systeif2§,26,1]and from the fact that
multi-valued constraint satisfaction problems generalize both models.

In arecent paper, Engebretddhconsidered the kx kCSPG problem -the generaliza-
tion of the Max kCSP over afinite abelian grodp— and showed that Mk k<CSP-G cannot
be approximated withirG|"*°<ﬁ)*8, for any constard, unless P= NP. This lower bound
matches with our upper bound ¥~ for the problem.

We use reductions from the multi-valued constraint satisfaction problem to derive neg-
ative approximation results for the rest of the problems of interest. In terms of the class
FSBLIP, our result states that the clas$édax FSBLIP(2), Max FSBLIP(log) andMax
FSBLIP(poly) form a proper hierarchy (the separation of the two last classes derives from
a result of Bellarg3] stating that Mx CAPACITY REPRESENTATIVESVhich belongs tdviax
FSBLIP(poly) is not log-approximable; we separate the first two classes by proving that
Max CAPACITY REPRESENTATIVEl0Q) is not constant-approximable.)
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We also consider the class of integer prograviex FMIP (for maximum feasible
majority-integer program) for which Nk MAJORITY SAT is a canonical problem. Bar-
land et al.[2] showed that this class contains only constant-approximable problems. For
the generaMax FMIP problem, we present a slight improvement and simplification over
their approximation result. The latter result does not depend on the constraint satisfaction
problem. We also prove an almost tight non-approximability result for the problems of this
class by reducing from the boolean constraint satisfaction problem.

Organization of the papefhe paper is organized as follows. In Section 2 we give formal
definitions of the problems and of the classes of maximization problems we study. Some of
the definitions are accompanied by examples so to facilitate the reading. Section 3 contains
reductions from the multi-valued constraint satisfaction problem, which enable us to infer
approximability and non-approximability results to the rest of problems. The main results
of the paper are given in Sections 4 and 5 where we give, respectively, approximability and
non-approximability results. We conclude with some remarks in Section 6.

2. Preliminaries

For an integer, we denote byn] the set{0, ..., n — 1}. A combinatorial optimization
problem is characterized by the setinktances by the finite set offeasible solutions
associated to any instance, and byneasurdunction that associates a non-negatiest
to any feasible solution of a given instance. We refer, e.ff]téor the formal definition of
NP Optimization problem.

Definition 1 (Max Caracity REPRESENTATIVES-d). For a functiond defined over positive

integersd : Z — ZT, MAax CAPACITY REPRESENTATIVES(d(n)) problem is defined as

follows:

Instance: A partition of{1, ..., n}intosetsS, ..., S, each, of cardinality at mogt and
weightsw; ; >0 for any two elements belonging to different sets of the partition.

Solution: The choice of a representative in any set.

Measure: The sum of the weights; ; for anyi and; that are representatives in different
sets of the partition.

Note that a feasible solution to the problem consists of exactly one “representative”
element from each set, also called system of representatives, and we want to maximize the
edge weight of the:-clique induced by the representatives. This problem was introduced by
Bellare[3] who showed that 2P1R (two prover, one round proof systems) reducesto M
CaPACITY REPRESENTATIVESd and consequently the problem cannot be approximated in
polynomial time within & (log'/¢ n), unlessNP € U,-oDTIME (2499 ). In particular the
problem is not log-approximable modulo this assumption.

Definition 2 (k-ary domaine constrain}. A k-ary domaind constraint over variables
X1, ..., Xy IS @ pair(f, (i1, ..., ix)) wheref : [d]¥ — {0, 1} andi; € {1,...,n}for j =

1,..., k. AconstraintC = (f, (i1, ..., ix)) is satisfied by an assignmesat= ay, ..., a,

tox1, ..., 5 if C@ % fam,...,an) = 1.
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We say that a functiory : [d]¥ — {0, 1} is conjunctiveif it can be expressed as a
conjunction of equations, i.e. there are valugs . ., v € [d],
fx1,...,xp)=1lifandonly if [x1 = vi] A ... A [xx = V.

When this will not cause confusion, we will sometimes blur the important difference between
a constraint( f, (i1, ..., ix)) and the functionf. For example we say that a constraint
(f, (i1, ..., ix)) is conjunctive if functionf is, and so on.

Definition 3 (Max k<CSRd andMax kConi-d). For any integerk>1 and function
d = d(n), the Max kCSP¢d is defined as follows:

Instance: A set{Cq, ..., C,} of domaind constraints of arity at mo&toverx, ..., x,,
and associated non-negative weights . . ., w,,.
Solution: An assignmené = (a1, ..., a,) € [d]" to the variablessy, ..., x,.

Measure: The total weight of satisfied constraints.
MAX kConi-d is the restriction of MX kCSP4+ to instances where all the constraints are
conjunctive.

Some special cases of the problem are as follows. For the case-0f2, we have
binary constraints (e.g. Mk 2CoN3d), and ford = 2 we have constraints over boolean
variables (e.g. Mx kCons-2). The general Mx kCSP«d ford = 2 is the standard constraint
satisfaction problem, denotedaM kCSP.

Definition 4 (Integer linear programming ThelLP is as follows:
Instance: A matrix A € Z™*" and two vectorg € Z" andb € Z™.
Solution: A vectorx € Z" satisfyingAx <b.

Measure: c- Xx.

Note that in this formulation, the goal is to maximize the measurg. The variables
appearing (with non-zero coefficients) in the objective function are caligttive variables
and those appearing only in the linear constraintspaogram variables The width of a
constraint is equal to the number of its variables. Moreover, we will assume that program
variables take integer values from the interald (n)) for some function.

Definition 5 (Constraint dominange Given a linear constrair@ of the formy(1 — r) +
a-q>b, wherer is 0/1 variable and > 0, it is said that dominates the constraint if

y>( ) (d—1)|aj|)+b.

aj<0

It should be observed that the constraint dominance can be stateddasnihates the
constrainC iff for + = 0 the constraint is satisfied whatever is the assignment to the rest of
variables”. Obviously, if an assignment satisfes) > b, then the constraint is satisfied for
any value oft.

Definition 6 (Max FSBLIP(d(n)) (Barland et al.[2])). Foragivenfunctiod(n), the class
Max FSBLIP(d(n)) contains all the optimization probleni$ for which there are positive
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integer constants m, o’ (that only depend odil) such that every instance ®f can be

expressed as an ILP with the following structure:

e The program variables can take value$0ni, ..., d(n) — 1}.

e Each objective variable takes either 0 or 1 and occurs only in constraints of the form
1—-1)+qi1+ -+ qi.>1dominated by;, wherez € N can be polynomial im,
and eacly; ;j, 1< j<zisa (/1 program variable associated with the objective variable
t;. These constraints are referred to as objective constraints.

e Eachvariablg; ; appearinginan objective constraint occurs in at rhoster constraints
and dominates each of them.

e All constraints that are not objective ones have widthnd are dominated by somg;
associated with some objective variahle

e Each objective variablg appears in at most objective constraints.

For a flavor of how the problems of this class are, let us consider the ILP Azr SAT
problem which belongs to the clabax FS-BLIP(2). Given an instancé of MAX SAT
consisting ofm clausesy, ..., C,, onn variablesxy, ..., x,,, we lets; be a Q1 variable
corresponding to whether tiith clause is false/true; to thith clause there are associated
variablesy; 1, . .., ¢i». Further, to any variable; of the formula, there is associated 410
variable depending whether the variable is assigned to false or true, respectively. For any
clauseC; and any variable; is introduced a (1 constanp; ; assigned to 1 ik; appears
positively in clause”; and 0 otherwise. Similarly the constants; are defined, that is; ;
is assigned to 1 ik; appears negatively in claugg and O otherwise. The ILI2] is as
follows:

max f+tp4---+ty

s.t.
A-tw)+qi1+qi2+ - +qn=1
(1 —gij)+ pij+nij=1,
1-qij)+@A—pij)+vi=1
1-qij)+@A—nij))+1—vj)=1,
ti,vj, qi; €{0,1},
1<i<m, 1<j<n.

1)

Notice that for this program we have= 2, eachy; dominates the constraint (1) ang;
dominates the rest of constraints. For aapdj, ¢; ; appears in four constraints in the entire
integer program; the constraints which are not objective ones have width 3 and, finally, for
anyi, t; appears in only one objective constraint.

The second class is that bfax FMIP (maximum feasible majority IP) for which Ak
MAJORITY SAT is a canonical problem.

Definition 7 (Max FMIP (Barland et al.[2])). An optimization probleni] belongs to the
class Max FEASIBLE MAJORITY IP (in short,Max FMIP) if there exist positive constants
k, o and a polynomialp such that for any instance | dil we can find a set of linear
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inequalities over the integers

AX>b,
Xxe{—k,—k+1,....,k—1k}",

whereb; < o, the entries o are integers of absolute value at mpgt), and the optimum
of I is precisely the maximum number of inequalities that are simultaneously satisfiable.
Variables are allowed to take integer values from the intgrval k] or [—k, k] — {0}.

As an example, letus consider the problemMMAJORITY SAT. We recall that an instance
of MAX MAJORITY SAT is an instance of SAT with the additional condition that a clause is
satisfied if at least half of its literals are true. Now we match the above definition as follows.
For any boolean variable, introduce a (numeric) variable taking valugsinl}. To any
clause there is associated an inequality linear restriction. The left-hand side of the inequality
is the sum of the variables corresponding to the variables of the clause with coefficlents
depending whether they appear positively or negated in the clause; the right-hand side is 0.
For example, to the instance, —y, —z), (x, y, —z) corresponds the following program:

x—y—1z20,
x+y—220,
x,y,z€{-1,1}

and we want to find values tq y, z that maximize the number of satisfied inequalities.
We will make use of a version of linear programming that is efficiently approximable in
NC.

Definition 8 (Positive linear programming (Luby and Nis§2?])). A maximization
linear program is said to be an instancepofitive linear programmingPLP for short)
if it is written as maxc'x : Ax<b, x>0} where all the entries ofi, b andc are non-
negative.

Maximization positive linear programs are also cafiedtional packingproblems. Luby
and Nisan developed a very efficient algorithm for approximating positive linear program-
ming problems.

Theorem 1(Luby and Nisarj22]). There exists a parallel algorithm that given in input
a maximization instance P of PLP and a rational- O returns a feasible solution for P
whose cost is at leasl — ¢) times the optimum. Furthermarehe algorithm runs in time
polynomial in1/¢ andlog N usingO(N) processorswhere N is the number of non-zero
entries in R

3. Reductions among problems

Theorem 2. For any constant k and functior/(n), MAx kConi-d(n) belongs to
Max FSBLIP(d (n)).
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Proof. Our formulation is similar to that of kX CAPACITY REPRESENTATIVESgiven in
[2, Section 3] Let{Cy, ..., C,y} be a set ok-ary domaind conjunctive constraints over
X1, ..., Xy, @ndwi, ..., w, be associated non-negative weights. We use titoriables
t; and f; for any constraint, and we use/avalued variabley; for any variablex;. The ILP
is
max Zj wit;
s.t.

A-tp+fi=21 Vji=1,...,m,

dl—f)+yizv Vi=1...,mV¥[x; =v]eC(j,

d(l—fj)—y,->—v Vj:l,...,mV[xizv]eCj.

Notice that each objective variableappears in a unique objective constraint, each variable
f; in an objective constraints occurs in at mostdher constraints dominating each of
them, and, finally, any constraints has width 2.]

Theorem 3. If Max kConi-d is r-approximate(in NC) and d* = poly(n), then MAX
kCSP4 is r-approximablgin NC).

Proof. For any constrain€’; of weightw;, lets be the number of satisfying assignments to
its variables (note that<d*). Then we can expregs; as the disjunction of conjunctive
constraints[(}, e K; each one enforcing one of the satisfying assignments;oDb-

serve that any (global) assignment, satisfies at most one akfj"thmnstraints and satisfies

one if and only if satisfie€’;. Let us substitute”; with the K%, ..., K constraints, and

give weightw; to all of them. We repeat the same substitution for any constraint. The new
instance is equivalent to the former, in the sense that they share the same set of feasible
solutions, and the cost of each solution is always the same. Observe that the substitution
process can be done also in parallel for all the constrairits.

Theorem 4. MAX 2CONXd is r-approximable(in NC) if and only if MAX CAPACITY
REPRESENTATIVESd is r-approximablgin NC).

Proof. It is easy to see that the two problems are equal. Without loss of generality we
can assume that any set in aXCAPACITY REPRESENTATIVESd instance has exactly
elements (add dummy elements and give weight zero to the pairs corresponding to such
elements) and that in aA% 2CoN3d instance withn variables there are all the possible
(g)a’2 conjunctive constraints (add the missing constraints with weight zero). Now, the
equivalence is immediate: every $ein MAX CAPACITY REPRESENTATIVESd corresponds

to ad-valued variable; = a,a = 0,1, ...,d — 1, meaning that the representative of set

S; is a; the choice of a representative corresponds to the value assigned to the variable;
to a pair of representatives in different séts S; corresponds a conjunctive constraint

si = a A s; = b; the weight of a constraint is that of the edge from which it was derived.
Clearly, starting from an instance ofAW CAPACITY REPRESENTATIVESd we construct (in

NC) an instance of Mx 2CoNJd such that its feasible solutions are also feasible solutions
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of the same cost for Mx CAPACITY REPRESENTATIVESd and vice versa. The theorem thus
readily follows. [

Theorem 5. Max kConi-2 can be expressed asMax FMIP problem withp(n) = 1,
kK =1lando =k.

Proof. Let ¢ be an instance of Mk kCoN}2. We have a variable; € {—1, 1} for any
variablex; of . For any constrain€;, let P; (resp.N;) be the set of indices of variables
that are assigned to 1 (resp. 0)dn. Letk; be the arity ofC;. ThenC; is expressible as

A [xi=1A A [x =0

lEP_,‘ iENj

We translateC; into the constraind ;. p. vi + > _;cy, —vi =k;. Under the understanding
that{—1, 1} assignments tg; should be mapped tf0, 1} assignments fox; (i.e. x; =

(1+ y;)/2), the two constraints are equivalent. We repeat the translation for any constraint,
and the theorem thus follows.[]

4. Positive results: algorithms

In this section we give approximation algorithms for the problems of the classes
Max FSBLIP(d(n)) and Max FMIP. The approximation results for the problems of the
first class are obtained through the approximability @kCoNsd while for the second
class the method we use is straightforward.

4.1. The approximability of Wk kCoN3d Problem

We now consider a linear programming relaxation e dkCoNsd. We have a variable
z; for any constrainC;, with the intended meaning that = 1 whenc; is satisfied and
z; = 0 otherwise. We also have a varialplg for any variablex; and any value e [d],
meaning that; , = 1 if x; = v andz; , = 0 otherwise.

max Y w;z;
J

s.t.
Zj<tiw Vi,v, [x; =v] € Cj,
Z ti,v = l’
veld]

0<ti,<1  Vieln] Yveld.
(CON)

Lemma 1. The linear program(CONJ)is (1 — o(1))-approximable irlNC.
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Proof. The proof is a generalization of a resulf28]. We reformulate (CONJ) in a slightly
different way.

max Z w;Zz;
J

s.t.
Zj+2 ti,u<1 Viyv,[xi=U]GCj,
uFv
Z lijv = 1,
veld]
0<t,<1 Vie[n], Yv e [d].

(CONJD

We just used the fact that

tiy= 1-— Z tiu-
uF#v

Observe that (CONJ1) would be in PLP form if it had no equality constraints. For any
i, let occ; be the total weights of the constraintswhere a variable; ,, occurs together
with z;, that isocc; = }_; .v.—y occurs ine; Wj- Let also defineoce = 37, occi; we
observe thabce <k Zj w;, and that the optimum of (CONJ) and (CONJ1) is at least
>_jwj/d>occ/kd. Letus consider the PLP

max Y w;jzj+ Y. occi Y tiy
j i v

s.t.
i+ ) tiu<l Vi,v,[x; =v] eCj,
u#v
Z ti,vgla
veld]
0<s,,<1 Vi€ [n], Yv e [d].

(CONJ2

Claim 6. If (z, t) is feasible fo(CONJL) and has cost,ghenitis also feasible f(ICON.D)
and has cost + occ.

Claim 7. Given(z,t) feasible for(CON.2) of costc + occ, then we can find ilNC a
solution(Z, t') of cost c that is feasible f(CONJIL).

Proof (Of the Claim) We defineti/’0 =1- ZU#O f;» and tl-/’v = t;, for v # 0; and,
furthermore, we define

z’j:min{zj, min 7 ,}.
[xi=v]eC;
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The solution(Z, t') is clearly computable ilNC given (z, t), and is feasible for (CONJ1)
and (CONJ). To prove the claim, it remains to show

Yowiziz Y wizi+ ) (occ,- > ti,v) — occ. (2)
J J i v

Let J be the set of indiceg such that;, < z;. Foranyj € J we clearly have; =
Mingy, —viec; ti,v- We calli(j) andv(j) the index and the value such th:élt: ti(jy,v(j)- BY
the feasibility of(z, t), we havez; <1 =3, fiu 1= 3y fi().u- We prove Eq.2)
In two steps.

Ywizj—2) =2 wizj — 7))

J jeJ
<X wj(l—( 2 fi(j),u) —fi(j),vo)))
i€l ut())
=2 wj(l—Z fi<j>,v)-
jeJ v

On the other hand,
occ— (occl- > ti,U) = > occi (1 - t,-,v)
v i v

= > wj (1 - ; fw)

i j:x; occurs ing;

=Y Y w(1-Xu)
i iwx; oceurs inc; v
> wj (1— > tim,v)-
jelJ v
We have therefore established

occ—Y (occi > ti,v) >3 wilzj — z’i),
: - ; .

1

which is equivalent toZ). [

Thus, the optimum of (CONJ2) iscc plus the optimum of (CONJI), i.e. it is at most
(kd + 1) times the optimum of (CONJI). As if28], the lemma now follows by finding
a (1 — o(1))-approximate solution for (CONJ2), converting it into a solution for (CONJI)
(and thus (CONJ)) and observing that it is still— o(1))-approximate. [J

Remark 1. The above lemma shows that the linear programming relaxations derived from
LP’s of Max FSBLIP problems are approximable in parallel within any constant. Since these
linear programming relaxations are instances of Positive Linear Programming, we have that
this class of LP relaxations can be seen as an extension of positive linear programming.

Lemma 2 (Random rounding foMax kCons-d). Let (z,t) be a feasible solution for
(CONJ).Consider the random assignment obtained by setforgany i, v

Prix; =vl=(k —=1)/dk + t; v/ k.
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Then such an assignment has an average cost at ﬁé@tzj w;z;. The analysis only
assumes that the distribution is k-wise independent

Proof. It is sufficient to prove that any constrai@t; is satisfied with probability at least
dk—l,l zj; the lemma will then follow by the linearity of expectation. Observe that if the atom
[x; = v] occurs inC; thenz; <t;,. Then

o k-1 1 \'_ 1
PrC; is satisfied> <7+%z,~> >sz. (3)

For the last inequality, we consider the function

2)*

L

k=1

=+

z

in the interval 0<z <1, compute its first derivative, and show thatas a minimum in
= 1/d, thatis f(z) > f(1/d) = 1/d*1, ¥z,0<z <1. In the first inequality of Eq.3)
we have assumed that the random variables induced by the dawase independent. [

Remark 2. The above analysis is tight and establishes that the integrality gap of (CONJ)
is d*=1. The bound is achieved, e.g. by the instance consisting of clals&%, . .., C
that are all possible size(domaine) conjunctions ofxy, ..., xx}.

Theorem 8. For anyd = d(n) andk = k(n) such thatd* = n®D there is anNC
(1/d*=1 — o(1))-approximate algorithm forMax kCSPd. In particular, there is a
(1/d — o(1))-approximateNC algorithm forMax CAPACITY REPRESENTATIVESd.

Proof. The first statement of the theorem follows from Theorem 3 and the Lemma 2, and
the second statement follows from the Theorem 4l

4.2. TheMax FSBLIP problems

Borland et al[2] have shown the following approximation result for the problems of the
classMax FSBLIP(d (n)).

Theorem 9(Barland et al.[2]). For every problem in the claddax FSBLIP(d(n)), there
is a constant p such that the probleniligl (n)?-approximable

Their proof is a generalization of the greedy technique used for the approximation of the
Max NP problems in[24]. Note that the constant in Theorem 9 isp = [ - m, wherem
is the width of a constraint arlds the maximum number of occurrences of any objective
variable in the rest of program constraints (recall the definitioMax FSBLIP).
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Now, if we take a Mix kCSP4d problem, and we want to express it aslax FSBLIP(d),
and then we use the FSBLIP approximation algorithm of Barland et al., what we get is
— in the translation from Mx kCSPd to Max FSBLIP(d) we havel =2k, m =2, o =1
(Theorem 2).
— the Barland et al. algorithm will have approximation ratj@?” which is 1/d* which
is worse than our approximation ratigdt—1.
So, given a Max kCSP-d instance, it is better to use our algorithm than to translate the
instance into an instance ®ax FSBLIP(d) and then use Barland’s algorithm on it. In
particular, for Max CAPACITY REPRESENTATIVESdwe haven = 2and = 1. The sequential
factor of[2] is 1/d? while our factor iS(1/d — ¢). This improvement is quite natural because
the sequential result is obtained via a uniform probability distribution while we have used
a distribution obtained from the fractional solution of the linear programming relaxation to
the problem. Finally, sinclax NP is properly contained iMax FSBLIP(2) [2] we derive
also constant parallel approximability of improved factors forNex NP problems.

4.3. TheMax FMIP problems

A prototypical problem ilMlax FMIP is Max MAJORITY SAT, which is the variation of
Max SAT where a clause is satisfied if at least half the literals (rather than at least one)
are satisfied. Barland et §2] showed that this class contains only constant-approximable
problems (using, once more, the syntactic structure of integer programs) and gave a structural
explanation of this result.

Itis easy to find a 2-approximate solution forkI MAJORITY SAT. Any clause is either
satisfied by the assignment = 0, Vi, or by the assignment, = 1, Vi. Thus one of the
two assignments satisfies at least half the cladses.

For theMax FMIP problem in its general setting, we present a slight improvement and
simplification over the approximation result of Barland ef2].

Theorem 10. Given an instance of &ax FMIP problem the random assignment where
each variable is sette-k or to k with probabilityl/2 independently at random satisfies each
constraint with probability at least/21+19/1 provided that the constraint is satisfiable

Proof. Consider a constraint_; ¢;x; > b. If the constraint is satisfiable, thén |a; |k >b.
Since they; are integers, there must be a eif at most[»/ k] indices such that ,_ ; |a; |k
> b. Under the uniform distribution, with probability at leagt’| > 1/2/%/k1 we will have
Y ey aixi =b. Itis also easy to see that, by symmetry, with probability at leg&irde have
Zigéj a; x; 2 0.

The theorem thus follows since for the whole set of constrants,o, Vj. [

The above theorem can be derandomized@ through the techniques of Karger and
Koller [14].

3 This nice idea is due to Michel Goemans.
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Notice that the factor of approximation given by the above theorem improves the constant-
factor approximation of Barland et al. Indeed, Barland ef2]l.find an assignment to
variables of the program that satisfies any restriction with probability at l¢&at- B?),
while we find a solution that satisfies any restriction with probability at leag-27/%1).
Finally, we remark that our proof is quite simple compared to thg2pfthey use again
a greedy technique which results a bit more complicated than the c&dgaxoFSBLIP
problems, since the constraints have no bounded width anymore).

5. Negative results: hardness of approximation

We first define Probabilistically Checkable Proof Systems and Multi-Prover One-Round
Proof Systems. Our notation merges the notatiofé]atnd[5]. For an integed#, we denote
by [d]* the set of all strings ovdi].

Definition 9 (Verifier). AverifierVforalanguagé is arandomized polynomial time oracle
Turing machineV receives in input a stringand has oracle access to a strinthat is an
alleged proof that € L.

Definition 10 (PCP andMIP). Letc,s,r, q,d : Z7 — ZT suchthat &s(n) < c(n)<1

for anyn; we say that a languadgebelongs taPCP,. ;[r, g, d] if there exists a verifie¥ such

that

(1) For any input stringc and oracle proof € [d(n)]*, V queries at mosj(n) entries ofr
and uses at most(@(n)) random bits;

(2) Foranyx € L, there exists & € [d(n)]* such that the probability thatacceptx with
oraclern is at least:(n);

(3) Foranyx ¢ L, foranyn € [d(n)]*; the probability thaV acceptx with oracler is at
mosts(n).

The clasMIP. [r, g, d]is similar, with the only difference thatis presented as a sequence

of gstringsnmy, ..., n,, Wherer; € [d]*, andV has the further restriction that it can read at

most one entry of any;.

From the above definition it follows thMIP, s[r, ¢, d] S PCP. [r, g, d] for any choice
of the parameters. The following result is folklore.

Theorem 11. If MAX kCSP{d(n)) is p(n)-approximablethen for anyc(n) ands(n) such
thats(n)/c(n) < p(n®D200M)y it holds

PCPe(n).s(n[r(n), k(n), d(n)] € DTIME(20¢ (W logd(m))
We prove several non-approximability results in the following theorem.

Theorem 12. The following statements ho{d is the size of the input

(1) A constant > 0 exists such thafor any constant/ > 2, it is NP-hard to approximate
Max 2CSPd within 1/d¢. Furthermore for any¢ > 0, it is infeasible to approximate
MAX 2CSP-(log:) within 2°°9°7 unlessNP € DTIME (n'09°""").
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(2) For any constant dfor anyk >3, for any¢ > 0, it is NP-hard to approximateviAx
kCSPd within1/d¥/3) 1 ¢.

(3) Constants k and c exist such that iN®-hard to approximat®lax kCSP-(log:) within
1/logn°.

(4) For anyk>5,anye > 0, it is NP-hard to approximatéax kCSPwithin 2199

(5) For anye > 0, a constantt = O(1/¢) exists such that it ifNP-hard to approximate
Max kCSPwithin 209" ».

(6) For anye > 0, Max FMIP problems are hard to approximate withlp2lo/3/ + ¢.

1/3—¢ n

Proof (Sketch)For (1), RaZ26] has shown that a constant> 0 exists such that, for arty:
ZT — ZF,NP € MIPy 5w [k(n) logn, 2, 3¥"]. Thefirst part of the claim follows by set-
ting k(n) = |logz d(n)]; the second part by settirign) = log®*/? (n). Next, for (2), Has-
tad [13] has shown that for anye > 0, for any fixed prime p,
NP = PCP1_; 1/,+:[l0g, 3, p]. The claim follows by choosing = d and repeating the
proof k/3 times. Further, (3)—-(5) are re-statements of the results of Raz and[3&fra
and Arora and Sudald] using Theorem 2. Finally, (6) follows from the hardness @iV
kCSP-2 and from Theorem 5.7

From the above theorem we easily deduce a couple of corollaries. First, from part (1) of
Theorems 3 and 4 we have

Corollary 13. MAx CAPACITY REPRESENTATIVE$logn) is not constant-approximahle

This result solves an open question of Barland et al. namely whether the prokigm M
CAPACITY REPRESENTATIVE$lOgn) is constant-approximable.
From Corollary 13 we derive easily the following structural result.

Corollary 14. The classeMax FSBLIP(2), Max FSBLIP(log) andMax FSBLIP(poly)
form a proper hierarchy

Note that we separate the first two classes sing& KAPACITY REPRESENTATIVESlOQ)
is not constant-approximable, the separation of the two last classes derives from a result
of Bellare[3] stating that Mx CAPACITY REPRESENTATIVESWhich belongs tdMlax FS-
BLIP(poly) is not log-approximable.

Finally, itis worth to mention the almost tight non-approximability result for the problems
of classMax FMIP.

6. Concluding remarks

We show that the sequential results of Barland et al. obtained in the framework of
integer programs of restricted format hold also in the parallel setting and thus we come
out with a new common framework for both settings (a previous common framework is
that of logical definability of Papadimitriou and Yannakakis). Moreover, we give substan-
tial improvements in two directions. First, our factors of approximation are close to the
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best possible while the ones in Barland et al. were far from, due to the use of the greedy
technique they employed. Secondly, we show tight non-approximability resultscier N
BOOLEAN CONSTRAINT SATISFACTION and Max CAPACITY REPRESENTATIVES (This is the

first time the approximability and non-approximability of both problems is addressed in
its full generality.) The non-approximability result of the last problem allow us to establish
that the classddlax FSBLIP(2), Max FSBLIP(log) andMax FSBLIP(poly) form a proper
hierarchy.
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