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Abstract 

String matching is the problem of finding all occurrences of a string W[O . . . m - l] of length 

m called a pattern, in a longer string T[O . . . n - l] of length n called a text. Several string 
matching algorithms have been designed to solve the problem in linear time; most of them work 

in two steps, called pattern preprocessing and text search step. 
The paper addresses the definition and computation of the shift function in the pattern pre- 

processing step of on-line string matching algorithms. The shift function depends essentially on 

the order the pattern characters are compared with the corresponding text characters. 
We consider a family 9 of algorithms that do not change the character comparison order .I 

during execution and we present a uniform definition of shift function 6J for such algorithms 
via a function iminJ. The definition dOWS one to COmpUte 6J in O(m log log m) time in the 
worst case, given iminJ, but sufficient conditions to compute dJ in O(m) time are provided. 

Computing hinJ requires o(m*) comparisons in general. We introduce the class of compact 
orders (which is the generalization of Knuth-Morris-Pratt, Boyer-Moore and Crochemore-Penin 

character comparison orders) and we give algorithms to compute both function iminJ and shift 
function 6J in o(m) time for all COmpaCt orders. 

We show that given the order J and the pattern W there exists a set C of equivalent orders 
such that the function iminK can be computed in linear time given iminJ for all orders K E c. 

Moreover, we characterize two orders in the set C that respectively minimize and maximize the 
values of the shift function and we show that for both those orders the shift function can be 
computed in linear time giVCn iminJ. 

1. Introduction 

String matching is the problem of finding all occurrences of a string W[O . . . m - l] 

of length m called a pattern, in a longer string F[O . . . n - l] of length n called a text. 
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A naive algorithm to solve the problem considers each text position as a potential 

occurrence of the pattern, compares corresponding symbols from left to right and finally 

shifts the pattern along the text of one position as soon as a mismatch is encountered. 

Clearly such an algorithm takes O(mn) time in the worst case (think of Y = un, 

%‘” = am-lb). 

Several string matching algorithms have been designed to solve the problem in lin- 

ear time. For a survey on the subject see Aho’s paper [l]. From a theoretical point of 

view the main operation in string matching algorithms is considered that of comparing 

symbols; thus their complexity is often expressed by the number of character compar- 

isons performed. Efficient implementations on a conventional machine are incidentally 

addressed or just sketched. Most of these algorithms work in two steps: in the first step 

some information about the pattern is computed, stored and used later in the second 

step or the text search step. 

One of the best known string matching algorithms is that of Knuth et al. [23] (KMP 

algorithm for short) that in the worst case makes 2m - 4 comparisons in the pattern 

preprocessing step and at most 2n - m comparisons in the text search step. We shall 

assume in the sequel that the reader is familiar with this algorithm. 

In order to find all the occurrences of a pattern in a text, KMP algorithm aligns the 

pattern V[O...m - I] with the text Y[O... n - l] at the leftend side of the strings 

and compares characters from left to right. Suppose that at the current situation a 

prefix 7V[O.. . i - l],O < i < m has been discovered in the text Y starting at position 

1, i.e. Y[I... I + i - l] = 7Y[O... i - I]; if a mismatch is found in comparing the ith 

pattern character (0 < i < m) with Y[Z + i], a shift of the pattern to the right follows. 

The shift can be defined as shift,(i) = min{j > 1 ( j = i + 1 or (?V[j.. .i - I] = 

W[O...i -j - l] and W[i] # W[i -_j])}. (I n order to deal uniformly the case of a 

whole occurrence (i = m) of the pattern in the text, it is customary to add a character 

Y+‘-[m] different from all characters in ?Y[O . . . m - 11.) The information about the shifts 

is computed in the pattern preprocessing step of string matching algorithms. We refer 

to it as Shift Function 6. 

KMP algorithm keeps comparing the character Y[I + i] of the text (where the 

mismatch has been detected) with the pattern character aligned with it in the new 

position of the pattern (W[i - shzjit.&i)] will be the pattern character chosen after the 

first mismatch), until a match is found, or the pattern is shifted after position I + i in 

the text. 

In a first phase KMP algorithm compares the characters of the text with the characters 

of the pattern from left to right while they are found to be equal; then in a second 

phase, as soon as a mismatch is found in position S[j] of the text, it compares the 

same text character S[j ] with a set of selected characters of the pattern in order 

from right to left. The cardinal@ of the set is at most log,(m + 1) as shown in 

[24]. During this second phase the first position where the pattern and the text can be 

aligned matching corresponding symbols (up to position S[j] included) is computed. 

The KMP algorithm is strictly on-line since text characters are processed in order from 

left to right never reconsidering previous characters. 
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There are two ways to modify KMP algorithm. One can modify the second phase by 
choosing a different order to compare the text character S[j] with the set of selected 
pattern characters. This approach has been followed in Simon’s algorithm [25] and in 
some extensions of the string matching problem [6,21]. In [6] the authors consider the 
more general problem of computing the length of the longest prefix of W for each 
position in F. They show how to choose the optimal order of character comparisons, 
achieving a tight bound of L((2m - 1 )/ m n comparisons in the text search step. Note ) J 
that all strictly on-line algorithms that solve the string matching problem, solve also 
the more general problem of prefix-matching and therefore the results mentioned hold 
for the string matching problem as well. 

A different way of modifying KMP algorithm consists in changing the order of 
comparing text characters with the aligned pattern characters in the first phase. The 
algorithms obtained by this approach are on-line in a wider sense since they need to 
have access to the text by a window of m characters (the ones aligned with the pattern 
in the current position). 

The Boyer-Moore algorithm [5] (BM algorithm for short) can be considered as a 
first example of this approach since it compares text characters with the aligned pattern 
characters from right to left. It makes O(m) comparisons in the pattern preprocessing 
step and about 3n comparisons in the text search step, as shown recently by Cole [9]. 
A variant of the BM algorithm that was designed by Apostolico and Giancarlo [3] 
achieves the 2n - m comparison bound in the text search step, with O(m) time pattern 
preprocessing. 

The approach to the string matching problem by on-line algorithms that can access 
the text by a window of size m allows to get better bounds in the text search step. 
Indeed, Crochemore and Perrin [ 161 presented a linear time, constant space string 
matching algorithm that takes at most 5m comparisons in the pattern preprocessing step 
and at most 2n - m comparisons in the text search step. Other algorithms [15,17,20] 
use constant space, but make more than 2n - m comparisons in the text search step. 

Colussi [l l] improved KMP algorithm to make at most n + i(n - m) character 
comparisons in the text search step. The improvement is achieved by computing some 
more information in the pattern preprocessing step, still using at most 2m - 4 char- 
acter comparisons. Colussi’s algorithm has been furthermore improved by Galil and 
Giancarlo [19] to make at most n + t(n - m) character comparisons in the text 
search step; Cole and Hariharan [lo] discovered an algorithm that makes at most 
n + [8/3(m + l)](n - m) character comparisons in the text search step. However, Cole 
and Hariharan’s algorithm requires 0(m2) pattern preprocessing time and it uses O(m) 

space. Independently, Breslauer and Galil [8] gave a linear time algorithm that makes 
at most n + [((4 log m + 2)/m)(n - m)] character comparisons in the text search phase. 
The pattern preprocessing phase takes linear time and makes at most 2m character 
comparisons. 

If we consider two of the most efficient string matching algorithms, namely Croche- 
more and Perrin’s algorithm and Colussi’s algorithm, we realize that they carefully 
choose how to compare characters as a result of some information gathered from the 
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structure of the pattern $Y (mainly from the periodicity structure of Y+‘“). This kind 
of computation in the preprocessing step of the algorithms allows to obtain “good” 
shift functions, i.e. shift functions that move the pattern along the text faster. From 
this point of view we are given a clear hint to look at the relations, if any, between 
character comparison orders and their shift functions. Another reason of interest in 
the shift functions can be linked to the following observation: all string matching 
algorithms mentioned above compute the information about their shift function 6 in- 
dependently, using different properties of strings and different techniques; but many 
string matching algorithms use O(m) comparisons in the pattern preprocessing step. 
Was that a mere coincidence or were there relations between the shift functions not 
yet studied? Recall the basic idea underlying the definition of a shift: it tells us how 
many positions we are allowed to move the pattern along the text, without skipping 
any possible occurrence and satisfying all the constraints (i.e. matches) from previous 
iterations. 

Thus the fundamental feature of the shift function 6 is indeed that it depends on 
the order in which the pattern characters are compared with the corresponding text 
characters; from left to right in case of KMP algorithm, but in general any order is 
possible! 

In this paper we study, for any given pattern, the relation between the order of 
comparing pattern characters with corresponding text characters and the relative shift 
function. We are interested in describing the different shift functions to highlight the 
most desirable ones from the point of view of time efficiency and/or maximization of 
their values. 

Although studying the relations among the shift functions is clearly important, the 
approach to the problem has been limited so far to practical and experimental results, 
at least to these authors’ knowledge. Researchers modified the shift functions in order 
to achieve a better speedup in the following text search step [4,22,26]. 

Our interest is instead that of a theoretical approach to the shit? functions themselves 
related to the character comparison orders Corn which they derive. The goal is to 
abstract from specific algorithms and ad hoc techniques. Nevertheless we will show 
how to efficiently choose character comparison orders that maximize the values of the 
shiR functions, therefore suggesting a useful heuristic for the text search phase of string 
matching algorithms. This heuristic has been successfully used in [ 1 l] where JcOi is 
the character comparison order that maximizes the shift function in the equivalence 
class of JKM~ (as defined in Section 4) and in [12] where the character comparison 
order used to improve BM algorithm is the one that maximizes the shift function in 
the equivalence class of JBM. 

The possible steps towards a whole understanding of the relations between the shift 
functions can be described by answering the following questions: 
1. Is it possible to give a uniform definition of shift function for string matching 

algorithms? 
2. Is there any characterization of character comparison orders such that the shift func- 

tion can be computed in O(m) time? 
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3. Are there sets of equivalent orders, namely orders such that the computation of the 
shift function is strictly related and requires the same character comparisons? 

4. Is it possible to choose for each equivalent set of character comparison orders an 
order to maximize the values of the shift function? ’ 

We consider a family 9 of on-line string matching algorithms in the deterministic 
sequential comparison model. An on-line algorithm can access the text through a win- 
dow of length m: suppose the pattern YV[O . . . m - l] is aligned with .Y[Z . . . I + m - 
l] , 0 < 1 < n - m, the on-line algorithm can inspect the characters in Y[ I . . . I + m - l] 
of the text. The algorithms can access the input only by pairwise symbol comparisons 
that result in equal or unequal answers. Algorithms in the family 9 may differ only in 
the order in which pattern characters are compared with the corresponding text char- 
acters. We assume that the character comparison order does not change during the 
execution of the algorithm. 

We like to stress that in our approach, for any fixed pattern we are given an order 
of comparing pattern characters to the corresponding text characters. Thus, when a 
mismatch occurs, the pattern is shifted to the right and the following iteration of the 
algorithm will resume the same order of character comparisons. 

We do not account for the computation of the character comparison order which is 
considered as a piece of input data. Recalling the definition of shit? in the example of 
the KMP algorithm, note that if j < i, then there is an overlap between the pattern 
instances before and after the shift: w[O.. . i -j - l] = w[j.. . i - 11. KMP algorithm 
resumes the character comparisons from position i - j in w. In general it is possible 
to keep track of the characters already matched by a boolean array of size about m. 

This technique, being independent of the character comparison order, has been used in 
[lo] and, in a slightly different fashion in [8] as indexes of potential occurrences of 
the pattern. 

Finally, the algorithms in the family B can be indexed by permutations J = 

(jO,jl,..., j,,_l ) of the set (0, 1, . . . , m - 1) of pattern positions. Since the permuta- 
tion J represents the character comparison order, throughout the paper we ambiguously 
use J to denote both the permutation and the character comparison order it represents; 
moreover, we might use the expressions “comparison order” or simply “order” to mean 
character comparison order, unless specified otherwise. 

Thus, the character comparison order of KMP algorithm [23] is given by Jmp = 

(O,l,..., m-1),thatofBM[5]byJ~~=(m-l,m-2,...,1,0).IntheCrochemor~ 
Pert-in algorithm [ 161 the pattern is divided into two substrings %'"[O . . . [] and ?K[[ + 
1 . . . m - l] by the Critical Factorization Theorem and the order of comparison is 
givenbyJcp=(l+l,..., m-1,5 ,..., 1,O). In Colussi’s algorithm [l l] the character 
comparison order is Jcol = (jo, jl, . . . , j,,_l ), such that ji < ji+i for 0 < i < t and 
ji > ji+i for t < i tm, where t is the number of “noholes”, i.e. the number of pattern 

’ Note that the performance of the text search step of string matching algorithms depends both on the size 

of the shifts and on the nonobliviousness of the algorithms, in the sense that they do not “forget” previous 

comparisons. 



122 L. Colussi, L. Toniolol Theoretical Computer Science 163 (1996) II 7-144 

positions ji that terminate at least a period of w[O..ji - l] (see Definition 3.3). We 

remind the reader that a string %‘“[O..m - l] has a period of length p if w[i] = 

w[i + p] for i = O..m - p - 1. Algorithms [19] and [lo] do not belong to the family 

9 because the character comparison order may change according to the history of 

previous comparisons. However, since there is a finite number of orders, it is possible 

to compute the shift function for each order using our approach. 

In order to study the relations among the character comparison orders and the relative 

shift functions a general framework to “represent” the pattern ^w was needed. Therefore 

we introduce the notion of Autocorrelation Matrix 4-w of a string ?V. Each entry 

ai,j in &, is given value zero if W[i] = W[j], one if W[i] # W[j]. We believe 

that the autocorrelation matrix can be a useful and powerful tool to study combinatorial 

properties of strings. It can be used, for example, to detect periods, squares, palindromes 

and so on. 

In this paper we show the following results: 

1. A uniform definition (i.e. depending only on the order of character comparisons) 

of shift function SJ for all algorithms in 9 via a function iminJ based on the 

autocotrelation matrix 4~. The meaning of iminJ(k) = i is that the ith character 

of the pattern (with respect to the order J) is the first one that witnesses that the 

pattern has not period k (i.e. such that w[ji] # w[j, - k]). 
2. An algorithm to compute 6J in O(m loglogm) time in the worst case, given iminJ 

and sufficient conditions to compute SJ in O(m) time. 

3. Computing iminJ requires at most O(m2) comparisons. We show that if iminJ can 

be computed in O(g(m)) time for an order J and a fixed pattern ‘YY, then there 

exists a set C of equivalent orders (as defined in Section 4) on w such that iminK 
can be computed in O(g(m)) time for all orders K E C. Moreover, we characterize 

orders that respectively minimize and maximize the values of the shift function in 

the set C and we show that for both those orders the function by can be computed 

in linear time given iminK. 

4. Algorithms to compute both function iminJ and shift function dJ in O(m) time for 

the wide class of compact orders as defined in Section 8 and, by the above point 3, 

for all the orders that maximize or minimize the shift function in the equivalence 

classes of the compact orders. (Note that J cp is compact and Jmp and JBM can be 

considered as degenerate cases of compact orders.) 

The paper is organized as follows: in Section 2 we give the definition and character- 

ization of autocorrelation matrix JZZ_W of a string 7Y; in Section 3 we give a uniform 

definition of shift function for algorithms in 9 and we state sufficient conditions to 

compute 6J in linear time, given function iminJ. In Section 4 we define equivalent 

comparison orders for any given pattern YY and we characterize them by a partial 

order relation on the set of positions of the pattern. The links between the computation 

of the shift function and equivalent character comparison orders are studied. In Section 

5 we describe some basic properties of the autocorrelation matrix J&!W that are used in 

the computation of the shift function for KMP comparison order in Section 6. Although 

it is well known that bmr can be computed in O(m) time [23], the approach by &w 
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allows to extend the results to the computation of the shift function for BM comparison 

order in Section 7 and for general compact orders in Section 8. Indeed, both KMP and 

BM comparison orders can be seen as particular cases of compact orders. 

2. The autocorrelation matrix 4~ 

In the comparison model algorithms can access the input string by pairwise symbol 

comparisons that test for equality. Let YV[O . . . m - l] be a string on some alphabet 

C. The naive approach of comparing all pairs of symbols in w requires O(m’) com- 

parisons. We introduce a binary matrix as a model to represent all the comparisons 

between pairs of symbols in a string. 

Definition 2.1. The Autocorrelation Matrix &?‘w of a string w[O.. . m - l] of length 

m is a m x m matrix whose entries are defined as follows: 

ai,’ = C 

0 if “Ilr[i] = 7V[_j], 

1 if ?V[i] # YY[j]. 

It follows immediately from Definition 2.1 that JZW is symmetric and that two 

columns (two rows) in JHW having a 0 in the same position are equal. We call kth- 

downward diagonal the sequence of entrieS oO,k,al,k+l,. . . ,~&,_k_l,~_l in &?w. The 

main diagonal is the Oth-downward diagonal. 

Obviously not all (0, 1) matrices are autocorrelation matrices. The following Lemma 

2.2 states necessary and sufficient conditions to have an autocorrelation matrix of a 

string w. 

Lemma 2.2. A (0, 1) matrix A%! of size m x m is the autocorrelation matrix Jt!w of 
some string W of length m if and only if the main diagonal is O-filled and for all 

i, j, k, 1 such that 0 < i < k < m and 0 < j < 1 < m the inequality ai,j + ai,, + ak,j + 
ak,l # 1 holds (i.e. there is no 2 x 2 submatrix of A? having exactly one entry equal 
to 1). 

Proof. See Section 5. 0 

Properties of a string ?V’ can be described in terms of properties of its autocor- 

relation matrix. Of course, there can be more than one string ?Y having the same 

autocorrelation matrix 4~; however, such strings cannot be distinguished by pairwise 

character comparisons. Thus, autocorrelation matrices allow to abstract from properties 

of strings that are not detectable by comparisons. The definition of the autocorrelation 

matrix 4~ suEices to obtain our first goal, that is a uniform definition of shift function 

for algorithms in the family %, as presented in the following section. The properties 

of &ZW will be used later to develop the computation of the shift function for the 

wide class of compact orders defined in Section 8. Therefore we delay the proof of 
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Lemma 2.2, the investigation on the main features of J%il_~ and on the relations between 

periods of substrings of string ?V and &!w to Section 5. 

3. Shift function 

Consider an on-line string matching algorithm & E 9. Let #‘“[O.. .m - l] be a 

pattern and J&V its autocorrelation matrix. Algorithm &’ compares pattern characters 

to the corresponding text characters in an order J = (j,, jl,. . . , j,_l) and we write 

&.J to indicate the relation between the on-line algorithm and the order of character 

comparisons. We shall use the subscript also everytime a function depends on the 

character comparison order J. When a mismatch or an occurrence of the pattern is 

found, the pattern is shifted to the right along the text. 

Suppose that algorithm &J gets unequal answer when it compares ?V[j] with .F[Z+ 

j] (i.e. %‘“[j] # F[Z +j]) and that ai,j = 0 in Jw for some i d j. Then w[i] = 

w[j] # F[l +j]: the pattern cannot match the text when it is shifted of j-i positions 

(this holds also for i = j, since u~,~ = 0 for 0 < i < m - 1). We say that the shift 

j - i is not successful. Therefore, if a mismatch ?V[j] # F[Z + j] occurs, then all 

shifts j - i such that there is a zero in row i and column j of J.+%‘w are not successful. 

Similarly, if ^llr[ j] = F[Z + j] and ai,j = 1, then all shifts j - i such that there is a 

one in row i and column j of _4?~ are not successful. Define two sets of integers for 

all positions j of the pattern ~7”: 

P(j) = {j - iI0 d i < j, Ui,j = 0) (1) 

and 

N(j) = {j - iI0 < i Gj, Ui,j = 1). (2) 

P( j ) is the set of shifts which are not successful due to a mismatch between the 

pattern character ?V[ j] and the corresponding text character; similarly for N(j) in 

case of a match with the text. Consider a general execution of algorithm dJ: the 

pattern is aligned with the text starting at some position I and we find that !Y[ js] = 

F[Z+jc],w[jt] = .Y[Z+jt],..., w[ji-t] = F[Z+ji-I], and %‘-[ji] # S[Z+ji]; then 

all integers in the sets N( jc), N( jr ), . . . , N( ji_t ) and P( ji) are not successful shifts: the 

pattern should be shifted of the minimum positive integer that does not belong to any 

one of the previous sets. On the other hand, if an occurrence of the pattern is found 

starting at position Z in the text 9 (i.e. 9V[ js] = 9[Z + jo], w[jt] = F[Z + jt], . . . , 

w[j,,,_t] = F[Z+ j,-I]), then all integers in the sets N(jo), N(jl),...,N(j,_l) are 

not successful shifts, Also shift zero should not be considered as a possible shift; in 

order to treat shift zero in a uniform way, we put a sentinel (a character S different 

from all other pattern characters) at the end of the pattern in position j,,, = m; the 

permutation J, the autocorrelation matrix MW and all previous definitions are naturally 

expanded. Then the set P( j,) = (0) contains only shift zero. 
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Thus, the shift function SJ is defined as follows for algorithms &.I E F: 

{ 

i-l 

SJ(~) = min klk $2 P(ji) U U N(j,) 
t=o I 

(3) 

for all indexes i such that 0 d i < m. 
This definition of shift function depends only on the order of character comparisons. 

The computation of the shift function requires at most O(m’) comparisons; given the 

pattern W and the order J the naive approach is as follows: compute all sets P(ji) 

and N(ji) and use the definition (3) of SJ. The computation of the sets P(ji) and 

N(ji), 0 < i < m is equivalent to the computation of all the m(m - 1)/2 unknown en- 

tries in the upper triangle of &_w. (Recall that J? w is symmetric and that a~ = 0 for 

0 6 i < m and ai,,, = 1 for 0 < i < m.) However we do not need to know all the sets 

N(j,) in order to decide if an integer k belongs to the set P(j;) U U :l@(j,). Indeed, 

the case k = 0 can be decided immediately since 0 E P(ii) for all i; for 1 < k Q m 

we need only to know the first index t such that k E N(j,); such a t always exists 

since N(j, ) contains all k such that 1 Q k < m. 
Define, for all k such that 1 < k < m, the following function: 

iminJ(k) = min{ilk E N(ji)}. (4) 

In order to explain the concept underlying the definition of function iminJ we start by 

recalling the notion of period of a string. 

Definition 3.1. A string W[O..m - l] has a period of length p if W[i] = W[i + p] 

for i = O..m - p - 1. 

Intuitively, the value of the function iminJ(k) for a fixed k is the index of the first 

position in W with respect to the order J that witnesses that W has not period k. 
Similar information, restricted to the identical permutation J = (0, 1, . . . , m - 1 ), is 

given by the Failure Function that is computed in the preprocessing step of the KMP 

algorithm and used in several string matching algorithms. The function imiq can be 

thought of as a generalization of the failure function to any character comparison 

order J on W. The exact complexity of the failure function, i.e. the exact number of 

character comparisons needed to compute it, has been recently established in a joint 

work by these authors and Dany Breslauer [6,7]. The computation of function iminJ(k) 
clearly requires at most O(m*) comparisons. However, it is an open problem whether 

the quadratic bound is tight for general permutations J. 

We shall show in Section 4 that there are families of orders such that the computation 

of function iminJ requires only O(m) comparisons. Among these orders there are those 

of KMP (Section 6), BM (Section 7) and compact orders as defined in Section 8 

(compact orders are a generalization of Crochemore-Perrin comparison order). 

The function iminJ leads to a definition of shift function 6~ that can be easily 

implemented as we show next. 
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Lemma 3.2. The two assertions 

i-l 

- 
k sr P(h) u (J N(jt), (5) 

t=o 

- iminJ(k) = i or (k > jj and iminJ(k) > i) (6) 

are equivalent for all k such that 1 < k < m. 

Proof. (5) + (6): If 1 < k <ji and k $ P(ji), then k E N(ji) and, since k $ N(j,) 

for all t such that 0 6 t < i, then imin/(k) = i. If ji < k d m then k @’ N(ji) and, 

since k 6 N( j,) for all t such that 0 d t -c i, then imirzJ(k) > i. 

(6) + (5): If iminJ(k) = i, then k E N(ji), and SO k @P(ji), and k $N(j,) for all 

t such that 0 < t < i. If k > ji and imin(k) > i then k $ P(ji), and k @ N(j,) for all 

t such that 0 d t < i. Then (5) holds. 0 

The shift function SJ can be described in terms of function iminJ by Lemma 3.2: 

SJ(i) = min{kliminJ(k) = i or (k > ji and iminJ(k) > i)}. (7) 

Given function iminJ, the shift function SJ can be computed in O(m log m) time in the 

worst case, without any extra character comparison (except those to compute h&J). 

The data structure used are a B-tree S and priority queues T(i) for i = O..m. The code 

in a Pascal-like notation is the following: 

begin 
for i := 0 to m do T(i) := 0; 
for k := 1 to m do T(iminJ(k)) := insert(k,T(iminJ(k))); 
{Z’(i) is the set of all k such that iminJ(k) = i} 

s := 0; 
for i := m downto 0 do 

begin 
{S is the set of all k such that iminJ(k) > i} 
if T(i) = 0 then 

bJ(i) = min(sp&(ji,S)) 

else 
SJ(i) = min( T(i)); 

while T(i) # 0 do 
begin 

k := min(T(i)); 

end 

T(i) := deZete(k, T(i)); 
S := insert(k, S) 

end 

end” is th 

e set of all k such that iminJ(k) 2 i} 

See [2, 141 for implementation details of functions insert(k,S) (the set S U {k}), 
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split,(k,S) (the set {XIX E S and x 2 k}), &z(S) (the minimum element of the set 

S) and delete(k,S) (the set S \ {k}). Note that the bound O(m logm) can be further 

improved to O(m log log m) time by using flat tree integer priority queue van Emde 

Boas et al. [27]. 

Function SJ can be computed in linear time from function iminJ under some con- 

ditions without extra character comparisons, as we show next, In particular for the 

character comparison orders of KMP (Section 6), BM (Section 7) and compact orders 

(Section 8) the complete computation of the shift function can be done in linear time 

with a linear number of character comparisons. In the next definition we shall adopt 

the same language used by [ 191. 

Definition 3.3. We say that V[ji] is a hole if there is no k such that iminJ(k) = i; 

W[ji] is a nohole if iminJ(k) = i for at least one k. 

The following Theorem 3.4 gives sufficient conditions to compute SJ in linear time, 

given function iminJ. 

Theorem 3.4. The function SJ can be computed in O(m) time via function imiq in 

case of: 
(i) j, > ji ti t > i for all noholes W[ jr] and holes W[ji] (i.e. all noholes W[j,] 

that follow a hole W[ ji] in the pattern also follow W[ ji] according to order 

J). 
(ii) j, > ji + t < i for all noholes W[ j,] and holes W[ ji] (i.e. all noholes W[ j,] 

that follow a hole W[ ji] in the pattern precede W[ ji] according to order J). 

Proof. Consider any nohole w[ ji]. Since iminJ(k) = i implies k < ji, then SJ(i) = 

min{k 1 iminJ(k) = i}. 6~ can be computed on the noholes by the following linear time 

code: 

begin 
for i := 0 to m do SJ(i) := 0; 
for k := m downto 1 do GJ(iminJ(k)) := k; 

end 

After the execution of the previous code, the correct values of SJ(i) are computed on 

all noholes (note that Y’[m] = $ is always a nohole since j, = m and iminJ(m) = m 
for all orders J). On holes the value of SJ(i) is still zero. 

Consider any hole “llr[ ji]; by definition SJ(i) = min{k Ik > ji and iminJ(k) > i)}. 

Therefore the value of o.t(i) can vary in the range [ ji+l . . . p], where p is the minimum 

integer such that k > ji and imin_t(p) = m. 
In case of (i), iminJ(ji + 1) > i since noholes follow holes in the order J; SJ(i) 

can be computed on holes as follows: 

for i := 0 to m do 
if SJ(i) = 0 then 6J(i) := ji + 1 
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In case of (ii) the computation of 6~(i) is not immediate. For all positions j < m 

in the pattern Y/Y, let pmin( j ) be the minimum period of w greater than j. Note that 

pmin( j ) = min{p(p > j and iminJ(p) = m}. For all holes w[ji] the shift function 

SJ(i) = pmin(j). Indeed if k is not a period of “Iy-, then k E N(j,) for some nohole 

w[ j,]. The following linear time code computes SJ on holes: 

begin 
for j:=m- 1 downto 0 do 

begin 
if iminJ(j+l)=m then p:=j+l; 

{p is the minimum period of Y’V greater than j} 

pmin(j) := p 

end; 
for i := 0 to m do 

if S_,(i) = 0 then SJ(i) := pmin(ji) 

end 0 

In the next section we show that if there exists an order J such that iminJ is 

computed in linear time (and therefore O(m) character comparisons), then there exists 

a whole set of orders with the same property. 

4. Character comparison orders 

The definition (3) in the previous section shows once again that the fundamental 

feature of the shift function relative to a pattern YY depends on the character comparison 

order J defined on it. We have seen that there exists a strong relation between SJ and 

function iminJ which is still depending on the permutation J. 

The role of function iminJ is very important since, besides leading to a fast com- 

putation of SJ (in linear time if Theorem 3.4 holds and in O(m log log m) time in the 

worst case), it contains the basic information on the periodicity structure of “/Y rel- 

atively to the order J. It is natural to ask if such structure, on the fixed pattern V, 

can be maintained also for other character comparison orders. An affermative answer 

would lead to the computation of new shift functions closely related to SJ. 

In this section the pattern YY is considered fixed; we show that if we can com- 

pute the function iminJ for w in O(g(m)) time for a character comparison order 

J, then we can compute it in O(g(m)) time for a whole set of orders. We shall 

start by defining equivalent character comparison orders and computing the corre- 

sponding imin functions using a linear-time transformation that does not require any 

character comparison. Recall that iminJ can be always computed in O(m’) time; 

on the other hand g(m) = Q(m) since m values have to be computed. The inter- 

esting sets of equivalent character comparison orders are those such that 

s(m) = O(m). 
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Definition 4.1. Let J = (jO,j,, . . . , j,_l,m) and H = (ho,hl,. . . ,h,+-l,m) be two char- 

acter comparison orders on a fixed pattern YV. We say that J is equivalent to H, J E H, 

if him+,(k) = jiminJ(k) for all k, 1 < k < m. 

Lemma 4.2. Given two equivalent orders J E H and function iminJ, let Ii’ = (rco, ~1, 
. . ..n._l,m) be the inverse permutation of H, i.e. zh, = i for all i. Then imins(k) = 

%ln,.,,~k, for all k such that 1 6 k < m. 

Proof. Immediately from definitions. 0 

Given function iminJ for the order J on “Ilr, the following lines of code compute 

function iminH for all orders H on ?JV such that H = J: 

begin 
for i := 0 to m do xh, := i; 

for k := 1 to m do 
begin 

end 

t := jimin.,( 

iminH(k) := n, 

end 

The test for H z J cannot generally be done in linear time. However, in Lemma 

4.5 we shall provide sufficient conditions for H E J. 

The idea underlying the definition of equivalent character comparison orders is that 

of grouping in the same class all the comparison orders such that noholes (defined 

for a given comparison order J) are defined for the same periodicity values and are 

kept in the same positions of the pattern although not necessarily checked in the same 

order. It might happen that, although noholes are placed in the same positions of the 

given pattern, they refer to different values of the periodicity k. For example, consider 

the pattern %“‘[0..4] = aabba, J = (0,1,2,3,4) and H = (0,1,3,2,4); then for k = 
2,imin~(2) = 2 and imine(2) = 2 but j2 = 2 and h2 = 3. Note that in this case J $ H 
according to Definition 4.1. Since the definition of noholes depends on function iminJ 

and on the permutation J considered, there seems to be a relation of precedence among 

some pattern positions for any character comparison order in the same equivalent class 

of J. Formally we show that for any order J = (jo, jl , . . . , j,,,_,, m), the set of equivalent 

orders {H IH E J} can be characterized by the following relation 5~ defined on the 

set of positions (0, 1, . . . , m - 1, m} of the pattern. 

Definition 4.3. We say that pattern position 1 dominates pattern position I’ with respect 

to the character comparison order J, I 3 J I’, if there exists k, 0 < k d m such that 1 = 

jiminJ(k) and k E N(l’). 
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Fig. 1. The transitive closure of the relation <mp for pattern W[O m] = aabacaacaab$ 

The transitive closure of the relation 5~ is a partial order embedded in the linear 

order J = (jo, jl , . . . , j,,,_l, m) of indexes: if ji 5~ j,, then there exist k, 0 < k < m 

such that k E N(j,) and i = iminJ(k). Therefore i < t. 

In the next example we consider the permutation Jmp of KMP algorithm on a 

pattern W and we show how function iminmp imposes a partial order relation on the 

positions of W. Moreover, we show that the permutation JcOl of Colussi’s algorithm 

is in the same equivalence class of Jmp. 

Example. Consider the comparison order in KMP algorithm, Jmp = (0, 1, . . . , m - 1, m) 

and the pattern W[O... m] = aubacaacaub$. The values of function iminmp(k) for 

0 < k 6 m are listed below: 

k 1 2 3 4 5 6 7 8 9 10 11 

iminmp(k) 2 2 4 4 7 7 7 11 10 10 11 

The set of pattern positions {2,4,7,10,11} corresponds to noholes (in other words to 

the set of values of iminmp), while the set (0, 1,3,5,6,8,9} corresponds to holes. The 

transitive closure of the relation &,,tp is shown in Fig. 1. A directed arc between two 

pattern positions represents the “dominate” relation. 

Recall that, as we suggested in the introduction, one way of modifying KMP algo- 

rithm consists in changing the order of comparing pattern characters to the correspond- 

ing text characters while in a “match” phase. 

Colussi’s algorithm behaves exactly this way. It computes the values of function 

imincOl as KMP algorithm does, therefore obtaining the same set of noholes and holes; 

the key difference is that Colussi’s algorithm checks first noholes in increasing order 

of position, then holes in decreasing order (except the sentinel that is always checked 

last). Therefore JcOl = (2,4,7,10,9,8,6,5,3,1,0,11) for the pattern of this example. It 

is clear that, by Definition 4.1, Jmp 3 JcOl. Note also that the precedence relation of 

Fig. 1 still holds; it follows that 3 mp = &I, too. Similar reasoning shows that if we 

consider JBM = (m - 1,m - 2,..., l,O,m), then -&MP#~BM and &,i#<n~ (this is 

true for most patterns, not only for the one of this example). 

The above example suggests that the notion of equivalence between character com- 

parison orders and that of equality of the dominate relations are linked. The following 

Theorem 4.4 shows that such link is the equivalence of the two notions. 

Theorem 4.4. Let J and H be two character comparison orders. Then assertions 

(a)-(c) below are equivalent: 

(a) H E J; 
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(b) the relation -& (respectively -$) embeds in H (J), i.e. if hi 3J hr, then i < t (if 

j, dn jr, then i < t); 

(c) % = dH. 

Proof. (a) + (b): Let J and H be such that H E J and let i and t be such that 

hi 3J h,. Then, there exists k such that k E N(h,) and hi = jiminJ(k). Since H E J, 

then hi = jiminJ(k) = himtnu(k) and SO i = iminn(k). ThUS i d t SinCe k E N(hr). 

(b) + (a): Let 1 = jiminJ(k) and let i be such that hi = 1. Then k @ P(hi). Moreover, 

if k E N(h,) then hi 3J h, and so i < t. Thus, k q! N(h,) for all t such that t < i and 

then iminn(k) = i and himinu(k) = hi = l = jiminJ(k). (SimilUly for 5~) 

(b) + (c): From definitions. 

(c) + (b): Obvious, since iJ = & embeds in H. 

(a) + (c): jiminJ(k) = himink for all k, by (a). Thus 1 5J 1’ if and only if there 

exists k such that k E N(l’) and 1 = jimin,, if and only if k E N(I’) and I = himinx 

if and Only if 1 &, 1’. 

(c) + (a): From definitions. 0 

Given a character comparison order J, the Definition 4.3 of dominate relation 5J 

involves function iminJ and so it imposes to the noholes of the given pattern W to 

dominate some other pattern positions; on the other hand holes do not have to meet 

any constraint (refer to Fig. 1 as an example). This observation implies immediately 

that all character comparison orders obtained by postponing the checking of some holes 

are equivalent. Note that there might be an exponential number of such orders. The 

following Lemma 4.5 states that the simple operation of moving a hole after a nohole 

creates an equivalent character comparison order. 

Lemma 4.5. If W[ j,] is a hole for the character comparison order J = (j9,. . . , 

jr, jf+l, . . , j,,,_l,m), then the character comparison order H = (ho,. . . , hr, hr+l, . , 

h,_l,m) such that hr = j,+l, hr+l = jr and hi = ji otherwise is equivalent to J. 

Proof. Since W[ j,] is a hole, then for any k E N(j,) there exists s < t such that 

k E N( j,). Moreover, N( j,) = N(hr+l) and so for any k E N(ht+l) there exists s < t 

such that k E N( j,) = N(h,). Thus, W[hr+l] is still a hole for order H. Therefore 

SH=~J, and by Theorem 4.4 H E J. 0 

There are examples in the literature of character comparison orders J such that 

iminJ is computed in linear time (we just mention J~P,JBM,JcP,Jc~~) and we shall 

introduce more examples in Section 8. So, consider a character comparison order J 

such that iminJ is computed in linear time. Since any character comparison order H 

that is obtained from J by moving forward the holes is equivalent to J, function iminH 

is also computed in linear time by Lemma 4.2. In particular, if the equivalent order H 

is obtained from J by moving all holes after all noholes, then point (ii) of Theorem 

3.4 holds for H. So, not only can the shift function dH be computed in linear time, 



132 L. Colussi, L. Toniolol Theoretical Computer Science I63 (1996) 117-144 

but also the condition for SJ+ to take its maximum value 6~(i) = pmin(h;) on holes 

is satisfied. (Similarly, if the equivalent order H obtained from J satisfies point (i) of 

Theorem 3.4, then the shift function 6~ can still be computed in linear time and it 

takes its minimum value 6~(i) = ji + 1 on the holes. However, it is not so easy to 

obtain from J an equivalent order H that satisfies point (i) of Theorem 3.4 since in 

general a hole cannot be moved freely before a nohole.) 

This strategy can be applied to each equivalence class of character comparison or- 

ders: given an order J it is possible to choose a character comparison order H z J such 

that the shift function 6~ has maximum value SH(I’) on hole hi. Note that there is a 

trade-off between maximizing the values of the shift function on holes and maximizing 

the number of comparisons that can be saved in the next round of the execution of the 

algorithm &‘H. However, maximizing the values of the shift function is a useful euristic 

to obtain efficient string matching algorithms. This strategy has been appiied in Co- 

lussi’s algorithm [ 111. We have shown in the Example of this section that JcOt is in the 

same equivalence class of Jmp. Indeed, in Colussi’s algorithm both functions imincol 

and &,t are computed in linear time, using O(m) comparisons. The permutation JcOt is 

such that noholes are inspected from left to right before holes which are inspected in 

the reverse order. This choice of comparing characters is such that if a mismatch occurs 

in comparing hole hi with the corresponding text character, then &,1(i) = pmin(ji) 

and Colussi’s algorithm does not need to check any of the ?V[O.. . m - pmin(j,) - l] 

characters in the new alignment with the text. The algorithm gets a better performance 

in the text processing stage: at most in - irn comparisons versus 2n - m comparisons 

of the KMP algorithm are made. The same strategy has been also applied to BM 

algorithm in [ 121 obtaining an improvement of the worst-case bound from 3n to 2n. 

Last, in [18] it was proved that this strategy applied to CP algorithm allows to save 

character comparisons, but does not improve the worst-case bound. 

Finally, string matching algorithms that perform less than $n comparisons in the text 

processing step [ 10, 191 do change the character comparison order during execution to 

use all the information gathered in previous rounds. It is an open problem if sn is 

a tight bound for algorithms that do not change character comparison order, i.e. for 

algorithms in the family F. The lower bound of ;n has been proved to hold for a 

large subclass of 9 in [ 181. 

5. More about A_w 

In this section we shall prove Lemma 2.2 and study some basic properties of the 

autocorrelation matrix Jliw of a string 7Y[O . . . m - 11. These properties will be used in 

the following sections devoted to the computation of the shift function for the character 

comparison orders .Jmp,Jn~ and Jc, where C is a compact character comparison order. 

Proof of Lemma 2.2. Let _& = J%?W be the autocorrelation matrix of string YY; 

then ai,i = 0 since W[i] = W[i] for all i. Assume Ui,j = Ui,l = ak,j = 0. Then, 
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Fig. 2. The autocorrelation matrix A@, for pattern W[O . m - l] = aabacaacaab, the relations between 

entries and the periodic&y induced by substring W[3.. .9]. 

w[i] = %‘“[j],?Y[i] = ?K[Z] and %‘“[k] = %+‘Jj] hold. By the transitivity property of 

equality w[k] = w[Z] and ak,~ = 0. 

Suppose J&’ is a (0, 1) matrix of size m X m, such that U~,J + ai,/ -t C?k,j + ak,J # 1 

and ai,i = 0. Let YY be any string such that W[i] = W[j] if and only if columns i 

and j are equal in J%!. 

If w[i] = 9Y[j] then ai,j = ai,i = 0. If @“[iI # %‘“[j] then there exists 1 such that 

aI,i # a/,j. Assume a/,i = 0 and ~l,j = 1; since ai,i = 0 then ai,j = 1. 0 

We shall consider only entries ai,j such that 0 < i < j < m (i.e. the upper triangle 

of J%!w) since JY_W is symmetric with respect to the main diagonal. Refer to Fig. 2 

as an example of autocorrelation matrix. 

The following two lemmas describe some relations between entries of Aw. 

Lemma 5.1. Let ui,j be any entry in A’w. Then ui,j = 0 if and only if u,,j = up,i 
for all p such that 0 d p -C m. 

Proof. By Definition 2.1 ai,j = 0 if and only if ?#‘Ji] = %Q]. Let p be such that 

0 6 p < m; then a,,j = 0 if and only if W[p] = W[j] if and only if ap,i = 0. 

Viceversa, take p = i; then ai,j = ai,i = 0. 0 

Intuitively Lemma 5.1 states that ai,j = 0 if and only if columns i and j are equal. 

J&?-W being symmetric the same holds for rows i and j. Consider as an example the 

entry ai,6 = 0 in Fig. 2 (the entry is highlighted by a square); then columns one and 

six are equal ( similarly for rows one and six). 

Lemma 5.2. Suppose entry ui,j = 1,0 d i < j < m in the autocorrelation matrix 
A_w of strmg W. Then either u,,j = 1 or ap,i = 1 (or both) for all p such that 
O<p<m. 

Proof. By definition ai,j = 1 if and only if W[i] # W[j]. Let p be such that 

0 < p < m; then a,,j = 0 if and only if W[p] = W[j] # W[i] and so ap,i = 1. If 

ap,i = 0, then %Q] = “llr[i] # YY[~] and SO up,j = 1. q 
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Intuitively, Lemma 5.2 states that if ai,j = 1 then columns i and j cannot have a zero 

in the same position. Consider as an example the entry ~2,s = 1 in Fig. 2 (the entry is 

highlighted by a circle); then there is no pair of corresponding entries in columns two 

and eight which is equal to zero. 

We shall indicate by W[i . . . j], 0 < i < j < m - 1 the substring of dli starting at po- 

sition i and ending at position j. The periodicity of Y#“[i . . . j] is equivalent to sequences 

of consecutive zeros in a diagonal of ,itew as follows: 

Lemma 5.3. The substring W[i.. . j] is p-periodic if and only if all the entries 

ai,i+p,aifl,i+p+l,..., aj-p,J in _&WT are equal to zero. 

Proof. W[i.. . j] is p-periodic if and only if %‘“[k] = ?V[k + p] for all k such that 

i 6 k < j - p if and only if ak,k+p = 0 for all k such that i < k 6 j - p. Cl 

The periodicity of W[i.. . j] induces a periodicity of a whole region of &Z_W as the 

next Lemma 5.4 shows. 

Lemma 5.4. Let w[i.. . j] be p-periodic; then ak,g = aS4-P and a,& = a4_& for 

all k and q such that 0 d k < m and i + p d q < j. 

Proof. Since W[i . . . j] is p-periodic, then the entries ai,i+p . . aj_p,j are equal to zero 

by Lemma 5.3. Let q be such that i + p < q <j. Moreover, a4,4 = 0 and a4-p,4_p = 
0 since the main diagonal of JYW is zero filled. Then by Lemma 5.1 it follows that 

ak,q = ak,,_p and aq,k = a4-p,k for all k such that 0 6 k < m. 0 

Refer to the substring ^w[3.. . 91 in Fig. 2; the substring is 3-periodic and the entries 

in the same positions of the two triangular areas are equal. 

6. Shift function for KMP character comparison order and equivalent orders 

In this section we show how to compute the shift function &~p for KMP character 

comparison order using the autocorrelation matrix J&‘-W of a string YV = -Iy[O . . . m] 
containing the sentinel as last character. 

The preprocessing step of KMP algorithm (refer to [23]) is solved by computing the 

Failure Function in linear time and at most 2m - 4 character comparisons. According 

to the general definition of shift function given in the introduction, it follows that 6mp 

is related to the failure function of KMP algorithm (that we call fl function) by the 

relation &&I’) = i - fs(i + 1) + 1. * Indeed, it is well known that also 6mp can 

be computed in O(m) time and at most 2m - 4 character comparisons. However the 

computation offs in [23] cannot be easily generalized to compute shift functions SJ 

for other orders J, not even for an equivalent order like JcOl. Therefore we shall adopt 

2 Note that in [23] the pattern positions are indexed starting from one instead of zero. 



L. Colussi, L. Toniolol Theoretical Computer Science I63 (1996) 117-144 135 

0123456789 10 11 
a D b (1 e a (I c a (1 b $ 

a 

c 0 1 1 0 1 1 1 1 

Fig. 3. Pattern W[O.. . m] = aabacaacaab$ and entries ai-k,i = 1 such that i = iminKMp(k) 

a different strategy to compute hmp; our strategy will be based on the definitions of 

Section 3 and the autocorrelation matrix JZYW. 

According to Eq. (7) of Section 3 the computation of the shift function Bmp requires 

the computation of the values iminmp(k), 0 < k d m. Since KMP comparison order 

is J = (0, 1, _ . . , m - 1, m), it trivially satisfies point (i) of Theorem 3.4; therefore 

Bmp will be computed in linear time from function iminmp, without extra character 

comparisons, as the theorem shows. Moreover, it is easy to transform the values of 

function iminup into the values of function iminJ for equivalent orders J, following 

the lines of code after Lemma 4.2. Finally, the relative shift functions can be computed 

in O(m log logm) time in the worst case or in O(m) time if Theorem 3.4 holds. In 

particular it is immediate to obtain the values of 6o,t. 

So, we are reduced to the problem of efficiently computing function iminmp. 

In terms of entries of JZw, the value of iminmp(k), 0 < k 6 m, is the index i of 

the first column in &w such that ai_k,i = 1. We can equivalently compute the length 

pref(k) of the maximal O-filled prefix of the kth-downward diagonal in &w. In the 

sequel we shall refer to the downward diagonal simply as the diagonals of &w, unless 

specified otherwise. An example is drawn in Fig. 3, where the prefixes of the given 

pattern are highlighted by circles, while squares correspond to the entries ~~_k,~ = 1 

such that i = iminMp(k). 
We formally define function pref as follows: 

Definition 6.1. We say that pref(k), 0 < k < m is the length of the maximal O-filled 

prefix of the sequence of entries Ug,k . . . C&,-k,,, in JH~. 

We can easily and efficiently recover the values of function iminmp by observing that 

iminwp(k) = k + pref(k) for 0 < k < m. 

The problem of computing function pref has been addressed also in [6] and recently 

in [7]. The authors refer to it as string self-prefix problem; they give a linear-time al- 

gorithm (in [7]) that requires at most 2m- [2J7 m c h aracter comparisons, matching an 

equal lower bound previously provided in [6]. The algorithm given in [7] is of great 
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theoretical interest since it determines the exact complexity (i.e. the exact number of 

character comparisons) of the problem. The string self-prefix problem is similar to the 

computation of the failure function fs in KMP algorithm: fs can be easily computed 

from pref in linear time without additional comparisons by using Eq. (8) below. There- 

fore, the tight bounds on the string self-prefix problem apply also to the computation 

of the failure function (improving the previous bound of at most 2m - 4 character 

comparisons of the KMP algorithm). 

However, the algorithm designed in [7] is rather complicated and for any practical 

purpose an algorithm that performs at most 2m character comparisons is fairly efficient. 

The relations between function pref and fScan be more precisely outlined in terms of 

the correlation matrix; fs(i) is the length of the longest O-filled prefix of a downward 

diagonal that ends in column i. Thus, while function pref aims to record all the 

maximal O-filled prefixes of the downward diagonals, the function fs records only the 

longest one that ends in each column. Then the following relation holds: 

fs(i) = max{h 1 pref (i - h) = h - 1) U (0). (8) 

The computation offs in KMP algorithm is such that the lengths of all the O-filled 

prefixes of the downward diagonals are indirectly calculated, but only the lengths of the 

longest ones are stored in fJ: It is possible to obtain an algorithm to compute function 

pref by inserting statements that store the values of pref in the right places of the 

KMP algorithm. The algorithm obtained this way uses twice the memory of KMP (it 

stores two functions fl and pre f ). On the other end we can design an algorithm that 

works similar to KMP algorithm, but uses only function pre f, still using at most 2m - 4 

character comparisons. The advantages of computing directly function pref are rooted 

both in the extension of the computation of the shift function for equivalent character 

comparison orders and in an efficient and conceptually easy way of computing the shift 

function for BM character comparison order (Section 7) and, more importantly, for all 

compact orders (Section 8). Note that BM and compact orders are not equivalent in 

general to KMP character comparison order. 

The remaining part of this section is organized as follows: we start by stating some 

properties of function pref in the following two lemmas. Such properties will be trans- 

lated in our linear-time algorithm. Finally we show that the algorithm performs at most 

as many comparisons as KMP algorithm. 

Lemma 6.2. Let pref(k) = s. Then pref((l + 1)k) = s - Zk for all I such that 

O<Z< Ls/kJ. 

Proof. By Lemma 5.3, the string W[O..k +s - l] is k periodic. By Lemma 5.4, entries 

ao,(/+l)k.. . as-_lk,k+ are equal to entries Ulk,(l+l)k ...as,k+s. Since pref(k) = s, then 

alk,(r+l)k . . . as_l,k+s_l are zero and as&+$ = 1. Thus @,(j+i)k . ..~2_lk_i.k+~_l are zero 

and %-lk,k+s = 1 and so pref((Z + l)k) = s - Zk. 0 

Suppose we computed the value pref(ko) = s; then we can compute almost all val- 

ues of pref(ko + p) for 0 < p d s without any extra character comparison, looking 
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at values of function pref in a previous region of A%?,. Lemma 6.3 formalizes this 

intuitive idea. 

Lemma 6.3. Let pref(ko) = s and let p be such that 0 < p < s. Then: 

(a) ifpre.f(p) < s - P then pref(ko + P) = pref(p), 

(b) ifpref(p) > s - p then pref(ko + p) = s - p, 

(c) ifpref(p) = s - p then pref(ko + p) 3 s - p. 

Proof. Since pref(b) = s, then YQO.. . ko + s - l] is ko periodic. By Lemma 5.4, 

a&+p = at,* for all t and p such that 0 < t < m and 0 < p < s. 

(a) Since pref(pW-p, then entries ao,p,qP+l,. . . ,a,f(p)-l,p+pref(p)--l in the pth- 
diagonal are zero and a,,f(p),p+p,.ef(p) = 1. By the ka periodicity of YV[O . . . ko + 

s - 11 the co~ewnding entks ~O,ko+p~~l,ko+p+l~. . ., apre~(p)-~,~+p+pre~(p)-l in 

the (ko + p)th-diagonal are zero and apref(p),ko+p+pref(p) = 1. Thus pref(ko + p) = 

pref (p). 
(b) Since pref(p) > s - p, then entries ao,p, al,p+l,. . . , as_p,s in the pth-diagonal are 

zero. By the ~JJ periodic@ of %‘“[O.. . k~ + s - l] the entries ao,kO+p, al,b+,+l,. . . , 

as-p--l,~+s_i in the (ko + p)th-diagonal are zero. Since a&+s = l,as,s = 0 and 

as-p,s = 0, then a,_,b+, = 1 by Lemma 5.2. Thus pref(ko + p) = s - p. 

(c) Since pref(p) = s - p, then entries asp, u~,~+I,. . . , as_p_ ls-l in the pth-diagonal 
are zero and as-p,s = 1. By the ko periodic@ of w[O.. . ko + s - l] the corre- 

sponding entries aO,ka+p, al,k,+p+l, . . . , a,_p_~,~+s_l in the (ks + p)th-diagonal are 

zero. Since a&,+s = l,as,s = 0 and a,_,, = 1, we cannot determine by Lemma 

5.2 if C&p,k,+, = 1 or as_p,k,,+s = 0. 0 

If points (a) or (b) of Lemma 6.3 hold, then we can assign the right value to function 

pref. If point (c) holds, only a lower bound for the value of the function pre f is given 

by Lemma 6.3. 

Lemma 6.3 can be translated into a linear time algorithm that computes function 

pre f (and consequently timction iminmp). 
The algorithm inspects entries of .A! w starting from the left upper comer and moving 

along two different directions: down along a diagonal and up along a column. We refer 

to it as pref-algorithm. The pref-algorithm is as follows: 

Step 0 (Znizialization.) Set j = 1,s = 0 and go to Step 1. 

Step 1 (Move down along diagonal j.) If j > m then stop. Otherwise, we know that 

the entries ao,j, ai,j+i, . . , a,_l,j+s-l are equal to zero. Starting from as,j+s move 

down along the jth-diagonal by incrementing s until the first entry as,jfs = 1 is 

found. Set pre f( j ) = s and go to Step 2. 

Step 2 (Move up along column j + s. ) We know that pref( j ) = s. Starting from 

position k = j + 1 assign the right value to pref(k) for all k such that cases (a) or 

(b) of Lemma 6.3 applies and until either k = j + s + 1 or pref(k - j) = j + s - k 
is found (i.e. case (c) of Lemma 6.3 holds). In the former case: 
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(a)setj=j+s+l,s=OandgotoStep 1. 

In the latter Case inspect entry aj+s_k,j+s. 

If ajfs__k,j+s = 0 then: 

(b)sets=j+s-k+l,j=k,andgotoStep 1. 

If aj+s__k,j+s = 1 then: 

(c) set s = j + s - k, j = k and set pref(j) = s and repeat Step 2. 

Pref-algorithm behaves like KMP algorithm for the computation of function fi In- 

deed, Step 1 represents the matching phase when corresponding characters are found 

to be equal, proceeding from left to right. In Step 2 the list of characters to compare 

when a mismatch occurs is given; the order of comparing these characters is, like in 

KMP algorithm, by decreasing positions in the pattern. Therefore the bound of at most 

2m - 4 character comparisons applies to pref-algorithm as well. 

We show how to transform the output of pref-algorithm into the output of the failure 

function in KMP algorithm, for which the pattern positions are indexed from 1 to m+ 1. 

In Step 0 we inizialize the failure function to fl( 1) = 0; in Step 1 we add the statement 

that assigns the valuefS(j+s+ 1) =fs(s+ 1) while as,j+s = 0, i.e. while we are moving 

down along diagonal j and the statement that assigns the value fl(j + s + 1) = s + 1 

when the first entry as,j+s = 1 is found; in Step 2 we substitute the loop that starts from 

k =j+l and looks for the first value k such that k =j+s+l orpref(k-j) = j+s-k 

bythestatementk:=j+s+l-fS(s+l).Indeed,byEq.(8),k:=j+s+l-fS(s+l) 

is just the first k such that k = j + s + 1 or pre f(k - j ) = j + s - k. Last, we eliminate 

all assignments to function pref: 

As a remark note that the algorithms in [ 11,131 have a better performance than 

2m - 4 character comparisons, but they cannot be used to compute function pref since 

they do not compare the characters from left to right. 

7. Shift function for BM character comparison order 

In this section we show how to compute the shift function for BM character com- 

parison order by using function pref that is computed by the pref-algorithm of Section 

6. We consider a string w[O.. . m] containing the sentinel as last character and we 

proceed following the strategy outlined in the previous section. 

BM character comparison order is given by J = (jo,. . , j,_l,m) = (m - 1, 

m - 2,... ,l,O,m), and so ji = m - 1 - i for i in the range 0 < i < m and j, = 

m. According to our strategy, we first compute the values imin&k), for 1 < k < m. 

The value of imin&k) is given by m - 1 - I, where 1 is the maximum column 

index in the autocorrelation matrix Jz’_w, such that 0 < I < m and al-k,1 = 1. In 

particular if no such 1 exists, then only the column of the sentinel contains one and 

iminBM(k) is set to m. We can equivalently compute the length postf (k) of the max- 

imal O-filled postfixes of the downward diagonals in &W (with the last column re- 

moved). 

We formally define function postf as follows: 
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Definition 7.1. We say that postf(k), 0 < k < m, is the length of the maximal O-filled 

postfix of the sequence of entries U,+_l__k,m_l a~_2__k,~_2.. .ao,ka,_k,m in A-w, 

We can then recover the values of function iminBM by observing that for 0 < k d m 

iminBM(k) = m - 1 - postf(k) if postf(k) # m -k an d iminBM(k) = m if postf(k) = 

m - k. 

The computation of function postf can be performed in O(m) time from function 

preJ moreover, no extra character comparisons are required except those to compute 

function pref The stages of the computation can be described as follows: 

(1) Let ^Ilr = “w^,_17(y,_2... ?VO$ be the reverse string of “w, leaving the sentinel 

at the end. - 
(2) Compute the values of function pref on %‘“. - 
(3) Compute the values of function postf on YV from pref on -Iy- by using the 

relation postf(k) = pref(m - k - l),O < k < m and postf (m) = pref(m). 

The above stages can be clearly implemented in linear time and the upper bound of 

2m - 4 character comparisons still holds for the computation of function postf since 

character comparisons are performed only in stage (2); thus, also function iminBM can 

be computed in linear time. Moreover, since BM character comparison order satisfies 

point (ii) of Theorem 3.4, the shift function 6 nM is also computed in linear time 

as the code in the theorem mentioned shows. Finally, we recall that KMP and BM 

comparisons orders are not equivalent according to Definition 4.1, but it is possible to 

compute iminmp, iminBM, b~p and (rn~ in linear time. 

Functions pref and postf turn out to be useful tools in the computation of the shift 

function for compact orders as we show in the following section. 

8. Shift function for compact orders 

In this section we define compact orders and we present a linear-time algorithm to 

compute the shift function 6~ for a compact order C on a string w[O . . . m] contain- 

ing the sentinel as last character. The autocorrelation matrix A?_w will again play an 

important role to describe the different steps of the computation. 

Definition 8.1. The character comparison order C = (ja,. . . ,j,_l,m) is compact if 

the characters %‘“[ja], “Ilr[jl], . . . , W[ji] cover a segment of pattern YV[O.. . m] for all 

i,O<iQm. 

The following is a natural definition describing how the pattern positions extend the 

compact order C. 

Definition 8.2. We say that position ji, 0 < i < m, is a left (respectively right) position 

in the compact order C = (jo , . . . , j,+i, m) if it extends the segment covered by the 

characters %‘“[ jo], -llr[ ji], . . . , YY[ji_r] to the left (respectively right). 
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Note that, by Definition 8.2, position js is both a left and a right position. The 

class of compact orders is wide enough to include some of the best known character 

comparison orders; in particular KMP and BM character comparison orders can be 

considered as extreme cases of compact orders: in KMP order all positions are right 

positions, while in BM order all but position j, = m are left positions; CP character 

comparison order is a prototype of compact order. 

Based on the theory developed in Section 3 we know that the computation of the 

shift function 6~ requires first the computation of the values iminc(k), 0 < k < m. We 

can characterize function iminc by the autocorrelation matrix A?w as follows: 

Lemma 8.3. Let C = (jo,. . . , j,_l,m) be a compact order. Then 
(a) let ji be a left position. Then iminc(k) = i if and only if aj,_k,j, = 1 and 

ajc_k+p,j,+p = 0 for all p such that 1 < p < i; 
(b) let ji be a right position. Then iminc(k) = i if and only if aj,-k,j, = 1 and 

ajz_k_p,j,_p = 0 for all p such that 1 < p < min(ji - k, i}. 

Proof. (a) By Definition (3) of Section 3, iminc(k) = i if and only if k E N(ji) and 

k $ N( j,) for all t such that 0 < t < i, i.e. if and only if aj,_k,j, = 1. Since ji is a left 

position in the compact order C, then the set of positions jo, . . . ,ji_l covers a segment 

of pattern from position ji to position ji + i; 

(b) The proof is similar to point (a), recalling that since j, is a right position in 

the compact order C, then the set of positions js,. . . , ji - 1 covers a segment of the 

pattern from position ji - i to position ji - 1. Note that we should consider only po- 

sitions between max(k, ji - i) and ji - 1 since k 4 N( j ) for all j such that j < k. 
0 

Lemma 8.3 shows that, in order to compute function iminc, we need to compute O- 

filled sequences in the downward diagonals of A? W. Functions pref and postf defined 

in the previous sections seem to fit well in such a contest. 

We shall proceed by stages: we first describe which O-filled sequences of AW 

need to be computed, then we implement such computations by using functions pref 
and postf and finally we show how to assign the correct values to function iminc 
according to the compact order C = (ja,. . . , jm_,, m). We describe the stages of the 

computation by indicating which operations need to be performed, leaving to the reader 

the implementation details. 

The first stage can be described as follows: 

(1) consider column jo in the upper triangle of .A++,Y-. Compute the length F,(k) of 

the maximal O-filled postfix of the kth-downward diagonal ending in column jo, 

fork= 1 to js; 

(2) compute the length Fz(k) of the maximal O-filled prefix of the kth-downward 

diagonal for k = jo + 1 to m; 

(3) compute the length F3(k) of the maximal O-filled segment of the kth-downward 

diagonal for k = 1 to je starting from column ja. 
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In order to implement the above points, it is convenient to divide string YY[O . . . m- l] in 

two substrings (~1 = ?.V[O . . .jo] and a2 = ?V[jo + 1 . . . m - 11. Then the implementation 

of (l)-(3) proceeds as follows: 

(1) Compute function postf BM on al$ for k = 1 to jo and set F,(k) = postf BM 

(k) 
(2) Compute function prefw, on %‘“[O.. . m] and for k = jo + 1 to m set F2(k) = 

pref u&k) 
(3) Compute function prefw, on a2a1$ for k = 1 to m. Assign values to function 

F3 for k = 1 to j. as follows: Fj(k) = prefmp(m - k) if prefu,(m - k) # k; 

suppose prefmp( m - k) = k: the maximal O-filled segment of the kth-downward 

diagonal starting from column jo might be longer than prefwp(m - k). It implies 

that the O-filled segment covers a segment of a2 and F3(k) = pref mp(m - k) + 

pref K&k). 
Finally we have to assign the correct values to function iminc. We consider the permu- 

tation ZI = (7co,nl,..., z,,,- 1, m) such that njc = i for all i, 0 < i < m and we distinguish 

the following two cases: 

l k E [l . ..jo]. Then 

(i) Consider function F1; if Fl(k) = jo-k+l, then the kth postfix of al is complete 

(i.e. we reached row zero) and the value of iminc(k) is the value given by point 

(ii) and (iii); otherwise Fl(k) < jo - k + 1. Consider the quantity jo - Fl(k) 

and COmpUtC the index njo_F,(k). 

(ii) Consider the quantity jo + Fj(k) and compute the index xjio+,ZT3(k). 

(iii) If njnjo_F,(k) < nj,,+F,(k) then iminc(k) = njo_I;,(k) eke iminc(k) = nj,,+F,(k). 

. kE[jo+l . . . m]. Consider the quantity k + Fz(k) and set iminc(k) = xk+,Z$(k). 

The computation of function iminc, as described above, requires O(m) time since 

it uses the permutation Ii’ and functions pref and postf; note that the entries of 

the autocorrelation matrix J!w are accessed only in the computation of the latter 

functions. 

The last step to be performed consists in computing the shift function 6~ from 

function iminc. We show how this can be done in O(m) time. Theorem 3.4 shows 

how to compute 6~ on noholes. Let %‘“[ji] be a hole for the compact order C. If 

ji is a right position, then 6c(i) = ji + 1, i.e. the same approach of KMP character 

comparison order holds; if j; is a left position, let %‘“[Zi . . . vi] be the segment of the 

pattern covered by characters %‘“[ jo], . . . , “H[ ji] and let pmin(i) be the minimum period 

of ?Qo . . .r;] such that pmin(i) > Zi. Then &(i) = pmin(i). 

The only concern is to compute the values of function pmin in linear time. We 

show how to compute the values pmin(i) for all i = 0,. . . , m - 1, irrespective of ji be 

a left or right position by the following lines of code. 

begin 
I :=jo; r :=jo; p :=jo + 1; t := j0 + 1; 

{p = pmin(0); W[l . . . r] = “w[ j,]; k is not period of YV[O . . . Y] for all k such 

that p -c k f t} 
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for i := 0 to m - 1 do 

begin 

{p = pmin(i); W[Z . . . Y] is covered by ,W[js], . . . , W[ji]; k is not period 

of W[Z...r] for all k such that p < k et} 

pmin[i] := p; 

if ji+l “is a right position” then 

begin 

{ji,l = r+ 1) 

r:=r+l 

If PWkdpI + P G y {otherwise pmin(i + 1) = pmin(i)} 

then begin 

t:=t+l, 

while pref&,[t] + t < Y do t := t + 1; 

p := t; 

end 

end 

else 

{ji+l = I - 1 is a left position} 

begin 

end 

if pref&,[Z] + 1 > r {otherwise pmin(i + 1) = pmin(i)} 

then p := E; 

l:=l--1 

end 

end 

It is easy to verify that this algorithm is linear. The only trouble might be the nested 

while loop. However, the while loop increases the value of variable t and t cannot be 

greater than m. 

After we computed the shift function 6~ for a specific compact order C we can 

compute the shift functions for many other character comparison orders in linear time 

and we can maximize or minimize the values of the shift functions, too. Indeed, the 

equivalent class defined by C includes, for instance, all the orders obtained moving 

forward one or more holes of C, as proved in Lemma 4.5. Moreover, for all the 

orders in the equivalent class that satisfy Theorem 3.4, we can compute the relative 

shift function in O(m) time and maximize or minimize its values according to which 

situation described in Theorem 3.4 holds. Note that the linear work performed does not 

require any extra character comparison, except those to compute iminc. These procedure 

can be applied to each compact order C, since compact orders are not equivalent in 

general. 

Finally, note that the character comparison orders in the equivalent class of a compact 

order C are not necessarily compact; for example Jmp is compact, but the equivalent 

order Jc,,~ is not. 
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9. Concluding remarks and open problems 

String matching algorithms use shift functions to slide the pattern along the text. 

In this paper we studied the relations between the order J of comparing correspond- 

ing characters in the pattern and text strings and the relative shift mnction 6~ for a class 

9 of on-line string matching algorithms. We gave a uniform definition of SJ depend- 

ing only on the character comparison order J and we characterized sets of equivalent 

character comparison orders for which the computation of the shit? function is strictly 

related. 

By introducing the class of compact orders we generalized some of the best known 

string matching algorithms and we provided numerous other character comparison or- 

ders for which the computation of the shift function is efficient. 

There are few open problems that we like to mention: 

1. Is tn a tight bound on the number of character comparisons in the text search step 

for algorithms in the family F? 

2. What is the exact comparison complexity of function iminJ? How is the comparison 

complexity related to the character comparison order J? 

3. Which are the classes, besides the compact orders, of comparison orders such that 

the computation of the shift I?mction requires O(m) time? 

4. Is it possible to describe the classes in 3. (if any) in a uniform way? 

5. Is it possible to reduce the number of character comparisons performed in the com- 

putation of function iminc, C being a compact order? 
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