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A class of parallel programs, based on Free Choice Petri nets, is modeled by 
associating operators and predicates with vertices of the net. The model, called 
a formal parallel program (FPP), forms a natural extension of flow-chart notation 
to parallel programs. Definitions are made of the behaviour of an FPP, and the 
simulation of one FPP by another. A class of top-down FPPs is next defined, by 
requiring program graphs to be obtained through successive refinement steps, 
using a restricted set of control structures. Using the above definitions, it is 
shown that there exists an FPP o~ satisfying the property that for any top-down 
FPP 5 '  simulating -~, the degree of parallelism attainable in d ~7' is smaller than 
that in .~-. The measure of parallelism used is the number of different ways of 
carrying out a computation. In the case of parallel programs, this phenomenon 
of loss of parallelism therefore uncovers a performance factor which may offset 
some of the advantages of using top-down design. 

l .  INTRODUCTION 

A formal  mode l  of  parallel  p rograms  is defined, using as the  basis the class 

of  F ree  Choice  Pet r i  nets ( F C P  nets), which  is a p roper  sub-class of  the class of  

Petr i  nets [Hack (1972)]. T h e  model ,  called a formal parallel program (FPP),  is 

ob ta ined  by associating operators  and predicates  wi th  vert ices of  an F C P  net. 

T h e  mode l  can be v iewed  as a natura l  extension of  the  famil iar  f low-char t  

nota t ion  to paral lel  programs.  Us ing  this model ,  some of the implicat ions  of  

using t o p - d o w n  design procedures  for parallel  p rograms are invest igated.  

T h e  advantages of  design by s tep-wise ref inement ,  using a restr ic ted set of  

control  s t ructures ,  are wel l -known.  P rog ram clarity, ease of  modif icat ion,  
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verification, etc. are some of the advantages of these design methods [Dijkstra, 
Mills]. In the case of parallel programs, especially, the complexity of unstructured 
programs rises enormously with program size unless the rules of step-wise 
refinement are followed. Also, top-down design for parallel programs ensures 
that the resulting programs are well-behaved--i.e, free from deadlocks [Coffman 
et al], and having well-defined loci of control, or 'live' and 'safe' in Petri net 
terms. Since the problem of liveness and safeness does not arise in sequential 
programs, this is an added advantage of using top-down design for parallel 
programs. 

It will be shown in this paper than in some cases the use of top-d0wn design 
for parallel programs may restrict the degree of parallelism attainable. The 
measure of parallelism used here is the number of different ways of carrying out 
a computation. In the case of parallel programs, therefore, a performance factor 
(program speed) will be shown to exist which may offset some of the advantages 
of top-down design. 

The model used here may be compared with other proposed models of parallel 
computations [Rodriguez, Karp & Miller]. Note that the present model does not 
make an explicit representation of synchronization primitives leg. Habermann]. 
In this connection, however, it may be noted that: (a) assigning the same operator 
(or predicate) to more than one vertex of the FCP net indicates a type of implicit 
synchronization, and (b) for some purposes of analysis, we do not require an 
explicit representation of the synchronization schemes. 

Sections 2-4 below present the basic definitions related to the model. Section 5 
describes formally the notion of top-down design, while section 6 develops the 
main result of this paper. 

2. DEFINITION OF THE MODEL 

A. Mathematical Preliminaries 

We present first the mathematical preliminaries needed for the definition 
of formal parallel programs. 

A (finite) Petri net G is a triple G = (T, P, E) where: T is a finite, nonempty 
set of transitions, P is a finite, non-empty set of places, and E C (T × P) [,) 
(P X T) is the set of edges defining a directed, bi-partite graph. A marking M 
on G is a function M: P --~ ~#', where JV" is the set of non-negative integers. 
A firing function 3 ~ associated with a transition t is a function on the set of all 
markings on G. 8 t is defined at marking M iff Vp ~ P, (p, t) ~ E => M(p) > O, 
and is given as 3~(M) = M'  where 

( M ( P ) +  1, if ( t , p ) ~ E ^ ( p , t ) ~ E  
VpeP, M ' (P)=  IM(P)- -  1, if (p , t )  e E A ( t , p ) q ~ E  

M(P), otherwise 
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We denote by 8 the union of all the firing functions 8 *, t e T, for a net G, and 
we say M '  = 3(M) if M '  = 8~(M) for some transition t. 

We  say transit ion t is firable under  marking M if 8 t is defined at M. A f r i n g  

sequence ~ of G is a string ~ = tit  2 " .  t m , t i ~ T for 1 ~ i ~< m, s.t. for a 
sequence M °, M1,...,  M *~ of markings on G, M i = 8~,(M i-1) for 1 ~ i ~ m. 
~14 ° is the initial marking on G. We extend the notation to say M '~ = 8(M °, a). 
L e t F ( G )  denote the set of all firing sequences of net G under initial marking M °. 

As an example, consider the net in Fig. 1. Here t i ,  t2, t a are transitions, 

and Pl  , JO2 are places. 
t 3 

P2 

t 2 

FIG. 1. Example of a Petri net. 

Figure 1 indicates a marking M for which M ( p l )  = 2 and M(p2)  = O. 

In  this case, we may also say that Pl  has two tokens (or markers) on it, while p2 
has none. Transi t ion t 1 above is firable, and on firing t 1 one of the two tokens 
on Pl  will move to P2 • 

A net G = (T, P,  E) is said to be live if, for any t ~ T, and for any firing 
sequence a of G, a sequence a, can be found s.t. t is firable under the marking 
8(M 0, a . a~)l. The  net G is safe if, for any p e P, and for any firing sequence cr 
of G, M ' ( p )  ~< 1 where M '  - -  8(M °, ~). 

A subnet (or subgraph) G' = (T ' ,  P' ,  E') of G is a net satisfying (a) T ' C  T, 
(b) P '  C P, and (c) E '  is the restriction of E to T '  and P ' .  We shall denote by 
rr(u, v) a path in G from vertex u to vertex v 1, and the terms cycle, initial end- 
point  of ,'r, terminal  end-point  of rr, etc., will have the usual meaning. We shall 
denote  by "x and x" respectively the sets {y [ (y,  x) ~= E} and {y ! (x, y) ~ E}, 
for any vertex x of G. 

B.  Free Choice Petri  nets 

A Petri  net G = (T, P,  E) is Free Coice iff Vp ~ P, [p" ] > 1 ~ "(p') = {p}. 
The  implication of this restriction is that  whenever a place p is marked 

1 , . ,  w i l l  d e n o t e  c o n c a t e n a t i o n  o f  f i r i n g  s e q u e n c e s  o f  G ,  as we l l  as t h a t  o f  p a t h s  in  t h e  
n e t  G .  
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(i.e. has one or more tokens) which has more than one output transition 
(] P" I > 1), then any one of these transitions may fire independently of the state 
of  the other places of G. The  net in Fig. 2 is Free choice, because p is the only 
place in it satisfying I P" [ > 1, and "(p') = {p}. 

L 

FIG. 2. Example  of  a Free  Choice  place. 

We know that conditional branches in programs have the form: 

/ f  (condition = T R U E )  then goto label 

T h e  branch is taken independently of the state of the (parallel) program at 
other points, i.e. independently of the values of all other program counters. 
We claim that a natural model of parallel programs results if we restrict the 
decision nodes in it to have this Free Choice property. T h e  two way branch is 
then shown in our model in Fig. 3. 

t 2 

only input vertex 
to t 1 and t 2 

1 

FIC. 3. Free Choice  proper ty .  
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We shall denote by FC(G) the set of all Free Choice places of FCP net G = 
(T, P, E), i.e. 

FC(G) = { p a P l l p ' l  > 1}. 

The class of FCP nets was first analyzed in [Hack (1972)]. Hack determined 
necessary and sufficient conditions for the liveness and safeness of FCP nets. 
Essentially, he showed that is is possible to perform a pair of dual reductions 
on a live and safe FCP net, yielding strongly connected components of two basic 
types. A detailed analysis of any FCP net based model must necessarily use as 
starting points conditions similar to those in [Hack (1972)], but for the purposes 
of this paper a full statement of these conditions is not required. 

The two basic types of components which result from the reductions men- 
tioned above are state machines and marked graphs. A Petri net G = (T, P, E) 
is a state machine if every t ~ T satisfies I t" [ ~< 1 and ] "t l ~< 1; and a Petri net 
G = (T, P, E) is a marked graph if everyp a P satisfies I P" I ~ 1 and ] "p I ~ 1. 
The classes of state machines and marked graphs are obtained by excluding 
from FCP nets the features of parallel action and decision nodes respectively. 
A state machine corresponds to the familiar sequential finite state system. 
A marked graph represents, in a sense, the simplest possible parallel system--  
one in which there are no decision nodes. Marked graphs have been analyzed 
fully [Commoner et all, and have been employed to model asynchronous 
parallel control structures [Jump & Thiagarajan]. We shall use the two classes 
of state machines and marked graphs in order to formalize the notion of top- 
down design for our model of parallel programs. 

C. Formal Parallel Programs 

I t  can easily be shown, using the definitions of liveness and safeness, or using 
the criteria developed in [Hack (1972)], that a live and safe FCP must consist 
of one or more strongly-connected components. In order to base our parallel 
program model on FCP nets, we shall modify a live and safe FCP net and draw 
it in the form shown in Fig. 4. It  is implicit in Fig. 4. that (a) toO is the only 
transition firable under the initial marking, and (b) addition of the 'return link' 
(Fig. 5) to the net yields a live and safe FCP net. 

0 

place ~ / place 

FIG. 4. Modif ied  form of a live and safe FCP  net. 
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' s ta r t "  ~ 'end' 
place t o J \ place 

FIc. 5. 'Return link' restored in Fig. 4. 

By this means we obtain from a live and safe FCP net a parallel program 
flow-graph with unique initial and terminal end-points ('start' and 'end' places 
above). The FCP net shown in Fig. 4 above will be given the name linear FCP 
net in the following paragraphs. Using the linear FCP net, we now formally 
define the parallel program model. 

DEFINITION (Parallel program model) 
A formal parallel program (FPP) is a 5-tuple ~ = (G, Sop, fop, Spr, fpr) 

where 

(a) G = (T, P, E) is a linear FCP net under initial marking M °, 

(b) Sop is a set of operators and fop is a total function fop: T --~ Sop L/{h}, 
and )t is the null-operator, ~ ~fop[FC(G)'], 

(c) Spr is a set ofpredzcates andfpr is a total functionfpr: FC(G) --~ Spr.  

The 4-tuple (Sop, fop, Spr,  fpr) is an interpretation on G yielding ~-. | 

Note that the assignment of 'range' and 'domain' cells to vertices of G is not 
made here, since it is not central to the analysis of this paper. Also, the 'inter- 
pretation' used here is similar to that in [Keller], and therefore an FPP may be 
thought of as a realization of a parallel program schema. Moreover, an FPP is 
necessarily a finite-state realization of a compact, commutative schema. 

Comparing our model with that of [Rodriguez], we see that we have a much 
smaller number of vertex types, and consequently simpler enabling rules. 
Also, the model of [Rodriguez] is of a 'data-flow' type, i.e. the function nodes 
receive data at the input edges and the results of the computation are placed 
on the output edges. 

In the analysis which follows, we shall make use of a convention for naming 
the vertices of the linear FCP net G which will simplify the resulting notation. 
In the remaining paragraphs of this section we describe this convention. 
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A. Elements of Sop are named f0 ,  f l  ,...,flSopl-1. Elements of T are then 
named according to the scheme below: 

= fo,(A),, (a) fo~(A) _C T is given by fob(h) = {h 1, h2,..., h ma} where ma ! - -1  [ 

(b) to o is the single transition at the output of 'start ' ,  and 

(c) f o~(fi) C_ T is given by f o~(fi) = {h °, til, ..., t~¢}, where ,ni = 
[ fo l ( f i ) l  - -  1, for 0 ~ i ~ ] Sop I - -  1. We say there are m i ~- 1 occurrences 
of the operator f i  (or, the ith operator) in ~ ' ,  for 0 ~ i ~ I Sop I - -  1. 

B. Elements of Spr are named go, gl ,..., dis 1-1 • Elements of FC(G) are 
- -  " " - - 1  o p  

then named so that fplr(gi) is given by f p r ( g i ) =  {2/)/°, 2pil, ..., 2pn,}, where 
ni [ --1 = fpr(gi)] - -  1, for 0 ~ i ~ / Spr [ - -  1. We say there are ni q- 1 occurrences 
of the predicate gi (or, the ith predicate) in ~-,  for 0 ~ gi ~ ] 8pr I - -  1. 

The  naming convention is chosen so as to provide us with an easy translation 
from an FPP to the corresponding FCP net, and vice versa. In  the case that fop 
and fpr are one-to-one, we shall use f i ,  gJ etc. as vertex names in G, and we 
shall refer to a transition as an operator, or to an FC place as a predicate. 

The  definition of the parallel program model is now complete. In  the next 
two sections we present two formal definitions--the behaviour of an FPP, 
and the simulation of one FPP by another- -which are needed in establishing 
the main result of the paper. 

3. BEHAVIOUR OF A PARALLEL PROGRAM 

The  behaviour of an FPP, the parallel program model of the previous section, 
will now be defined along the lines of the 'computation sequences' of other 
models [Karp & Miller, Rodriguez]. Specifically, the set of all possible sequences 
of operators and predicates that may be observed will define the bahaviour of 
an FPP. Along similar lines are the definitions of [Hack (1976)] and [Peterson]. 

Let  ~ -  = (G, Sop, fop ,  Sp r , /p r )  be an FPP. Let  c~ be any firing sequence 
of G. The  behaviour sequence a' of ~"  corresponding to a is obtained from a 
by means of the following sequence of steps: 

(a) delete any instances of ~i, 1 ~ i ~ m a , f rom ~, 

(b) insert p /  immediately to the left of any instances of an x e ( p / ) '  in 
the resulting string, where 0 ~ i ~ n~. and 0 ~ j ~ I Spr I - -  l, 

(c) replace any instances of tj i in the resulting string by the operator 
f i , w h e r e 0  ~ i ~ m j a n d 0  ~ j  ~ [ S o p [ - -  1, 

(d) replace any instances of p~ in the resulting string by the predicate g j ,  
where 0 ~ i ~ nj and 0 ~ j ~< [ Sp~ I - -  1. 

EXAMPLE. Consider the FPP shown in Fig. 6. Two of the firing sequences 
of this net are to°tolt2 ° and to°tt°t~ °. The  corresponding two behaviour sequences 
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t 1 
0 

tO pl tO 

® -,-l° C) 
'start' 'end' 
place place 

FIG. 6. Example  of a Fo rma l  Parallel Program.  

are fogofof2 and fogoflfz.  We see that a behaviour sequence preserves the 
information about the decisions made at FC places, as well as the order in which 
the various operations and decisions were carried out. | 

We denote by ~ ( ~ )  the set of all behaviour sequences of f t .  We then denote 
by/3 the onto function S/3: F(G) ~ ~(o~) which is defined by steps i-iv of the 
above definition. 

DEFINITION. (Behaviour of an FPP) 
The behaviour of an FPP o~ is the set ~(~-)  of all the bahaviour sequences of 

5 .  | 

Based on the above definition of the bahaviour of an FPP, in the following 
Section we define the simulation of an FPP Y by another FPP ~".  

4. SIMULATION 

Using the above definition of the bahaviour of an FPP, we shall formalize the 
idea of simulation between two FPP's. 

Recall that the presence of parallelism, in general, permits a computation 
to be carried out in more than one way. The following definition states the 
conditions under which two behaviour sequences of an FPP represent the same 
computation. 

Let ~ and ~' be any two behaviour sequences of an FPP ~ = (G, Sop, 
fop, Spr, fpr). e~ and ~' are said to be similar if the following conditions are 
satisfied: 

(a) #( f i  ] ~) = # ( f i  ] °~'), Vii @ Sop a 

#(g, I~) = #(gi I~'), Vg, ~ sp~ 

s Recall tha t  F(G) is the  set of  all firing sequences  of G. 
Here  # ( x  ] =) denotes  the  n u m b e r  of  occurrences  of  x in the  s t r ing  c~. 
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(b) if the kth occurrences of any gi ~ Spr are followed in ~ and e~' by fj  
and fj, respectively, then ] =] ' ;  here gi ~ Spr, f~-, f / e  Sop and 1 ~< h ~< 
#(g~ I~) = #(g~ I~'). 

T h e  second part  of the definition above states that  the pat tern of decisions 
made to obtain the two sequences ~ and ~' is identical. We  say (cg e~') e sire iff 

and cd are similar. Clearly sire is then an equivalence relation on ~ ( 5 ) .  

fl 

go 

'start' ~ f 4 ~ "  'end" 

go fl 

'start' ~ "end' 

fl 

'start' N ~  "end" 

FIG. 7. Examples of simulation of FPPs. 
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DEFINITION. (Simulation of one FPP by another) 
Let ~-  and Y '  be two FPP's. We say ~- '  simulates f f  iff the following condi- 

tions are satisfied: 

(i) ~(o~') _C ~(o~), 
(ii) no equivalence class of the relation sire on ~ ' (~ ' )  is disjoint with 5~(~-'). 

We say that o~ and ~- '  are equivalent, or o ~ '  simulates ~" without loss of 
paralMism, if ~ ( ~ )  = ~ ( Y ' ) .  | 

We show an example illustrating the above definitions. 
Consider the three FPP's shown in Fig. 7. It  can easily be verified that 

simulates ~ but is not equivalent to it, because f~ has been placed in sequence 
with go, f l ,  f~, f3 • ~ does not simulate ~1 because part ii of above definition 
is violated--there is no behaviour sequence in ~ similar to any of the sequences 

logo f3, fof4gof3 , fogofJ4, fogofff J5 and fof~gof~f~ of o~l. 
This completes the definitions related to our model which are essential for 

the analysis in the latter sections. 

5. TOP-DOWN DESIGN 

The main aim of this paper is to describe one implication of using top-down 
design techniques, i.e. design by successive refinement steps, for parallel 
programs. We shall prove in section 6 that under certain conditions an FPP 
has no top-down equivalent, even though it can be shown that any FPP can be 
simulated by a top-down FPP [Jotwani]. 

In this section we shall formally define the class of top-down FPP's, and we 
shall briefly outline the relationship between this class and the classes of 
interval-reducible [Hecht & Ullman] and structured [Mills] sequential programs. 

The following few preliminary definitions will lead up to the central definition 
of this section: 

A proper state machine (proper marked graph, resp.) is a linear FCP net which 
is a state machine (marked graph, resp.) from which the place 'start' has been 
deleted, and to which a terminal transition has been added as diagrammed 
in Fig. 8. The substitution of net G' into a linear FCP net G is defined iff G' is 
either a proper state machine (psm) or a proper marked graph (pmg). The 
substitution at transition t of G consists in replacing t in G by G', as shown below, 

init nal 
transition transition 

FIG. 8. Obtaining 'proper state machines' and 'proper marked graphs.' 
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to yield another linear FCP net G" (Fig. 9). We use the terms S-substitution 
and M-substitution respectively to denote that the net G' is a psm or a pmg 
in a particular instance of substitution. 

L 

transition 
t inG 

transition of G' transition of G' 

FIG. 9. Subst i tu t ion.  

DEFINITION'. (Top-down programs) 
The  class of top-down FCP nets, strictly contained in the class of linear FCP 

nets, is defined inductively as follows: 

basis step--the net G0 ° shown in Fig. 10 is a top-down FCP net. 

induction step--if linear FCP net G is a top-down net, and if net G" is 
obtained from (7 by means of a single substitution step, then G" is a top-down 
FCP net. 

t O 

® --t ° 
'start' 'end' 

Fro. 10. Basis t o p - d o w n  F C P  net. 

An FPP Y = ((7, Sop, fop,  Spr,  fpr) is a top-down program (TDP) if (7 is 
a top-down FCP net. | 

Essentially the definition of T D P ' s  states that modules representing parallelism 
and those representing control-flow logic (i.e. pmg and psm nets respectively) 
should be introduced separately into the program, one at a time. The  definition 
is a very natural one in this context, since it requires that the two orthogonal 
features of a parallel program, parallelism and control flow branches, be intro- 
duced separately into a top-down program. 

Note that we have made no restrictions on the type of proper state machine 
used in order to obtain a top-down program. Two restricted classes of sequential 
programs very widely used are the class of interval--reducible programs [Hecht & 
Ullman], and the class of structured programs [Mills]. In  the following section 
we show that under certain conditions the use of top-down parallel programs 
may involve a loss in the degree of parallelism attainable. Now it is known that 
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any sequential program has an interval-reducible equivalent. Also, under a 
definition of program equivalence which is based on the functional behaviour 
of programs (as opposed to a definition based on behaviour sequences) it can be 
shown that any sequential program has a structured equivalent [Mills]. In view 
of these known properties of sequential programs, it can be shown that restricting 
the psm nets (in the above definition of top-down FPP's) to be interval-reducible, 
or structured, does not affect the main result of this paper (in section 6 below) 
concerning loss of parallelism. 

A more complete discussion of the implications of using interval-reducible 
and structured state machines can be found in [Jotwani]. Also in it is a formal 
proof of the intuitive result that any FPP can be simulated by a TDP, which may 
be thought of as a Structure Theorem for  this class of parallel programs. 

6. Loss oF PARALLELISM 

Making use of the above definitions of FPP's, behaviour, TDP's ,  etc., we 
show in this section that there exist FPP's for which there are no TDP equiva- 
lents. As mentioned in section 5 above, it can be formally proved, b y  making 
use of an appropriate 'structure algorithm', that any FPP can be simulated by 
a TDP. Therefore the result of this section, in effect, is that the use of top-down 
design procedures for parallel programs may entail a loss in the degree of 
parallelism attainable. Note that in view of our definitions of 'simulates' and 
'equivalence', the measure of parallelism used here is the number of different 
behaviour sequences of an FPP ~ ,  i.e. the number of different ways in which 
the parallel computation represented by ~-  may be carried out. 

In Fig. 11 below we show the FPP ~ for which we shall prove that there is 
no top-down equivalent. The relevant proofs follow, in Lemmas 6.1-6.3, leading 
up to Theorem 6.1. 

Therefore let ~-; = (G, Sop, fop, Spr, fpr) be the FPP shown in Fig. 11. 
Note that here fop and fpr are one-to-one. 

There is exactly one FC place in G, which corresponds to the predicate g 
above. The two output transitions of this FC place correspond to operators f i  

andf~ . 
t t Now let o~-' ~_ (G', Sop, fop ,  Spr,  fpr)  be any TDP simulating Y .  

LEMMA 6.1. With ~ '  as defined above, the net G' contains exactly one FC 
place, which corresponds to predicate g. 

Proof. That  G' contains an FC place p corresponding to the predicate g 
(i.e. fpr(P) = g) follows at once when we consider the bahaviour sequencefogfi 
of ~ ,  which must be observed in o~'. To see that p is the only FC place in G', 
assume the opposite, i.e. let p '  E FC(G') s.t. p '  ~ p and f'pr(P') ~ g"  But then 
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f3 

Fie. 11. FPP to which there is no TDP equivalent. 

from basic properties of live and safe FCP nets we can easily show that a 
bahaviour sequence ~ of the type ~ = " g m  ... glZ) .. is observed in ~ ' ,  i.e. 

has two occurrences of predicates in it. Since it can be verified for ~ -  that no 
behaviour sequence of the type of ~ is observed in ~-, and since we have assumed 

that ~ '  simulates Y ,  we reach a contradiction. The result follows at once. | 

LEMMA 6.2. There is exactly one transition in G' corresponding to each of 
t - - 1  t - - 1  

the operatorsf~ , f2 ,  andfa , i.e. I /pr  (72)] = ]f~l(fu) l  = [fpr  (78)1 = 1. 

Proof. Follows from an argument similar to that of Lemma 6.1, i.e. by 

showing that the opposite would imply a behaviour sequence a of .~v, which is 

not observed in ~-. | 

LEMMA 6.3. At  least one of the following two statements must be true in J; '  : 

A: the operators f~ and f~ cannot be enabled in parallel in J ' ,  or 

B: the operators fa and f8 cannot be enabled in parallel in ~ ' .  

Proof. Assume that A is false, i.e. f l  andf~ can be enabled in parallel in ~ ' .  
I n  view of the fact that there is only one occurrence in ~ '  ofg and f l ,  the paths 
shown in Fig. 12 then exist in G', for some transition t ?  Further, since G'  is 
a top-down net and g is an FC place, the configuration shown in Fig. 13 exists 
in G',  for some transition t'. Here I and I I  are the two alternate regions corre- 

In all the diagrams of this section, a straight line between two vertices represents an 
edge, while a 'curved' line represents a path of length /> 1. 
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f ;  

g 

f2 
t 

FIc. 12. Diagram 1 for Lemma 6.3. 

f7 

fl 

e n d  

FIO. 13. Diagram 2 for Lemma 6.3. 

sponding to the 2-way branch at g. Note that regions marked I and I I  in the 
above figure are disjoint, since the FC place g must  be introduced in an S-sub-  
stitution, and we can always choose q (in the corresponding psm) s.t. I and I I  
are disjoint. 

Now note the following arguments: 

(i) f3 is in region I above, since it must be reached only if the decision 
made at g is f l ,  and 

(ii) f s  ,flo are not in region I since they are constrained to fire only after f7 
fires. 

[Both (i) and (ii) must  hold in G'  in view of the corresponding properties in ~ ' . ]  
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Now note the following arguments: 

(a) since fa is constrained to fire only after f l  fires, there is a blank 
elementary path ~r 1 in region I from f l  tofa ; similarly there is a blank elementary 
path ~r~ in G' from f l  to f s ,  and a blank elementary path ~r 3 from fa to f l o ,  and 

(b) both ~r 2 and ~r a given by (a) above contain the place q, in view of the 
argument (ii) above. 

Now, from (a) and (b), it follows at once that the configuration in Fig. 14 
exists in G', for some transitions t", t ' .  But then clearly a blank elementary 
path can be constructed in G' fromf~ to f8,  yielding statement B of the Lemma. 

The proof is complete. | 

40 

FIG. 14. Diagram 3 for Lemma 6.3. 

We are now ready to present formally the main result of this section: 

THEOREM 6.1. The FPP ~ described above has no TDP equivalent. 

Proof. Note that in Y ,  the operators f l  and f7 can be enabled in parallel, 
yielding a behaviour sequence of the type -" fTgfl  "'" and a behaviour sequence 
of the type "-. gf l f7  "". Similarly, in J the operators fa and f8 can be enabled 
in parallel, yielding behaviour sequences of the types -'- fa fs  "'" and ' "  f s fa  "". 
However, in view of Lemma 6.3, any T D P  J '  simulating o ~- will not exhibit 
behaviour sequences of each of the four types above, i.e. ~ ( f f ' )  =/= ~(~-) ,  and 
the result follows. | 

The implication of this theorem, of course, is that the computation represented 
by Y ,  with its implied data-dependencies, cannot be realized using top-down 
design without sacrificing some of the parallelism attainable in the 'unstructured' 
version represented by Y .  Y above illustrates a typical configuration of parallel 
operations for which, in this sense, there is no top-down equivalent. 

643/4o/3-2 
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This phenomenon of loss of parallelism has been more fully analyzed in 
[Jotwani], where conditions have been determined which are necessary and 
sufficient for an FPP to a have a T D P  equivalent. 

7. CONCLUSIONS 

We have demonstrated, through the example program of Fig. 11, that in 
some cases design by top-down refinement may restrict the degree of parallelism 
attainable in a parallel program. For parallel programs, a performance factor 
has thus been shown to exist which may offset some of the advantages of using 
top-down design techniques. For a specific problem, a special-purpose parallel 
module may be designed which is not any of the basic modules defined in section 
5, in order to increase the degree of parallelism attainable. This module (to 
which there would be no top-down equivalent) may then be incorporated into 
the top=down design procedures. This would require additional design effort, and 
clearly the relative weight attached to program speed in the overall performance 
will be the deciding factor. 
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