
INFORMATION AND CONTROL 40, 2 4 1 - 2 5 7 (1979)

Top-Down Design in the Context of Parallel Programs*

N. D. JOTWANI

Department of Mathematical and Computer Sciences, Michigan Technological University,
Houghton, iVlichigan 49931

AND

J. ROBERT JuMP

Department of Electrical Engineering, Rice University, Houston, Texas 7700I

A class of parallel programs, based on Free Choice Petri nets, is modeled by
associating operators and predicates with vertices of the net. The model, called
a formal parallel program (FPP), forms a natural extension of flow-chart notation
to parallel programs. Definitions are made of the behaviour of an FPP, and the
simulation of one FPP by another. A class of top-down FPPs is next defined, by
requiring program graphs to be obtained through successive refinement steps,
using a restricted set of control structures. Using the above definitions, it is
shown that there exists an FPP o~ satisfying the property that for any top-down
FPP 5 ' simulating -~, the degree of parallelism attainable in d ~7' is smaller than
that in .~-. The measure of parallelism used is the number of different ways of
carrying out a computation. In the case of parallel programs, this phenomenon
of loss of parallelism therefore uncovers a performance factor which may offset
some of the advantages of using top-down design.

l . INTRODUCTION

A formal mode l of parallel p rograms is defined, using as the basis the class

of F ree Choice Pet r i nets (F C P nets), which is a p roper sub-class of the class of

Petr i nets [Hack (1972)]. T h e model , called a formal parallel program (FPP), is

ob ta ined by associating operators and predicates wi th vert ices of an F C P net.

T h e mode l can be v iewed as a natura l extension of the famil iar f low-char t

nota t ion to paral lel programs. Us ing this model , some of the implicat ions of

using t o p - d o w n design procedures for parallel p rograms are invest igated.

T h e advantages of design by s tep-wise ref inement , using a restr ic ted set of

control s t ructures , are wel l -known. P rog ram clarity, ease of modif icat ion,

* \York done under NSF Grant G J-750.

241
O019-9958/79/030241-17502.00/0

Copyright ~ 1979 by AeadernicPress, Inc.
All rights of reproduction in any form reserved.

242 JOTWANI AND JUMP

verification, etc. are some of the advantages of these design methods [Dijkstra,
Mills]. In the case of parallel programs, especially, the complexity of unstructured
programs rises enormously with program size unless the rules of step-wise
refinement are followed. Also, top-down design for parallel programs ensures
that the resulting programs are well-behaved--i.e, free from deadlocks [Coffman
et al], and having well-defined loci of control, or 'live' and 'safe' in Petri net
terms. Since the problem of liveness and safeness does not arise in sequential
programs, this is an added advantage of using top-down design for parallel
programs.

It will be shown in this paper than in some cases the use of top-d0wn design
for parallel programs may restrict the degree of parallelism attainable. The
measure of parallelism used here is the number of different ways of carrying out
a computation. In the case of parallel programs, therefore, a performance factor
(program speed) will be shown to exist which may offset some of the advantages
of top-down design.

The model used here may be compared with other proposed models of parallel
computations [Rodriguez, Karp & Miller]. Note that the present model does not
make an explicit representation of synchronization primitives leg. Habermann].
In this connection, however, it may be noted that: (a) assigning the same operator
(or predicate) to more than one vertex of the FCP net indicates a type of implicit
synchronization, and (b) for some purposes of analysis, we do not require an
explicit representation of the synchronization schemes.

Sections 2-4 below present the basic definitions related to the model. Section 5
describes formally the notion of top-down design, while section 6 develops the
main result of this paper.

2. DEFINITION OF THE MODEL

A. Mathematical Preliminaries

We present first the mathematical preliminaries needed for the definition
of formal parallel programs.

A (finite) Petri net G is a triple G = (T, P, E) where: T is a finite, nonempty
set of transitions, P is a finite, non-empty set of places, and E C (T × P) [,)
(P X T) is the set of edges defining a directed, bi-partite graph. A marking M
on G is a function M: P --~ ~#', where JV" is the set of non-negative integers.
A firing function 3 ~ associated with a transition t is a function on the set of all
markings on G. 8 t is defined at marking M iff Vp ~ P, (p, t) ~ E => M(p) > O,
and is given as 3~(M) = M' where

(M (P) + 1, if (t , p) ~ E ^ (p , t) ~ E
VpeP, M ' (P)= IM(P)- - 1, if (p , t) e E A (t , p) q ~ E

M(P), otherwise

T O P - D O W N PARALLEL PROGRAMS 243

We denote by 8 the union of all the firing functions 8 *, t e T, for a net G, and
we say M ' = 3(M) if M ' = 8~(M) for some transition t.

We say transit ion t is firable under marking M if 8 t is defined at M. A f r i n g

sequence ~ of G is a string ~ = tit 2 " . t m , t i ~ T for 1 ~ i ~< m, s.t. for a
sequence M °, M1,..., M *~ of markings on G, M i = 8~,(M i-1) for 1 ~ i ~ m.
~14 ° is the initial marking on G. We extend the notation to say M '~ = 8(M °, a).
L e t F (G) denote the set of all firing sequences of net G under initial marking M °.

As an example, consider the net in Fig. 1. Here t i , t2, t a are transitions,

and Pl , JO2 are places.
t 3

P2

t 2

FIG. 1. Example of a Petri net.

Figure 1 indicates a marking M for which M (p l) = 2 and M(p2) = O.

In this case, we may also say that Pl has two tokens (or markers) on it, while p2
has none. Transi t ion t 1 above is firable, and on firing t 1 one of the two tokens
on Pl will move to P2 •

A net G = (T, P, E) is said to be live if, for any t ~ T, and for any firing
sequence a of G, a sequence a, can be found s.t. t is firable under the marking
8(M 0, a . a~)l. The net G is safe if, for any p e P, and for any firing sequence cr
of G, M ' (p) ~< 1 where M ' - - 8(M °, ~).

A subnet (or subgraph) G' = (T ' , P' , E') of G is a net satisfying (a) T ' C T,
(b) P ' C P, and (c) E ' is the restriction of E to T ' and P ' . We shall denote by
rr(u, v) a path in G from vertex u to vertex v 1, and the terms cycle, initial end-
point of ,'r, terminal end-point of rr, etc., will have the usual meaning. We shall
denote by "x and x" respectively the sets {y [(y, x) ~= E} and {y ! (x, y) ~ E},
for any vertex x of G.

B. Free Choice Petri nets

A Petri net G = (T, P, E) is Free Coice iff Vp ~ P, [p"] > 1 ~ "(p') = {p}.
The implication of this restriction is that whenever a place p is marked

1 , . , w i l l d e n o t e c o n c a t e n a t i o n o f f i r i n g s e q u e n c e s o f G , as we l l as t h a t o f p a t h s in t h e
n e t G .

2 4 4 JOTWANI AND JUMP

(i.e. has one or more tokens) which has more than one output transition
(] P" I > 1), then any one of these transitions may fire independently of the state
of the other places of G. The net in Fig. 2 is Free choice, because p is the only
place in it satisfying I P" [> 1, and "(p') = {p}.

L

FIG. 2. Example of a Free Choice place.

We know that conditional branches in programs have the form:

/ f (condition = T R U E) then goto label

T h e branch is taken independently of the state of the (parallel) program at
other points, i.e. independently of the values of all other program counters.
We claim that a natural model of parallel programs results if we restrict the
decision nodes in it to have this Free Choice property. T h e two way branch is
then shown in our model in Fig. 3.

t 2

only input vertex
to t 1 and t 2

1

FIC. 3. Free Choice proper ty .

TOP-DOWN PARALLEL PROGRAMS 245

We shall denote by FC(G) the set of all Free Choice places of FCP net G =
(T, P, E), i.e.

FC(G) = { p a P l l p ' l > 1}.

The class of FCP nets was first analyzed in [Hack (1972)]. Hack determined
necessary and sufficient conditions for the liveness and safeness of FCP nets.
Essentially, he showed that is is possible to perform a pair of dual reductions
on a live and safe FCP net, yielding strongly connected components of two basic
types. A detailed analysis of any FCP net based model must necessarily use as
starting points conditions similar to those in [Hack (1972)], but for the purposes
of this paper a full statement of these conditions is not required.

The two basic types of components which result from the reductions men-
tioned above are state machines and marked graphs. A Petri net G = (T, P, E)
is a state machine if every t ~ T satisfies I t" [~< 1 and] "t l ~< 1; and a Petri net
G = (T, P, E) is a marked graph if everyp a P satisfies I P" I ~ 1 and] "p I ~ 1.
The classes of state machines and marked graphs are obtained by excluding
from FCP nets the features of parallel action and decision nodes respectively.
A state machine corresponds to the familiar sequential finite state system.
A marked graph represents, in a sense, the simplest possible parallel system--
one in which there are no decision nodes. Marked graphs have been analyzed
fully [Commoner et all, and have been employed to model asynchronous
parallel control structures [Jump & Thiagarajan]. We shall use the two classes
of state machines and marked graphs in order to formalize the notion of top-
down design for our model of parallel programs.

C. Formal Parallel Programs

I t can easily be shown, using the definitions of liveness and safeness, or using
the criteria developed in [Hack (1972)], that a live and safe FCP must consist
of one or more strongly-connected components. In order to base our parallel
program model on FCP nets, we shall modify a live and safe FCP net and draw
it in the form shown in Fig. 4. It is implicit in Fig. 4. that (a) toO is the only
transition firable under the initial marking, and (b) addition of the 'return link'
(Fig. 5) to the net yields a live and safe FCP net.

0

place ~ / place

FIG. 4. Modif ied form of a live and safe FCP net.

246 JOTWANI AND JUMP

' s ta r t " ~ 'end'
place t o J \ place

FIc. 5. 'Return link' restored in Fig. 4.

By this means we obtain from a live and safe FCP net a parallel program
flow-graph with unique initial and terminal end-points ('start' and 'end' places
above). The FCP net shown in Fig. 4 above will be given the name linear FCP
net in the following paragraphs. Using the linear FCP net, we now formally
define the parallel program model.

DEFINITION (Parallel program model)
A formal parallel program (FPP) is a 5-tuple ~ = (G, Sop, fop, Spr, fpr)

where

(a) G = (T, P, E) is a linear FCP net under initial marking M °,

(b) Sop is a set of operators and fop is a total function fop: T --~ Sop L/{h},
and)t is the null-operator, ~ ~fop[FC(G)'],

(c) Spr is a set ofpredzcates andfpr is a total functionfpr: FC(G) --~ Spr.

The 4-tuple (Sop, fop, Spr, fpr) is an interpretation on G yielding ~-. |

Note that the assignment of 'range' and 'domain' cells to vertices of G is not
made here, since it is not central to the analysis of this paper. Also, the 'inter-
pretation' used here is similar to that in [Keller], and therefore an FPP may be
thought of as a realization of a parallel program schema. Moreover, an FPP is
necessarily a finite-state realization of a compact, commutative schema.

Comparing our model with that of [Rodriguez], we see that we have a much
smaller number of vertex types, and consequently simpler enabling rules.
Also, the model of [Rodriguez] is of a 'data-flow' type, i.e. the function nodes
receive data at the input edges and the results of the computation are placed
on the output edges.

In the analysis which follows, we shall make use of a convention for naming
the vertices of the linear FCP net G which will simplify the resulting notation.
In the remaining paragraphs of this section we describe this convention.

TOP-DOWN PARALLEL PROGRAMS 247

A. Elements of Sop are named f0 , f l ,...,flSopl-1. Elements of T are then
named according to the scheme below:

= fo,(A),, (a) fo~(A) _C T is given by fob(h) = {h 1, h2,..., h ma} where ma ! - -1 [

(b) to o is the single transition at the output of 'start ' , and

(c) f o~(fi) C_ T is given by f o~(fi) = {h °, til, ..., t~¢}, where ,ni =
[fo l (f i) l - - 1, for 0 ~ i ~] Sop I - - 1. We say there are m i ~- 1 occurrences
of the operator f i (or, the ith operator) in ~ ' , for 0 ~ i ~ I Sop I - - 1.

B. Elements of Spr are named go, gl ,..., dis 1-1 • Elements of FC(G) are
- - " " - - 1 o p

then named so that fplr(gi) is given by f p r (g i) = {2/)/°, 2pil, ..., 2pn,}, where
ni [--1 = fpr(gi)] - - 1, for 0 ~ i ~ / Spr [- - 1. We say there are ni q- 1 occurrences
of the predicate gi (or, the ith predicate) in ~-, for 0 ~ gi ~] 8pr I - - 1.

The naming convention is chosen so as to provide us with an easy translation
from an FPP to the corresponding FCP net, and vice versa. In the case that fop
and fpr are one-to-one, we shall use f i , gJ etc. as vertex names in G, and we
shall refer to a transition as an operator, or to an FC place as a predicate.

The definition of the parallel program model is now complete. In the next
two sections we present two formal definitions--the behaviour of an FPP,
and the simulation of one FPP by another- -which are needed in establishing
the main result of the paper.

3. BEHAVIOUR OF A PARALLEL PROGRAM

The behaviour of an FPP, the parallel program model of the previous section,
will now be defined along the lines of the 'computation sequences' of other
models [Karp & Miller, Rodriguez]. Specifically, the set of all possible sequences
of operators and predicates that may be observed will define the bahaviour of
an FPP. Along similar lines are the definitions of [Hack (1976)] and [Peterson].

Let ~ - = (G, Sop, fop , Sp r , /p r) be an FPP. Let c~ be any firing sequence
of G. The behaviour sequence a' of ~" corresponding to a is obtained from a
by means of the following sequence of steps:

(a) delete any instances of ~i, 1 ~ i ~ m a , f rom ~,

(b) insert p / immediately to the left of any instances of an x e (p /) ' in
the resulting string, where 0 ~ i ~ n~. and 0 ~ j ~ I Spr I - - l,

(c) replace any instances of tj i in the resulting string by the operator
f i , w h e r e 0 ~ i ~ m j a n d 0 ~ j ~ [S o p [- - 1,

(d) replace any instances of p~ in the resulting string by the predicate g j ,
where 0 ~ i ~ nj and 0 ~ j ~< [Sp~ I - - 1.

EXAMPLE. Consider the FPP shown in Fig. 6. Two of the firing sequences
of this net are to°tolt2 ° and to°tt°t~ °. The corresponding two behaviour sequences

248 JOTWANI AND JUMP

t 1
0

tO pl tO

® -,-l° C)
'start' 'end'
place place

FIG. 6. Example of a Fo rma l Parallel Program.

are fogofof2 and fogoflfz. We see that a behaviour sequence preserves the
information about the decisions made at FC places, as well as the order in which
the various operations and decisions were carried out. |

We denote by ~ (~) the set of all behaviour sequences of f t . We then denote
by/3 the onto function S/3: F(G) ~ ~(o~) which is defined by steps i-iv of the
above definition.

DEFINITION. (Behaviour of an FPP)
The behaviour of an FPP o~ is the set ~(~-) of all the bahaviour sequences of

5 . |

Based on the above definition of the bahaviour of an FPP, in the following
Section we define the simulation of an FPP Y by another FPP ~".

4. SIMULATION

Using the above definition of the bahaviour of an FPP, we shall formalize the
idea of simulation between two FPP's.

Recall that the presence of parallelism, in general, permits a computation
to be carried out in more than one way. The following definition states the
conditions under which two behaviour sequences of an FPP represent the same
computation.

Let ~ and ~' be any two behaviour sequences of an FPP ~ = (G, Sop,
fop, Spr, fpr). e~ and ~' are said to be similar if the following conditions are
satisfied:

(a) #(f i] ~) = # (f i] °~'), Vii @ Sop a

#(g, I~) = #(gi I~'), Vg, ~ sp~

s Recall tha t F(G) is the set of all firing sequences of G.
Here # (x] =) denotes the n u m b e r of occurrences of x in the s t r ing c~.

TOP-DOWN PARALLEL PROGRAMS 249

(b) if the kth occurrences of any gi ~ Spr are followed in ~ and e~' by fj
and fj, respectively, then] =] ' ; here gi ~ Spr, f~-, f / e Sop and 1 ~< h ~<
#(g~ I~) = #(g~ I~').

T h e second part of the definition above states that the pat tern of decisions
made to obtain the two sequences ~ and ~' is identical. We say (cg e~') e sire iff

and cd are similar. Clearly sire is then an equivalence relation on ~ (5) .

fl

go

'start' ~ f 4 ~ " 'end"

go fl

'start' ~ "end'

fl

'start' N ~ "end"

FIG. 7. Examples of simulation of FPPs.

250 JOTWANI AND JUMP

DEFINITION. (Simulation of one FPP by another)
Let ~- and Y ' be two FPP's. We say ~- ' simulates f f iff the following condi-

tions are satisfied:

(i) ~(o~') _C ~(o~),
(ii) no equivalence class of the relation sire on ~ ' (~ ') is disjoint with 5~(~-').

We say that o~ and ~- ' are equivalent, or o ~ ' simulates ~" without loss of
paralMism, if ~ (~) = ~ (Y ') . |

We show an example illustrating the above definitions.
Consider the three FPP's shown in Fig. 7. It can easily be verified that

simulates ~ but is not equivalent to it, because f~ has been placed in sequence
with go, f l , f~, f3 • ~ does not simulate ~1 because part ii of above definition
is violated--there is no behaviour sequence in ~ similar to any of the sequences

logo f3, fof4gof3 , fogofJ4, fogofff J5 and fof~gof~f~ of o~l.
This completes the definitions related to our model which are essential for

the analysis in the latter sections.

5. TOP-DOWN DESIGN

The main aim of this paper is to describe one implication of using top-down
design techniques, i.e. design by successive refinement steps, for parallel
programs. We shall prove in section 6 that under certain conditions an FPP
has no top-down equivalent, even though it can be shown that any FPP can be
simulated by a top-down FPP [Jotwani].

In this section we shall formally define the class of top-down FPP's, and we
shall briefly outline the relationship between this class and the classes of
interval-reducible [Hecht & Ullman] and structured [Mills] sequential programs.

The following few preliminary definitions will lead up to the central definition
of this section:

A proper state machine (proper marked graph, resp.) is a linear FCP net which
is a state machine (marked graph, resp.) from which the place 'start' has been
deleted, and to which a terminal transition has been added as diagrammed
in Fig. 8. The substitution of net G' into a linear FCP net G is defined iff G' is
either a proper state machine (psm) or a proper marked graph (pmg). The
substitution at transition t of G consists in replacing t in G by G', as shown below,

init nal
transition transition

FIG. 8. Obtaining 'proper state machines' and 'proper marked graphs.'

TOP-DOWN PARALLEL PROGRAMS 251

to yield another linear FCP net G" (Fig. 9). We use the terms S-substitution
and M-substitution respectively to denote that the net G' is a psm or a pmg
in a particular instance of substitution.

L

transition
t inG

transition of G' transition of G'

FIG. 9. Subst i tu t ion.

DEFINITION'. (Top-down programs)
The class of top-down FCP nets, strictly contained in the class of linear FCP

nets, is defined inductively as follows:

basis step--the net G0 ° shown in Fig. 10 is a top-down FCP net.

induction step--if linear FCP net G is a top-down net, and if net G" is
obtained from (7 by means of a single substitution step, then G" is a top-down
FCP net.

t O

® --t °
'start' 'end'

Fro. 10. Basis t o p - d o w n F C P net.

An FPP Y = ((7, Sop, fop, Spr, fpr) is a top-down program (TDP) if (7 is
a top-down FCP net. |

Essentially the definition of T D P ' s states that modules representing parallelism
and those representing control-flow logic (i.e. pmg and psm nets respectively)
should be introduced separately into the program, one at a time. The definition
is a very natural one in this context, since it requires that the two orthogonal
features of a parallel program, parallelism and control flow branches, be intro-
duced separately into a top-down program.

Note that we have made no restrictions on the type of proper state machine
used in order to obtain a top-down program. Two restricted classes of sequential
programs very widely used are the class of interval--reducible programs [Hecht &
Ullman], and the class of structured programs [Mills]. In the following section
we show that under certain conditions the use of top-down parallel programs
may involve a loss in the degree of parallelism attainable. Now it is known that

252 JOTWANI AND JUMP

any sequential program has an interval-reducible equivalent. Also, under a
definition of program equivalence which is based on the functional behaviour
of programs (as opposed to a definition based on behaviour sequences) it can be
shown that any sequential program has a structured equivalent [Mills]. In view
of these known properties of sequential programs, it can be shown that restricting
the psm nets (in the above definition of top-down FPP's) to be interval-reducible,
or structured, does not affect the main result of this paper (in section 6 below)
concerning loss of parallelism.

A more complete discussion of the implications of using interval-reducible
and structured state machines can be found in [Jotwani]. Also in it is a formal
proof of the intuitive result that any FPP can be simulated by a TDP, which may
be thought of as a Structure Theorem for this class of parallel programs.

6. Loss oF PARALLELISM

Making use of the above definitions of FPP's, behaviour, TDP's , etc., we
show in this section that there exist FPP's for which there are no TDP equiva-
lents. As mentioned in section 5 above, it can be formally proved, b y making
use of an appropriate 'structure algorithm', that any FPP can be simulated by
a TDP. Therefore the result of this section, in effect, is that the use of top-down
design procedures for parallel programs may entail a loss in the degree of
parallelism attainable. Note that in view of our definitions of 'simulates' and
'equivalence', the measure of parallelism used here is the number of different
behaviour sequences of an FPP ~ , i.e. the number of different ways in which
the parallel computation represented by ~- may be carried out.

In Fig. 11 below we show the FPP ~ for which we shall prove that there is
no top-down equivalent. The relevant proofs follow, in Lemmas 6.1-6.3, leading
up to Theorem 6.1.

Therefore let ~-; = (G, Sop, fop, Spr, fpr) be the FPP shown in Fig. 11.
Note that here fop and fpr are one-to-one.

There is exactly one FC place in G, which corresponds to the predicate g
above. The two output transitions of this FC place correspond to operators f i

andf~ .
t t Now let o~-' ~_ (G', Sop, fop , Spr, fpr) be any TDP simulating Y .

LEMMA 6.1. With ~ ' as defined above, the net G' contains exactly one FC
place, which corresponds to predicate g.

Proof. That G' contains an FC place p corresponding to the predicate g
(i.e. fpr(P) = g) follows at once when we consider the bahaviour sequencefogfi
of ~ , which must be observed in o~'. To see that p is the only FC place in G',
assume the opposite, i.e. let p ' E FC(G') s.t. p ' ~ p and f'pr(P') ~ g" But then

TOP-DOWN PARALLEL PROGRAMS 253

f3

Fie. 11. FPP to which there is no TDP equivalent.

from basic properties of live and safe FCP nets we can easily show that a
bahaviour sequence ~ of the type ~ = " g m ... glZ) .. is observed in ~ ' , i.e.

has two occurrences of predicates in it. Since it can be verified for ~ - that no
behaviour sequence of the type of ~ is observed in ~-, and since we have assumed

that ~ ' simulates Y , we reach a contradiction. The result follows at once. |

LEMMA 6.2. There is exactly one transition in G' corresponding to each of
t - - 1 t - - 1

the operatorsf~ , f2 , andfa , i.e. I /pr (72)] =]f~l(fu) l = [fpr (78)1 = 1.

Proof. Follows from an argument similar to that of Lemma 6.1, i.e. by

showing that the opposite would imply a behaviour sequence a of .~v, which is

not observed in ~-. |

LEMMA 6.3. At least one of the following two statements must be true in J; ' :

A: the operators f~ and f~ cannot be enabled in parallel in J ' , or

B: the operators fa and f8 cannot be enabled in parallel in ~ ' .

Proof. Assume that A is false, i.e. f l andf~ can be enabled in parallel in ~ ' .
I n view of the fact that there is only one occurrence in ~ ' ofg and f l , the paths
shown in Fig. 12 then exist in G', for some transition t ? Further, since G' is
a top-down net and g is an FC place, the configuration shown in Fig. 13 exists
in G', for some transition t'. Here I and I I are the two alternate regions corre-

In all the diagrams of this section, a straight line between two vertices represents an
edge, while a 'curved' line represents a path of length /> 1.

254 JOTWANI AND JUMP

f ;

g

f2
t

FIc. 12. Diagram 1 for Lemma 6.3.

f7

fl

e n d

FIO. 13. Diagram 2 for Lemma 6.3.

sponding to the 2-way branch at g. Note that regions marked I and I I in the
above figure are disjoint, since the FC place g must be introduced in an S-sub-
stitution, and we can always choose q (in the corresponding psm) s.t. I and I I
are disjoint.

Now note the following arguments:

(i) f3 is in region I above, since it must be reached only if the decision
made at g is f l , and

(ii) f s ,flo are not in region I since they are constrained to fire only after f7
fires.

[Both (i) and (ii) must hold in G' in view of the corresponding properties in ~ ' .]

TOP-DOWN PARALLEL PROGRAMS 255

Now note the following arguments:

(a) since fa is constrained to fire only after f l fires, there is a blank
elementary path ~r 1 in region I from f l tofa ; similarly there is a blank elementary
path ~r~ in G' from f l to f s , and a blank elementary path ~r 3 from fa to f l o , and

(b) both ~r 2 and ~r a given by (a) above contain the place q, in view of the
argument (ii) above.

Now, from (a) and (b), it follows at once that the configuration in Fig. 14
exists in G', for some transitions t", t ' . But then clearly a blank elementary
path can be constructed in G' fromf~ to f8, yielding statement B of the Lemma.

The proof is complete. |

40

FIG. 14. Diagram 3 for Lemma 6.3.

We are now ready to present formally the main result of this section:

THEOREM 6.1. The FPP ~ described above has no TDP equivalent.

Proof. Note that in Y , the operators f l and f7 can be enabled in parallel,
yielding a behaviour sequence of the type -" fTgfl "'" and a behaviour sequence
of the type "-. gf l f7 "". Similarly, in J the operators fa and f8 can be enabled
in parallel, yielding behaviour sequences of the types -'- fa fs "'" and ' " f s fa "".
However, in view of Lemma 6.3, any T D P J ' simulating o ~- will not exhibit
behaviour sequences of each of the four types above, i.e. ~ (f f ') =/= ~(~-) , and
the result follows. |

The implication of this theorem, of course, is that the computation represented
by Y , with its implied data-dependencies, cannot be realized using top-down
design without sacrificing some of the parallelism attainable in the 'unstructured'
version represented by Y . Y above illustrates a typical configuration of parallel
operations for which, in this sense, there is no top-down equivalent.

643/4o/3-2

256 JOTWANI AND JUMP

This phenomenon of loss of parallelism has been more fully analyzed in
[Jotwani], where conditions have been determined which are necessary and
sufficient for an FPP to a have a T D P equivalent.

7. CONCLUSIONS

We have demonstrated, through the example program of Fig. 11, that in
some cases design by top-down refinement may restrict the degree of parallelism
attainable in a parallel program. For parallel programs, a performance factor
has thus been shown to exist which may offset some of the advantages of using
top-down design techniques. For a specific problem, a special-purpose parallel
module may be designed which is not any of the basic modules defined in section
5, in order to increase the degree of parallelism attainable. This module (to
which there would be no top-down equivalent) may then be incorporated into
the top=down design procedures. This would require additional design effort, and
clearly the relative weight attached to program speed in the overall performance
will be the deciding factor.

RECEIVED: April 14, 1978; REVISED: August 1 l, 1978

REFERENCES

COFFMAN, E. G., et al. (1971), System deadlocks, Comput. Surveys 3, 67-78.
COMMONER, F., et al. (1971), Marked directed graphs,]. Comput. System Sci. 5, 511-523.
DUV.STRA, E. W. (1972), Notes on structured programming, in "Structured Programming"

(E. W. Dijkstra, et al., Eds.), pp. 1-82, Academic Press, New York.
HABERMANN, A. N. (1972), Synchronization of communicating processes, Comm. A C M 15,

171-176.
HAcI~, M. H. T. (1972), "Analysis of Production Schemata by Petri Nets," Rept. No.

MAC-TR-94, Laboratory for Computer Science, M.I.T., Cambridge, Mass.
HACK, M. H. T. (1976), "Petri Net Languages," Rept. No. MAC-TR-159, Laboratory

for Computer Science, M.I.T., Cambridge, Mass.
HECHT, M. S., ANn ULLMAN, J. D. (1972), Flow graph reducibility, S I A M f. Computing

1, 188-202.
JOTWANI, N.D. (1977), "Study of a Class of Parallel Programs," Ph.D. Thesis, Department

of Electrical Engineering, Rice University, Houston, Tex.
JUMP, J. R., AND THIAGARAJAN, P. S. (1973), On the equivalence of asynchronous control

structures, S I A M]. Computing 2, 67-87.
JUMP, J. R., AND THIAGARAJAN, P. S. (1975), On the interconnection of asynchronous

control structures, J. A C M 22, 596-612.
KARP, R. M., AND MILLER, R. E. (1966), Properties of a model for parallel computation:

Determinacy, termination, queueing, S I A M J. App. Math. 14, 1390-1411.
KARl', R. M., AND MILLER, R. E. (1969), Parallel program schemata, J. Comput. System

Sci. 3, 147-195.

TOP-DOWN PARALLEL PROGRAMS 257

KELLER, R. M. (1973), Parallel program schemata and maximal parallelism, J. ACM 20,
514-537 ; 696- 710.

MILLS, H. D. (1972), "Mathematical Foundations of Structured Programming," IBM,
Gaithersberg, Md.

PETERSON, J. L. (1976), Computation sequence sets, J. Comput. System Sci. 13, 1-24.
RODRmUEZ, J. E. (1969), "A Graph Model for Parallel Computation," Rept. No. MAC-

TR-64, Laboratory tbr Computer Science, M.I.T., Cambridge, Mass.

