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tinoic acid receptor (RAR) β and α signalling in proliferation and differentiation
of endogenous adult forebrain neural progenitor cells (NPCs). RARβ activation stimulates Sonic hedgehog
signalling (Shh), and induces the proliferation of the NPCs. They can be induced to become Doublecortin
(DCX) expressing migrating neuroblasts by RARα signalling, some of which differentiate into cholinergic
neurons. The same signalling pathways cause the proliferation of embryonic forebrain NPCs. These cells
express glial fibrillary acidic protein (GFAP) and are predominantly uni/bipolar, two characteristics of
neuronal progenitor cells. We further show that fibroblast growth factor (FGF) signalling, induces the
expression of the retinoic acid degrading enzyme cytochrome P450 (cyp) 26a1, and that one of its
products, 4-oxo-RA, mimics the action of the RARα agonist in the differentiation of the NPCs into
cholinergic neurons.

© 2008 Elsevier Inc. All rights reserved.
Introduction

In mammals, active neurogenesis occurs throughout life in the
subventricular zone (SVZ) of the lateral ventricle and in the
subgranular zone of the dentate gyrus in the hippocampus (Ming
and Song, 2005). In the SVZ, glial fibrillary acidic protein (GFAP)-
expressing cells include a neurogenic cell population (Doetsch et al.,
1999; Garcia et al., 2004) that gives rise to migrating neuroblasts
which express a transient microfilament, doublecortin (DCX) before
the neurons mature (Englund et al., 2002; Gleeson et al., 1999).

Retinoids represent a family of compounds derived fromvitamin A,
which have been shown to play a role in both proliferation and
differentiation in adult neurogenesis (Haskell and LaMantia, 2005;
Wang et al., 2005). Cellular effects of retinoids are mediated by the
binding to specific nuclear receptors, retinoic acid receptors (RARs),
and retinoid X receptors (RXRs), (Mangelsdorf and Evans, 1995). There
are three subtypes of each receptor: α, β and γ and multiple isoforms
of each subtype due to alternative splicing and differential promoter
usage (Leid et al., 1992). RARs heterodimerize with RXRs by binding to
retinoic acid response elements (RAREs) in the upstream regions of
target genes (Bastien and Rochette-Egly, 2004) and thus mediate gene
expression. The biosynthesis and degradation of retinoids involve
orcoran).
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retinal dehydrogenases (Raldh), 1–3 which synthesise all trans
retinoic acid (atRA) (Duester et al., 2003) and cytochrome P450
(cyp) enzymes a1, b1 c1 and d1, which hydrolyses atRA to the polar
metabolites 4-hydroxyl RA and 4-oxo-RA (Gu et al., 2006; Ray et al.,
1997; White et al., 1996).

In vitro, the sequential activation of RARβ and α, induces neuronal
differentiation of cultured spinal cord progenitor cells (Goncalves et
al., 2005) and although both receptors have been shown to be
expressed in the adult SVZ (Haskell and LaMantia, 2005) their role in
neurogenesis in vivo is unknown. The RA signalling pathway interacts
with other pathways in neurogenesis, in Raldh-2 null mice prolifera-
tion and differentiation of forebrain NPCs is impaired, which
correlates with defects in fibroblast growth factor (FGF) and Sonic
hedgehog (Shh) signalling (Ribes et al., 2006). The FGF signalling
pathway promotes neurogenesis in the SVZ (Jin et al., 2005, 2003;
Kosaka et al., 2006) and drives neuronal differentiation along
particular lineages (Kosaka et al., 2006). Shh signalling has also been
linked to neurogenesis in the adult brain (Ahn and Joyner, 2005;
Machold et al., 2003; Palma et al., 2005), in Shh null mice dorsoventral
patterning, the specification of ventral cell populations, and general
brain proliferation are all affected (Chiang et al., 1996; Rallu et al.,
2002).

Using RAR specific agonists in vivo, we have defined, the roles of
RARβ and α signalling in adult neurogenesis and their interaction
with the FGF and Shh signalling pathways. We show that RARβ
agonists cause an increase in proliferation of the NPCs via stimulation
of the Shh signalling and RARα signalling induces the differentiation
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of NPCs into migrating neuroblasts followed by maturation into
neurons via FGF signalling.

Results

At the time of embryonic neurogenesis retinoids including atRA
can be detected in all regions of the brain (Horton and Maden, 1995).
Therefore, we asked if the limited neurogenesis in the adult
subventricular zone (SVZ) correlates with a lack of retinoids. These
were measured by HPLC in adult mouse brain (3 month old). In the
cerebrum (Fig. 1A) polar retinoids were detected eluting at 8 min (Fig.
1A, peak 1); a very high level of a retinoid eluting at 16 minwith a two
peak absorption spectrum, maxima at 309 nm and 323 nm,(Fig. 1A,
peak 2 and inset). There was little or no atRA (Fig. 1A, peak 3), a
retinoid with maxima of 322 nm which is probably 4-OH retinol (Fig.
1A, peak 4 and Fig. 1B, inset) and very low levels of at-Retinol (Fig. 1A,
peak 5). The brain stem had a similar retinoid profile except for the
absence of polar retinoids (Fig. 1B). In contrast in the cerebellum there
were high levels of atRA (Fig. 1C, peak 3 and inset) a lack of polar
retinoids and 4-OH retinol. This data suggests that the lack of atRA
may in part be responsible for low levels of adult neurogenesis in the
SVZ.

We next assessed the role of atRA in neurogenesis and its
interaction with other signalling pathways. Previous work has
shown the importance of atRA and Shh signalling pathways
individually in the proliferation of NPCs in vivo (Haskell and LaMantia,
2005; Lai et al., 2003; Palma et al., 2005; Wang et al., 2005) and the
Shh promoter contains RARE (Chang et al., 1997), this suggests that the
Shh and RA signalling pathways might be linked in neurogenesis. In
order to define this interaction further, embryonic forebrain NPCs
were cultured in the presence of 100 ng/ml Shh and or 0.1 μM atRA for
2 days and positive cells for the proliferation marker Ki67, and GFAP to
assess neural lineage (Doetsch et al., 1999; Garcia et al., 2004) were
counted. In the presence of Shh alone, proliferating cells could be
detected with the proliferation marker Ki67 but not GFAP (Figs. 2A–C
& P). AtRA had the opposite effect, very few NPCs proliferated, and
some multipolar GFAP positive cells could be identified (Figs. 2D–F &
P) a characteristic of a more committed glial lineage (Garcia et al.,
2004). In the presence of both atRA and Shh, there was a significant
increase in proliferating cells compared to atRA alone and themajority
Fig. 1. HPLC chromatograms of retinoids in the adult brain. (A) cerebrum, (B) brain stem, (C)
maxima at 319 nm, 333 nm and 349 nm. Peak 2 is an unknown retinoid with 2 UV maxima a
spectrum is shown in the inset in panel C. Peak 4 is possibly 4-OH retinol with a UV maxim
of these were GFAP positive with a bi/unipolar morphology (Figs. 2G–I
& P) a profile consistent with a neuronal progenitor phenotype (Garcia
et al., 2004). In order to identify the specific RAR involved in this
process we repeated the Shh supplemented cultures in the presence of
the retinoid agonists. In RARα agonist and Shh treated cultures there
was a significant decrease in Ki67 expressing cells compared to atRA
plus Shh treated cultures and the GFAP positive cells were mainly
multipolar (Figs. 2J–L & P). In contrast, there was a significant increase
in proliferation in the RARβ agonist and Shh treated cultures
compared to atRA treated cultures and the majority of these cells
were GFAP positive bi/unipolar (Figs. 2M–O, & P). Therefore, it is RARβ
signalling in combination with Shh signalling which is involved in
proliferation of the NPCs and atRA predominantly activates RARβ in
our culture conditions.

In order to ask if RARβ signalling is also responsible for NPC
proliferation in vivo we treated adult rats (3 months old) with RAR
specific agonists (5 μl of 1 μM) by daily intraventricular infusion and
were concurrently injected i.p. with BrdU (50 mg/kg weight) for
7 days. The number of BrdU labelled cells in the lateral wall of the
lateral ventricle of the SVZ did not significantly increase in RARα
agonist treated brains compared to vehicle treated ones (Fig. 3A). In
contrast, in the RARβ agonist treated brains there was a 3 fold increase
in the number of BrdU labelled cells compared to controls (Fig. 3A).
This increase in proliferation correlated with an increase in Shh
expression as shown by in situ hybridisation (Figs. 3B, C).

We have previously shown that sequential activation of RARβ and
α by receptor specific agonists leads to differentiation of NPCs into
cholinergic neurons in vitro (Goncalves et al., 2005), we next asked if
the same order of activation could cause endogenous adult NPCs to
differentiate in the SVZ.We assessed formigrating neuroblasts by DCX
labelling and cholinergic neurons by choline acetyltransferase (ChAT)
labelling. In RARβ agonist treated animals there was no increase in
double labelled BrdU/DCX positive cells (Fig. 4). However, when the
RARα agonist was administered for 4 days subsequent to 3 days of
RARβ agonist treatment, proliferating progenitor cells were induced
to a neuronal fate as shown by the significant increase in the number
of double labelled BrdU/DCX positive cells compared to vehicle
treated. Of these BrdU positive cells, 9% differentiated into cholinergic
neurons as shown by the colocalisation of ChAT expression (Fig. 4).
Therefore, the same order of activation of the RARs in vivo that we
cerebellum. Chromatograms are recorded at 320 nm. Peak 1 is polar retinoids with 3 UV
t 309 nm and 323 nm, full spectrum is shown in the inset in panel A. Peak 3 is atRA, full
a at 322 nm, full spectrum is shown in the inset in panel B. Peak 5 is at-Retinol.



Fig. 2. The RA and Shh signalling pathways cooperate to maintain forebrain NPCs in a proliferative GFAP positive uni/bipolar state. (A–C) Shh signalling induces GFAP negative, Ki67
positive forebrain NPCs. (D–F) RA signalling induces GFAP positive, Ki67 negative forebrain NPCs. (G–I), RA and Shh signalling pathways together induce GFAP, Ki67 positive cells the
majority of which are bi/unipolar. (J–L) RARα and Shh signalling induces multipolar GFAP, Ki67 negative cells. (M–O) RARβ and Shh signalling induces GFAP, Ki67 positive cells the
majority of which are bi/unipolar. (P) Quantification of the cultures shown in c–q. n=3 cultures per treatment repeated 3 times and 3 fields per coverslip. ⁎Pb0.05 for Ki67 cells
compared to atRA treated cultures.
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Fig. 3. RARβ signalling induces proliferation of endogenous rat forebrain NPCs. and expression of Shh in the SVZ. RAR specific agonists (5 μl of 1 μM)were injected via a canula into the
lateral ventrical of adult rats and they were injected i.p. with BrdU (50 mg/kg weight) once a day for 7 days. (A) Quantification of number of BrdU positive cells in the SVZ (B, C) Shh
expression in the adult SVZ. In the presence of the RARβ agonist there is a significant increase in the number of proliferating NPCs compared to vehicle and RARα treated. In vehicle
treated brains few if any Shh cells can be detected in the SVZ (B), in contrast the RARβ agonist induces numerous Shh expressing cells (C). n=6 animals and 5 sections per animal.
⁎Pb0.05 for BrdU compared to vehicle treated brains.

Fig. 4. Effect of retinoid signalling on differentiation of endogenous NPCs. RAR specific agonists (5 μl of 1 μM)were injected via a canula into the lateral ventrical of adult rats and they
were injected i.p. with BrdU (50 mg/kg weight) once a day for 7 days. (A, B) vehicle, (C, D) RARβ agonist, (E, F) RARβ for 3 days then RARα agonist for 4 days (G, H) BrdU and ChAT
expression in SVZ of rats treatedwith RARβ then RARα agonist. (I) Quantification of number of double labelled BrdU/DCX positive cells and BrdU/ChAT neurons. RARβ signalling does
not increase the number of DCX/BrdU double labelled cells compared to vehicle. In RARβ then RARα treated animals there is a significant increase in the number of double labelled
DCX/BrdU cells compared to vehicle treated brains, 9% of which differentiate into cholinergic 6 neurons. n=6 animals and 5 sections per animal. ⁎Pb0.05 for BrdU and BrdU/DCX
compared to vehicle treated brains.
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Fig. 5. Effect of atRA and FGFs on cyp26a expression in forebrain NPCs and their differentiation into cholinergic neurons after 4 days. (A) cyp26a expression is induced 1.8 fold by atRA
signalling, 4 fold by FGF-9 signalling whereas FGF-2 signalling has no effect on its expression. (B–D) atRA induces some cholinergic differentiation whereas neither FGF-2 nor FGF-9
has any effect. n=3 cultures. ⁎Pb0.05 and ⁎⁎Pb0.005 compared to vehicle treated brains.
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have shown in vitro, is required for differentiation of the NPCs
(Goncalves et al., 2005).

We next addressed the endogenous source of RARα agonists for
neuronal differentiation. Overexpression of cyp26a in P19 embryonic
carcinoma (EC) cells causes them to differentiate into neurons
(Sonneveld et al., 1999). Furthermore, when leukaemia inhibitor
factor (LIF), which maintains embryonic stem (ES) cells in a
proliferative state, is withdrawn from such cultures, cyp26a is induced
and the cells differentiate into neurons (Lane et al., 1999). This enzyme
generates polar retinoids (Ray et al., 1997;White et al., 1996) whichwe
have identified in the adult mouse brain (Fig. 1) and has been shown
be to regulated by FGF signalling (Moreno and Kintner, 2004;
Shiotsugu et al., 2004), in particular FGF-9 is involved in cholinergic
differentiation (Kanda et al., 2000). To ask if this regulation occurred in
forebrain NPCs, we cultured them in the presence of 0.1 μM atRA or
20 ng/ml of either FGF-9 or FGF-2, for 4 days, and assayed for cyp26a
expression by RT-PCR and cholinergic differentiation by immunohis-
tochemistry with vesicular acetylcholine transporter (VAChT). In the
presence of atRA there was a 1.8 fold induction of cyp26a compared to
control cultures (Fig. 5A) and some cholinergic neurons were present
(Fig. 5B) whilst FGF-2 had no effect on either cyp26a expression or
cholinergic differentiation (Figs. 5A, C). In contrast, in the presence of
FGF-9 there was a 4 fold induction of cyp26a expression compared to
control cultures (Fig. 5A) but no cholinergic neurons could be detected
(Fig. 5D). This suggests that both FGF and RA signalling are required for
neuronal differentiation.

Therefore, we next asked if sequential atRA and FGF signalling
could induce the forebrain NPCs to differentiate into cholinergic
neurons to a greater extent than atRA alone. NPCs were cultured in the
presence of 0.1 μM atRA for 5 days and 20 ng/ml FGF-9 on days 3–5.
Under these culture conditions there was a significant increase in the
number of cholinergic neurons compared to atRA alone (Figs. 6A, F). To
confirm that this was an FGF mediated response we repeated the
experiment using the specific FGF inhibitor SU5402 (Sun et al., 2000)
and to make sure that cyp26a was indeed important for neuronal
differentiationwe used: Liarozole which blocks its activity (Sonneveld
et al., 1999). In the presence of either of these inhibitors neuronal
cholinergic differentiation was impeded (Figs. 6B, C & F). The block in
FGF signalling could be overcome when the cultures were supple-
mented with either 0.1 μM RARα agonist (Figs. 5D, F) or 0.1 μM 4-oxo-
RA (Figs. 6E, F), suggesting that 4-ox-RA can activate RARα which
leads to cholinergic differentiation.

Discussion

Our data taken together suggests that a sequential activation of
RARβ thenα is required for the differentiation of adult forebrain NPCs
in vivo as shown for cultured embryonic NPCs. (Goncalves et al., 2005),
implying that similar mechanisms operate in adult and embryonic
neurogenesis (reviewed in Zhao et al., 2008). One reason for the
decreased neurogenesis in the adult SVZ compared to the embryo is
the lack of retinoids including atRA in the forebrain as neurogenesis
can be increased by agonists of RARβ and α, two receptors which are
known to be expressed in the adult SVZ (Haskell and LaMantia, 2005)
and which can be autoregulated by their own ligands (Leid et al.,
1992). The loss of retinoid signalling has also been shown with aging
in the adult brainwhich correlates with a decline in cognition that can
be reversed by atRA (Etchamendy et al., 2001; Mingaud et al., 2008).

Whilst atRA which can activate all the RARs, causes the prolifera-
tion and differentiation of adult NPCs in vivo or in slice cultures
(Haskell and LaMantia, 2005; Wang et al., 2005), we have identified
here the specific RARs involved in this process. There are at least two
retinoid signalling steps required for the generation of neurons from
endogenous NPCs. The first step, involves the activation of RARβ
which induces Shh expression (Fig. 7), a pathway known to be
important for in vivo neurogenesis (Ahn and Joyner, 2005; Lai et al.,
2003; Palma et al., 2005). The combination of RARβ and Shh signalling
in vitro causes the NPCs to express GFAP and proliferate with a
predominantly bi/unipolar morphology, which are characteristics of
neuronal progenitor cells (Garcia et al., 2004) (Fig. 7) whereas RA



Fig. 6. Effect of sequential atRA and FGF-9 signalling on forebrain NPC cholinergic differentiation. The forebrain NPCs were cultured for 2 days in atRA then 3 days in atRA plus FGF-9
supplemented with (A) vehicle, (B) SU5402, (C) Liarozole, (D) SU5402 plus RARα agonist, (E) SU5402 plus 4-oxo-RA, (F) quantification of cholinergic differentiation. When the NPCs
are cultured in RA for 2 days, then in FGF9 plus RA for 3 days, VAChT positive neurons are generated (A), this differentiation can be prevented by either blocking FGF signalling (B) or
inhibiting cyp26a function (C). The block in FGF signalling can be overcome by either an RARα agonist (D) or 4-oxo-RA (E). n=3 cultures per treatment repeated 3 times and 3 fields
per coverslip.⁎Pb0.05 compared to atRA treated cultures.
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signalling alone causes the NPCs to differentiate into astrocytes
through RARα signalling or neurons through RARβ and α signalling
(Goncalves et al., 2005). It is unlikely that the NPCs are producing the
Shh themselves as we see no increase in their proliferation in the
presence of the RARβ agonist alone in vitro and consistent with this
Shh has not been detected in NPCs in vivo (Palma et al., 2005). The
second retinoid signalling step requires the activation of RARα and
leads to the expression of DCX, a microtubule-associated protein that
is present in migrating neuronal precursors of the CNS (Aigner et al.,
2003; Des et al., 1998; Koizumi et al., 2006) some of which
differentiate into cholinergic neurons (Fig. 7). These are new neurons
as they are labelled with both BrdU and ChAT rather than existing
neurons expressing more ChAT due to the RARα signalling (Corcoran
et al., 2004).

Shh signalling in combinationwith atRA (a pan agonist) can induce
the uni/bipolar GFAP phenotype, this effect also occurs with the RARβ
agonist suggesting that atRA preferentially activates RARβ signalling
in our culture conditions (Fig. 7). The polar retinoid 4-oxo-RA can
activate RARα signalling as this agonist can mimic the effect of the
RARα agonist on neuronal differentiation (Fig. 7). Accordingly,
previous work has shown that RARα can be activated preferentially
by 4-oxo-RA rather than atRAwhereas there is no preference between
these agonists for RARβ activation (Idres et al., 2002). It is also
interesting to note that the RARα is highly expressed in the cortex
compared to the other RARs (Corcoran et al., 2004; Yamagata et al.,
1994; Zetterstrom et al.,1999) and themajority of retinoids found here
are of the polar type. Polar retinoids have been shown to be active
compounds in other physiological pathways. In Xenopus, very little
atRA can be detected, instead 4-oxoretinaldehyde which is converted
into 4-oxo-RA is the predominate retinoid (Blumberg et al., 1996) and
this is involved in positional specification during Xenopus develop-
ment (Pijnappel et al., 1993). In mammals 4-oxo-RA has been found to
be active in skin cells (Heise et al., 2006; Reynolds et al., 1993) and is
involved in alveolar regeneration (Maden, 2006).



Fig. 7. Model of retinoid signalling in forebrain NPC proliferation and differentiation. In
the presence of RARβ signalling, Shh is induced and these two pathways give rise to
GFAP positive uni/bipolar proliferating neuronal progenitors. FGF signalling induces the
expression of Cyp26a, which breakdowns atRA into more polar metabolites, including
4-oxo-RA, which can activate RARα signalling. This leads to the NPCs becoming DCX
positive neuroblasts some of which differentiate into cholinergic neurons.
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The sources of 4-oxo-RA for the embryonic NPCs are the cells
themselves as they express cyp26A1, this enzyme has also been shown
to be expressed in ES and EC cells (Lane et al., 1999; Langton and
Gudas, 2008; Ray et al., 1997; Sonneveld et al., 1999), and in the adult
brain cyp26A1 is expressed in the olfactory bulb and hippocampus
which are sites of neuronal differentiation (Ray et al., 1997). However,
it is unclear how important these polar retinoids are as manipulations
of the Cyp26 enzymes which synthesise them give contrasting results.
On one hand in both ES and EC cells the presence of cyp26a is essential
for differentiation (Lane et al., 1999; Langton and Gudas, 2008;
Sonneveld et al., 1999). On the other hand Cyp26a null mice which are
non viable and have multiple deficits characteristic of excess atRA
(bu-Abed et al., 2001) can be rescued when they are crossed with
heterozygous Raldh-2 mice (Niederreither et al., 2002). This depletes
their endogenous atRA levels thus removing its toxicity, suggesting
that 4-oxo-RA is not essential for normal development (Niederreither
et al., 2002). In agreement with this, atRA alone is sufficient for
neuronal differentiation as some cholinergic neurons can be obtained,
however when 4-oxo-RA signalling is used subsequent to atRA
signalling many more cholinergic neurons are formed (Fig. 6).

We have further shown here that FGF signalling acts downstream
of RARβ signalling (Fig. 7). FGF signalling regulates cyp26a expression,
(Fig. 7), this regulation also occurs in embryonic axis formation
(Shiotsugu et al., 2004) and segmental patterning during somitogen-
esis (Moreno and Kintner, 2004). Whilst atRA can induce cyp26a
expression, this is at a lower level than FGF-9 and as such, induces
cholinergic differentiation to a lower extent than sequential atRA and
FGF-9 signalling. Our data also suggest that FGF signalling acts
downstream of Shh signalling in the differentiation of forebrain NPCs.
During development of the anterior neural tube, from which the
forebrain is derived, the same order of activation occurs. Deletion of
the FGF receptors 1 and 3 results in loss of ventral precursor cells
whilst there is no effect on Shh expression (Gutin et al., 2006). It is
unclear which FGF is involved in the developing cholinergic neurons
since there are other FGF genes expressed in the developing
telencephelon (Crossley et al., 2001; Maruoka et al., 1998; McWhirter
et al., 1997; Xu et al., 2000). However, FGF-2 cannot regulate Cyp26a
expression or drive the differentiation of the NPCs whereas FGF-9 can
carry out these roles suggesting that there are different effects of FGFs
on the proliferation and differentiation of NPCs.

In summary, we have shown that sequential RARβ andα signalling
can lead to the proliferation and differentiation of forebrain NPCs
through interaction with Shh and FGF signalling pathways. Such
manipulation of the retinoid signalling pathway may lead to a
therapeutic opportunity for brain repair after stroke and injury and
a novel treatment for neurodegenerative diseases.

Materials and methods

In vivo procedures

Adult Wistar rats (Harlan, UK) were used for all studies. All
procedures were undertaken in accordance with the UK animal's
scientific procedure Act 1986. Animals undergoing surgery were
anaesthetised with an intraperitoneal (i.p.) injection of ketamine at
(65 mg/kg body weight)/metedomidine (0.25 mg/kg body weight)
mixture. Sterile precautions were maintained for all surgical
procedures.

A brain infusion catheter (Alzet) was inserted into the lateral
ventricle (Bregma coordinates: medio–lateral −2, 5, rostro–caudal −1,
5 and dorso–ventral 4 mm). Animals (n=6 per group) were injected
once a day for 7 days with either 5 μl of 1 μM of RARβ agonist (BMS
213309) or RARα agonist (BMS 194753). Another group was injected
for 3 dayswith 5 μl of 1 μMof RARβ agonist then 4 dayswith 5 μl of 1 μM
of RARα agonist (BMS). Another 6 animals were injected with vehicle
for 7 days. All injectionswere followed bya salineflush of 6 μl. To locate
proliferating cells, all animalswere i.p. injectedwith BrdU (50mg/kg of
body weight) every day during the course of the retinoid treatment.

Animals were deeply anaesthetised with pentobarbital and
perfused transcardially with 4% paraformaldehyde after saline rinse.
The tissue was then gelatine embedded (10% gelatine 300 bloom from
Sigma) in water fixed for 5 h with 4% PFA, this was then changed for
PBS-sodium azide (1%, Sigma) and tissue was stored at 4 °C until
further use. Fifty μm saggital sections were cut on a vibratone. For
quantification 5 sections of the same Bregma coordinates were used,
spaced 200 μm apart. Positive cells for various markers were counted
blindly in a 0.1 mm2 area of the lateral ventricle of the SVZ.

Cell culture

Forebrain NPCs were isolated from gestational day 14 (E14) Fischer
344 rat embryos (crown-rump length 9–11 mm) and cultured using
previously established procedures (Minger et al., 1996). The forebrain
ventricular areas were removed and collected in sterile Dulbecco's
phosphate buffered saline (PBS). Tissue was incubated in 0.1% trypsin/
PBS for 30 min at 37 °C, centrifuged at 1000×g and resuspended in
PBS-glucose three times, then dissociated to a single cell suspension
by repeated pipetting through narrowed Pasteur pipettes. Cell
viability and density were determined by trypan blue exclusion and
haemocytometric counting. Cells were plated at a density of 30,000
cells per well on 13 mm2 glass coverslips precoated with 10 μg/ml
polyornithine and 10 μg/ml laminin (Gibco) in 24-well plates (Nunc).
The cells were grown in DMEM/F12 high glucose media with N2
supplement (Gibco) in 95% air/5% CO2 humidified atmosphere in the
presence of 20 ng/ml FGF-2 (PetroTech) for 72 h. The media was then
changed and supplemented with 0.1 μM of the appropriate retinoid
agonist instead of FGF-2. The agonists used were all tRA (Sigma), 4-
oxo-RA (Hoffman La Roche) and retinoid-specific agonists as
described above. In addition the following compounds were used,
Liarozole (10 μM) a inhibitor of cyp26a (Sonneveld et al., 1999),
SU5402 (5 μM, Calbiochem) a inhibitor of FGF signalling (Sun et al.,
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2000), Shh (2 μg/ml, Neuromics) and FGF-9 (20 ng/ml, PetroTech).
Culture conditions were carried out three times, using three coverslips
per treatment. Cells were counted in three random fields (1 mm2) per
coverslip.

In situ hybridisation and immunohistochemistry

In situ hybridisation and immunohistochemistrywere carried out as
previously described (Goncalves et al., 2005). For in situ hybridisation of
the SVZ, fresh frozen tissuewas used. Twelve μmsectionswere cut on a
cryostat and equivalent sections between different animals were
assayed using a rat specific Shh probe. For immunohistochemistry the
following antibodieswere used goatα-DCX (1:100, Santa Cruz), mouse
α-GFAP (1:200, sigma), goatα-ChAT (1:200, chemicon), goatα-VAChT
(1:200, chemicon), α-Ki67 (1:100, Abcam) α-BRDU (1:100, Becton
Dickinson) Secondary antibodies were AlexaFluor™ 488 (1:1000,
Molecular probes), AlexaFluor™ 594 (1:1000, Molecular probes).

RT-PCR

RNA was extracted (Trizol, Invitrogen) from cultured NPCs and
cDNA synthesised using an Amhersham kit according to manufac-
turer's instructions. The following primers were used rat gapdh,
forward primer actctacccacggcaagttc reverse primer atactcagcaccag-
catcac product length 134, rat cyp26a forward primer gaggaga-
gaggctggatatg reverse primer aacttgtcctcgtgatggc product length 193.
Real-time RT-PCR was performed using SYBRGreen Kit (Roche), and a
Roche light cycler, 250 ng RNA and the specific primer pairs (0.5 μm of
each primer). The quantitative PCR was induced by heating to 95 °C,
followed by 45 PCR cycles (one cycle contained the following steps:
15 s at 95 °C; 15 s at 55 °C; 15 s at 72 °C). The specificity of each primer
pair was confirmed by melting curve analysis and agarose gel
electrophoresis. The quantity of mRNA was calculated from a GAPDH
standard curve.

HPLC analysis of retinoids from adult brain

Retinoids were extracted form brain tissue as previously described
(Thaller and Eichele, 1987). Two-five hundred mg of tissue was
homogenised in 1ml of stabilising solution (5mg/ml ascorbic acid and
5 mM EDTA in PBS). The homogenate was extracted twice with 2
volumes of 1:8 methyl acetate/ethyl acetate, with butylated hydro-
xytoluene as an anti-oxidant, and then dried down over nitrogen. The
extract was resuspended in 100 μl methanol, centrifuged at
13,000 rpm to remove particulate matter and placed into an
autosampler vial for analysis.

Reverse phase HPLC was performed using a Beckman system Gold
Hardware with a photodiode array detector and a 5 μC18 LiChrocart
column (Merck) with an equivalent precolumn. The mobile phases
used were as previously described (Achkar et al., 1996), which allow a
good separation of the retinoic acids and retinols. The flow rate was
1.5 ml/min using a gradient of acetonitrile/ammonium acetate
(15 mM, pH 6.5) from 40–67% acetonitrile for 35 min followed by
100% acetonitrile for a further 25 min. Individual retinoids were
identified according to their UV absorption spectra. Each experiment
was repeated 6–10 times.

Graphs and statistics

Graphs were plotted using Sigma plot. Data is expressed as mean±
S.E.M and statistical analysis carried out using Student's t test.
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