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AbSttYlCt 

We study the gmphs D&q) of [4] with particular emphasis on their connected components 
when q is odd. In [6] the authors proved that these components (most often) provide the best- 
known asymptotic lower bound for the greatest number of edges in grapbs of their order and girth. 
It was further shown in [6] that D(k, q) has at least 41-l components, where t = L(R i- 2)/4]. 
In this paper we prove that the value q+” is precise and that the numerical invariant introduced 
in [6] completely characterizes the components of D(k,q). Some general results regarding the 
relationship between D( 1, q) and o(k, q) (I < k) are also obtained. 

On etudie les gmphes D(k,q) de [4], en p&ant une attention partcih&re & leurs composantes 
comexes dans le cas oti q est impair. Dans l’article [6], les auteurs ont prouve que ces com- 
posantes produisent (dam la plupart des cas) la meilleure borne inftieure asymptotique que l’on 
corm&se pour le nombre maximum d’ar&es dans un graphe dont le nombre de sommets et la 
longueur du cycle le plus court sont specifies. Toujours dans [6] il est d&nontre que D(k,q) 
a au moms q'- ’ composantes, ou t = [(k + 2)/4]. Dans l’article present nous montrons que 
la valeur b-’ est atteinte et qu’tm certain pammetre introduit dans [6] pemet de cam&riser 
completement les composantes de LI(k,q). On obtient aussi des msultats g&raux portant sur la 
relation entre D(l,q) et LJ(k, q) pour 1 < k. 

1. Introduction 

In this paper we investigate the graphs D&q) introduced in [4], with particular 
emphasis on the connected cm~nents of such graphs when q is odd. These graphs 
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first arose in the context of extremal graph theory because of their large girth (i.e., 
length of a shortest cycle) for graphs of their order (number of vertices) and size 
(number of edges). Their definition appears in Section 2. Recently, it was discovered 
that these graphs possess many interesting properties both related and unrelated to 
extremal graph theory, see [4,3]. Each graph D(k,q) is q-regular, bipartite, of order 
2qk, girth at least k + 5 (for k odd), and its automorphism group is transitive on each 
of its bipartition sets, as well as on its set of edges. Recently, the authors showed in [6] 
that D(k,q) is disconnected for k 26, and the number Nk, of its connected components 
is at least qL(k+2)‘4J-1. This find’ mg was especially important from the extremal graph 
theoretic points of view, the sense in which we shall briefly describe below. A more 
thorough discussion can be found in [6]. 

Since all connected components are isomorphic (by edge transitivity), we denote by 
CD(k, q) my component of D(k,q). For odd k 3 1, graphs CD(k,q) provide the best- 
known asymptotic lower bound for the greatest number of edges in graphs of order v 
and girth g25, g # 11,12, namely D(u’+(~-L(~+~)/~J+‘)-‘). For ga24, this represents 
a slight improvement to the bounds independently established by Ma&is [9] and 
Lubotzky et al. [8]; for 5 <g <23, g # l&12, it improves or ties existing bounds. 

Graphs CD(k,q) also form a family of graphs of large girth in the sense of Biggs 
[l]: Let {Gf}i>r be a family of graphs such that each G; is an r-regular graph of girth 
gi and increasing order vi. We say that {Gi) is a family of graphs with large girth if 

for some positive constant y. It is well known (e.g., see [2]) that y<2, but no family 
has been found for which y = 2. The results from the previous paragraph imply that 
for the graphs C&k, q), we have y > $ log&q - 1). Currently, the largest known value 
of y is $, see [8,9]. 

The goal of this paper is to better understand the structure of D&g) and that 
of its components CDfk,q), thereby strengthening the results of 161. In Section 2 we 
deline the family of graphs D(k,q) and discuss the component vector introduced in [6]. 
In Section 3 we discuss the notion of projecting larger graphs from the family onto 
smaller ones, as well as the inverse operation of lifting graphs. In Section 4 certain 
automorphisms of D(k,q) are investigated. These automorphisms will turn out to be 
critical in proving that the component vector mentioned above completely characterizes 
the components of the graph. This and related results are proved in Section 5. 

2. The family L)(k, q) 

In this section we give the definition of the graphs D&q). (For additional informa- 
tion, see [4]. For motivation behind their construction, see [S].) 

Let q be a prime power, and let P and L be two copies of the countably infinite- 
dimensional vector space V over GF(q). Elements of P will be called points and those 
of L lines. In order to distinguish points from lines we introduce the use of parentheses 
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and brackets: If u E Y, then (a) E P and [a] E L. It will also be advantageous to adopt 
the notation for coordinates of points and lines introduced in [4]: 

(p) = (pi, pi 1, P12, p21, p22r Pi29 p23> p32 
t 

,...,Pii,Pii,Pi,i+l,Pi+l,i,... 1, 

[CI = IIll, lll,l12,121,122,1529 123,132, * * *, lib $, li,i+l, li+I,i,* . -1. 

We now define an incidence structure (P,L,Z) as follows. We say point (p) is 
incident to line [Z], and we write (p)Z[Z], if the following relations on their coordinates 
hold: 

111 - PI1 = hpr, 

112 - PI2 = ~IlPlt 

121 - P21 = ltP11, 

iii - Pii = lIPi-l,i, 

I& - p& = Ifi-_IPl, 

li,i+l - pi,i+l = liiPl9 

I i+l,i - pi+l,i = jlP:i. 

(The last four relations are defined for ia2.) These incidence relations for (P,L,I) 
become adjacency relations for a related bipartite graph, namely the incidence graph 
of (P, LJ), which has vertex set P U L and edge set consisting of all pairs ((p), [I]) 
for which (p)Z[l]. 

For each integer k 22 we obtain an incidence structure (Pk,L&) as follows. First, 
Pk and & are obtained from P and L, respectively, by projecting each vector onto its 
k initial coordinates. Incidence Ik is then defined by imposing the first k- 1 incidence 
relations and ignoring all others. For fixed q, the incidence graph corresponding to the 
structure (Pk,L&,&) is denoted by D(k,q). Obviously, D(k, q) is bipartite of order 2qk, 
and one easily shows it is q-regular. III [4] it was established that girth of D(k,q) is 
at least k -t 5 (k odd), and that its automorphism group is transitive on each of its 
bipartition sets and on its set of edges. 

Let k>6, t = [(k+2)/4J, and u = (UI,UII ,..., uh ,...I be a vertex of D(k,q) (it 
does not matter whether u is a point or line). For every r, 2 <r G t, let 

a, = a&) = ~ftlii&-i,r-j - u&i+l%-&r-i-l), 

i=O 

and a = a(u) = (az,aj,... ,at). (Here we define po,_~ = lo,-! = pi0 = 101 = 0, 
PO0 = ho = -1, Ph = id, = 1, PO1 = pi, IlO = It, 1’1, = III, p;f = PII*) 

In [7] the following result is proved, see also 163. 

Propos&ion 2.1. Let u and v be vertices from the same cornportent of D(k,q). Then 
a(u) = u(v), Moreover, for any t-l field elements Xi E GF(q), 2 <i C t = [(k + 2)/4], 
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there exists a uertex v of D(k,q) for which 

a(v) = @2,x3, -1. ,&>. 

Our goal is to establish the converse of Proposition 2.1, which we are able to do 
for q odd. This proves that the vector (I of Proposition 2.1 serves to characterize the 
components of D(k,q), q odd (see Section 5). The case when q is even requires further 
investigation and is not presented here. 

3. Projections and lifts 

Denote the vertex set and edge set of graph D(k,q) by V(k,q) and E(k,q), respec- 
tively. In what follows we shall use the “non-brace” notation for edges, i.e., utl in place 
of {l&u}. 

For k > I, define the canonical projection 

6: V(k,q) + V(&q) 

as the map which sends each vertex D E V(k, q) to the vertex o’ E Y( E, q) of the same 
type (point or line) whose coordinates coincide with the initial 1 coordinates of Y. In 
this case, we also refer to v as a &it of v’ from D(1, q) to D(k,q). For simple graphs 
G and H, a graph homomorphism of G to H is a mapping I#X V(G) + V(H) such 
that adjacent vertices of G are mapped to adjacent vertices of H. Note that according 
to this definition, endpoints of an edge of G must have distinct images. 

proposition 3.1. r$ is a (#-‘)-to-l surjective graph homomorphism. 

Proof. Clearly, 6 is a ($i-‘)-to-l surjective map as the 18 of any vertex to D(k,q) 
is uniquely determined by its k - I fmal coordinates. To show it is a graph homomor- 
phism we must prove that $ preserves adjacency, i.e., that r#o)r$u) E E(Z,q) when- 
ever vu E E&q). But this follows from the fact that any point-line pair of vertices 
which satisfies the first k - 1 incidence relations must a fort&i satisfy the first I- 1 
relations. !J 

In [4] it was observed that for any u E V(k,q) and x f GF(q), there exists a unique 
11 E V(k,q) having n as its first coordinate such that vtl E E&q). (This follows 
immediately from the system defining adjacency in D(k,q).) Using this it is trivial to 
prove 

Lemma 3.1. Let u E V(k,q), u’ E V(l,q) with n$(u)u’ E E(Z,q). Then there ex&ts 
unique u E V(k,q) with n!(u) = u’ and vu E E(k,q). 

Proof. Omitted. •I 
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As a consequence of Proposition 3.1, T$ induces a map on edges, 

defined by Zf: vu I+ $(v)$(u). 

Proposition 3.2. ?$ is a (#-l)-to-l surjective map. Moreover, the qk-’ edges of 
D(k, q) which are preimages of a fixed edge of D(1, q) are pairwise vertex-disjoint. 

Proof. Fix v’u’ E E(i,q), By Proposition 3.1 there are &’ lifts v of v’. By Lemma 
3.1 each lift v gives rise to a unique preimage uu of u’u in D(k, q), and all preimages 
arise in this manner. Now suppose there exist edges e,f E E&q), each a preimage of 
v’u’ f E(Z,q), which share a common vertex w E V(k,q). Without loss of generality, 
I$(w) = u’. By Lemma 3.1 there exists unique u E V&q) with 6(u) = u’ and wu E 
E(k,q). But then e = w11= f. Cl 

For a subgraph H of D(k, q), we define 7$(H) to be the subgraph of D(Z, q) with 
vertex set *(V(H)) and edge set $(E(H)). The following proposition allows us to 
extend the notion of lifts to trees. 

Proposition 3.3. Let T’ be a tree in D(l,q) and fix v’ E V(T’). Then for each lift 
v of v’ to D(k,q) there exists a unique tree T in D(k,q) with v E V(T) such that 
4(T) = T’. Moreover, the 8-l trees in D(k,q) which are preimages of T’ (and so 
contain a lift of v’) are pairwise vertex-disjoint. 

Proof. Induct on the number of edges of T’. Proposition 3.1 treats the case of no 
edges; Proposition 3.2 treats the case of a single edge. Cl 

Any tree T which projects onto T’ will be called a lift of T’. A moment’s refkction 
will reveal that the set of lifts of T’ does not depend on the vertex v E V(T’) chosen; 
thus Proposition 3.3 can be restated as ‘Each tree in D( I, q) lifts to $i-’ trees in D(k, q) 
which are pairwise vertex-disjoint.’ Note also that T !% T’ for each lift T of T’. 

Proposition 3.4. Let C be a component of D(k,q). Then 6(C) is a component of 
D(Lq). 

proof. By Proposition 3.1, rt: preserves adjacency, so also connectedness. Thus a:(C) 
is connected. Let C’ be the component of D(l,q) which contains 6(C). We want to 
show that C’ = 7$(C). Let u E V(C), u’ = $(u), and v’ be an arbitrary vertex of C’ 
distinct fkom u’. Let now P’ be a u’--0’ path in C’. By Proposition 3.3, P’ lifts to a 
a-w path in D(k,q), where w is a preimage of v’. As w is clearly a vertex in C, we 
have v’ = r$(w) E 7$(C), i.e., C’ C $(C). Thus, C’ = r&C) and the proposition is 
proved. El 
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For any A C F’(k,q), let $1~ denote the restriction of $ to A. 

Proposition 3.5. Let C be a jxed component of D(k,q). Then $1, in a t-to-l graph 
homomorphism for some t, 1~ t <@-I. 

Proof. That $1~ is a homomorphism follows fiom the fact that $ is. Let now u’ 
and u’ be two vertices of 4(C) and denote by tar and &,I, respectively, the number of 
lifts of v’ and u’ to C. We show tvt = t,i, whence $1~ is a t-to-l map for t = tvf. 

By Proposition 3.4, r$(C) is a component of graph D(1, q); fix a path P’ from v’ to 
u’. By Proposition 3.3, each lift v of v’ determines a unique path P in D(k,q) which 
contains v and is a lift of P’. Then there are precisely to, such paths P. But Proposition 
3.3 further asserts that the paths P are pairwise vertex-disjoint. Thus, the remaining 
endpoints of the paths P (i.e., those which are not lifts of v’) must be distinct lifts of 
u’, whence tup Z tvt. By symmetry, tvl 2 &I, so to/ = t,,, . The inequality 1 < 6 <&’ is 
obvious. 0 

We should mention at this point that the notion of lifts cannot be extended beyond 
forests; indeed, cycles do not generally lift to cycles. One simple argument for this 
follows from the inequality g(D(k,q)) >k + 5, k odd, where g(D(k,q)) denotes the 
girth of D(k,q) (see [4]). However, we prefer to illustrate precisely where any attempt 
to extend the notion of lifts to cycles breaks down, So suppose K’ is a cycle in D( I, q) 
and let VI, u’ E V(K’). We can consider K’ as the union of two paths, P’ and Q’, each 
between v’ and u’, which have distinct internal vertices. Any 1iR K of K’ coincides 
with the mutual lifting of P’ and Q’ to certain paths P and Q. Furthermore, if K is to 
be a cycle we must impose that P and Q are ‘doubly joined,’ i.e., that each of v’ and 
u’ has a common lift in both P and Q. While this can certainly be done for either v’ or 
u’, there is no general procedure which achieves this simultaneously for both vertices. 
Thus, K’ may well lift to a (non-closed) path. 

We have observed that g(D(k,q)) tends to infinity as k does. That this is 
also true of the diameter of any component of D&q) follows from the inequality 
diam(CD(k, q))>g(D(k - 1,q)). In actuality, both g(D(k,q)) and diam(CD(k,q)) are 
nondecreasing functions of k. This can be established using nothing stronger than 
the notions of projection and lifts. Proofs can be found in [lo]. 

4. Automorphisms 

hIany of the proofs we present in Section 5 depend heavily on the existence of 
certain automorphisms of the graph D&q). The purpose of this brief section is to 
provide the reader with a detailed description of these automorphisms. In Table 1 we 
reproduce a list that initially appeared in 141. An entry of the table illustrates the action 
of the map which heads its column on the coordinate of a line or a point which heads 
its row. If the action of a map on a specific coordinate is not listed, it means that the 
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coordinate is fixed by the map. For example, the map tz(x) changes every coordinate 

Ii, i+I 7 d> 1, of a line [t] according to the rule li,i+r -+ li,i+r + (.Zii + l&h + li,i-rx*, 
and leaves every coordinate pi+!, i, i 2 1, of a point (p) fixed, the map tt,r (x) changes 
every coordinate pii, i 2 1, of a point (p) according to the rule pii --) pii - pi_l,i_lx; 
the map &,6(X) does not change the coordinate of any line [I] and point (p) which 
precedes the coordinate 155 or p56, respectively. 

Table 1 is by no means intended to be complete; in fact, new ‘multiplicative’ auto- 
morphisms m(x, y) are defined below. We later prove that each m(x, y) stabilizes the 
component C(0) of D(k, (I) to which the point (0) := (0,. . . ,O) belongs. 

4.1. multiplicative a~tomorphisms 

Let point (p) and line [I] be given, respectively, by 

(P) = (Pl,Pll, PI29 P2l 
I 

9 * *. t Pii, Piit &ii-l, Pi+l,i5 * -- 19 

El3 = fll? 111,112, E21 9 * * * 3 m ,,9 r,i+t~ li+l,i, -. -1s 1.. I!. E. 

For x,y E GF(q), x # 0, y # 0, we define m(x, y): V(k,q) + V@,(I) as the map 
which sends (p) and [I], respectively, to 

fxpl,~YP*l,~YP12,X3P2* )...) x’y’pji,xiyip~~,x’tly’pj,~,xiy~‘pitl,i,*..), 

[Y~t,xYll,,x2Y~12,xY2121,-~. ~Xi~‘l~~~Xi~il~~~Xi+‘~il~,~+~~Xi~i+ll~+~,~, , . e]. 

proposition 4.1. r&x, y) is an a~tomorphism of D(k,q) for each choice of x,y E 

GW), x # 0, Y # 0. 



278 E Lazebnik et aL IDiscrete Mathematics I57 (19%) 271-283 

F’roof. From the incidence relations (see Section 2), it is immediate that each m(x, y) 
preserves adjacency. It is also easy to see that m( 1,l) is the identity automorphism 
and that m(.x, y)m(x-‘, y-‘) = m(1, 1). The result follows. Cl 

Remark. We refer to the autorno~~s~ m(x, y) as multiplicative since each m(x, y) 

is the unique automo~~sm of D&q) determined by multiplying the initial coordinate 
of every point by x and every line by y. 

Let C(u) denote the component of D&q) which contains the vertex o E Y&q). 

Proposition 4.2. Let z be an automorphism of D(k, q). Then z stabilizes C(v) if and 
onry if VT E C(0). 

Proof. First observe that u E C(u) if and only if U’ E C(vr). (Indeed, if P is a path 
from u to v then P’ is a path from or to or, and conversely.) But clearly, C(ui) = C(oy. 
Thus, r stabilizes C(v) if and only if C(u*) = C(u), i.e., if and only if vT E C(v). 13 

Corollary 4.1. m(x, y) stabilizes C(0). 

Proof. Immediate from Proposition 4.2 as (0)m(GJ’) = (0). Cl 

5. Main results 

In this section we consider only projections and lifts between D&q) and 
D(k - 1,q). We shall denote zf_, simply by 7c throughout. Also C (respectively, 
C’) shall denote the component of D(k,q) (respectively, D(R- 1,q)) which contains 
(0) E V(k,q) (respectively, (0) E V(k- l,q)), and rr1~ will be the restriction of R to 
C. Finally, let A$, r denote the number of distinct components of D&q). Note that 

2# = IVkq)l = %,qlCI since all components of D&q), being isomorphic, have the 
same cardinality. 

Proposition 5.1. Let k z 2 (mod 4), k>6. Then z/c is a bdjeetion, so an 
isomorphism. 

Proof. By Proposition 3.5, rrlc is t-to-l for some t, 16t <q. By Proposition 3.4, 
x(C) = C’. We claim that (0) E V(C) 5 Y(k- 1, q) has a unique lift to V(C), namely 
to (0) E V(C). Indeed, if (p) = (0,. . . , 0,x) E V(C) is a lift of (0) E V(C’), then 
by Proposition 2.1 a(p) = a(O) = 0, which forces x = 0. Thus t = 1, and rrfc is a 
bijection. q 

Prop&ion 5.2. Let R E 0,3 (mod 4), and suppose XIC is a t-to-l mapping for some 
t # 1. Then t = q. 
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Proof. As t # 1, (0) E V(C) has at least two distinct lifts to V(C). Clearly, 
(0) E V(C) is one such lift; let (p) = (0,. . . ,0,x) E V(C), x # 0, be another. 

Case 1: k ZE 0 (mod 4). For a E GF(q), a # 0, observe that the image of (p) 
under rn(x~-‘,x-~a) is (0, , . . , 0,~). It follows from Corollary 4.1 that (0,. . . ,O,a) E 
V(C) for all a E M(q). Thus, (0) E: V(C’) has q lifts to Y(C), whence t = q by 
Proposition 3.5. 

Case 2: k E 3 (mod 4). Replace n&z-’ ,.~-‘a) by ~PZ(M-~,Q-‘X), and proceed as 
incasel. 0 

Proposition 5.3. D(k, q) is connected for 2 G k < 5. 

Proof. For 2<k<4 it is not difficult to write down an explicit path from (0) to any 
point or line. For k = 5, imitate case 3 of the proof of Theorem 5.1 below. Cl 

Theorem 5.1. Let q be odd, k 36. If v E V(k,q) satisfies a(v) = 0, then u E V(C), 

Proof. The proof proceeds by induction on k. First, let tr E V(6, q) satisfy a(v) = 0, and 
set v’ = Z(U)E V(5,q). As D(5,q) is connected (Proposition 5.3) it is clear that II’ lies 
in C’ = D(5,q). By stnjectivity of K/C, there exists WE V(C) with rc(w) = v’ = z(v). 
But this implies w = v since the sixth coordinate of any vertex u is uniquely determined 
by its initial five coordinates and the value a(u). Thus, t, E Y(C) as claimed. 

The inductive step is treated in four separate cases, depending on the congruence 
class of k modulo 4. In each case we assume that u E V(k,q) with a(v) = 0 and we 
set V’ = x(v). 

Casel:k=3(mod4),k>7.Writek= 4j- 1, j22. The form of points in D(k,q) 
now becomes 

(P) = ~pl~pIl~P12~P21~~~*~Pj,j--l~pjjrP~j~Pj,j+i~~ 

Let (p’) be the point of D(k - 1,q) with pjj = p:j = x and zeros elsewhere, i.e., 

(p’) = (0 ,.*., O&X). 

As a(~‘) = 0, we have (p’) E V(C’) by induction. By surjectivity of nlc there exists 

(p) E V(C) with HP) = P’, MY 

(PI = (O,...,O,W,Y). 

By Corollary 4.1, we also have 

(0,. 1‘ f 0,x,x,-y) = (py(+*) E V(C). 

Thus if y # 0, then (p) and (p)‘“(-‘*-*) are two distinct lifts of (p’) to C (note that 
y # -y as q is odd), whence n;[c is a q-to-l map by Proposition 5.2. But this implies 
all lifts of v’ to D(k, q) lie in C, i.e., u E V(C) as desired. So assume y = 0, whence 

(PI = a..., kv,O) E UC) 
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for all x E GF(q). As (0) is mapped to (p) under the composite automorphism 
tj,i(x)tj,j(x), we conclude from Proposition 4.2 that ti,j(x)tj,j(x) is an element of the 
stabilizer Stab(C) of C, for all x E GF(q). Also tz(x) E Stab(C) for all x E GF(q) as 
$2(x) fixes the zero line [0], which is obviously in V(C). Let now 

(rn)=(l,O,.**,O)E V(k,q). 

From the incidence relations one immediately sees that (m) is adjacent to [0], whence 
(m) E Y(C). AS tj,j(l)tj,j(l)h(-1) E Stab(C) we have (0 ,..., O,l, l,-2) E Y(C), as 
it is the image of (m) under ti,j( l)$j( I )tz(- 1). We have now produced two distinct 
lifts of (O,..., O,l, 1) to C, namely (0 ,..., O,l,l,O) and (0 ,..., O,l,l,-2), whence n]c 
is q-to-l by Proposition 5.2. As above, this implies v E V(C) as desired. 

Case 2: k f 0 (mod 4), k Z 8. Write k = 4j, j32. Here the form of points is 

(P) = (PI, PiIt P12, P2l ,...,Pjj,P(ji)Pj,j+l,Pj+l,j). 

Let (p’) be the point of D(k - 1,q) which has pj,j-r = x and zeros elsewhere, i.e., 

(p’)=(O ,‘.., 0,x,0,0,0). 

As a(~‘) = 0, we have (p’) E V(C’) by induction. Let 

(PI = to,...,o,~,o,o,o,Y) 

be a lift of (p’) to C. One easily checks that 

(py+lJf = (0,. . . , 0,x, 0, 0, 0, - y) for j odd, 

(py(‘*-*) = (0 ,..., ) , , , , 0 x 0 0 0 -y) for j even. 

In either case, Corollary 4.1 asserts that 

(O,..., 0,x,0,0,0,-y) E V(C). 

As in case 1 we are done unless y = 0, so assume 

(p) = (O,..., 0,x, 0, 0, 40) E V(C). 

This implies that tj,j-l (x) E Stab(C) as tj,,-i(x) maps (0) to (p). 
The above argument applies equally well when (p’) is replaced by (m’) = (0,. . . ,0,x) 

E V(C’). The conclusion here is that tj,j+i(x) E Stab(C) for all x E GF(q). 
Finally, let (r’) be the point in D(k - 1,q) which has ~11 = x, pI = xi for 2 <iij, 

and zeros elsewhere, i.e., 

(r’) = (0,x,0,0,0,x2,0,0,0,x3,0,0 0 , **-‘I 0 0 0 x’,O). , 3 , 

The reader should verify that a(#) = 0, which is the condition that inductively gives 
(r’) E Y(C’). Letting (r) be an arbitrary lift of (Y’) to C, and then applying to (r) the 
automorphism m( - 1, - 1 ), one concludes that 

(r) = (0,x,0,0,0,x2,0,0,0,x3,0,0,0 ,..., 0,0,0,xi,0,0). 
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It is now straightforward to verify that (O)r@) = (r), where 

r(x) = r*,* (&,*(x2 )&4(x4) * * * r;#Y, 

r= J, 
{’ 

j even, 
j-l, jodd. 

We conclude that r(x) E Stab(C). 
At this point we have shown that each of tj,j-t(X), fi,j+t (XX>, and r(x) stabilizes C. 

Thus, the composite autorno~~~ 

stabilizes C. As (v) = (0,. . . , O,l,O,O,O,O) is in V(C) (indeed, set n = 1 in (p) to 
obtain (v)), we have also that 

(a)” =(O,l 0 0 0 10 0 0 10 0,o )..., 0,0,0,1,0,2) ,,,,T? 3,)) 

is in V(C). But 

(14) = (0, l,o 0 0 1 0 0 0 1 0 0 0 , , , , , , , , , , ,.“, 4 07% 1,0,0) 

is in V(C) as well (indeed, (u) is obtained by setting x = 1 in (r)), Thus, (v)@ and 
(u) are distinct lifts of 

(O,l,O 0 0 1 0 0 0 1 0 0 0 , , , , I,, , f > ,-**, 0 0 0 1 0) E Y(C’), , f , f 

whence 711~ is a q-to-l map by Proposition 5.2. As in case 1, the result follows. 
Case 3: k E 1 (mod 4), k > 9. Write k = 4j - 3, j & 2. The form of points in D(k, q) 

is then given by 

(P) ~~Pl~PlltPl2rP21~~~~~P~-_l,j-_l~Pj-l,j~ Pj,j-19PjjJ 

Let (p’) be the point of Dfk - 1, q) with pj-t,j = x and zeros elsewhere, i.e., 

(p’) = (0 )...) 0,x,0). 

As a(~‘) = 0, (p’) E V(C) by induction. Let (p) be a lift of (p’) to C, i.e., 

(P) = (O,...,%GO,Y~ 

for some y E GF(q). As the reader can easily verify, (p) is fixed by the composite 
automorphism tt( l)tj,j(-x). Thus, by Proposition 4.2, tt( l)tj,j(-X) E Stab(C). But 
t](l) f Stab(C) as well, since tt (1) fixes the ZHO point (0). Thus, tj,j(-X) E Stab(C) 
for all x E GF(q), whence, by Proposition 4.2, (0)fhj(-x) E V(C) for all x E GF(q). 
As 

(0)“J(-Xf = (0, * * . ,o, -X), 

we see that the zero point of D(k - 1,q) has q distinct lifts to C. Thus, z/c is a q-to-l 
map and we are done as in the two previous cases. 
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Case 4: k E 2 (mod 4), k> 10. Clearly a(d) = 0, whence 1)’ E V(C) by induction. 
Let w be a fifi of v’ to C. As a(w) = 0 = a(v) and 71-(w) = v’ = n(v), we have w = v 
as in the base case k = 6. Thus, v E V(C) and the theorem is proved. Cl 

coronary 5.1. 

qlc’l, k $2 (mod 4), 
“I={ IC’I, k=2(mod4), 

&Q = 
%-I,~, k f 2 (mod 4), 
qh$-t,r, k z 2 (mod 4). 

Proof. Both results follow at once from the observation that xlc is q-to-l for 
k f 2 (mod 4), and an isomorphism for k 3 2 (mod 4) (see the proof of 
Theorem 5.1). Cl 

We are now ready to prove the main result of the paper, namely that the converse 
of Proposition 2.1 holds in the case q odd. As previously discussed, this implies that 
the vector cz completely characterizes the components of D&q), q odd. 

Corollary 5.2. FOP x E V(k, q), k 36 and q odd, let C(x) denote the component of 
D(k, q) which contains x. Then, fur all u, v E V(k, q), 

a(u) = u(v) -++ C(u) = C(v). 

Proof. Let t = [(k + 2)/4J. From Corollary 5.1 and Proposition 5.3, one easily estab- 
lishes that A& = q’-‘. Now consider the mapping 

f : W --b Im(a) 

defined by f(C(v)) = a(v), where GB is the set of components of D(k, q). Proposition 
2.1 asserts that f is both well-defined and surjective. Since 1481 = I&, = q’-’ = 
IIm(a)l, we see that f is bijective. But this means that C(U) = C(V) whenever a(u) = 
a(v), whence the converse of Proposition 2.1 is established. El 

As a final result, we determine precisely when D(J, q) is isomorphic to a subgraph 
of D(k,q) for f < k. 

Corollary 5.3. Let k 2 I + 12 3. Then D( 1, q) is isomorphic to a subgraph of D(k, q) 
ifandonlyz~k=Z+l~2(mod4). 

Proof. Assume k = I+ 1 E 2 (mod 4). By Proposition 5.1, C Z C’. As all components 
of D(k, q) are isomorphic to C, it follows that D(k, q) 2 NQ=C. Similarly, D(k-1,q) s 
h$-_~,~ * c’ % ??~_l,~ - c. As i&, 4 = q&- z,q (Corollary S-l), we conclude that 

D(k,q)W,,+zeC% (qA$_,,&CG (q~~_z,,).C’~q.((Iv~-1,,.C’) rq*D(k-l,q), 

and the result follows. 
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We now suppose, by way of contradiction, that & is an isomorphism from D(Z, q) 
intoD(k,q)witheitherk> t+1ork=I+1~2(mod4).L&ingC~denotea 
fixed component of D(Z, q), we see that &Cf) is connected, whence it is a subgraph 
of some component ck of Ll(k,q). But as (p(Cr) and Ck are each q-regular, we have 
$(CI) = Ck, i.e., cl % CR. By corOl]ary 5.1, lckl = &-II >Sglcl/ if k f 2 (mod 4), 
and lCk/ = /CR-_I I >q/Ct( if k 3 2 (mod 4) and k > I + 1. In either case we obtain a 
conviction, and the corollary is proved. Cl 
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