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We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to
24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within
this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in
transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting.
Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP,
which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that
the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full
length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic
residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is
essential for virus multiplication.

& 2013 Elsevier Inc. All rights reserved.
Introduction

Foot-and-mouth disease virus is a member of the Picornaviridae
family and the causative agent of an acute vesicular disease
affecting pigs, ruminants and other cloven-hoofed livestock
(Kitching, 2005; Sáiz et al., 2002). Viral genome consists of a
single-stranded positive-sense RNA molecule of about 8.5 kb in
length with the 5′end covalently linked to the viral protein VPg,
and a poly A tract at the 3′ end. The viral products are translated
from a single open reading frame which is flanked by two non-
coding regions (NCRs) containing specific structures involved in
the control of replication and translation of the viral genome.
Translation of the ORF begins with the proteinase Lpro, which is
followed by the capsid proteins (1A, 1B, 1C, and 1D), a short
autoproteinase (2A), and the remaining nonstructural proteins (2B,
2C, 3A, 3B, 3C, and 3D). 3C is responsible for most of the cleavage
sites in the FMDV polyprotein (Ryan et al., 2004), leading to the
mature viral proteins as well as different precursors found in
infected cells, and 3D is the core subunit of the RNA-dependent
RNA polymerase (Newman et al., 1979).

Despite picornavirus multiplication occurring in the cyto-
plasm of infected cells, recent evidences indicate that these
viruses can alter the nucleus cytoplasm traffic, and reprogram
ll rights reserved.
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the nucleus of host cells (Belov et al., 2000; de los Santos et al.,
2009; Groppo et al., 2011; Gustin and Sarnow, 2001). Picorna-
virus infections can alter the subcellular localization of certain
nuclear RNA-binding proteins. For example, enteroviruses trig-
ger the re-localization of poly-C binding protein (PCBP2),
nucleolin, and polypyrimidine tract binding protein (PTB) from
the nucleus to the cytoplasm. Once in the cytoplasm, some of
these proteins interact with viral RNA and proteins, thus con-
tributing to the virus replication cycle.

Several evidences support the interactions between FMDV
proteins and the cell nucleus and the alterations they cause.
During FMDV infection of cultured cells, 3C mediates cleavage of
histone H3 (Falk et al., 1990; Grigera and Tisminetzky, 1984). On
the other hand, RNA helicase A (RHA) (Lawrence and Rieder, 2009)
and Sam68, both RNA-binding proteins relevant for viral life cycle,
are redistributed from the nucleus to the cytoplasm of infected
cells (Lawrence et al., 2012). Also, Lpro is translocated to the
nucleus where it mediates degradation of p65/RelA, a subunit of
NF-κB (de Los Santos et al., 2007), which is associated with the
inhibition of the induction of IFN-β mRNA and the expression of
IFN-α/β-stimulated genes in swine cells (de Los Santos et al., 2006).
A recent report has described the suppression of dsRNA-induced
IFN-β transcription through degradation of interferon regulatory
factor 3/7 by Lpro (Wang et al., 2010). On the other hand, FMDV 3D
and its precursor 3CD localize in the nucleus of infected cells and
in cells transiently expressing each of these proteins (García-
Briones et al., 2006). Delivery of 3C in the cell nucleus as part of
the 3CD precursor would facilitate the 3C-mediated histone H3
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cleavage occurring upon infection (Falk et al., 1990). Here, we
report that the sequence at the N-terminus of 3D (residues 16 to
24), predicted as potential nuclear localization signal (NLS) by its
homology with related signals reported for other picornavirus
(Aminev et al., 2003b; Amineva et al., 2004), actually acts as a NLS.
Results and discussion

Mutations in basic residues of the MRKTKLAPT motif decrease
the nuclear localization of FMDV 3D protein

The primary sequence of the N-terminus of FMDV 3D of the
7 different FMDV serotypes shows an amino acid motif
MRKTKLAPT corresponding to residues 16 to 24 (Carrillo et al.,
2005). This motif is conserved among other picornaviruses, such as
EMCV and rhinovirus (Aminev et al., 2003a; Amineva et al., 2004)
and fits the consensus sequence for NLS from yeast ribosomal
proteins (YRP-NLS) (Stuger et al., 2000) (Fig. 1). Basic residues are
defined as important for NLS recognition by importin proteins
(Nigg, 1997; Stuger et al., 2000; Terry et al., 2007). To explore
whether the MRKTKLAPT motif was involved in 3D nuclear
localization and approach similar to that used by Aminev et al.
(2003a, b) was followed. Thus, point mutations in two of the three
basic residues herein (K18E and K20E) were introduced in pRSV
derivatives. The expression levels of 3D in BHK-21 cells transfected
with plasmids pRSV3DK18E, pRSVDK20E and pRSV3Dwt were
found similar by western blotting (data not shown). To study the
cellular distribution of the mutant proteins, transfected cells were
fixed and stained with a 3D-specific antiserum. As reported
(García-Briones et al., 2006), 3Dwt was visualized with a similar
intensity at both the cytoplasm and the nucleus of transfected cells
by confocal microscopy (Fig. 2A). Conversely, in cells expressing
the mutant proteins 3DK18E and 3DK20E, fluorescence was mainly
observed in the cytoplasm, being their nuclear staining lower than
that of 3Dwt. When the subcellular expression of 3D protein was
quantified, the proportion of cells showing a staining intensity
similar between cytoplasm and nucleus was significantly higher
(po0.05) in cells expressing 3Dwt (95% of stained cells) that in
those expressing the 3D mutants (Fig. 2B). These differences were
higher for K20E than for K18E mutant protein. About 60% of the
cells expressing 3DK18E showed a similar intensity staining
between cytoplasm and nucleus and around 40% of the cells
showed a cytoplasmic fluorescence higher than that observed in
the nucleus, while for the mutant 3DK20E about 10% of the cells
showed a similar intensity staining between cytoplasm and
nucleus and around 90% of the cells showed a cytoplasmic
fluorescence higher than that observed in the nucleus (Fig. 2B).
We next analyzed the presence of 3D protein in the cytoplasmic
and the nuclear fractions, obtained by differential centrifugation,
by western blot from cells transfected with the different pRSV3D
plasmids. As shown in Fig. 2C, the amount of 3Dwt protein
Fig. 1. Localization of the putative NLS in the different FMDV serotypes. Alignment of th
HRV and EMCV. The sequence MRKTKLAPT, corresponding to the consensus NLS found in
Stuger et al., 2000), is indicated and the alignment of these residues resalted in box in
detected was similar in both fractions, while 3D mutants were
mainly observed in the cytoplasmic fraction. The specificity of this
cell fractionation was supported by the low amount of βII-tubulin
detected in the nuclear fraction, while signal to the nuclear
envelope protein lamine A/C was mainly present in this fraction.
These results indicate that replacements K18E and K20E can alter
cellular distribution of FMDV 3D protein transiently expressed in
BHK-21 cells. Similar results were observed in Vero cells trans-
fected with the same plasmids (data not shown). The role of the
third basic residue (R17) present in the MRKTKLAPT motif on the
nuclear location of 3D remains to be studied.

Mutations K18E and K20E decrease the nuclear localization
of FMDV precursor 3CD

The nuclear localization of the 3CD precursor has been
described in cells infected with picornaviruses (Amineva et al.,
2004; Weidman et al., 2003), including FMDV (García-Briones
et al., 2006). To explore whether this nuclear localization could be
affected by mutations K18E and K20E, three additional pRSV
derivatives were constructed: pRSV3CDwt, pRSV3CDK18E and
pRSV3CDK20E. No expression was observed by immunofluores-
cence in cells lypofectamine-transfected with plasmids 3CDwt or
their mutant versions (data not shown), which could be due to the
cell toxicity induced by 3C (Martínez-Salas and Domingo, 1995).
Upon transfection of cells by electroporation, 3CD proteins were
detected by westernbloting (Fig. 3A) As observed for 3D mutants,
fluorescence to 3CDK18E and 3CDK20E mainly localized in the
cytoplasm of transfected cells, whereas that of 3CDwt appeared
evenly distributed in the cytoplasm and the nucleus (see Fig. 3B).
Subcellular fractions of BHK-21 transfected cells showed a dis-
tribution of the 3CD proteins similar to that observed by immuno-
fluorescence (Fig. 3C). In this case, 3CDwt was detected in both
nuclear and cytoplasmic fractions, in which 3Dwt was also
observed, as a result of the precursor processing. On the other
hand, 3CDK18E and 3CDK20E mutant proteins were only detected
at the cytoplasmic fraction, probably reflecting an impairment in
their nuclear import, as that observed for 3D mutant proteins.

Peptide MRKTKLAPT can target a heterologous protein to the nucleus
of transfected cells and mutations K18E and K20E decrease
this targeting

To confirm that MRKTKLAPT motif could directly mediate
nuclear protein transport, its corresponding sequence was cloned
as a C-terminal fusion with the green fluorescent protein (GFP).
Plasmids expressing fusion proteins GFPNLSwt, GFPNLSK18E,
GFPNLSK20E, as well as GFPNLSsv40 � that harboured a fusion
of GFP with the NLS of SV40 large T antigen (Conti et al., 1998;
Kalderon et al., 1984), which was included as control of nuclear
targeting � were constructed (Fig. 4A). Plasmid pGFP expressing
the marker protein alone was included as control. Upon 24 h post
e amino acid sequences corresponding to the 3D amino terminus from FMDV, PV,
several yeast ribosomal proteins � [G/P] (K/R)3 X1–4 [G/P] � (Aminev et al., 2003b;
which basic residues are highlighted.



Fig. 2. Expression and cellular localization of 3Dpol harboring mutations K18E and K20E. BHK-21 cells were transfected with pRSV-3D, pRSV-3DK18E or pRSV-3DK20E and
collected at 24 h post transfection. (A) Confocal images of 3D distribution. Expression of 3D was detected with serum E56 and Alexa Fluor 488 anti-rabbit IgGs as secondary
antibody; nuclei were stained with To-Pro3. Scale bar: 20 mm. (B) Quantitative estimation of the localization of the 3D wt or mutants 3DK18E and 3DK20E. A number of 150
fluorescence-positive cells were scored as: N≈C (when similar nuclear and cytoplasmic staining was observed) or NoC (when the percentage of nuclear immunofluor-
escence was less than 50% of that observed in the cytoplasm). Asteriscs (*) indicate significant differences (po0.05). (C) Western blot analysis of cellular fractions of BHK-21
cells transfected with 3D pRSV derivatives. At 20 h post infection, total cell extracts (T), cytoplasmic and cell membrane fraction (C) and nuclear fraction (N) were obtained
and blotted (as described in Materials and methods). The migration of the markers and their molecular weight are indicated. Arrows point to the bands corresponding to 3D,
βII-tubulin and lamin A/C.
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transfection with the different plasmids, the localization of GFP
fluorescence in BHK-21 cells was monitored by confocal laser
scanning microscopy. As reported (Garrido-Garcia et al., 2009),
expression of GFP alone was detected homogeneously throughout
the transfected cells, with a pattern similar to that observed for
mutants GFPNLSK18E and GFPNLSK20E (Fig. 4B). On the contrary,
expression of GFP-NLS showed an increased nuclear distribution
similar to the found for GFPNLSsv40 expression.

When confocal images were used to determine the relative
intensity of fluorescence in the nucleus (Fn) and in the cytoplasm
(Fc) (Fig. 5A), the Fn/c ratio increased significantly from about 0.35
for GFP to 1.4 for GFP-NLS (Fig. 5B). Introduction of mutations
K18E and K20E in the 3D NLS rendered values similar to those of
GFP. Cellular fractions with BHK-21 cells transfected with plasmids
expressing the different GFP fusion proteins showed a nuclear/
cytoplasmic distribution of GFP staining similar to that determined
by inmunofluorescence (Fig. 6). These results confirm that the
sequence motif MRKTKLAPT has an intrinsic nuclear localizing
ability.

Sequences flanking the MRKTKLAPT motif can increase nuclear
targeting of the heterologous protein

As mentioned, the MRKTKLAPT motif in FMDV 3D fits the
consensus sequence identified at the 3Dpol N-terminus of other
picornaviruses, such as EMCV and rhinovirus, which is similar to
the consensus for NLS of yeast ribosomal proteins (YRP-NLS)
(Aminev et al., 2003b; Stuger et al., 2000). In some of these
proteins, sequences flanking the NLS motif can enhance the
nuclear importation capacity of NLS, improving NLS binding to
their receptors, even when they do not contain basic residues or
show homology with classical NLS (Garcia-Bustos et al., 1991;
Lange et al., 2007). To assess whether sequences flanking the
MRKTKLAPT motif increased its capacity to promote nuclear
localization, plasmid GFPNLS2 � in which GFP was fused with the
3D sequence spanning the MRKTKLAPT motif plus the 9 flanking
amino acids at both of its C-ter and N-ter sides (RDVEERVHVMRKTK-
LAPTVAHGVFNPE) � was constructed (see Fig. 4A). GFP-NLS2 was
mainly detected in the nucleus and showed an Fn/c ratio of 2.9,
higher than that of GFP-NLS (Figs. 4 and 5B). In addition, GFP-NLS2
was mostly found at the nuclear fraction of transfected cells (Fig. 6).
Thus, introduction of 9 amino acids at each end of the MRKTKLAPT
motif enhances its effect as a NLS. It has been reported that proteins
can harbor multiple partially functional NLS signals, being their effect
additive. This means that a given protein may have not a single
strong NLS (such as the classical SV40 signal), but can harbor more
than one weaker signal, promoting in this way the nuclear import
(Garcia-Bustos et al.,, 1991); this possibility remains to be analyzed
for FMDV 3D.

Mutations K18E and K20E are detrimental for virus infectivity

To assess the effect of replacements K18E and K20E in 3D in the
context of viral infection, those mutations were introduced in the
full length infectious clone pMT28 (Toja et al., 1999). The infectiv-
ity of mutant RNAs transcribed from the resulting plasmids
pMTK18E (RNA K18E) and pMTK20E (RNA K20E) was compared
with that of the corresponding parental C-S8c1 RNA derived from
plasmid pMT28 (RNAwt). In transfected cells incubated in liquid
medium, neither cythopathic effect nor infectious virus were
detected up to 72 h post transfection with 1 mg of transcripts from
pMT28KE or pMTK20E (see Table 1), while C-S8c1 RNA produced



Fig. 3. Cellular localization of 3CD precursor harboring mutations K18E and K20E. BHK-21 cells were electroporated with pRSV-3CD, pRSV-3CDK18E or pRSV-3CDK20E and
collected at 20 h post transfection. (A) Expression of the recombinant proteins was detected by western blotting with E56 antibody that recognizes 3D protein.
(B) Representative confocal images of 3D distribution. Expression of 3D was detected with serum E56 and Alexa Fluor 488 antirabbit IgGs as secondary antibody; nuclei were
stained with To-Pro3. Scale bar: 20 mm. (C) Western blot analysis of cellular fractions of BHK-21 cells transfected with 3D plasmids. At 20 h post transfection, total cell
extracts (T), cytoplasmic and cell membrane fraction (C) and nuclear fraction (N) were obtained and blotted (as described in Materials and methods). The migration of the
markers and their molecular weight are indicated. Arrows point to the bands corresponding to 3D, 3CDpol, βII-tubulin and lamin A/C.

Fig. 4. Expression and localization of GFP-fusion proteins. (A) Scheme of the GFP-fusion proteins used in this study, in which GFP in depicted in black bars. FMDV NLSwt
(MRKTKLAPT), NLSK18E, NLSK20E, the complete FMDV 3D sequence, GFPNLS2 (RDVEERVHVMRKTKLAPTVAHGVFNPE) and NLSsv40 (Conti et al., 1998) are indicated by grey
bars. (B) Distribution of GFP-NLS proteins by confocal microscopy. Representative images of cells transfected with the plasmids expressing the proteins indicated fixed and
processed at 24 h post transfection. Autofluorescence of GFP is shown. Scale bar: 20 μm. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Nuclear localization of GFP-fusion proteins. A scheme of the fusion proteins used is shown in Fig. 4A. (A) Images such as those shown in Fig. 4B were analysed using
the Image J1.62 software to determine the Nuclear/Cytoplasmic fluorescence intensity ratios (Fn/c ratio). (B) Histogram showing the Fn/c ratio calculated for each group of
cells as follows: Fn/c¼(Fn�Fb)/(Fc�Fb) where Fn is the nuclear fluorescence, Fc is the cytoplasmic fluorescence, and Fb is the background fluorescence (autofluorescence).
Results are expressed as the mean7standard deviation. Differences are considered statistically significant when po0.05 (npo0.05; nnpo0.005).

Fig. 6. Western blot analysis of fractions of cells transfected with GFP-fusion
proteins. A scheme of the fusion proteins used is shown in Fig. 4A. BHK-21 cells
were transfected with different plasmids and collected at 20 h post infection. Total
cell extracts (T), cytoplasmic and cell membrane fraction (C) and nuclear fraction
(N) were obtained and blotted (as described in Materials and Methods). The
migration of the markers and their molecular weight are indicated. Arrows point to
the bands corresponding to GFP, βII-tubulin and lamin A/C.

Table 1
Recovery of infectious virus from RNAs 3DK18E and 3DK20E.

RNA Transfection First passage Second passage

24a 48 72 24b 48 72 24b 48 72

None –c – – – – – – – –

wt ++++ †d † ++++ † † ++++ † †

3DK18E – – – + ++++ – – † †

3DK20E – – – – – – – + ++++

a h post transfection.
b h post infection.
c CPE produced in BHK-21 cell monolayers at different times post transfection

and upon each of two passages of the transfected medium in these cells. Without
CPE (�); CPE in about 25% (+), 50% (++), 75% (+++) or 100% (++++) of BHK-21
monolayer. This is a representative example of three independent experiments.

d Total CPE at 24 h post transfection.
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complete cythopathic affect 24 h post transfection, yielding a viral
titer of 5�103 PFU/ml. A first passage of the medium of cells
transfected with K18E RNA resulted in the emergence of CPE 48 h
post infection, which was complete 72 h post infection. For K20E
RNA, detection of CPE was only observed in the second passage
given to the transfection medium (see Table 1). Emergence of
infectious virus was concomitant with the imposition in the viral
populations of direct reversions for each of the mutant RNAs
analyzed – nucleotide substitutions A6661G and A6667G leading
to replacements E18K and E20K, respectively, – that restored the
3D wt sequence, as determined by sequencing of the viral RNA
from the infected cell medium. A similar pattern of virus recovery
was observed in two additional independent transfections per-
formed with RNAs K18E and K20E. These results indicate that
replacements K18E and K20E drastically reduce viral multiplica-
tion, leading to selection of viruses with direct reversions that
restore the parental K and suggesting that the presence of a
positively charged residue at positions 18 and 20 is critical for
virus growth. Replacements K18E and K20E are located on the
N-terminal domain of the three dimensional structure determined
for the 3D protein of C-S8c1 FMDV (Ferrer-Orta et al., 2006).
This domain does not directly interact with the active enzymatic
site of the protein. Nevertheless, it cannot be excluded that
replacements K18E and K20E could affect the replication activity
of 3D, as shown for analogous mutations in EMCV 3D protein
(Aminev et al., 2003b).

In summary, in this paper, we have confirmed the presence of a
NLS in the FMDV 3D protein sequence, which could be responsible
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for the nuclear location of 3CD and 3D observed in FMDV
transfected and infected cells (Garcia-Briones et al., 2006). While
the biological relevance of the presence of 3D in the cell nucleus
remains unknown, it has been proposed that nuclear importation
of its precursor, 3CD, would allow 3C to contribute to the
alterations associated to the nuclear reprogramming occurred
upon picornavirus infection (Weidman et al., 2003).
Materials and methods

Cells

The origin and culture procedures for BHK-21 cells have been
previously described (Rosas et al., 2008).

Construction of infectious cDNA clones carrying replacements K18E
and K20E in 3D, RNA synthesis and transfection

To assess their effect on FMDV infectivity, K18E and K20E
mutations were introduced in plasmid pMT28 encoding the type
C FMDV isolate C-S8c1 full length sequence (García-Arriaza et al.,
2004) by site-directed mutagenesis (Martin-Acebes et al., 2011), To
this end, the following pairs of primers were used: 5′-CATG-
TAATGCGCGAAACCAAGCTTGCACC-3′ and 5′-GGT GCAAGCTTGG-
TTTCGCGCATTACATG-3′ that introduced nucleotide substitution
A6661G (replacement K18E), and 5′-TAATGCGCAAAACCGAGCTTG
CACCCACC-3′ and 5′-GGTGGGTGCAAG CTCGGTTTTGCGCATTA-3′
that introduced nucleotide substitution A6667G (replacement
K20E). The following primers were used for the amplification of
the site-directed mutagenesis: 5′- ACGCCGGTCCGATGGAGAGACA-
GAAG -3′ and 5′-CCGTTCTCGAAATCGA TAAGTGCACCGC-3′. For
RNA synthesis, the resulting plasmids (pMTK18E and pMTK20E)
were linearized with NdeI (New England Biolabs) and in vitro
transcribed using SP6 RNA polymerase (Promega). After transcrip-
tion, the reaction mixture was treated with RQ1 DNase (1 U/mg
RNA; Promega) and the RNA was extracted with phenol-
chloroform and precipitated with ethanol. The RNA integrity and
concentrationwere determined by electrophoresis on agarose gels.
In vitro-transcribed RNAs were transfected into BHK-21 cells using
the Lipofectin reagent (Invitrogen), as described (Martin-Acebes
et al., 2010). Cells were maintained at 37 1C in Dulbecco's modified
Eagle's medium (DMEM) supplemented fetal bovine serum (FBS).

Construction of transient expression plasmids

Plasmids for transient expression were derived from plasmid
pRSV/L (de Wet et al., 1987) in which the luciferase gene was
replaced by the sequences that encoded FMDV C-S8c1 3D and 3CD
proteins (García-Arriaza et al., 2004), or the corresponding mutant
sequences (3DK18E, 3DK20E, 3CDK18E and 3CDK20E). 3D and 3CD
sequences were amplified by PCR from infectious clone pMT28
(Garcia-Arrianza et al., 2004) or plasmids pMTK18E and pMTK20E,
using the primers shown in Supplementary material (Table S1),
which included restriction sites for cloning into plasmid pRSV/L,
HindIII in 5′ and KpnI or SmaI in 3′ sense. Ligation, transformation
of E. coli DH5α, colony screening, nucleotide sequencing, were
carried out as described (Garcia-Briones et al., 2006). Plamids
harbouring fusions with GFP protein (GFPNLS, GFPNLSK18,
GFPNLSK20E and GFPNLSsv40) were constructed from plasmid
pAcGFP1_c2 (Promega). The sequences of interest were cloned in
the extreme carboxi-terminal of GFP protein sequence, with the
primers indicated in Table S1. As control, a plasmid expressing
GFP protein fused to the SV40 TAg NLS sequence was generated
using primers 5′-AATTCCCAAAAAAGAAGAGAAAGGTCC-3′ and
5′- CCCGGGGACCTTTCTC TTCT TTTTTGGG-3′.
Antibodies and reagents

Rabbit polyclonal sera to 3D FMDV protein (E56), was kindly
provided by E. Beck (Strebel et al., 1986). The antibodies against
GFP and lamin A/C were obtained from Roche and Santa Cruz
Biotechnology, respectively. The rabbit polyclonal anti-βII tubulin
serum is described in Armas-Portela et al. (1999). Horseradish-
peroxidase (HRP)-coupled anti-mouse or anti-rabbit antibodies
were from Amersham. Goat antibodies anti-mouse and anti-rabbit
IgGs coupled to Alexa 594 or 488 were from Molecular Probes. To-
Pro-3 (Molecular Probes) was used for nuclear staining.

Western blot analysis

BHK-21 cell monolayers transfected with the different plasmids
were collected 24 h post-transfection in lysis buffer (10 mM EGTA,
2.5 mM MgCl2, 1% NP-40 and 20 mM HEPES, pH 7.4) supplemen-
ted with 1 mM PMSF and protease inhibitor cocktail (Roche).
Proteins were resolved on a 12% SDS-PAGE and transferred onto
a nitrocellulose membrane. After membrane blocking, proteins
were detected by incubation with primary antibodies and HRP-
coupled anti-mouse or anti-rabbit antibodies using a chemilumi-
nescence kit (Perkin-Elmer) as previously described (Rosas et al.,
2008).

Cellular fractionation

BHK-21 cellular fractionation was performed as described
before (Garcia-Briones et al., 2006). Briefly, cells transfected were
washed with PBS, collected by centrifugation at 110� g for 5 min
and resuspended in 0.25 M sucrose in buffer A (50 mM Tris, 5 mM
EDTA, 1 mM MgCl2, 0.5% Triton X-100), supplemented with 1 mM
PMSF and protease inhibitor cocktail (Roche). Suspensions were
homogenized and nuclei were separated from cytoplasmic and
membrane components (cytoplasmic fraction) by centrifugation at
440� g for 20 min. Protein concentration was determined by
Bradford, and equal amounts from each fraction, in Laemmli
buffer, were analysed by SDS-polyacrylamide gel electrophoresis,
as described above.

Immunofluorescence assays

Immunofluorescence assays were performed as described
(Martin-Acebes et al., 2008; Martin-Acebes et al., 2007). Briefly,
cells transfected and cultured on coverslips were fixed at 24 h post
transfection with 4% paraformaldehyde for 15 min, blocked and
permeabilized by incubating in PBTG buffer (0.1% Triton X-100,
1% bovine serum albumin, 1 M glycine in PBS) for 15 min at room
temperature. Samples were incubated with primary antibodies for
1 h, washed in PBS and incubated with secondary antibodies for
30 min. Nuclear staining with To-Pro-3 (Invitrogen) was per-
formed as recommended by the manufacturer. Samples were then
mounted in Fluoromount-G (Southern Biotech).

Determination of N/C (nuclear/cytoplasm) ratios by image analysis

Cells cultured on coverslips were transfected with mutants and
stained for immunofluorescence as detailed above. Confocal
images were acquired with a Zeiss LSM 510 confocal microscope
using the following laser lines: 488 nm (30 mWArgon, 8–10%),
543 nm (1.2 mW HeNe, 30%) and 633 nm (5 mW HeNe, 50%). Cells
exhibiting an unusual size, morphology or expression levels were
discarded. Images were taken with 63x lens and 488 nm laser line.
A single optical slice was chosen and the images obtained were
analyzed using the Image J1.62 software to determine the nucleus/
cytoplasm ratio, Fn/c ratio: Fn/c¼(Fn�Fb)/(Fc�Fb), where Fn is the
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nuclear fluorescence, Fc is the cytoplasmic fluorescence, and Fb is
the background fluorescence. In this experiments 150 cells/field
were counted.

Viral RNA extraction and sequencing

Viral RNA was extracted from supernatants of cell cultures
using TRI Reagent (Sigma), as described by the manufacturer.
cDNA was synthesized by reverse transcription of viral RNA
using M-MuLV Reverse Transcriptase (Roche) and primers 5′-
ACGCCGGTCCGATGGAGAGACAGAAG-3′ and 5′-TATATAGGTACGTG-
CGTCGCCGCAC -3′. cDNA spanning nucleotides 5834 (correspond-
ing to residue 3 of 3B2) to 8019 (corresponding to residue 470 of
3D) was amplified by PCR using the same primers and BioTaq DNA
Polymerase (Bioline) supplemented with a 10% of Expand High
Fidelity Polymerase (Biotools) for proofreading activity. PCR pro-
ducts were purified with Wizard SV Gel and PCR Clean-Up System
(Promega) and sequenced using the primers indicated above and
primer 3D-1 (Supplementary material, Table S1). DNA sequences
were confirmed by at least two independent sequencing reactions.
Nucleotide positions correspond to those previously described for
FMDV C-S8c1 isolate (N1 Genbank AJ133357).

Statistics

To evaluate the statistical significance of the data, one-way
analysis of the variance was performed with statistical package
SPSS 13.0 (SPSS, Inc) was used. To evaluate the difference in
multiple comparisons, pairwise t-Student values were calculated
by applying Bonferroni's correction. Means7the standard devia-
tions are represented. The differences were considered statistically
significant when po0.05 (∗po0.05; ∗∗po0.005).
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