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a b s t r a c t

The Indian Sub-Continent is one of the most densely populated regions of the
world, hosting ∼23% of the global population within only ∼3% of the world’s
land area. It encompasses some of the world’s largest fluvial systems in the
world (River Brahmaputra, Ganges and Indus Basins), which hosts some of the
highest yielding aquifers in the world. The distribution of usable groundwater
in the region varies considerably and the continued availability of safe water
from many of these aquifers (e.g. Bengal Basin) is constrained by the presence
of natural contaminants. Further, the trans-boundary nature of the aquifers in
the Indian Sub-Continent makes groundwater resource a potentially politically
sensitive issue, particularly since this region is the largest user of groundwater
resources in the world. Indeed, there is considerable concern regarding dwin-
dling well yield and declining groundwater levels, even for the highly productive
aquifers. Though irrigation already accounts for >85% of the total ground water
extraction of the region, there is a mounting pressure on aquifers for food secu-
rity of the region. Highly variable precipitation, hydrogeological conditions and
predicted, impending climate change effects provide substantial challenges to
groundwater management. The observed presence of natural groundwater con-
taminants together with the growing demand for irrigated food production
and predicted climate change further complicate the development of strate-
gies for using groundwater resources sustainably. We provide an introduction
and overview of 11 articles, collated in this special issue, which describe the
current condition of vulnerable groundwater resources across the Indian Sub-
Continent.
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1. Overview of the groundwater systems in the Indian Sub-Continent

The Indian Sub-Continent (ISC) comprises six countries: Bangladesh, Bhutan, India, Nepal, Pakistan
and Sri Lanka (Fig. 1). The ISC occupies ∼3.2% of the global land area but hosts ∼23.2% of the world’s
population (FAO, 2013). The region is arguably the most densely populated region in the world. Pre-
cipitation varies spatially and temporally over the region, with the lowest national mean occurring
in Pakistan (494 mm/year; WBA, 2015) and the highest in Bangladesh (2600 mm/year; WBA, 2015)
(Fig. 1). The ISC is drained by the rivers Indus, Ganges and Brahmaputra Basins, which collectively
form the Indo-Gangetic Basin (IGB) (Figs. 2 and 3) and include some of the highest yielding aquifers of
the world (Figs. 2 and 3). The aquifers associated with these river basins cross international borders
of the contiguous ISC countries, forming numerous transboundary aquifers, including the Indus basin
aquifers (between India and Pakistan), Ganges and Brahmaputra basin aquifers (between Bangladesh
and India), the aquifers of the tributaries to the Ganges (between Nepal and India), the aquifers of
the tributaries to the Brahmaputra (between Bhutan and India and between India and Bangladesh)
(UN-IGRAC, 2014).

At the beginning of every hydrologic year, >4000 billion cubic meters (bcm) water enters the
ISC hydrological systems, of which almost half is lost by poorly understood and un-quantified
processes (e.g. overland flow, surface discharge through rivers to oceans, submarine groundwater dis-
charge, evaporation and evapo-transpiration, etc.) (Verma and Phansalkar, 2007). Annual groundwater

Fig. 1. Map showing mean annual precipitation distributions (1961–2007) across the Indian Sub-Continent (source: APHRODITE
database). The figure is not to scale and the country boundaries are for illustrative purpose only.
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Fig. 2. Map of the Indian Sub-Continent, showing major rivers and distribution of recharge rates (modified from WHYMAP
database, www.bgr.de). The figure is not to scale and the country boundaries are for illustrative purpose only.

withdrawals in the ISC are estimated to exceed a 340 bcm (Table 1), and represent the most volumi-
nous use of groundwater in the world (FAO, 2013; Siebert et al., 2013). The ISC faces acute shortage of
drinking water and other usable waters in many areas, as it is witnessing rapid rise in water demand
and change in societal water use pattern because of accelerated urbanization and change in lifestyle
(Scanlon et al., 2010). In many urban and rural areas of the ISC, surface waters have been historically
used as receptacles of sewage and industrial waste rendering them unfit for domestic use, promp-
ting a switch to groundwater and rainwater sources to meet drinking and agricultural water needs
(Mukherjee et al., 2011). Presently, about 60–80% of the domestic water supplies across the ISC are
met by groundwater (e.g. Bangladesh, India, Pakistan). Irrigation accounts for >85% of groundwater
withdrawals in the ISC (FAO, 2013) and are considered to be the primary contributor to groundwater
depletion (Rodell et al., 2009; Tiwari et al., 2009; Shamsudduha et al., 2012; Bhanja et al., 2014) with
maximum possible groundwater footprint observed in the Gangetic aquifers (Gleeson et al., 2012).
Moreover, the distribution of usable, potable groundwater in ISC is not uniform and there is a growing
concern about the availability of safe water in many areas due to presence of natural contaminants.
Of these, the widespread presence of elevated concentrations of dissolved arsenic (As) and fluoride
(F), and high salinity have caused much concern (Fig. 4). Arsenic contamination of groundwater in
the Bengal Basin has been called ‘the largest mass poisoning in human history’ (Smith et al., 2000).
The extent and effect of other emerging and unidentified groundwater contaminants (e.g. nitrate,
pesticides, radiogens, antibiotics, etc.) are yet to be fully accounted for (CGWB, 2014a). Large areas
of the Ganges aquifers have been recently found to be vulnerable to groundwater pesticide pollution
(Saha and Alam, 2014). Intensive agriculture in the IGB basins are associated with generous input
of chemical fertilizers and synthetic pesticides that potentially infiltrates to the groundwater sys-
tems. Consequently, most of ISC has been marked as highly water stressed areas (Bates et al., 2008),
primarily because of extensive irrigational abstraction in the alluvial aquifers of the IGB basin, low
yielding crystalline aquifers in the Indian craton, and wide-spread presence of natural groundwater
contaminants. Reduction in precipitation trends over the region analyzed between 1979 and 2005

http://www.bgr.de/
http://www.bgr.de/
http://www.bgr.de/
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Table 1
Summary of land area, population, precipitation, irrigated land area, renewable groundwater resources, groundwater withdrawal and total water uses in ISC.

Country Land area estimates
(as of 2009)a

Population estimates
(as of 2011)a

Annual
precipitation
(1962–2011
mean)b (mm/year)

Irrigated landa

(thousand ha)
Renewable
Groundwater
resource (as of
2014)c (bcm/year)

Groundwater abstraction
(as of 2010)d

Total water uses
(as of 2010)a,f

(bcm/year)

Million ha Global % Thousands Global % Total abstraction
(bcm/year)

Ae (%) De (%) Ie (%)

Bangladesh 13 0.10 150,494 2.16 2666 5100 21.1 30.21 86 13 1 35.87 (2008)
Bhutan 4 0.03 738 0.01 2200 28 8.1 0.04 N.A. N.A. N.A. 0.34 (2008)
India 297 2.28 1,241,492 17.80 1083 66,700 433.0g 245.00g 89 9 2 761.00 (2010)
Nepal 14 0.11 30,486 0.44 1500 1168 20.0 2.91 N.A. N.A. N.A. 9.79 (2005)
Pakistan 77 0.59 176,745 2.53 494 20,200 55.0 64.82 94 6 0 183.45 (2008)
Sri Lanka 6 0.05 20,869 0.30 1712 570 7.8 1.17 N.A. N.A. N.A. 12.95 (2005)

Total 411 3.16 1,620,824 23.24 9655 93,766 545.0 344.15 1003.40

N.A., data not available.
a FAO (2013).
b WBA (2015).
c FAO (2015).
d Margat and Van der Gun (2013).
e Percentage contribution to total groundwater withdrawal from: A: Agriculture; D: Domestic; I: Industry.
f Total water uses: uses of all naturally available water (groundwater, surface water, etc.).
g CGWB (2014c).
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Fig. 3. Map of the major aquifers of the Indian Sub-Continent. The figure is not to scale, and the aquifer and country boundaries
are for illustrative purposes only.

(Bates et al., 2008) suggests further decrease in per capita availability of groundwater in the region.
With the present-rate of increasing population, the availability of usable groundwater is expected to
seriously decline in near future, if not managed properly with immediate attention.

These aforesaid groundwater conditions may be further complicated by the projected impacts of
impending climate change. Headwaters of the river basins in the ISC are supplied by meltwater flows
from high-altitude glaciers. Glacial lake outburst floods have increased in recent years (at a rate of
0.38 events/year in 1950s to 0.54 events/year in 1990s; Bates et al., 2008) in the Himalayas within
Bhutan, India and Nepal. Higher surface runoff is projected for the 2090–2099 period in comparison
to 1980–1999, as an effect of global warming (Bates et al., 2008), enhancing potential of flood risks
downstream. While high recharge rates (>300 mm/year; Fig. 2) have been observed in the eastern
side of ISC owing to higher present-day precipitation in the region (Fig. 1), much of the western ISC
receives little recharge (Scanlon et al., 2010).

In the following sections, synopses of country-wise groundwater resources of the six member
countries of the ISC are outlined (in alphabetical order) as a prelude to this special issue.

1.1. Bangladesh

Nationally, Bangladesh receives highest rate of precipitation within ISC (Fig. 1 and Table 1). About
80% of the total precipitation occurs in the monsoon months of June to September (FAO, 2015). Very
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Fig. 4. Generalized groundwater contamination map of the Indian Sub-Continent (data source: IGRAC archive; BGS archive;
Mukherjee et al., 2009b; Ravenscroft et al., 2009; Bhattacharya et al., 2014; CGWB, 2014a; Ramanathan et al., 2015). The extent
of the groundwater contamination is for indicative purpose. The figure is not to scale and the country boundaries are for
illustrative purpose only.

high annual precipitation, subdued topography in much of the country and discharge of regional flow
systems produced the largest deltaic system in the world (Figs. 2 and 3). The central and southern
part of country is characterized by world’s largest fluvio-deltaic plain formed by three rivers, Ganges,
Brahmaputra and Meghna (GBM) (Mukherjee et al., 2009a; Shamsudduha et al., 2011). Furthermore,
the country is of drained by 230 streams, which are either tributaries or distributaries of the GBM
system (FAO, 2015). As a result, ∼80% of the land mass is comprised of fertile alluvial sediments
(FAO, 2015). Groundwater in all areas is mostly available within <5 m below ground level (bgl) within
the alluvial aquifers (MPO, 1987). Agriculture plays a major role in the country’s economy and thus
more than 50% of the cultivable lands are cropped two or more times each year (FAO, 2015). Intense
irrigation accounts for 79% of groundwater withdrawals (FAO, 2015), placing immense pressure on
groundwater resources and has led to depletion of groundwater storage of estimated from 2003 to
2007 to be in the range of −0.5 to −0.8 km3/year, with accelerating depletion rates in recent years
(Shamsudduha et al., 2012). A substantial decline in groundwater levels has been observed in the
area surrounding the densely populated capital, Dhaka (Ahmed, 1994; Alam, 2006). In general, the
regional groundwater flow is from north to south (Michael and Voss, 2008) with local variations in the
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vicinity of the river systems, which are mostly effluent. Shallow groundwater flows, in recent times,
have been largely affected by extensive pumping, which has greatly increased recharge rates through
the increase in available storage (Shamsudduha et al., 2011). Furthermore, existence of widespread,
elevated concentrations of geogenic As in groundwater has largely reduced the usable groundwater
resources of the country (Ahmed et al., 2004). More than 80% of tube-wells within shallow aquifers of
the major river basins in southern and coastal aquifers have been detected with high As concentrations
(Ahmed et al., 2004). The natural As pollution may have been further exacerbated by wide-spread
groundwater abstraction by pumping (Harvey et al., 2002). The anoxic, shallow aquifers are also prone
to microbiological contamination in many parts of the country (BGS, 2001a). Water logging is a critical
issue in the southern areas as most of the areas were flooded during monsoon time (FAO, 2015).
The coastal areas also are at risk from seawater intrusion and storm surges that serve to increase
groundwater salinity.

1.2. Bhutan

Bhutan is the smallest country within the ISC in terms of population and land area (Table 1). The
country has three major geomorphic features, the higher Himalayas, the lesser Himalayas and the
southern foothills (FAO, 2015). Consequently, the aquifers are all composed of Himalayan fractured,
crystalline rocks (Figs. 2 and 3). Annual precipitation pattern is highly variable throughout the country
with minimum value of 477 mm at Gidakhom in Thimpu district and maximum value of 20,761 mm
at Dechenling in Samdrup Jhongkhar district (FAO, 2015) (Fig. 1 and Table 1). Monsoon lasts from June
to September with occurrence of 60–90% of the total precipitation and is the main source of recharge.
Groundwater availability is very localized and depends on fractures and joints related to the tectonic
activity of various scale of the Himalays. Hence, the yields of the aquifers are extremely variable, and
much of the population depends on surface water and groundwater discharging as spring waters from
the mountains.

1.3. India

India is the largest country within the ISC, both in terms of land area and population (Table 1).
Major parts of the country receive precipitation between 750 and 1500 mm/year, with extremely low
precipitation in the western parts (<150 mm/year) and some of the world’s highest rainfall in the north-
eastern parts (>2500 mm/year) (Fig. 1 and Table 1). Most of the total precipitation occurs during the
south-west monsoon season from June to September (CGWB, 2014b). The major aquifers are related to
the major river basins that drain the country (Figs. 2 and 3). The total land of the country can be divided
into 20 major river basins (CWC, 2010), which may be further separated into four groups according
to their origin and flow pattern: (i) the Himalayan rivers (Ganges, Brahmaputra, Indus) that originate
from the melted high-altitude glaciers and snow, and are perennial throughout the hydrological year
(ii) rivers of Indian craton (Mahanadi, Godavari, Krishna, Pennar, Cauvery, Narmada and Tapi) are
mostly rain-fed and strive on baseflow; (iii) the coastal rivers, mostly non-perennial; and (iv) rivers
of the western dessert originate within small fluvio-aeolian basins, and are rain-fed ephemeral and
disconnected from the groundwater systems (FAO, 2015).

The Ganges basin system is the largest river system in the country, with a catchment area of ∼86.1
million ha (CWC, 2010). The Indus–Ganges–Brahmaputra (IGB) systems that together drain the north-
ern Indian plains form a regional alluvial aquifer system that is regarded as one of the most productive
aquifers of the world. In contrast, groundwater is available in a limited extent within the weath-
ered zone and underlying fractured aquifers within the remaining two-thirds of the country. The
northern porous and permeable aquifers are both of unconsolidated and semi-unconsolidated alluvial
sedimentary type whereas fractured aquifers are mostly composed of Pre-Cenozoic crystalline rocks,
consolidated sedimentary formations and multi-layered basalt flows of the Indian craton (CGWB,
2014b). Intense irrigational activities are prevalent in the highly fertile IGB basin, which is also the
most populous part of the country. Renewable groundwater resources have been estimated to be
∼433 bcm, with annual groundwater draft of ∼245 bcm in 2011. Of these, ∼223 bcm of groundwa-
ter was used for irrigation, and the rest ∼23 bcm were used for domestic and industrial purposes
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(CGWB, 2011, 2014c). Increasing agricultural demand for a rising population has resulted in a four-
fold increase in production of crops (50–204 million tons) between 1950s to 2000 (Kumar et al., 2005)
severely stressing groundwater resources. Rapid depletion in groundwater storage has been observed
in the intense agricultural regions in the ISC (Rodell et al., 2009; Tiwari et al., 2009; Bhanja et al.,
2014; CGWB, 2014b). More than a 4 m decline in groundwater levels with respect to decadal mean
groundwater level has been observed in several parts of the country (CGWB, 2014b). Additionally,
similar to its eastern neighbor Bangladesh, groundwater in large parts of the north Indian shallow
alluvial aquifers are anoxic, and are enriched with elevated As concentrations (Mukherjee et al., 2008;
Saha et al., 2010; Bhattacharya et al., 2011, 2014). Elevated groundwater As concentrations have been
identified in groundwaters of 86 districts in 10 Indian states (CGWB, 2015). The pollution is believed
to have further aggravated due to extensive groundwater abstraction (Mukherjee et al., 2011). High
concentrations of groundwater fluoride have also been observed, mostly in the crystalline aquifers
in parts of 19 states (Maheshwari, 2006; CGWB, 2015). Elevated levels of groundwater iron (Fe) and
nitrate (NO3

−) have also been reported from several aquifers of the country (CGWB, 2015). Seawater
intrusion resulting in aquifer salinization has been observed in many of the coastal aquifers adjoining
the Bay of Bengal and Arabian Sea, however, highly brackish groundwater are also prevalent in the
inland aquifers of several states (CGWB, 2015). Such inland salination may be linked with mineral dis-
solution and/or agricultural pollution. Frequent, wide-spread floods, caused by intense precipitation
and rejected recharge are common in parts of eastern India.

1.4. Nepal

Nepal is characterized by the Himalayan crystalline aquifers in the north and piedmont alluvial fan
and flood plain aquifer in the south (BGS, 2001b). The southern part, called the Terai, is comprised of
relatively low topography alluvial deposits between the Siwalik hills of the Himalayas in the north and
the Gangetic alluvial plains of India in the south, and are formed from Quaternary fluvial sedimentation
(Figs. 2 and 3). The Terai region also serves as the source of sediment and solute for many of the north
Indian rivers. Almost half of the population of Nepal resides in this region. The unconfined, Quaternary
aquifers, which are on the order of ∼300 m thick, are exploited by almost a million tubewells. These
wells supply water to about 90% of the residents of the Terai. The groundwater systems in fractured
basement aquifers are mostly replenished from precipitation during monsoon time (Andermann et al.,
2012), which eventually discharge through numerous mountain springs (Fig. 1 and Table 1). More
than 98% of the groundwater withdrawal is associated with irrigation in the country (FAO, 2013).
Arsenic contamination in groundwater is a critical health issue in densely populated southern region
of the country (Thakur et al., 2010). Most of the aquifers associated with the rivers flowing through
the Siwalik Hills in the Himalayan piedmonts are found to be As enriched (Mukherjee et al., 2009b)
possibly from baseflow.

1.5. Pakistan

The river Indus and its five major tributaries (Jhelum, Chenab, Ravi, Beas and Sutlej) form the major
fluvial system of Pakistan which hosts the most exploited aquifers of the country (Figs. 2 and 3). The
Indus river basin covers ∼65% of the land area in the country (FAO, 2015). The Indus alluvial aquifers of
Punjab and Sindh provinces in Pakistan are of Quaternary age, and are similar to the Gangetic alluvial
systems of India and Bangladesh. The sediments of the plain have their provenance in the western
Himalayas, transported by the River Indus and its tributaries. The alluvial deposits are widespread and
thick, mostly forming unconfined aquifers with fresh groundwater (Mukherjee et al., 2009b). The area
also differs in having a more arid climate and greater proportion of Pleistocene aquifers. Two-thirds
of the total precipitation occurs within three months, July to September.

The climate is characterized as semi-arid to arid, with low to very low annual precipitation. Aver-
age annual precipitation ranges from less than 100 mm to over 750 mm in parts of the lower Indus
plain and upper Indus plain near the foothills, respectively (Fig. 1 and Table 1). More than 20 mil-
lion ha land was cultivated in 2009 (FAO, 2015). Groundwater withdrawals for irrigation amount
to ∼94% of the total water demand (FAO, 2013). Rapid agriculture demand requires accelerated
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groundwater abstraction which is taking place through more than 500,000 tubewells in the country
(Kahlown and Majeed, 2003). The North West frontier province has experienced groundwater level
declines associated with intense groundwater withdrawals, and also effected by high groundwater
salinity (>3000 mg/L). In contrast to the Ganges–Brahmaputra basin aquifers, the Indus basin aquifers
are relatively oxic. Availability of high amount of nitrate in groundwater facilitates the pathogenic pol-
lution in the groundwaters around the cities of Karachi, Lahore, Rawalpindi and Islamabad (Chilton
et al., 2001). High concentrations of dissolved fluoride are also observed in groundwater in Punjab,
Sindh and Baluchistan (Tariq, 1981). Groundwater in the recent alluvial and deltaic aquifers of Indus
plain, specifically in Punjab and Sindh regions have been reported to be widely contaminated with As
(Smedley, 2005).

1.6. Sri Lanka

As an island in the Indian Ocean, Sri Lanka is physically disconnected from landmass of the other
countries of the ISC. Consequently, it does not share any transboundary aquifer with any of the other
ISC countries. It features a seasonally humid climate dominated by the South-West monsoon season
extending from May to September (FAO, 2015) (Fig. 1 and Table 1). Sri Lanka has 103 distinct river
basins, covering 90% of the total land area (FAO, 2015). The country has similar geologic formation (and
aquifers) like southern parts of India, ∼90% of the sub-surface area of the country is composed of crys-
talline, metamorphic rocks of Precambrian age. The remainder is underlain by disconnected, Miocene
limestone and Quaternary sedimentary deposits (Cooray, 1984) (Figs. 2 and 3). The weathered sedi-
ments, generated from crystalline formations, exist at variable depths (<10–35 m) owing to favorable
weathering conditions (Dharmagunewardene, 2003). Six types of aquifers are found in the country
e.g. shallow karstic aquifers, deep confined sandstone and Miocene limestone aquifers, shallow Qua-
ternary coastal sand aquifers, alluvial aquifers of variable depths, confined or semi-confined lateritic
aquifers and the shallow regolith aquifers (Panabokke, 2001). Total cultivated area in the country
exceeds 2 million ha (FAO, 2015). Intensive irrigation relies upon groundwater with the vast majority
(87.4%) of withdrawals associated with agriculture (FAO, 2013). Rapid development of groundwater
facilitated by advanced drilling techniques and low-cost pumps has led to large-scale groundwater
depletion (Senaratne, 2002). Intensive groundwater use has led to seawater intrusion in regions ampli-
fying the salinity of groundwater (Rajasooriyar et al., 2002). Nitrate contamination of groundwater is
also a serious groundwater pollution issue in some of the areas, where an effective sanitation system
is absent (Villholth and Rajasooriyar, 2010).

2. Section 2: layout of the special issue

In light of substantial interest in water resources and hydrology of specific regions, the Journal of
Hydrology: Regional Studies decided to have one of its first special issue to be focused on the ground-
water quality and quantity of the Indian Sub-continent, and invited us (Abhijit Mukherjee, Dipankar
Saha, Charles F. Harvey, Richard G. Taylor and Kazi Matin Ahmed) to serve as the Guest Editors for this
special issue. The articles selected for this special issue focus on recent findings from groundwater
studies of the ISC, broadly on the following themes:

a) Groundwater quantity and exploration
b) Groundwater quality and pollution
c) Groundwater economics, management and policies

2.1. Groundwater quantity and exploration

There are three articles in this section that provides a glimpse of status of available groundwater
resource in parts of the ISC.

The first article of this section by Papa et al. (2015) discusses multi-sensor based measurements
to estimate the surface freshwater storage (SWS) and subsurface water storage (groundwater + soil
moisture) variations over parts of the Ganges–Brahmaputra river basin and its aquifers. Monthly
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surface water storage variations for the period 2003–2007 show a mean annual amplitude of
∼410 km3, which contributes to ∼45% of satellite-derived total water storage variations. The varia-
tions of groundwater storage were found to have average annual amplitude estimated to be ∼550 km3.
This dataset provides a new insight to the water storage variations in one of the largest fluvial aquifer
system of the world.

The article by Van Steenbergen et al., 2015 describes the groundwater resources in the western
boundary of the ISC, at Balochistan Province Pakistan and how the alluvial aquifer of the Kuchlagh area
experienced groundwater depletion after three decades of intense groundwater abstraction. However,
no active intervention was undertaken by authorities to manage or restore the unsustainable resource.
Rather, the losses of agricultural opportunities were traded with urban employment, switching agri-
cultural bases to other parts of the Province or drilling deep. The authors have described this situation
as a ‘socio-institutional void’ in which the groundwater resource in the study area was drastically
reduced.

The final article in this section by Hameed et al. (2015) discusses the nature and quantity of recharge
in the Chaliyar river basin, Kerala state of India based on isotopic fingerprinting and mass balance.
Spatio-temporal variations in the stable isotope compositions of oxygen were used to delineate surface
water-groundwater interactions, thus to estimate the groundwater recharge from river water in the
studied water-shed. The oxygen isotope conditions were found to be effective to quantify the variation
of volume of recharge from rainfall in the various physiographic parts of the watershed. The variation
of isotopic composition across the seasons for groundwater was found to be rather limited than that
of river water.

2.2. Groundwater quality and pollution

Five articles are selected for this section, which deals with studies of description of groundwater
quality, evolution of groundwater chemistry and geogenic pollution with natural contaminants like
arsenic (As), fluoride (F−), manganese (Mn).

The first article in this section by Diwakar et al. (2015) examines the mechanisms of As, F and Mn
mobilization in the Terai plains in vicinity of the Siwalik Hills within the piedmonts of the Himalayas
in Nepal. The Ca-HCO3 type groundwater was found to be polluted with As, Mn and F in 80%, 70% and
40% of the samples. Hyporheic-zone reductive processes produce baseflow enriched in As, Fe, F and Mn
to the streams. The authors suggest that the geochemical conditions of the groundwater regime are
indicative of oxidation of organic matter, precipitation of authigenic Fe minerals, along with microbial
mediated reductive processes as important As mobilizing mechanisms.

In the second article, Machiwal and Jha (2015) conduct spatio-temporal variations of groundwater
quality schematic plots and multivariate statistical analyses coupled to GIS-based groundwater quality
index analyses. The authors note that cluster analyses were able to identify the control on modification
or degeneration of groundwater quality by water–rock interactions and rainfall recharge. The spatial
distribution of the solutes is suspected to be affected by anthropogenic processes. They show that
major-ion and soil leaching pollution factors govern overall evolution of geochemical processes in
their study area.

The presence of elevated concentrations of aqueous fluoride in the crystalline aquifers of the ISC
is a widely discussed groundwater quality issue. Hallet et al. (2015) assess the distribution of fluoride
across eight crystalline phases and between the bedrock and the regolith at eleven sites in three
catchments at the Maheshwaram and Waipally of Andhra Pradesh state of India, and the Plonnaruwa
of north-central parts of Sri Lanka. Partial or total erosion of the primary fluoride-bearing bedrock
minerals and consistent depletion of F in the remnant minerals result in reduced total F content in
the regolith and a consequent increase in groundwater concentrations. Laboratory experiments and
field relationships in this study indicate a greater potential for F mobilization to groundwater from
the regolith than the bedrock.

Verma et al. (2015) provide an account of chemical evolution of groundwater and geomorphic
influences on As distribution in the tectonic-controlled, fluvial aquifers that extend from the foothills
of the eastern Himalayas to the Brahmaputra river valley in the northeastern parts of India. The
authors identified four different geomorphologic units in the study area and found out that, unlike
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the aquifer along the River Ganges, groundwater residing in the older aquifers of the Brahmapu-
tra river basin is more prone to As pollution. They conclude that while reductive dissolution of
metal-oxide/hydroxide reduction are dominant mechanism of As mobilization, other metal dissolution
processes e.g. ion-exchange and pH-dependent desorption may have also influenced groundwater As
enrichment.

In the final article of this section by Mahanta et al. (2015) examined the origin, distribution and
processes of As release by investigating the salient groundwater chemistry and subsurface sedi-
mentological characteristics in low-industrialized areas of Brahmaputra floodplains in Assam, India.
The authors concluded that considering the absence of anthropogenic sources in the study area,
the causes for As release to groundwater in the study area appear to be natural and influenced by
redox-dependent dissolution, although As release and fate in specific locations are also influenced by
advection–dispersion transport and retardation along groundwater flow.

2.3. Groundwater economics, management and policies

Three articles selected for this section outline general groundwater management strategies of India
and Pakistan, along with detailed discussion on the densely populated and severely groundwater
stressed Delhi region.

The first article by Kulkarni et al. (2015) highlights the requirement of development of a robust
groundwater governance framework for a highly groundwater-dependent country like India. The
authors describe the groundwater typology of an area as a combined function of hydrogeological
aspects and socio-economic influences that defines dependency on groundwater resources. Ground-
water management using ‘aquifer-based, common pool resource’ approaches is becoming popular
in India. The authors stress that participation at all levels is important in management decisions as
well as in the development of a governance framework. Developing a regulatory framework, which
supports protection of the resource and promotes the good practices of participatory groundwater
management, is essential for groundwater governance.

Watto and Mugera (2015), in the second article in this section, provide an econometric estima-
tion of groundwater irrigation efficiency of cotton cultivation farms in parts of Punjab province in
Pakistan. This study estimates irrigation water-use efficiency of groundwater irrigated cotton farms
in the study area. The authors define water-use efficiency based on water conveyance efficiency,
efficiency in water application at the farm and the amount of water actually utilized by the crop
compared to the amount of water supplied to that crop. Hence, these irrigation water efficiency cal-
culations have integrated hydrological principles with economic pragmatism that is an essential tool
to improve irrigation efficiencies.

In the final article of this special issue, Shekhar et al. (2015) discusses an interesting hydrogeolog-
ical scenario, where the densely populated north district of Delhi in India is having a groundwater
surplus zone, in stark contrast to the groundwater-stressed, over-exploited aquifers in the vicinity.
The surface runoff and flood waters during monsoon season in the district either causes water logging
in lower elevation areas or they join drains and rivers as rejected recharge. The present study tries to
understand the groundwater dynamics in three distinct hydrogeological domains of the region. The
authors also decipher the geochemical conditions that lead to deterioration of groundwater quality of
the area. Based on this physical and chemical groundwater dynamics information, the authors propose
groundwater management techniques for the study area involving the viability of limited dewatering
of shallow aquifers and its replenishment by enhanced recharge from surface runoff and flood waters
during the monsoon period have been established.

The above-noted 11 articles, selected in this special issue, illustrate studies of groundwater quan-
tity and exploration from basin-scale to watershed-scale, discuss groundwater chemical evolution
and pollution in the tectonic-controlled, porous fluvial aquifers to crystalline Himalayan or Cratonic
aquifers, and finally discuss emerging groundwater management and policy development strate-
gies. Hence, this special issue should be of much interest to scientists, planners and policy makers,
who are interested to further explore and understand the vulnerable groundwater resource of the
ISC.
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