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Biorthogonality of the Lagrange interpolants
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Abstract

We show that the Lagrange interpolation polynomials are biorthogonal with respect to a set of rational
functions whose poles coincide with interpolation points.
c© 2003 Elsevier B.V. All rights reserved.
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The Newton–Lagrange interpolation is a well-known problem in elementary calculus. Recall basic
facts concerning this problem [2,5].
Let Ak; k = 0; 1; 2; : : : and ak ; k = 0; 1; 2; : : : be two arbitrary sequences of complex numbers (we

assume that all ak are distinct ak �= aj if k �= j. By interpolation polynomial we mean a n-degree
polynomial Pn(z) whose values at points a0; a1; : : : ; an coincide with A0; A1; : : : ; An, i.e.

Pn(ak) = Ak; k = 0; 1; 2; : : : ; n: (1)

Usually, the parameters Ak are interpreted as values of some function F(z) at <xed points ak , i.e.,

Ak = F(ak): (2)

In this case polynomials Pn(z) interpolate the function F(z) at points ak .
Explicit expression for interpolation polynomial Pn(z) can be presented in two forms. In the

Newtonian form we have [2,5]

Pn(z) =
n∑
k=0

[a0; a1; : : : ; ak]!k(x); (3)

E-mail address: zhedanov@yahoo.com (A. Zhedanov).

0377-0427/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.01.030

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82348492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:zhedanov@yahoo.com


2 A. Zhedanov / Journal of Computational and Applied Mathematics 172 (2004) 1–6

where

!0 = 1; !k(x) = (x − a0)(x − a1) : : : (x − ak−1)

and [a0; a1; : : : ; ak] denotes the kth Newtonian divided diBerence which is de<ned as

[a0] = A0; [a0; a1] =
A1 − A0
a1 − a0 ; : : : ; [a0; a1; : : : ; ak] =

k∑
s=0

As
!′
k+1(as)

;

where

!′
k+1(as) = (as − a1)(as − a2) : : : (as − as−1)(as − as+1) : : : (as − ak) =

k∏
i=0; i �=s

(as − ai):

If representation (2) holds where F(z) is a meromorphic function then the Hermite formula is
useful [2]

[a0; a1; : : : ; ak] = (2�i)−1
∫
�

F(�) d�
!k+1(�)

; (4)

where the contour � in complex plane is chosen such that points a0; a1; : : : ; ak lie inside the contour
whereas all singularities of the function F(z) lie outside the contour.
In the Lagrangian form we have [2,5]

Pn(z) = !n+1(z)
n∑
k=0

Ak
(z − ak)!′

n+1(ak)
: (5)

Introduce the monic interpolation polynomials P̂n(z) = Pn(z)=�n, where

�n = [a0; a1; : : : ; an]:

In what follows, we will assume that �n �= 0 for all n = 1; 2; : : : . This condition guarantees that
polynomials Pn(z) are indeed of the nth degree. It is easily seen that Pn(z) = zn + O(zn−1). For
polynomials P̂n(z) one has the recurrence relation [3]

P̂n+1(z) =
(
z − an + �n

�n+1

)
P̂n(z) − �n−1

�n
(z − an)P̂n−1(z) (6)

with the initial conditions

P̂−1 = 0; P̂0(z) = 1: (7)

It is clear that the set of monic interpolation polynomials P̂0; P̂1(z); : : : ; P̂n(z); : : : does not belong to
a set of orthogonal polynomials (OP), because OP satisfy 3-term recurrence relations of the form
[6]

Pn+1(z) + bnPn(z) + unPn−1(z) = zPn(z) (8)

which does not have the form (6).
Nevertheless, recurrence relation (6) belongs to the so-called RI -type recurrence relations (in

terminology of [4]). It was shown in [4] that polynomials satisfying RI -type relations possess some
orthogonality property. In our case this orthogonality property is well known [5]:
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Lemma 1. Polynomials P̂n(z) satisfy formal orthogonality relation

Inj = (2�i)−1
∫
�

�jP̂n(�) d�
!n+1(�)F(�)

=
�nj
�n
; j = 0; 1; : : : ; n; (9)

where the contour � encompasses points a0; a1; : : : ; aN with N¿ n and all singularities of the
function 1=F(z) lie outside the contour.

For the proof it is suJcient to note, that under conditions upon choice of the contour �, the
intergral can be presented as a sum of residues

Inj =
n∑
s=0

ajsP̂n(as)
As!′

n+1(as)
=

n∑
s=0

ajs
�n!′

n+1(as)
; (10)

where we used interpolation property (1). Hence, in integral (9) one can replace Pn(�)=F(�) = 1=�n
and we have

Inj = (2�i)−1
∫
�

�jd�
�n!n+1(�)

= 0; j = 0; 1; : : : ; n− 1;

because the value of the integral from pure rational function does not depend on choice of the
contour � (provided that all poles of the function lie inside the contour) and we can choose � as
a circle of a great radius. For j = n we have analogously

Inn = (2�i)−1
∫
�

�nd�
�n!n+1(�)

= (2�i)−1
∫
�

d�
�n�

= 1=�n:

As was shown in [7,8], polynomials of RI type possess not only orthogonality of the form (9) but
also nice biorthogonality property with respect to some set of rational functions.

In order to derive this biorthogonality property in our case, we construct auxiliary polynomials

Tn(z) = P̂n+1(z) − (z − an+1)P̂n(z): (11)

Clearly, degree of these polynomials 6 n. More exactly,

Tn(z) = �nzn +O(zn−1);

where

�n = an+1 − an + �n
�n+1

− �n−1

�n
: (12)

In what follows we will assume that �n �= 0. This means that degree of Tn(z) is n and it is possible
to introduce monic polynomials

T̂ n = Tn(z)=�n = zn +O(zn−1): (13)

We have

Theorem 1. Let P̂n(z) be Lagrange interpolation polynomials for the function F(z) and T̂ n(z)
de4ned by (11) and (13). De4ne a set of rational functions

Vn(z) =
T̂ n(z)
!n+2(x)

: (14)
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Then Lagrange interpolation polynomials P̂n(z) and functions Vn(z) form a biorthogonal system in
the following sense:∫

�

P̂n(�)Vm(�) d�
F(�)

= �−1
n �nm; (15)

where the contour � should be chosen such that interpolation points a0; a1; : : : ; aN lie inside the
contour (N¿max(n; m+ 1)), and the function 1=F(z) is regular inside and on the contour.

Proof. Assume <rst that m¡n− 1. Then we have, obviously∫
�

P̂n(�)Vm(�) d�
F(�)

=
∫
�

P̂n(�)T̂ m(�)(z − am+2)(z − am+3) : : : (z − an) d�
!n+1(z)F(�)

=
∫
�

P̂n(�)qn−1(z) d�
F(�)

= 0; (16)

where qn−1(z) is a polynomial of degree6 n−1 and in the last equality in (16) we used orthogonality
property (9).

If m= n− 1 then∫
�

P̂n(�)Vn−1(�) d�
F(�)

=
∫
�

P̂n(�)T̂ n−1(�) d�
!n+1(z)F(�)

= 0

again by (9).
If m¿n then we can write down∫

�

P̂n(�)Vm(�) d�
F(�)

=
∫
�

P̂n(�)(P̂m+1(�) − (�− am+1)P̂m(�)) d�
!m+2(�)F(�)

=
∫
�

P̂n(�)P̂m+1(�) d�
!m+2(�)F(�)

−
∫
�

P̂n(�)P̂m(�) d�
!m+1(�)F(�)

= 0

because both terms in the last relation vanish due to (9) for n¡m.
Finally, consider the case m= n. We have∫

�

P̂n(�)Vn(�) d�
F(�)

=
∫
�

P̂n(�)T̂ n(�) d�
!n+1(�)F(�)

=
∫
�

P̂n(�)P̂n+1(�) d�
!n+2(�)F(�)

−
∫
�

P̂2n(�) d�
!n+1(�)F(�)

=
∫
�

P̂2n(�) d�
�n!n(z)

= 1=�n:

The theorem is proven.

The biorthogonality property can be rewritten in another form
N∑
s=0

lim
z=as

((z − as)Pn(z)Vm(z))=As = �nm=�n; (17)

where N is any positive integer such that N¿max(n; m+ 1).
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This result allows one to <nd coeJcients !k in expansion of a given polynomial Q(z) of degree
n in terms of interpolation polynomials Pn(z)

Q(z) =
n∑
k=0

!kP̂k(z):

Indeed, from (17) we have

!k = (2�i)−1�k

∫
�
Q(�)Vk(�) d�: (18)

Consider an example. For the exponential function F(z)= exp(hz) (with an arbitrary nonzero real
parameter h) choose uniform grid of the interpolation points ak=k;=0; 1; : : : : We then have (cf. [3])

Pn(z) =
n∑
k=0

(−z)k
k!

(1 − eh)k ; (19)

where (b)k = b(b+ 1) : : : (b+ k − 1) is the Pochhammer symbol. From (19) it is found

�n =
(eh − 1)n

n!
: (20)

Construct auxiliary polynomials Tn(z) = P̂n+1(z) − (z − an+1)P̂n(z). For the leading coeJcient �n of
the polynomials Tn(z) = �nzn +O(zn−1) we have from (12) and (20)

�n =
eh

eh − 1
�= 0:

So polynomials Tn(z) are indeed of degree n and for monic polynomials T̂ n(z) = Tn(z)=�n it is not
diJcult to obtain a rather attractive closed formula

Tn(z) =
(n+ 1)!
(eh − 1)n 2

F1

( −n;−z
−1 − n ; 1 − eh

)
: (21)

Thus for rational corresponding rational functions Vn(z) we have from (14)

Vn(z) =
(n+ 1)!

(1 − eh)n(−z)n+2
2F1

( −n;−z
−1 − n ; 1 − eh

)
: (22)

Using standard transformation formulas for the Gauss hypergeometric function [1], we can present
the functions Vn(z) in a slightly diBerent form

Vn(z) =
1

(1 − eh)nz(z − 1)2
F1

( −n;−z
2 − z ; eh

)
: (23)

Thus rational functions Vn(z) form a biorthogonal set with respect to the Lagrangian interpolation
polynomials (19):∫

�
Pn(�)Vm(�) exp(−h�) d�= �nm; (24)

where � is an arbitrary contour containing the points 0; 1; : : : ;max(n; m+ 1) inside.
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Note <nally, that recurrence relation (6) completely characterizes the Lagrange interpolation poly-
nomials Pn(z). More exactly, we have the

Theorem 2. Assume that a set of monic nth degree polynomials P̂n(z) satis4es recurrence relation
(6) with initial conditions (7), where parameters �n; an; n=0; 1; : : : are arbitrary with the restrictions
that all ai are distinct: ai �= aj, for i �= j and all �n are nonzero �n �= 0; n=0; 1; : : :. Then polynomials
Pn(z)=�nP̂n(z) satisfy interpolation condition Pn(ak)=Ak; k=0; 1; : : : ; n for all n=0; 1; : : : , where

An = Pn(an) =
n∑
s=0

�s!s(an); n= 0; 1; 2; : : : : (25)

Proof. From recurrence relation (6) and initial conditions (7) it can be easily found

P̂n+1(z) − �n
�n+1
P̂n(z) = !n+1(z); n= 0; 1; : : : : (26)

Hence for Pn(z) = �nP̂n(z) we have the conditions

Pn+1(ak) = Pn(ak); k = 0; 1; : : : ; n; n= 0; 1; 2; : : :

From these relations, by induction, we obtain

Pn(ak) = Pk(ak) = Ak; k = 0; 1; : : : ; n:

Thus interpolation conditions are ful<lled. Expression (25) for Ak follows then from Newton formula
(3).
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