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a b s t r a c t

We study geometric properties of certain obstructed equisingular families of projective
hypersurfaces with quasihomogeneous singularity with emphasis on smoothness,
reducibility, being reduced, and having expected dimension.
In the case of minimal obstructedness, we give a detailed description of such families

corresponding to quasihomogeneous singularities.
Next we study the behavior of these properties with respect to stable equivalence of

singularities.
We show that under certain conditions, stabilization of singularities ensures the

existence of a reduced component of expected dimension. For minimally obstructed
families the whole family becomes irreducible.
As an application we show that if the equisingular family of a projective hypersurface

H has a reduced component of expected dimension then the deformation of H induced by
the equisingular family |H| is complete with respect to one-parameter deformations.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The study of equisingular families of algebraic curves and hypersurfaces with given invariants and given set of
singularities is an old, but still attractive and widely open problem. Already at the beginning of the 20th century, the
foundation was made in the works of Plücker, Severi, Segre and Zariski. Later the theory of equisingular families has been in
focus of the numerous studies by algebraic geometers and has found important applications in singularity theory, topology
of complex algebraic curves and surfaces, and in real algebraic geometry.
This paper is devoted to the study of the so-called obstructed families of projective hypersurfaces, of a given degree,

having one isolated singularity of prescribed type.
Let Σ be a smooth projective variety over the complex field C. Let D be an ample divisor on Σ . Denote by V =

V|D|(S1, . . . , Sr) the set of hypersurfaces in the linear system |D| having r singular points of analytic types S1, . . . , Sr (as
their only singularities). One knows that V|D|(S1, . . . , Sr) can be identified with a (locally closed) subscheme (‘‘equisingular
stratum’’) in the Hilbert scheme of hypersurfaces onΣ . The main questions concerning this space are

• Existence problem: Is V|D|(S1, . . . , Sr) non-empty, that is, does there exist a hypersurface F ∈ |D|with the given collection
of singularities?
• Smoothness problem: If V|D|(S1, . . . , Sr) is non-empty, is it smooth?
• Dimension problem: If V|D|(S1, . . . , Sr) is non-empty, does it have the ‘‘expected’’ dimension (expressible via local
invariants of the singularities)?
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• Irreducibility problem: Is V|D|(S1, . . . , Sr) irreducible?
• Versality problem: Is the deformation of the multisingularity of a hypersurface H ∈ V|D|(S1, . . . , Sr) induced by the linear
system |D| versal (see Section 2.2.1)?

If V|D|(S1, . . . , Sr) is non-empty, smooth and has expected dimension, it is said to be ‘‘T-smooth’’. It is known that in this
case the deformation induced by |D| is versal.
The case of plane nodal curves has been settled completely. In 1920, Severi gave answers to the first three questions:

there exists an irreducible plane curve of degree d having n nodes as their only singularities if and only if

0 ≤ n ≤
(d− 1)(d− 2)

2
.

Furthermore, if V irrd (n ·A1) is non-empty, then it is smooth of the expected dimension
d(d+3)
2 −n. In 1985, Harris proved that

V irrd (n · A1) is irreducible.
Already in the case of curves with nodes and cusps there is no complete answer. Segre [1,2] gave an example of an

equisingular stratum of such curves (having 6m2 cusps as their only singularities) which has a component of non-expected
dimension. Zariski [3] gave the first example of a reducible equisingular stratum (of sextic curves with 6 cusps). Finally,
Wahl [4] gave the first example of a non-smooth equisingular stratum (of curves of degree 104 having 3636 nodes and
900 cusps). Some other examples can be found in [5–8].
So far, the main effort in the study of equisingular families has been concentrated on obtaining criteria for the

T-smoothness. In turn, the obstructed (i.e., non-T-smooth) equisingular families and non-versal deformations have not been
studied systematically.
The deformation theory leads to the following result: Suppose that h1(OΣ (D)) = 0. Then the variety V|D|(S1, . . . , Sr) is

T-smooth at H ∈ V|D|(S1, . . . , Sr) if and only if

h1(JZea(H)/Σ (H)) = 0,

where Z ea(H) is a certain zero-dimensional scheme and JZea(H)/Σ (H) is its defining ideal (see precise definition in
Section 2.1.6). In our research we focus on the minimal obstructedness case, i.e. h1(JZea(H)/Σ (H)) = 1.
One of the interesting recent examples is due to du Plessis and Wall [9]:

Example 1.1. (a) For any d ≥ 5 the curve C ⊂ P2 given by the equation (xd1 + x
5
2x
d−5
0 + x

d
2 = 0) has a unique singular point

z = (0 : 0 : 1)with Tjurina number τ(C, z) = 4d− 4, and satisfies

h1(JZea(C)/P2(d)) > 0

(b) Denote by S the analytic type of the plane curve singularity (C, z) in (a). If d ≥ 10 then the family Vd(S) is singular at C .

In [10] this example has been generalized and studied in detail. The following result has been obtained:

Example 1.2. Let C be a projective plane curve, given in local coordinates x = x1
x0
, y = x2

x0
by the equation xk + yl = 0.

Suppose for convenience k ≥ l. Let d = k + l − 5 and let Vd,C (S) be the germ at C of the equianalytic family of plane
curves Vd(S), where S is the analytic type of the plane curve singularity (C, z). For any k, l ≥ 5 such that d > 5, Vd,C (S) is
non-T-smooth and h1(JZea(C)/P2(d)) = 1.
Furthermore

(i) If d = 6 (i.e. l = 5, k = 6), the germ V6,C (S) is non-reduced. It is a double [V6,C (S)]red, and [V6,C (S)]red is smooth of
expected codimension.

(ii) If d = 7 (i.e. l = 5, k = 7 or k = l = 6), the germ V7,C (S) is reducible and decomposes into two smooth
components of expected codimension that intersect non-transversally with multiplicity one. The intersection locus
is smooth. Moreover, the sectional singularity is of type A1.

(iii) If d ≥ 8, the germ Vd,C (S) is a reduced irreducible non-smooth variety of expected codimension which has a smooth
singular locus with sectional singularity of type A1.

1.1. Main results and methods

The first result of this paper is a generalization of Example 1.2 to quasihomogeneous hypersurface singularities in Pn. In
particular we have obtained a new example of a smooth equisingular family of non-expected dimension: V3,H(S) where H
is given by the local equation x3 + y3 + z3 + w3 = 0. For precise formulation see Theorem 3.1.
The next question that naturally arose was the behavior of these geometric properties of equianalytic families, with

respect to the stabilization of the singularities.We found out that though stabilization preserves both the Tjurina algebra and
h1(JZea(H)/Pn(H)), it can change the geometry of the equianalytic family radically.Wehave shown that for anyhypersurfaceH
of degree d satisfying h1(JZea(H)/Pn(2d−2)) = 0, after adding enough squares the obtained family has a reduced component
of expected dimension. We have also shown that the condition h1(JZea(H)/Pn(2d − 2)) = 0 always holds for plane curves.
For precise formulation see Theorem 3.3.
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The next result is concerned with deformation theory. Suppose that the germ of the equianalytic family has a reduced
irreducible component of expected dimension. In this case the family is T-smooth at every of its regular points which lies in
that component. It means that our singular hypersurface H has a deformation X→ T such that for t 6= t0 the deformation
of Xt induced by the linear system |H| is versal. We show that this implies that the deformation of H induced by the linear
system |H| is 1-complete (see Section 2.2 for precise definition). For precise formulation see Theorem 3.5.
The methods that we use are the technique of cohomologies of ideal sheaves of zero-dimensional schemes associated

with analytic types of singularities, methods for their calculation, and H1-vanishing theorems. We also use the algorithms
of computer algebra (see [11]) as a technical tool in the proof of the theorems.

The structure of the paper

This paper is organized in the following way. Section 2 is dedicated to the formulation of the necessary notions and
background.
In Section 2.1 we introduce the notions of singularity theory such as analytic singularity types, quasihomogeneous

singularities, zero-dimensional schemes associatedwith singularities and the Castelnuovo function. Themain theorems
of this section are the Mather–Yau theorem (Theorem 2.5), finite determinacy theorem (Theorem 2.8), Theorem 2.16
on quasihomogeneous singularities, Theorem 2.17 on semiquasihomogeneous polynomials, Theorem 2.21 which gives
cohomological criteria of T-smoothness, and Lemmas 2.25 and 2.26 on the Castelnuovo function.
In Section 2.2 we introduce the notions of deformation theory such as complete and versal deformations. The most

important statement for us in this section is Corollary 2.35 on versality of the deformation induced by a complete linear
system.
In Section 2.3we introduce notions and algorithms of computer algebra. Themost important notions for us are the notion

of normal form and the RedNFBuchberger algorithm for its computation.
In Section 3 we formulate our main results. The first result deals with equianalytic families of hypersurfaces with

quasihomogeneous singularities of minimal obstructedness. The second result is about stable properties of obstructed
equianalytic families. In Section 3.1 we give an application of the obtained results to the deformation theory.
In Section 4 we prove the theorem on families of hypersurfaces with quasihomogeneous singularities of minimal

obstructedness.
In Section 5 we prove the theorem on stable properties of obstructed equianalytic families.

2. Preliminaries and notations

2.1. Notions of singularity theory

In this section we describe the types of isolated hypersurface singularities considered throughout the paper.

2.1.1. Analytic types of hypersurface singularities

Definition 2.1. Let Σ be an n-dimensional smooth projective variety. Two germs (F , z) ⊂ (Σ, z) and (G, w) ⊂ (Σ, w)
of isolated hypersurface singularities are said to be analytically equivalent if there exists a local analytic isomorphism
(Σ, z)→ (Σ, w)mapping (F , z) to (G, w). The corresponding equivalence classes are called analytic types.

Notation 2.2. We denote by C{x1, . . . , xn}, or in short C{x}, the algebra of convergent power series in n variables.

Definition 2.3. Series f , g ∈ C{x} are said to be contact equivalent if there exist an automorphism φ of C{x} and a unit
u ∈ C{x}∗ such that f = u · φ(g). We denote f

c
∼ g .

Note that polynomials f and g are contact equivalent if and only if the corresponding germs (f −1(0), 0) and (g−1(0), 0)
are analytically equivalent.

Definition 2.4. Let S be an analytic type of reduced hypersurface singularities represented by (H, z) ⊂ (Σ, z) and f ∈
C{x1, . . . , xn} be a local equation for (H, z). Define the jacobian of f by j(f ) = 〈 ∂ f∂x1 , . . . ,

∂ f
∂xn
〉. The analytic algebras

Mf := C{x}/j(f ), Tf := C{x}/〈f , j(f )〉

are called theMilnor and Tjurina algebras of f , respectively, and the numbers

µ(S) = µ(H, z) := dimCMf , τ (S) = τ(H, z) := dimC Tf

are called theMilnor and Tjurina numbers of S, respectively.

The following theorem shows that the Tjurina algebra is a complete invariant of an analytic singularity type.
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Theorem 2.5 (Mather–Yau). Let f , g ∈ m ⊂ C{x}. The following are equivalent:

(a) f
c
∼ g;

(b) for all b ≥ 0, C{x}/〈f ,mbj(f )〉 ∼= C{x}/〈g,mbj(g)〉 as C-algebras;
(c) there is some b ≥ 0 such that C{x}/〈f ,mbj(f )〉 ∼= C{x}/〈g,mbj(g)〉 as C-algebras.

In particular, f
c
∼ g iff Tf ∼= Tg .

Proof. See [12] for the case of an isolated singularity and b = 0, 1 or [13], Theorem 2.26 for the general case.

2.1.2. Finite determinacy
The aim of this section is to show that an isolated hypersurface singularity is already determined by its Taylor series

expansion up to a sufficiently high order.

Definition 2.6. For f ∈ C{x}we define the k-jet of f by

jet(f , k) := f (k) := image of f in C{x}/mk+1.

We identify f (k) with the power series expansion of f up to (and including) order k.

Definition 2.7. f ∈ C{x} is called contact k-determined if for each g ∈ C{x} with f (k) = g(k) we have f
c
∼ g . The minimal

such k is called contact determinacy of f .

Theorem 2.8 (Finite Determinacy Theorem). Let f ∈ m ⊂ C{x}.
f is contact k-determined if mk+1 ⊂ m2 · j(f )+m〈f 〉.

Proof. This theorem is well known. See, for instance, [13], Theorem 2.23.

Corollary 2.9. If f ∈ m ⊂ C{x}, has an isolated singularity with Tjurina number τ , then f is contact τ + 1-determined.

2.1.3. Stable equivalence

Definition 2.10. Let f ∈ C{x1, . . . , xl} and g ∈ C{x1, . . . , xk}. We say that f is stably contact equivalent to g if they become
contact equivalent after addition with non-degenerate quadratic forms of additional variables. In other words,

f (x1, . . . , xl)+ x2l+1 + · · · + x
2
n
c
∼ g(x1, . . . , xk)+ x2k+1 + · · · + x

2
n.

Theorem 2.11. Polynomials of the same number of variables are stably contact equivalent if and only if they are contact
equivalent.

Proof. See, for instance, [14], chapter II section 11.

We will use a more general lemma:

Lemma 2.12. (1) Let f ∈ C{x1, . . . , xn}. Let g = f + x2n+1(1 + h) where h ∈ m ⊂ C{x1, . . . , xn+1}. Then the Tjurina algebra
Tf of f is isomorphic to the Tjurina algebra Tg of g.

(2) Let f1, f2 ∈ C{x1, . . . , xn}. Let gi = fi + x2n+1(1+ hi) , i = 1, 2 where hi ∈ m ⊂ C{x1, . . . , xn+1}. Then f1
c
∼ f2 if and only if

g1
c
∼ g2.

Proof. (1) In Tg ,

0 =
∂g
∂xn+1

= xn+1

(
2+ 2h+ xn+1

∂h
∂xn+1

)
.

Since 2+ 2h+ xn+1 ∂h
∂xn+1

is invertible in Tg , the latter implies xn+1 = 0. Hence Tf is isomorphic to Tg .
(2) Follows from (1) and from the Mather–Yau Theorem 2.5. �
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2.1.4. Quasihomogeneous singularities

Definition 2.13. Let f =
∑

α∈Zn
≥0
aαxα ∈ C[x1, . . . , xn].

(i) The polynomial f is called quasihomogeneous of type

(w; d) = (w1, . . . , wn; d)

ifwi, d are positive integers satisfying

〈w, α〉 = w1α1 + · · · + wnαn = d

for each α ∈ Zn
≥0 with aα 6= 0.

(ii) An isolated hypersurface singularity (H, x) ⊂ (Cn, x) is called quasihomogeneous if there exists a quasihomogeneous
polynomial f ∈ C[x1, . . . , xn] such that OH,x ∼= C{x}/〈f 〉.

Example 2.14. Let f =
∑n
i=1 x

αi
i . Then f is a quasihomogeneous polynomial of type (1/α1, . . . , 1/αn; 1). Such polynomials

are called canonical quasihomogeneous.

Lemma 2.15. Let f ∈ C[x1, . . . , xn] be quasihomogeneous and g ∈ C{x1, . . . , xn} be arbitrary. Then f and g are contact
equivalent if and only if there exists an analytic local diffeomorphism φ that maps g to f .

Proof. Let f be quasihomogeneous of type ((w1, . . . , wn); d). If
c
∼ g then there exists a unit u ∈ C{x}∗ and an automorphism

ψ ∈ AutC{x} such that u · f = ψ(g). Choose a dth root u1/d ∈ C{x}. Now we take

φ : C{x} → C{x}, xi 7→ uwi/d · xi. �

A quasihomogeneous polynomial f of type (w; d) obviously satisfies the relation

d · f =
n∑
i=1

wixi
∂ f
∂xi
,

that implies that f is contained in j(f ), hence, for quasihomogeneous isolated hypersurface singularities µ = τ . For an
isolated singularity the converse also holds. More precisely, K. Saito proved the following theorem.

Theorem 2.16 ([15]). Let f ∈ C{x1, . . . , xn} and suppose that f ∈ j(f ). Then there exists a quasihomogeneous polynomial g and
an analytic local diffeomorphism φ that maps g to f . Moreover, the normalized quasihomogeneity type wd of g is defined uniquely
up to permutation.

We will use the following important theorem:

Theorem 2.17. Let f be a quasihomogeneous polynomial of weighted degree d and g be a polynomial such that the weighted
degrees of all its terms are greater than d. Let e1, e2, . . . , eµ be a system of monomials that forms a basis of the Milnor algebra Mf
of f . Then e1, e2, . . . , eµ form a basis of Mf+g as well. In particular, µ(f + g) = µ(f ).

For a proof see [14], chapter II section 12.2.

Corollary 2.18. Let H be a projective hypersurface defined by a quasihomogeneous polynomial f of weighted degree d. Let VH
denote the germ at H of the equisingular family of H. Let HF ∈ VH be a hypersurface defined by a polynomial F . Suppose that all
the terms of F − f of weighted degree less than or equal to d are elements of a monomial basis of the Milnor algebra of f .
Then F − f has no terms of weighted degree less than or equal to d.

Proof. Decompose F = f + g +
∑r
i=1 λiei, where ei are all the elements of a monomial basis of the Milnor algebra Mf of

weighted degree less than or equal to d, and g has no terms which have weighted degree less than or equal to d. By the
theorem,Mf+g andMf have the same basis, and f belongs to theµ-constant stratum of f +g . Hence F = (f +g)+

∑r
i=1 λiei

belongs to the µ-constant stratum of f + g . On the other hand, by [16], the affine space (f + g)+ Span{ei}ri=1 is transversal
to the µ-constant stratum of f + g and hence

∑r
i=1 λiei = 0. �

2.1.5. Newton polytope

Definition 2.19. Let f =
∑

α∈Zn
≥0
aαxα ∈ C{x}, a0 = 0. The convex hull in Rn of the support of f ,

∆(f ) := conv{α ∈ Zn
≥0 | aα 6= 0},

is called the Newton polytope of f .

If f is quasihomogeneous with weight w of degree d then the Newton polytope ∆(f ) will lie in the hyperplane {α ∈ Zn
≥0 |∑

αiwi = d}. In particular, for a quasihomogeneous polynomial of two variables its Newton polygon is a line segment.
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2.1.6. Zero-dimensional schemes associated with singularities

Definition 2.20. Let Σ be a smooth projective variety and H ⊂ Σ a reduced hypersurface with singular locus Sing(H) =
{z1, . . . , zr}. We define Z ea(H) ⊂ Σ to be the zero-dimensional scheme, concentrated at Sing(H), given by the Tjurina ideals

JZea(H)/Σ,zi =

〈
fi,
∂ fi
∂x1

, . . . ,
∂ fi
∂xn

〉
⊂ OΣ,zi ,

where fi(x1, . . . , xn) is a local equation of H in a neighborhood of zi. We denote by JZea(H)/Σ ⊂ OΣ the corresponding ideal
sheaf.
The degree of Z ea(H) is

deg Z ea(H) =
∑

zi∈Sing(H)

dimCOΣ,zi/JZea(H)/Σ,zi .

Theorem 2.21. Let H ⊂ Pn be a reduced hypersurface of degree d with precisely r singularities z1, . . . , zr of analytic types
S1, . . . , Sr .
(a) H0(JZea(H)/Pn(d))/H0(OPn) is isomorphic to the Zariski tangent space to V|H|(S1, . . . , Sr) at H. Here, H0(OPn) is embedded
into H0(JZea(H)/Pn(d)) via multiplication by the equation of H.

(b) h0(JZea(H)/Pn(d))− h1(JZea(H)/Pn(d))− 1 ≤ dim(V|H|(S1, . . . , Sr),H) ≤ h0(JZea(H)/Pn(d))− 1.
(c) H1(JZea(H)/Pn(d)) = 0 if and only if V|H|(S1, . . . , Sr) is T-smooth at H, that is, smooth of the expected dimension

(
d+n
n

)
−

1− deg Z ea(H).
Proof. See [17].

Lemma 2.22. Let H ⊂ Pn be a hypersurface and Z ⊂ H be a zero-dimensional subscheme. Then H1(JZ/Pn(H)) ∼= H1(JZ/H(H)).
Proof. The lemma follows from the exact sequence of sheaves

0→ JH/Pn(H)→ JZ/Pn(H)→ JZ/Pn(H)⊗ OH → 0,

from the fact that JH/Pn(H) ∼= OPn , which implies H1(JH/Pn(H)) = H2(JH/Pn(H)) = 0, and from JZ/Pn(H)⊗OH ∼= JZ/H(H).

2.1.7. The Castelnuovo function of a zero-dimensional scheme in Pn

Let X ⊂ Pn be a zero-dimensional scheme and JX/Pn ⊂ OPn the corresponding ideal sheaf.

Definition 2.23. The Castelnuovo function of X is defined as

CX : Z≥0 −→ Z≥0
d 7−→ h1(JX/Pn(d− 1))− h1(JX/Pn(d)).

Remark 2.24. Let X ⊂ Pn be a zero-dimensional scheme and H ⊂ Pn be a generic hyperplane not passing through the
support of X . Then we have an exact reduction sequence

0 −→ JX/Pn(d− 1) −→ JX/Pn(d) −→ OH(d) −→ 0,

respectively the corresponding exact cohomology sequence

H0(JX/Pn(d− 1))
πH
−→H0(OH(d)) −→ H1(JX/Pn(d− 1)) −→ H1(JX/Pn(d)) −→ 0.

In particular,

CX (d) = h0(OH(d))− dimC πH(H0(JX/Pn(d))).

We associate to X the numbers
a(X) = min{d ∈ Z| h0(JX/Pn(d)) > 0}

b(X) = min{d ∈ Z| P(H0(JX/Pn(d))) has no fixed component}

t(X) = min{d ∈ Z|H1(JX/Pn(d)) = 0}.
Here, a fixed component is a divisorD such that every element of the linear system |H0(JX/Pn(d))| containsD as a component.
We call the maximal divisor satisfying this property the fixed component of |H0(JX/Pn(d))|. The following lemma contains
some basic properties of the Castelnuovo function.

Lemma 2.25. Let X ⊂ Pn be a zero-dimensional scheme and H ⊂ Pn be a generic hyperplane not passing through the support
of X. Then
(a) CX (d) ≥ 0 for all d, and CX (d) = 0 for d� 0.
(b) CX (d) ≤ h0(OH(d)), with equality if and only if d < a(X).
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(c) a(X) ≤ b(X) ≤ t(X)+ 1.
(d) CX (d) = 0 if and only if d ≥ t(X)+ 1.
(e) If Y ⊆ X then CY (d) ≤ CX (d).
(f) CX (0)+ CX (1)+ · · · + CX (d) = deg X − h1(JX/Pn(d)).

Proof. See [18] for curves or [19] for hypersurfaces.

Lemma 2.26. Let Z = Cd ∩ Ck be the intersection of two plane curves Cd, Ck of degrees d and k without common components.
Suppose k ≤ d. Then

CZ (i) ≤ k for i ≥ 0, and CZ (d+ k− j) = j− 1 for j = 1, . . . , k+ 1.

Proof. See e.g. [20], Lemma 5.4.

2.2. Some notions of the local deformation theory

Definition 2.27. Let (X, x) and (S, s) be complex space germs. A deformation of (X, x) over (S, s) consists of a flat morphism
φ : (X , x)→ (S, s) of complex space germs togetherwith an isomorphism from (X, x) to the fiber ofφ, (X, x)→ (Xs, x) :=
(φ−1(s), x).
(X , x) is called the total space, (S, s) the base space, and (Xs, x) ∼= (X, x) the special fiber of the deformation. We denote

a deformation by

(i, φ) : (X, x)
i
↪→(X , x)

φ
→(S, s),

or simply by (X , x)
φ
→(S, s).

Definition 2.28. Let (i, φ) : (X, x)
i
↪→(X , x)

φ
→(S, s) and (i′, φ′) : (X, x)

i
↪→(X ′, x′)

φ′

→(S ′, s′) be two deformations of (X, x).
A morphism of deformations from (i, φ) to (i′, φ′) consists of two morphisms (ψ, ϕ) such that the following diagram is
commutative

(X, x)

i′ ↙ ↘ i

(X ′, x′)
ψ
−→ (X , x)

φ′ ↓ ↓ φ

(S ′, s′)
ϕ
−→ (S, s)

Two deformations over the same base are isomorphic if there exists a morphism (ψ, ϕ)with ψ an isomorphism and ϕ the
identity map.

Definition 2.29. Let (i, φ) : (X, x)
i
↪→(X , x)

φ
→(S, s) be a deformation of (X, x) and ϕ : (T , t) → (S, s) be a morphism of

germs. Denote by ϕ∗(X , x) the fiber product (X , x)×(S,s)(T , t). We call

ϕ∗(i, φ) := (ϕ∗i, ϕ∗φ) : (X, x)
ϕ∗ i
↪→ϕ∗(X , x)

ϕ∗φ
→(T , t)

the deformation induced from (i, φ) by ϕ, or just pull-back; ϕ is called the base change map.

Proposition 2.30. Let (X, 0) ⊂ (Cn, 0) be a closed subgerm. Then any deformation (i, φ) : (X, x)
i
↪→(X , x)

φ
→(S, s) can be

embedded. In other words, there exists a Cartesian diagram

(X, 0)
i
↪→ (X , x)

↓ ↓ J

(Cn, 0)
j
↪→ (Cn, 0)× (S, s)

↓ ↓ p

{s} ↪→ (S, s)
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where J is a closed embedding, p is the second projection, j is the first inclusion and φ = p ◦ J . In particular, the embedding
dimension is semicontinuous under deformations, that is, edim(φ−1(φ(y)), y) ≤ edim(X, 0), for all y in X sufficiently close
to x.

Proof. See [13], Corollary II.1.6.

2.2.1. Versal and complete deformations
A versal deformation of a complex space germ is a deformation which contains basically all information about any

possible deformation of this germ. More precisely, we say that a deformation (i, φ) of (X, x) over (S, s) is complete if any
other deformation over some base space (T , t) can be induced from (i, φ) by some base change ϕ : (T , t) → (S, s). A
complete deformation is called versal if for any deformation of (X, x) over some subgerm (T ′, t) ⊂ (T , t) induced by some
base change ϕ′ : (T ′, t)→ (S, s), ϕ can be chosen in such a way that it extends ϕ′. We will now give the formal definitions.

Definition 2.31. (1) A deformation (X, x)
i
↪→(X , x)

φ
→(S, s) of (X, x) is called complete if, for any deformation (j, ψ) :

(X, x)
j
↪→(Y , y)

ψ
→(T , t) of (X, x) there exists a morphism ϕ : (T , t) → (S, s) such that (j, ψ) is isomorphic to the

induced deformation (ϕ∗i, ϕ∗φ).
(2) A deformation (i, φ) is called versal if, for any deformation (j, ψ) as above the following hold: for any closed embedding
k : (T ′, t) ↪→ (T , t) of complex space germs and any morphism ϕ′ : (T ′, t)→ (S, s) such that (k∗j, k∗ψ) is isomorphic
to the induced deformation (ϕ′∗i, ϕ′∗φ), there exists a morphism ϕ : (T , t)→ (S, s) such that
(i) ϕ ◦ k = ϕ′ and
(ii) (j, ψ) is isomorphic to the induced deformation (ϕ∗i, ϕ∗φ).
This definition can be illustrated by the following commutative diagram:

(X, x)

k∗j↙ ↓ j ↘ i

k∗(Y , y) ↪→ (Y , y) 99K (X , x)

k∗ψ ↓ ψ ↓ ↓ φ

(T ′, t)
k
↪→ (T , t)

ϕ
99K (S, s).

(3) A versal deformation is called semiuniversal or miniversal if the Zariski tangent map T (ϕ) : T(T ,t) → T(S,s) is uniquely
defined by (i, φ) and (j, ψ).

Our definition of versality is very restrictive. The deformations that we call complete are sometimes called versal in
the literature. For example, in [14] the authors call our complete deformation ‘‘versal’’ and our versal deformation
‘‘infinitesimally versal’’.
Now we introduce a notion which is weaker than completeness, but still strong enough for many applications.

Definition 2.32. Adeformation (X, x)
i
↪→(X , x)

φ
→(S, s) of (X, x) is called 1-complete if, for any one parametric deformation

(j, ψ) : (X, x)
j
↪→(Y , y)

ψ
→(C, 0) of (X, x) there exists a morphism ϕ : (C, 0)→ (S, s) such that (j, ψ) is isomorphic to the

induced deformation (ϕ∗i, ϕ∗φ).

An arbitrary complex space germ may not have a versal deformation. It is a fundamental theorem of Grauert, that for
isolated singularity a semiuniversal deformation exists.

Theorem 2.33 (Grauert, 1972). Any complex space germ with isolated singularity has a semiuniversal deformation.

Proof. See [21].

The following two statements describe the connection between equisingular families and versal deformations.

Theorem 2.34. Let (X, 0) ⊂ (Cn, 0) be an isolated singularity defined by f ∈ OCn,0 and g1, . . . , gτ ∈ OCn,0 be a basis of the
Tjurina algebra Tf . If we set

F(x, t) := f (x)+
τ∑
j=1

tjgj(x), (X , 0) := V (F) ⊂ (Cn × Cτ , 0),

then (X, 0) ↪→ (X , 0)
φ
→(Cτ , 0), where φ is the second projection, is a semiuniversal deformation of (X, 0).

Proof. See [13], corollary II.1.17.
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Corollary 2.35. Let (H, z) be a germ of a projective hypersurface with one isolated singularity z. Suppose that the equianalytic
family of (H, z) is T-smooth at (H, z). Then the linear system |H| induces a versal deformation of (H, z).

We finish this section with a version of the classical curve selection lemma that will be used below.

Lemma 2.36. Let X be an algebraic variety over C. Let U ⊂ X be a Zariski open subset and x be a point in the closure of U. Then
there exists a morphism of analytic germs φ : (C, 0)→ (X, x) such that φ(C \ {0}) ⊂ U.

Proof. A basic lemma (see, for example, [22], Lemma 7.2.1) says that there exists a smooth curve C and a morphism
ν : C → U , such that ν−1(U) is non-empty and x is contained in the image of ν. Denote Z = ν−1(U \ U). Then Z is a closed
subset of C and hence consists of a finite number of points. Now take any point z ∈ ν−1({x}) ⊂ C . It has a neighborhood
which does not contain other points of Z . Since C is smooth, the analytic germ (C, z) is isomorphic to (C, 0). Hence ν defines
the required morphism. �

2.3. Notions of computer algebra

In our computations we want to use the methods of computer algebra. Here we introduce the basic notions, that will be
widely used in our proofs. A more detailed description of these notions can be found also in [11].

2.3.1. Monomial orderings

Definition 2.37. Amonomial ordering is a total (or linear) ordering> on the set of monomials Monn = {xα | α ∈ Zn
≥0} in n

variables satisfying

xα > xβ ⇒ xγ xα > xγ xβ

for all α, β, γ ∈ Zn
≥0. We say also > is a monomial ordering on A[x1, . . . , xn], where A is any ring, meaning that > is a

monomial ordering on Monn.

We identifyMonnwithZn
≥0, and then amonomial ordering is a total ordering onZn

≥0, which is compatiblewith the semigroup
structure on Zn

≥0 given by addition. From a practical point of view, a monomial ordering> allows us to write a polynomial
f ∈ K [x] in a unique ordered way as

f = aαxα + aβxβ + · · · + aγ xγ ,

with xα > xβ > · · · > xγ , where no coefficient is zero.
The most important distinction is between global and local orderings.

Definition 2.38. Let> be a monomial ordering on {xα | α ∈ Zn
≥0}.

(1) > is called a global ordering if xα > 1 for all α 6= (0, . . . , 0),
(2) > is called a local ordering if xα < 1 for all α 6= (0, . . . , 0).

Important examples of monomial orderings are:

Example 2.39 (Monomial Orderings). In the following examples we fix an enumeration x1, . . . , xn of the variables, any other
enumeration leads to a different ordering.
(1) Global orderings

(i) Lexicographical ordering >lp

xα >lp xβ :⇔ ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi.

(ii) Degree lexicographical ordering >Dp

xα >Dp xβ :⇔ deg xα > deg xβ

or (deg xα = deg xβ and ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi).

(iii) Weighted degree lexicographical ordering Wp(ω1, . . . , ωn)
Given a vector ω = (ω1, . . . , ωn) of integers, we define the weighted degree of xα by degω(xα) := 〈ω, α〉 :=

ω1α1 + · · · + ωnαn, that is, the variable xi has degree ωi. For a polynomial f =
∑

α aαx
α , we define the weighted

degree,

degω(f ) := max{degω(x
α) | aα 6= 0}.

Using the weighted degree in (ii), with all ωi > 0, instead of the usual degree, we obtain the weighted degree
lexicographical ordering,Wp(ω1, . . . , ωn).

(2) Local orderings
(i) Negative lexicographical ordering >ls

xα >ls xβ :⇔ ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi < βi.
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(ii) Negative degree lexicographical ordering >Ds:

xα >Ds xβ :⇔ deg xα < deg xβ

or (deg xα = deg xβ and ∃1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi).

(iii) Negative weighted degree lexicographical ordering Ws(ω1, . . . , ωn) is a weighted version of the last ordering.

Definition 2.40. Let> be a fixed monomial ordering. Let f ∈ K [x], f 6= 0. Then f can be written in a unique way as a sum
of non-zero terms

f = aαxα + aβxβ + · · · + aγ xγ , xα > xβ > · · · > xγ ,

and aα, aβ , . . . , aγ ∈ K . We define:
(1) LM(f ) := xα , the leading monomial of f ,
(2) LE(f ) := α, the leading exponent of f ,
(3) LT (f ) := aαxα , the leading term of f ,
(4) LC(f ) := aα , the leading coefficient of f ,
(5) tail(f ) := f − LT (f ) = aβxβ + · · · + aγ xγ , the tail of f .

Definition 2.41. For any monomial ordering> on Mon(x1, . . . , xn), we define the ring K [x]> associated to K [x] and> by

K [x]> :=
{
f
u
| f , u ∈ K [x], LM(u) = 1

}
.

Note that K [x]> = K [x] if and only if> is global and K [x]> = K [x]〈x1,...,xn〉 if and only if> is local.

2.3.2. Normal form
Let > be a monomial ordering and let R = K [x1, . . . , xn]> (see Definition 2.41 above). For any subset G ⊂ R define the

ideal
L>(G) := L(G) := 〈LM(g)|g ∈ G \ {0}〉K [x].

L(G) ⊂ K [x] is called the leading ideal of G. Note that if I is an ideal, then L(I) is the ideal generated by all leading monomials
of all elements of I and not only by the leading monomials of a given set of generators of I .

Definition 2.42. Let G denote the set of all finite subsets G ⊂ R. A map

NF : R× G→ R, (f ,G) 7→ NF(f | G),

is called a normal form on R if, for all f ∈ R and G ∈ G,
(0) NF(0|G) = 0;
(1) NF(f |G) 6= 0⇒ LM(NF(f |G)) 6∈ L(G);
(2) if G = {g1, . . . , gs}, then r := f − NF(f |G) has a standard representation with respect to G, that is, either r = 0, or

r =
s∑
i=1

aigi, ai ∈ R,

satisfying LM(f ) ≥ LM(aigi) for all i such that aigi 6= 0.
NF is called a reduced normal form, if, moreover, NF(f |G) is reduced with respect to G, i.e. no monomial of the power series
expansion of NF(f |G) is contained in L(G).
As we can see from the definition, NF(f |G) = 0 if and only if f ∈ 〈G〉.

2.3.3. RedNFBuchberger algorithm for computation of normal form

Algorithm 2.43 (redNFBuchberger Algorithm).
Assume that> is a global monomial ordering.
Input: f ∈ K [x], G ∈ G
Output: p ∈ K [x], a reduced normal form of f with respect to G.
1. p := 0; h := f ;
2. while (h 6= 0)
(a) while (h 6= 0 and Gh := {g ∈ G|LM(g) divides LM(h)} 6= ∅)
{choose any g ∈ Gh;
h := h− (LT (h)/LT (g)) · g}

(b) if (h 6= 0)
{p := p+ LT (h);
h := tail(h)};

3. return p/LC(p);
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The algorithmworks in the following way: the inner loop (2) runs until it meets an ‘‘obstruction’’, i.e. the first monomial
that is not divisible by the leadingmonomial of anymember of G. When the inner loop (2) stops, h stores a normal form of f .
To make this normal form reduced, we add the leading term of h, i.e. the ‘‘obstruction’’, to p and continue working with the
tail of h in the same way.
Note that any specific choice of ‘‘any g ∈ Gh’’ can give a different normal form function. For proof of correctness of the

algorithm see [11], section 1.6 algorithms 1.6.10 and 1.6.11.

2.3.4. Highest corner

Definition 2.44. Let > be a monomial ordering on Mon(x1, . . . , xn) and let I ⊂ K [x1, . . . , xn]> be an ideal. A monomial
m ∈ Mon(x1, . . . , xn) is called the highest corner of I (with respect to>), denoted by HC(I), if

(1) m 6∈ L(I);
(2) m′ ∈ Mon(x1, . . . , xn),m′ < m⇒ m′ ∈ L(I).

Lemma 2.45. Let > be a monomial ordering onMon(x1, . . . , xn) and let I ⊂ K [x1, . . . , xn]> be an ideal. Let m be a monomial
such that m′ < m implies m′ ∈ L(I). Let f ∈ K [x1, . . . , xn] such that LM(f ) < m. Then f ∈ I .

Proof. See [11] Lemma 1.7.13.

Lemma 2.46. Let > be a weighted degree ordering on Mon(x1, . . . , xn). Moreover, let f1, . . . , fk be a set of generators of the
ideal I ⊂ K [x1, . . . , xn]> such that J := 〈LM(f1), . . . , LM(fk)〉 has a highest corner m := HC(J) and f ∈ K [x1, . . . , xn]>.
If LM(f ) < HC(J) then f ∈ I .

Proof. See [11] Lemma 1.7.17.

2.4. Affine coordinates and the stratum VUd

In this section we enter the notion of stratum VUd that will be used in all the proofs, in order to work in affine coordinates.

Definition 2.47. Let S be an analytic singularity type of projective hypersurfaces. Fix homogeneous coordinates on Pn and
consider the open subset

U = {(t0 : . . . : tn)|t0 6= 0} ⊂ Pn.

We define VUd (S) to be the space of all hypersurfaces of degree d that have a unique singular point inside U of singularity
type S.

Note that both VUd (S) and Vd(S) are open subsets of the space of all hypersurfaces of degree d that have at least one
isolated singular point of singularity type S. Hence for any hypersurface H ∈ VUd (S) ∩ Vd(S), the germs Vd,H := (Vd(S),H)
and VUd,H := (V

U
d (S),H) coincide. Hence we will formulate statements on Vd,H and prove them on V

U
d,H .

Remark 2.48. There exists a natural embedding ν : VUd (S) ↪→ VUd+1(S) defined in the following way. Let F(t0, . . . , tn)
be an equation of the hypersurface H ∈ VUd (S). Then we define ν(H) to be the hypersurface defined by the equation
t0F(t0, . . . , tn) = 0. Note that in the coordinate system xi =

ti
t0
on U , H and ν(H)will be given by the same local equation.

Using the above embedding, the scheme theoretic structure on VUd (S) can be computed in the following way. By
Theorem 2.21 there exists N such that VUd+N(S) is a smooth variety. Then V

U
d (S) is equal to the scheme theoretic intersection

VUd+N(S) ∩ |OPn(d)|.

3. Main results

We start with a generalization of Example 1.2 to higher dimensions:

Theorem 3.1. Let H ⊂ Pn, n ≥ 3 be the projective hypersurface given by the equation
∑n
i=1 t

αi
i t
d−αi
0 +

∑n
i=1 λit

d
i = 0 where

d =
∑n
i=1 αi − (2n + 1) and the λi are complex numbers such that z = (1, 0, . . . , 0) is the unique singular point of H. Note

that generic λi satisfy this condition.
Let Vd,H be the germ at H of the equianalytic family of H. Then for any {αi}ni=1 such that d ≥ αi ≥ 2 for all i, Vd,H is non-T-

smooth and h1(JZea(H)/Pn(d)) = 1.
Furthermore:

(i) If n = 4 and d = 3 (i.e. α1 = α2 = α3 = α4 = 3), the germ V3,H(S) is a smooth variety of non-expected codimension (one
less than expected).

(ii) Otherwise, the germVd,H(S) is a reduced irreducible non-smooth variety of expected codimensionwhich has a smooth singular
locus. Moreover, the germ Vd,H(S) has the sectional singularity type A1.
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(For proof see Section 4.)

Remark 3.2. It can be shown that the exceptional case of this theorem can be generalized in the following way:
Let H ⊂ Pn be the hypersurface given by the local equation

∑n
i=1 t

d
i = 0, d ≥ max{3, 7 − n}. Then the germ Vd,H is an

orbit of PGLn+1 and hence is a smooth variety of non-expected codimension.

In Example 1.2 and Theorem 3.1 we have seen several examples of equianalytic strata of minimal obstructedness
which are non-reduced, or reducible or have unexpected dimension. In these examples non-reduced families have smooth
reduction, all components of reducible families are smooth and have expected codimension, and non-smooth families have
smooth singular loci. The first statement follows fromminimal obstructedness.We conjecture that the other two statements
hold for general families of minimal obstructedness of Newton non-degenerate hypersurface singularities.
Also, we conjecture that if h1(JZea(H ′)/Pn(d)) is constant along the equianalytic family of a unisingular projective

hypersurface H , then the family has smooth reduction. This can be easily proven for reduced families (see [23], Proposition
2.4.1).
The next question that naturally arose was the behavior of the geometric properties of equianalytic families with respect

to the stabilization of the singularities (see Section 2.1.3).
We found out that these phenomena are not stable. Namely, if we add a new variable xn+1 to the space and x2n+1 to the

local equation of the hypersurface, the equianalytic stratum of the new hypersurface has the same h1 and τ but is reduced
irreducible of expected codimension. Apparently, the same is true for any singularity of minimal obstructedness, though
sometimes more variables and their squares need to be added.
More generally, for any hypersurface singularity with h1 > 0 but h1(2d − 2) = 0, the equianalytic stratum obtains an

irreducible component which is reduced of expected dimension after adding h1 + 1 squares. The condition h1(2d− 2) = 0
always holds for curves. For higher dimensions, h1(2d− 2) = 0 follows from the condition h1 < d− 1.
The following theorem summarizes all that was mentioned above.

Theorem 3.3. Let H ⊂ Pn be hypersurface of degree d ≥ 3 with the unique singular point z = (1 : 0 : . . . : 0). Let
h1 := h1(JZea(H)/Pn(d)) and τ := deg Z ea(H). Let F0 be the equation of H. Suppose h1 > 0.
For any m ≥ 1 define Wm ⊂ Pn+m to be the hypersurface given by equation F0 +

∑m
j=1 t

2
n+jt

d−2
0 and zm be the point

(1 : 0 : . . . : 0). Denote by VUmd,Wm the germ at W
m of the family of all hypersurfaces of degree d that have a unique singular

point inside Um = {(t0 : . . . : tn+m, )|t0 6= 0} ⊂ Pn+m, and are analytically equivalent to (Wm, z) near the singular point. Then:

(a) h1(JZea(Wm)/Pn+m(d)) = h1 and deg Z ea(Wm) = τ .
(b) If h1(JZea(H)/Pn(2d− 2)) = 0 then the germs V

Um
d,Wm for m ≥ h

1
+ 1 have a reduced component of expected dimension.

(c) If H is a plane curve then already h1(JZea(H)/P2(2d − 4)) = 0 and hence for m ≥ h
1
+ 1 the germs VUmd,Wm have a reduced

component of expected dimension.
(d) If h1 < d − 1 then h1(JZea(H)/Pn(2d − 2)) = 0 and hence for m ≥ h1 + 1 the germs V

Um
d,Wm have a reduced component of

expected dimension.
(e) If h1 = 1 then the germs VUmd,Wm are non-smooth of expected dimension for all m ≥ 1, reduced for m ≥ max{1, 5 − d} and
irreducible for m ≥ max{1, 6− d}.

(For the proof see Section 5.)

Remark 3.4. (1) Statement (c) is not always true for n ≥ 3. Consider, for example, H given by the local equation
∑
xdi = 0.

Then h1(JZea(H)/Pn(k)) > 0 for k < n(d− 2).
(2) It can be proven that if h1(JZea(H)/Pn(2d− 2)) = 0 and h1(JZea(H)/Pn(d+ 1)) = h1(JZea(H)/Pn(d))− 1 then form ≥ 2 the
germs VUmd,Wm have a reduced component of expected dimension.

(3) If F0 =
∑n
i=1 t

αi
i t
d−αi
0 and h1(JZea(H)/Pn(t)) = 0 for some d < t ≤ 2d− 2, then form ≥ dh1 (t−d+1)2(d−2) e+ 1 the germs V

Um
d,Wm

have a reduced component of expected dimension. In particular, if F0 =
∑n
i=1 t

αi
i t
d−αi
0 and h1(JZea(H)/Pn(2d − 3)) = 0

then for m ≥ d h
1

2 e + 1 the germs V
Um
d,Wm have a reduced component of expected dimension. Together with (2) that

implies that if F0 is canonical quasihomogeneous and h1 < d− 1 then the germs Vd,Wm(Sm) have a reduced component
of expected dimension for anym ≥ d h

1

2 e + 1.

For proof see [23], Theorem 2.2.1(f).

3.1. Deformation theoretic meaning

In this subsection we give a deformation theoretic interpretation to our results. Since the proofs of the statements here
are shorter and less technical, we give them right after the statements.
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Theorem 3.5. Let H ∈ Pn be a projective hypersurface of degree d with the unique singular point z. Suppose that the equianalytic
stratum germ Vd,H has a reduced component R of expected dimension. Then the deformation of H induced by the linear system
|H| is 1-complete.

The proof of the theorem is based on the following observation: at every smooth point H ′ of R, the stratum Vd,H is
T -smooth. Hence the deformation of H ′ induced by the linear system |H| is versal, and hence any 1-parametric deformation
(H, z) ↪→ (X , x) → (C, 0) of (H, z) can be induced from it by a map ψH ′ : (C, 0) → (|H|,H ′). By the curve selection
lemma, there exists a map φ : (C, 0) → (R,H) such that all points except 0 are mapped to non-singular points. Now we
define the requested map ϕ : (C, 0)→ (|H|,H) by ϕ(t) := ψφ(t)(t) for t 6= 0 and ϕ(0) = H .
Now we give a precise proof, which includes the description how to choose the maps ψφ(t) analytically.

Proof. Denote U = R \ Sing(Vd) where Sing(Vd) is the singular locus of Vd. Let τ be the Tjurina number of (H, z). Consider
the coincidence variety

Z := {(H ′,W )|H ′ ∈ R,W is a τ -dimensional affine subspace of |H| and H ′ ∈ W }.

Let Y ⊂ Z be the open subset defined by

Y := {(H ′,W ) ∈ Z |H ′ ∈ U and W is transversal to R at H ′}.

By the curve selection lemma (Lemma 2.36), there exists a morphism of analytic germs φ : (C, 0)→ (Z, (H,W )) (for some
τ -dimensional subspaceW ) such that φ(C \ {0}) ⊂ Y .
Now let (H, z) ↪→ (X , x) → (C, 0) be a one-parametric deformation of (H, z). Let TaH denote the Tjurina algebra of

(H, z) and let (H, z) ↪→ (Y , y)→ (TaH , 0) be the semiuniversal deformation over it described in Theorem 2.34. Since this
deformation is semiuniversal, there exists a morphism ψ : (C, 0)→ (TaH , 0) such that ψ∗(Y , y) = (X , x). Note that the
monomial basis of the Tjurina algebra of (H, z) is also a basis of Tjurina algebras in a neighborhood of H . Thus we identify
those Tjurina algebras as vector spaces.
For any point (H ′,W ) ∈ Y , the factor morphism TH ′ |H| → TaH ′ ∼= TaH defines an isomorphism pH ′,W : W ∼= TaH ,

sinceW is transversal to the kernel of the factor morphism, which is the tangent space to R at H ′. This defines a morphism
Ψ : (C, 0)× Y → |H| by

Ψ (t, (H ′,W )) := p−1H ′,W (ψ(t)).

Now, we define ϕ : (C, 0) \ 0→ (|H|,H) by ϕ := Ψ ◦ (Id× φ), and extend it to 0 by ϕ(0) := H . �

Corollary 3.6. Let H ∈ Pn be a unisingular hypersurface of degree d ≥ 3 defined by the equation
∑n
i=1 t

αi
i t
d−αi
0 +

∑n
i=1 λit

d
i = 0.

Suppose that H has one isolated singularity and d+1 =
∑n
i=1(αi−2). Then, unless n = 2, d ≤ 6 or n = 4, d = 3, the deformation

of H induced by the linear system |H| is 1-complete.

Corollary 3.7. Let H ⊂ Pn be a hypersurface of degree d ≥ 3 with the unique singular point z = (1 : 0 : . . . : 0). Let F0 be the
equation of H. For any m ≥ 1 define Wm ⊂ Pn+m to be the hypersurface given by equation F0 +

∑m
j=1 t

2
n+jt

d−2
0 and zm be the

point (1 : 0 : . . . : 0).
Suppose that h1(JZea(H)/Pn(2d− 2)) = 0. Then for m ≥ h1 + 1 the deformation of Wm induced by the linear system |Wm| is

1-complete.

Let us now demonstrate one known application of 1-completeness. Suppose that we want to construct a hypersurface of
degree d havingm isolated singular points of prescribed analytic singularity types S1, . . . , Sm. Suppose that we can construct
a hypersurface H with unique more complicated singularity that splits to singularities of the given types Si after a one-
parameter deformation by hypersurfaces of higher degrees. If the deformation of H induced by the linear system |H| is
1-complete, there exists a deformation of H by hypersurfaces from |H|which contains the desired hypersurfaces.

Proposition 3.8. Let H ⊂ Pn be a hypersurface of degree d with one isolated singular point z of the analytic singularity

type S. Let (H, z)
i
↪→(X , x)

φ
→(|H|,H) be the deformation of (H, z) induced by the linear system |H|. Suppose that it is

1-complete. Let S1, . . . , Sm be analytic singularity types. Suppose also that there exists a one-parameter deformation (j, ψ) :

(H, z)
j
↪→(Y , y)

ψ
→(C, 0) of (H, z) that includes hypersurfaces having m singularities of types S1, . . . , Sm. Then there exists a

one-parameter deformation of (H, z) consisting of hypersurfaces of degree d that includes hypersurfaces having m singularities
of types S1, . . . , Sm.

Proof. Since the deformation of H induced by |H| is 1-complete, there exists a morphism ϕ : (C, 0) → (|H|,H) such
that (j, ψ) is isomorphic to the induced deformation (ϕ∗i, ϕ∗φ). Hence the induced deformation (ϕ∗i, ϕ∗φ) includes
hypersurfaces havingm singularities of types S1, . . . , Sm. On the other hand, the deformation (i, φ) consists of hypersurfaces
of degree d, and hence the induced deformation (ϕ∗i, ϕ∗φ) also consists of hypersurfaces of degree d. �
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4. Proof of the theorem on quasihomogeneous hypersurface singularities

This section is dedicated to the proof of Theorem 3.1.

4.1. The structure of the proof

First of all we pass to affine coordinates xi =
ti
t0
. In these coordinates, H is given by the local equation f =

∑n
i=1 x

αi
i +∑n

i=1 λix
d
i = 0. It is a semiquasihomogeneous polynomial with non-degenerate quasihomogeneous part g =

∑n
i=1(1 +

δαi,dλi)x
αi
i . It is easy to see that f ∈ j(f ) and j(f ) = j(g). Hence f and g have the same Tjurina ideal and Tjurina algebra, f

c
∼ g

and Tf = Mf .
Then we prove the equality h1(JZea(H,z)/Pn(d)) = 1 (see Section 4.2). Next (in Section 4.3) we switch to substratum germ

V 0,0d,H of Vd,H consisting of hypersurfaces given by polynomials of the form

F(x1, . . . , xn) =
n∑
i=1

xαii +
n∑
i=1

λixdi +
∑
I∈D

aIxI ,

whereD =

(
{I ∈ Zn

≥0|αn ≤ |I| ≤ d} \
⋃

1≤i6=j≤n

{(0, . . . , 0, αi − 1, 0, . . . , 0, 1
j
, 0, . . . , 0)}

)
\

⋃
1≤i≤n

{(0, . . . , 0, αi, 0, . . . , 0)}.

We prove that this substratum is transversal to the orbits of the group of affine transformations of Cn.
First, we consider the case α1 < 2αn (Section 4.4). In this case for any hypersurface H which lies in the stratum germ

there exists an affine coordinate change s.t. the equation of H in the new coordinates does not include any terms that lie
below the Newton polytope∆(f ), and has the same terms laying on∆(f ) as f .
Let F = f + f1 where f1 is a polynomial which has no terms below and on∆(f ). We claim that F is contact equivalent to

f if and only if F ∈ j(F) = 〈Fx1 , . . . , Fxn〉.
One direction is obvious: if they are equivalent then they have the same Milnor and Tjurina numbers and hence

µ(F) = τ(F), i.e. F ∈ j(F). To prove the other direction we use Saito theorem (Theorem 2.16). It says that if F ∈ j(F)
then there exists a quasihomogeneous polynomial h and a coordinate change φ that maps h to F . Then the linear part of φ
will map h to the quasihomogeneous part of F , which is g . Therefore, h and g are contact equivalent and hence F and f are
contact equivalent. So the hypersurface HF belongs to V

0,0
d,H if and only if F ∈ 〈Fx1 , . . . , Fxn〉.

We check that condition using a computer algebra algorithm (Algorithm 4.2). In this waywe obtain a system of equations
on V 0,0d,H . In case d = 3, n = 4 the substratum germ consists of one point. We show that otherwise the system consists of a
subsystem having a diagonal linear part, and one more equation with quadratic principle part of rank≥ 3.
In the case of α1 ≥ 2αn, there are hypersurfaces HF in V

0,0
d,H whose equations include some terms below or on the Newton

polytope∆(f ). For every such polynomial F , we pass to new coordinates in which F has no terms below and on∆(f ), write
equations on the coefficients of F in the new coordinates and express new coefficients through the old ones.
Again we check that the obtained system consists of a subsystem having diagonal linear part, and one more equation

with quadratic principle part of rank≥ 3. This is done in Section 4.5.
We show that in both cases the last equation lies in the ideal generated by elements that appear in its quadratic part. We

deduce from this fact the smoothness of the singular locus.

4.2. Proof that h1(JZea(H,z)/Pn(d)) = 1

Suppose, for convenience, α1 ≥ α2 ≥ · · · ≥ αn ≥ 2.
First, we pass to affine coordinates xi =

ti
t0
. In these coordinates, H is given by local equation f =

∑
xαii +

∑
λixdi . It is

a semiquasihomogeneous polynomial with non-degenerate quasihomogeneous part g =
∑n
i=1(1+ δαi,dλi)x

αi
i . It is easy to

see that f ∈ j(f ) and j(f ) = j(g). Hence f and g have the same Tjurina ideal and Tjurina algebra, which also coincides with
their Milnor algebras. ByMather–Yau theorem this implies that f and g are contact equivalent and hence belong to the same
stratum.
The polynomial g is quasihomogeneous of type (1/α1, . . . , 1/αn; 1) hence (H, z) is a quasihomogeneous hypersurface

singularity. The Newton polytope of g is

∆(g) =

{
I ∈ Zn

≥0

∣∣∣∣∣ n∑
j=1

Ij
αj
= 1

}
.

We will now show that Vd,H is non-T-smooth at H and h1(JZea(H,z)/Pn(d)) = 1.
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Fig. 1. Newton polytope.

The Tjurina algebra of f has a basis {xI , I ∈ P }, whereP is the parallelepipedP = {I ∈ Zn
≥0| Ij ≤ αj−2 for all 0 ≤ j ≤ n}.

So τ(H, z) = |P | =
∏n
i=1(αi − 1), where by |P |we denote the number of integer points in P .

Hence h0(OZea(H,z)) = τ(H, z) = |P |,

H0(JZea(H,z)/Pn(d)) =

{ ∑
I∈Td\P

aIxI
}

where Td is the simplex {I ∈ Zn
≥0||I| ≤ d} (see Fig. 1). This means that

h0(JZea(H,z)/Pn(d)) = |Td| − |Td ∩ P |.

From the exact sequence

0→ H0(JZea(H,z)/Pn(d))→ H0(OPn(d))→ H0(OZea(H,z))→ H1(JZea(H,z)/Pn(d))→ 0

we conclude that

h1(JZea(H,z)/Pn(d)) = h0(JZea(H,z)/Pn(d))− h0(OPn(d))+ h0(OZea(H,z))
= |Td| − |Td ∩ P | − |Td| + |P | = |P \ Td| = 1.

The same argument shows that h1(JZea(H,z)/Pn(d+1)) = |P \Td+1| = 0. Thus by Theorem 2.21 the germ Vd+1,H is T-smooth
and the germ Vd,H is non-T-smooth.
Because of minimal obstructedness (h1 = 1), Vd,H may be either non-smooth of expected codimension or smooth of

non-expected codimension.
Now we would like to find out when it is non-smooth and when it has non-expected codimension. First we will pass to

a more convenient substratum, which has the same geometric properties.

4.3. Switch to substratum and notations

First of all let us shift the singularity to the origin. Let S be the singularity type of (H, z). The family VUd (S) is invariant
under the action of affine transformations of Cn. Consider the subgroup generated by translations. We switch to the section
V ′d(S) of V

U
d (S) transversal to orbits of this group and given by the conditions that the singularity is in the origin.

In the sameway, using the subgroupGLn consisting of the linear coordinate changes, wewant to reduce to the substratum
V 0,0d (S) of V ′d(S) consisting of all hypersurfaces HF given by polynomials F which also do not include the monomials x

αi−1
i xj

for i 6= j, and include the monomials xαii with coefficient 1 if αi 6= d or with coefficient 1+ λi if αi = d. For this purpose we
will prove the following lemma.

Lemma 4.1. (i) THV ′d(S) = THV
0,0
d (S)⊕ THGLnH

(ii) GLnV
0,0
d (S) = V ′d(S) in a neighborhood of H and GLnH ∩ V

0,0
d (S) = {H} in a neighborhood of H.

The same is true for V ′d+1(S):
(iii) THV ′d+1(S) = THV

0,0
d+1(S)⊕ THGLnH

(iv) GLnV
0,0
d+1(S) = V

′

d+1(S) in a neighborhood of H and GLnH ∩ V
0,0
d+1(S) = {H} in a neighborhood of H.
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Proof. (i): For any point HF ∈ V ′d(S) and any 0 ≤ i, j ≤ n denote by cij the coefficient of the monomial x
αi−1
i xj in the

polynomial F − f . The tangent space to V 0,0d (S) at H is given inside THV ′d(S) by the equations cij = 0. On the other hand
THGLnH = Span{αix

αi−1
i xj + λidxd−1i xj}. Hence THV ′d(S) = THV

0,0
d (S)⊕ THGLnH .

(iii) is proven in the same way.
(iv) follows from (iii) since V 0,0d+1(S) is smooth (see Section 4.2).
(ii) follows from (iv) since GLn preserves degree:

GLnV
0,0
d (S) = GLn(V

0,0
d+1(S) ∩ |OPn(d)|) = (GLnV

0,0
d+1(S)) ∩ |OPn(d)|

= V ′d+1(S) ∩ |OPn(d)| = V ′d(S).

Here, |OPn(d)| = |H| is the linear system of hypersurfaces of degree d. Also GLnH ∩ V
0,0
d (S) ⊂ GLnH ∩ V

0,0
d+1(S) = {H} in

a neighborhood of H . �

From this lemma we see that it is enough to prove our statement for the germ V 0,0d,H of V
0,0
d (S) at H .

Consider now arbitrary hypersurface HF ∈ V
0,0
d,H given by a polynomial equation F = 0. Since HF is obtained from H by a

local analytic diffeomorphism and both have their only singularity at the origin, F has no terms of degree less than αn.
So we will work with substratum germ V 0,0d,H of Vd,H consisting of hypersurfaces given by polynomials of the form

F(x1, . . . , xn) =
n∑
i=1

xαii +
n∑
i=1

λixdi +
∑
I∈D

aIxI ,

whereD =

(
{I ∈ Zn

≥0|αn ≤ |I| ≤ d} \
⋃

1≤i6=j≤n

{(0, . . . , 0, αi − 1, 0, . . . , 0, 1
j
, 0, . . . , 0)}

)
\

⋃
1≤i≤n

{(0, . . . , 0, αi, 0, . . . , 0)}. (4.3.1)

For convenience, we introduce the following notations:

(a) let bI be the coefficients of basis monomials above the Newton polytope∆(f ), i.e. bI := aI for I ∈ D such that Ij ≤ αj−2
for all j andw(I) > 1;

(b) let eI be the coefficients of basis monomials below the Newton polytope ∆(f ) but of degree at least αn, i.e. eI := aI for
I ∈ D such that Ij ≤ αj − 2 for all j andw(I) ≤ 1;

(c) let gI := aI for I ∈ E where E = {I ∈ D|Ij = αj − 1 for some j, Ik ≤ αk − 2 for all k 6= j and Ik > 0 for some k 6= j};
(d) let uI := aI for I ∈ D such that (Ij ≥ αj for some j) or (Ij = αj − 1 and Ik = αk − 1 for some k 6= j);
(e) let qI := aI for I = (0, . . . , 0, αj − 1, 0, . . . , 0) for some j;
(f) for I = (i1, . . . , ik−1, αk − 1, ik+1, . . . , in) ∈ E denote

dual(I) := (α1 − 2− i1, . . . , αk−1 − 2− ik−1, αk − 1, αk+1 − 2− ik+1, . . . , αn − 2− in).

Note that dual(I) also lies in E and dual(dual(I)) = I .

Let A = C[aI ] be the algebra of polynomials generated by aI , I ∈ D . Letm = 〈aI〉 be the maximal ideal in A generated by
all aI , G = 〈gI〉 be the ideal in A generated by all gI and B = 〈bI〉 be the ideal in A generated by all bI .

4.4. Proof of the theorem for the case α1 < 2αn

In this case the Newton polytope∆(f ) lies below the hyperplane |I| = 2αn.
We want to find out for which {aI}HF lies in V

0,0
d,H . Our F does not include monomials x

I for I below and on the Newton
polytope and satisfying Ij = αj − 1 for some j. Hence, by Corollary 2.18, in order to belong to our substratum, F should
include no terms below and on the Newton polytope except of xαii .
Let F = f + f1 where f1 is a polynomial which has no terms below and on∆(f ). We claim that F is contact equivalent to

f if and only if F ∈ j(F) = 〈Fx1 , . . . , Fxn〉.
One direction is obvious: if they are equivalent then they have the same Milnor and Tjurina numbers and hence

µ(F) = τ(F), i.e. F ∈ j(F). To prove the other direction we use Saito theorem (Theorem 2.16). It says that if F ∈ j(F)
then there exists a quasihomogeneous polynomial h and a coordinate change φ that maps h to F . Then the linear part of φ
will map h to the quasihomogeneous part of F , which is g . Therefore, h and g are contact equivalent and hence F and f are
contact equivalent. So the hypersurface HF belongs to V

0,0
d,H if and only if F ∈ 〈Fx1 , . . . , Fxn〉.

In order to check whether F(x1, . . . , xn) ∈ 〈Fx1 , . . . , Fxn〉 we use the redNFBuchberger algorithm (Algorithm 2.43).
We refer to a neighborhood of the origin, hence we consider F(x1, . . . , xn) and 〈Fx1 , . . . , Fxn〉 in the local ring R =
C[x1, . . . , xn]〈x1,...,xn〉. To compute in this ring, we define a local monomial ordering on C[x1, . . . , xn] such that the ring
associated to C[x1, . . . , xn] and this ordering will be C[x1, . . . , xn]〈x1,...,xn〉. We choose the negative weighted degree
lexicographical ordering withw = (1/α1, . . . , 1/αn) (see Example 2.39, ordering (2)(iii)).
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In general, the redNFBuchberger algorithm does not stop for local orderings. However, in our case we can stop it
manually when the leading monomial of the tail is less than xα1−21 · · · · · xαn−2n . We are allowed to do that by Lemma 2.46,
for xα1−21 · · · · · xαn−2n is the highest corner of 〈LM(Fx1), . . . , LM(Fxn)〉 = 〈x

α1−1
1 , . . . , xαn−1n 〉. Indeed, any monomial smaller

than xα1−21 · · · · · xαn−2n has degree of xj bigger than or equal to αj− 1 for some j and hence lies in 〈LM(Fx1), . . . , LM(Fxn)〉 and
xα1−21 · · · · · xαn−2n 6∈ 〈LM(Fx1), . . . , LM(Fxn)〉.
There is another explanation why we can stop the algorithm at this point. Consider Vd+1,H . It is smooth of expected

codimension (see Section 4.2). Therefore V 0,0d+1,H is also smooth and has expected codimension which is equal to the number
of basis elements which lie above the Newton polytope. Since we have exactly this number of independent equations on
this stage, there will be no more equations. Also since V 0,0d+1,H is smooth, all the equations on it will have independent linear
parts. When we return to V 0,0d,H , the linear part of only one of them may vanish.
So we rewrite the algorithm in the following way:

Algorithm 4.2 (Modified redNFBuchberger Algorithm).

1. p := 0, h := F ;
2. while (h 6= 0 and LM(h) ≥ xα1−21 · · · · · xαn−2n )
(a) while (h 6= 0 and LM(h) ≥ xα1−21 · · · · · xαn−2n
and exists i such that LM(Fxi) divides LM(h))

{h := h− (LT (h)/LT (Fxi)) · Fxi}

(b) if (h 6= 0 and LM(h) ≥ xα1−21 · · · · · xαn−2n )
{p := p+ LT (h);
h = tail(h)};

3. return p;

As a result, we obtain the normal form

NF(F |〈Fx1 , . . . , Fxn〉) =
∑
RI(aJ)xI ,

where xI , Ik ≤ αk − 2, for all k are elements of the basis of algebra C[x1, . . . , xn]/〈fx1 , . . . , fxn〉 which lie above ∆(f ) and
RI(aJ) are polynomials in aJ . Hence F belongs to the ideal 〈Fx1 , . . . , Fxn〉 if and only if all coefficients RI(aJ) = 0.
Thus we obtain a system of equations on aJ :

RI(aJ) = 0. (4.4.2)

Let us now analyze the RI .

Lemma 4.3. Denote ψI(gJ , uK , bL) := RI − (1 − w(I))bI for |I| ≤ d and ψI(gJ , uK , bL) = −RI for |I| = d + 1, i.e. I =
(α1 − 2, . . . , αn − 2). Then

(i) All bL that appear in ψI satisfyw(L) < w(I).
(ii) All ψI are polynomials from G2 + Bm. Recall that G = 〈gI〉 and B = 〈bI〉.
(iii) ψ(α1−2,...,αn−2) −

∑
J∈E Ak · gJ · gdual(J) ∈ Bm+m

3 where Ak are positive rational numbers.

Proof. Let us trace the changes of the coefficients of h and p during the algorithm. Denote the coefficient of xI in h by cI . In
the first step we eliminate the monomials xαii for all i. As a result we obtain h := F −

∑n
i=1(1/αi) · xi · Fxi . After this step

cI = (1− w(I))aI . Note that cI is non-zero iff aI is non-zero, sincew(I) > 1 unless aI = 0.
Now let S be the coefficient of the leading monomial of h. If it is a basic monomial, we add the leading term of h to p

and subtract it from h. Otherwise, Sm ≥ αm − 1 for some m and hence we can eliminate this term using Fxm . After such
elimination step the change of h is expressed by the formula

(h)new = (h)old −
1− w(S)
αm

aIx
S1
1 · · · · · x

Sm−αm+1
m · · · · · xSnn Fxm .

Hence the cI after this step is

cnewI = (1− w(I))aI −
Im − Sm + αm

αm
(1− w(S))aS · aI−S+Jm ,

where Jm := (0, . . . 0, αm, 0, . . . , 0). If some coordinate of I − S + Jm is negative, then aI−S+Jm = 0 and hence cI did not
change.
Suppose that I is a basic index. Let us show that after this step cI − (1−w(I))bI ∈ G2+ Bm. We know that Sm ≥ αm− 1.

If Sk > Ik for some k 6= m then (I − S + Jm)k < 0 and hence cI did not change. Hence we can assume Sk ≤ Ik for k 6= m. Let
us consider several cases.
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1. If Sm ≥ αm then aI−S+Jm ∈ B and hence aS · aI−S+Jm ∈ mB.
2. If Sm = αm − 1 and Im < αm − 2 then aI−S+Jm ∈ B and hence aS · aI−S+Jm ∈ mB.
3. If Sm = αm − 1 and Im = αm − 2 then aS ∈ G and aI−S+Jm ∈ G and hence aS · aI−S+Jm ∈ G2.

Let us now consider any elimination step of the algorithm at which we eliminate some xS using Fxm for some m. This is
only possible if Sm ≥ αm − 1. The change of h in this step is expressed by the formula

(h)new = (h)old −
1
αm
coldS x

S1
1 · · · · · x

Sm−αm+1
m · · · · · xSnn Fxm .

Hence the change of cI in this step is expressed by

cnewI = coldI −
Im − Sm + αm

αm
coldS · aI−S+Jm . (4.4.3)

For any basic index S, the RS is equal to the coefficient of xS in p after the termination of the algorithm.
Note thatw(I− S+ Jm) = w(I)−w(S)+1, and recall that aJ = 0 ifw(J) < 1. Hence cI is influenced only ifw(S) < w(I)

andw(I − S + Jm) < w(I). This proves (i).
Let us now prove by induction that at every step of the algorithm, cI − (1−w(I))bI ∈ Bm+ G2 for any basic coefficient

I , and cI ∈ B+G for any I ∈ E. After the first step of the algorithm these statements clearly hold. We suppose that they hold
before a step in which we eliminate xS using Fxm , and show that they still hold after this step.
First let I be a basic index.
Let us consider several cases.

1. If Sm > Im + 1 then aI−S+Jm ∈ B and hence aI−S+Jm · coldS ∈ Bm.
2. If Sm ≤ Im then S is a basic index and by induction hypothesis coldS ∈ B+ G

2 and hence aI−S+Jm · coldS ∈ Bm+ G
2.

3. If Sm = Im + 1 and Im < αm − 2 then S is a basic index and by induction hypothesis coldS ∈ B + G2 and hence
aI−S+Jm · coldS ∈ Bm+ G

2.
4. If Sm = Im + 1 and Im = αm − 2 then S ∈ E and I − S + Jm ∈ E and hence by induction hypothesis aI−S+Jm · coldS ∈
(B+ G)(B+ G) ⊂ Bm+ G2.

Now let I ∈ E. Then there exists k such that Ik = αk − 1 and Ij ≤ αj − 2 for j 6= k. We know that Sm ≥ αm − 1, Sp ≤ Ip for
p 6= m and Im − Sm + αm ≥ 0.
Let us consider several cases.

1. If Sm > Im + 1 then aI−S+Jm ∈ B+ G.
2. If Sm < Im + 1 then coldS ∈ B+ G.
3. If Sm = Im + 1 and Sk > 0 then aI−S+Jm ∈ B+ G.
4. If Sm = Im + 1 and Sk = 0 then coldS ∈ B+ G.

This proves (ii).
Substituting I = (α1 − 2, . . . , αn − 2) in 4.4.3 and arguing in the same way we obtain (iii). �

Corollary 4.4. The system (4.4.2) is equivalent to the system consisting of equations

bI = ψ̃I(gJ , uK ) for I 6= (α1 − 2, . . . , αn − 2), (4.4.4)

where ψ̃I ∈ G2 are polynomials in gJ and uK , and the last equation

R :=
∑
I∈E

Ak · gI · gdual(I) +Θ(gJ , uK ) = 0, (4.4.5)

where Ak are positive rational numbers andΘ(gJ , uK ) is a polynomial from G2m.

Now we see that our substratum germ is isomorphic to the germ at 0 of the affine variety given in the affine space with
coordinates {gJ , uK } by the last equation (4.4.5). The quadratic part Q of this equation is a non-degenerate quadratic form
in {gI |I ∈ E}. We will now show that unless n = 4 and α1 = α2 = α3 = α4 = 3, the quadratic form Q has rank at least 3.
For this it is enough to find 3 points I ∈ E. Indeed for any such point I = (j1, . . . , jk−1, αk − 1, jk+1, . . . , jn) the dual point
I ′ = (α1 − 2− j1, . . . , αk−1 − 2− jk−1, αk − 1, αk+1 − 2− jk+1, . . . , αn − 2− jn) also satisfies these conditions. Consider
several cases separately:
(0) For n = 4, α1 = α2 = α3 = α4 = 3, d = 12 − 9 = 3, there are no gI . Moreover, D is empty. So V 0,0d,H consists

of one point. Hence Vd,H is also a smooth algebraic variety of dimension n2 − 1 + n = 19. The expected dimension is(
n+d
n

)
− 1 −

∏n
i=1(αi − 1) =

(
7
4

)
− 1 − 24 = 18. So, Vd,H has non-expected codimension. Till the end of the proof we

assume that this is not the case.
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(1) α1 ≥ 4. In this case we have the points (1, 1, 0, . . . , 0, αn− 1) and (2, 0, 0, . . . , 0, αn− 1) in I . Since d ≥ α1, α2 ≥ 3.
(1.1) α2 = 3. In this case n ≥ 4 and α3 ≥ 3 since d ≥ α1. Hence we have one more point (1, 0, 1, 0, . . . , 0, αn − 1) in I .
(1.2) α2 ≥ 4. In this case we have point (0, 2, 0, . . . , 0, αn − 1) in I .
(2) α1 = 3. In this case n ≥ 4 and α1 = α2 = α3 = α4 = 3 for the same reason. So unless n = 4 we have points

(1, 1, 0, . . . , 0, αn − 1), (0, 1, 1, 0, . . . , 0, αn − 1) and (1, 0, 1, 0, . . . , 0, αn − 1) in I .
Note that for all mentioned points in cases 1 and 2, |I| = αn+1 which is less than or equal to d. Note also that the weight

of all these points is at least 2
α1
+

αn−1
αn

> 2
2αn
+

αn−1
αn
= 1.

Since the quadratic form is non-degenerate of rank≥ 3, our substratumgerm is a reduced irreducible non-smooth variety
of expected codimension and of order two.
Nowwe are going to prove that the singular locus Y of our substratum germ coincides with the germ X0 at H of the affine

subspace X = Z(G). Since Eq. (4.4.5) lies in G2, all its first order partial derivatives lie in G, and hence the singular locus
includes X0. Let Z be the variety given by the equations

∂R
∂gI
= 0

for I ∈ E. Since the linear part of this system of equations is non-degenerate, the germ Z0 of Z at f is smooth and hence
irreducible. Clearly Y ⊂ Z0 and hence X0 ⊂ Z0. They have the same dimension and Z0 is irreducible hence X0 = Z0 which
implies X0 = Y .
So our substratum germ is a reduced irreducible non-smooth variety of expected codimension which has a smooth

singular locus.

4.5. Proof of the theorem for the case α1 ≥ 2αn.

We will make now a series of coordinate changes so that in new coordinates F (see (4.3.1)) will not have terms of
the form xαi−1i xJ lying below and on the Newton polytope, except xαii . The first one will be xi 7→ xi for i < n and
xn 7→ xn − 1

αn
a〈2,0,...,0,αn−1〉x

2
1. The coefficients of the polynomial F in the new coordinates are expressed through the

coefficients in the old coordinates by the formula

anew
〈i1,...,in〉 = a〈i1,...,in〉 +

[i1/2]∑
s=1

(−1)s
(
k+ s
s

)
a〈i1−2s,i2,...,in−1,in+s〉

(
a〈2,0,...,0,αn−1〉

αn

)s
. (4.5.6)

After this coordinate change the coefficient anew
〈2,0,...,0,αn−1〉 will vanish.

Note that in the new coordinates F might get terms of degree more than d. In fact, those terms might have very high
degrees. However, by finite determinacy theorem (Theorem2.8) f is d+3-determined. Thismeans that after each coordinate
change we may (and will) erase all the terms of F of degree more than d+ 3.
In the same way, we get rid of all the coefficients of the form a〈j1,...,jn−1,αn−1〉 in ascending order of the corresponding

monomials. We recall that the monomial ordering we use is the negative weighted degree lexicographical ordering with
w = (1/α1, . . . , 1/αn) (see Example 2.39). The coordinate change indexed J = (j1, . . . , jn−1, αn − 1) will be xi 7→ xi for
i < n and xn 7→ xn− 1

αn
a〈j1,...,jn−1,αn−1〉x

j1
1 ·· · ··x

jn−1
n−1 . The coefficients of the polynomial F in the new coordinates are expressed

through the coefficients in the old coordinates by the formula

anew
〈i1,...,in〉 = a

prev
〈i1,...,in〉

+

min{[il/jl]|jl 6=0,0≤l≤n−1}∑
s=1

(−1)s
(
k+ s
s

)
aprev
〈i1−sj1,...,in−1−sjn−1,in+s〉

(
aprevJ
αn

)s
. (4.5.7)

As can be seen from formula (4.5.7), gI can be affected only during a coordinate change whose index does not exceed I by
any coordinate, and hence has lower weight. Thus after all these coordinate changes, all coefficients g〈j1,...,jn−1,αn−1〉 will be
zero. Denote by a′I the coefficient of the monomial x

I after the coordinate changes. It is easy to see that a′I = aI + φ
′

I(aJ)
where φ′I(aJ) ∈ mG. Note that

a′
〈α1−2,...,αn−2〉 =

∑
AJ · g〈j1,...,jn−1,αn−1〉 · g〈α1−2−j1,...,αn−1−2−jn−1,αn−1〉 + Φ

′(aI)

where AJ ∈ R \ {0} for all J , andΦ ′(aI) ∈ mG2.
We continue with the coordinate changes and, in the same way as before, we get rid of the coefficients of the

form g ′
〈j1,...,jn−2,αn−1−1,0〉

starting from g ′
〈1,0,...,0,αn−1−1,0〉

. This time it might be non-zero since φ′
〈1,0,...,0,αn−1−1,0〉

(aJ) may be
non-zero. However, it lies in the ideal G.
We do the same for g ′

〈j1,...,jk−1,αk−1,0,...,0〉
for all k ≥ 2 in the descending order of k.

Denote by ãI the coefficient of the monomial xI after all these coordinate changes. Again, ãI = aI + φI(aJ) where
φI(aJ) ∈ mG and

ã〈α1−2,...,αn−2〉 =
n∑
k=1

∑
AJ · g〈j1,...,jk−1,αk−1,0,...,0〉 · g〈α1−2−j1,...,αk−1−2−jk−1,αk−1,αk+1−2,...,αn−2〉 + Φ(aI)

where AJ 6= 0 for all J andΦ(aJ) ∈ mG2.
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Nowwewant to find out forwhich {aI}HF lies inV
0,0
d,H . Let F̃(x1, . . . , xn) be the polynomial F in newcoordinates. F̃ does not

includemonomials xI for I below and on the Newton polytope and satisfying Ij = αj−1 for some j. Hence, by Corollary 2.18,
in order to belong to our substratum F̃ should include no terms below and on the Newton polytope except of xαii .
In other words, we have the following equations on ãI :

ẽI = 0 (4.5.8)
q̃I = 0. (4.5.9)

As explained in the previous subsection (and also Section 4.1), F
c
∼ f iffMF ' TF i.e. F(x1, . . . , xn) ∈ 〈Fx1 , . . . , Fxn〉.

As in case one, in order to check that we use the redNFBuchberger algorithm with the negative weighted degree
lexicographical ordering withw = (1/α1, . . . , 1/αn) (see Example 2.39).
Again, we can stop the algorithm manually when the leading monomial of the tail is less than xα1−21 · · · · · xαn−2n (see

Algorithm 4.2).
As a result, we obtain the normal form

NF (̃F |〈̃Fx1 , . . . , F̃xn〉) =
∑
RI (̃aJ)xI ,

where xI are elements of the basis of algebra C[x1, . . . , xn] /〈fx1 ,...,fxn 〉 which lie above∆(f ) and RI (̃aJ) are polynomials in ãJ .
Hence F̃ belongs to the ideal 〈̃Fx1 , . . . , F̃xn〉 if and only if all the coefficients RI (̃aJ) are 0.
Thus we obtain a system of equations on ãJ :

RI (̃aJ) = 0 (4.5.10)

where RI has the form RI = b̃I
∏n
i=1 ũ

γI,i
i +ψI (̃gJ , ũK , b̃L), where all L haveweight less than that of I . Thus we can, as in case 1,

express b̃I and obtain an equivalent system of equations:

b̃I =
ψ̃I (̃gJ , ũK )
n∏
i=1
ũγI,ii

(4.5.11)

where ψ̃I ∈ G̃2 for G̃ = 〈̃gJ〉 and ũi = ã〈0,...,0,αi,0,...,0〉.
The number of equations in system (4.5.11) is equal to the number of basis coefficients above the Newton polytope∆(f ).
Nowwe express new coefficients through the old ones. Recall that ũi = 1+φ〈0,...,0,αi,0,...,0〉(aJ), ãI = aI +φI(aJ) for other

I ∈ D , and ãI = φI(aJ) for I 6∈ D , where φI(aJ) ∈ mG.
Consider system (4.5.8). After substituting old coefficients it will be eI = −φI(aJ), where φI ∈ m2. The same with the

system (4.5.9).
Consider system (4.5.11) except the last equation i.e. the equation on b̃〈α1−2,...,αn−2〉. After substituting the old coefficients

and multiplying by denominators it will become

bI = ψ̃I(aJ), (4.5.12)

where ψ̃I ∈ m2.
The last equation is of particular interest. After passing to the old coordinates and multiplying by the denominator its

right-hand side will become

ψ̃〈α1−2,...,αn−2〉(̃gJ , ũK ) =
∑
J∈S

AJ · gJ · gdual(J) +Θ ′(aK ),

where S ⊂ E is the set of indices of terms that did not vanish during the coordinate changes,Θ ′(aK ) lies in mG2 and the AJ
are positive rational numbers. The left-hand side will be

b̃〈α1−2,...,αn−2〉 ·
n∏
i=1

ũγI,ii = (0+ φ〈α1−2,...,αn−2〉)

(
n∏
i=1

(1+ φi)γI,i
)
=

∑
J∈T

AJ · gJ · gdual(J) + Ψ (aK ),

where T = {J ∈ E| J 6∈ S, and dual(J) 6∈ S}, Ψ (aK ) ∈ mG2 and AJ are positive rational numbers. Moving the right-hand side
to the left we obtain the equation

P :=
∑
J∈E

BJ · gJ · gdual(J) +Θ(aK ) = 0, (4.5.13)

whereΘ(aK ) ∈ mG2, the BJ are non-zero rational numbers and sign(BJ) = sign(Bdual(J)).
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So our substratum germ V 0,0d,H is isomorphic to the germ at the origin of the affine variety given in the affine space with
coordinates {aI} by the system of equations

eI + φI(aJ) = 0 (4.5.14)
qI + φI(aJ) = 0

bI − ψ̃I(aJ) = 0

and the last Eq. (4.5.13).
We have to prove that V 0,0d,H is a reduced irreducible non-smooth variety of expected codimension which has a smooth

singular locus.
The system (4.5.14) has a diagonal linear part. Hence all the equations in it are independent and the varietyW , defined

by it, is smooth at 0. The last Eq. (4.5.13) does not depend on the preceding ones and does not have a linear part. Hence V 0,0d,H
is non-smooth of expected codimension.
The quadratic part of Eq. (4.5.13) is

Q :=
∑
J∈E

BJ · gJ · gdual(J).

Since the BJ are non-zero, it is a quadratic non-degenerate form of rank r equal to the number of integer points in E.
Nowwewill show that r ≥ 3.We do that by exhibiting 3 integer points in E: (2, 0, . . . , 0, αn−1), (1, 1, 0, . . . , 0, αn−1)

and (2, 1, 0, . . . , 0, αn − 1). Since α1 ≤ d we have α2 ≥ 3, and hence Ij ≤ αj − 2 for j < n for all the 3 points. Hence, it
is enough to show that their degrees do not exceed d. Indeed, their maximal degree is αn + 2 ≤ 2αn ≤ α1 ≤ d. So r ≥ 3.
Hence the variety defined by the principle part of our system of equations on V 0,0d,H is reduced and irreducible and hence our
germ is reduced and irreducible. Since the quadratic form Q is non-zero V 0,0d,H has order two.
Now we are going to prove that the singular locus Y of our substratum germ coincides with the germ X0 at the origin of

the affine subvariety X given inW by the ideal G.
Since Eq. (4.5.13) lies in G2, all its first order partial derivatives lie in G, and hence X0 lies in the singular locus. Consider

the jacobian of the system obtained by merging system (4.5.14) with the last Eq. (4.5.13). Fix I ∈ E. LetM(I) be the minor of
the jacobian given by columns that include partial derivatives by gI and all eJ , bJ and qJ . The linear part of M(I) is AIgdual(I).
Let Z0 be the germ at the origin of subvariety ofW given by the system of equationsM(I) = 0 for all I ∈ E. Since the linear
part of this system is diagonal, Z0 is irreducible and has the same dimension as X0. As X0 ⊂ Y ⊂ Z0, it implies X0 = Y = Z0.
So the substratum germ V 0,0d,H is reduced irreducible non-smooth variety of expected codimension which has a smooth

singular locus.

4.6. Proof that the sectional singularity type is A1 for all cases

The sectional singularity type of a variety germ with smooth singular locus is the singularity type of transversal
intersection of the singular locus with a linear space.
Consider the linear subspace L spanned by eI , qI , bI and gI . We have seen that it is transversal to the singular locus of V

0,0
d,H

in the affine space with coordinates {aI}. Hence the sectional singularity type of V
0,0
d,H is the singularity type of the scheme

theoretic intersection L∩ V 0,0d,H . L∩ V
0,0
d,H is given in L by a system of Eqs. (4.5.14) with linear part non-degenerate in eI , qI and

bI and one more equation with quadratic principle part which is not degenerate in the variables gI . Hence the singularity
type of L ∩ V 0,0d,H is A1. �

5. Proof of the theorem on stability properties of obstructed equianalytic families

This section is dedicated to the proof of Theorem 3.3.

5.1. The structure of the proof

First of all, we pass to local coordinates xi =
ti
t0
, and denote f0(x1, . . . , xn) := F0(1, x1, . . . , xn).

It is known (Lemma 2.12) that polynomials g1 = f1 + x2n+1(1+ h1) and g2 = f2 + x
2
n+1(1+ h2), where fi ∈ C{x1, . . . , xn}

and hi ∈ m ⊂ C{x1, . . . , xn+1}, are contact equivalent if and only if the fi are contact equivalent.
For any polynomial F = f0 + x2n+1 +

∑
aI,jxIx

j
n+1 ∈ m

2
⊂ C{x1, . . . , xn+1} there exists an analytic diffeomorphism

of (Cn+1, 0) that brings F to the form f0 + x2n+1(1 + h). One can write explicit formulas for this diffeomorphism that
depend polynomially on the coefficients of F (see Section 5.2). Now we build a map of germs φ : (|OPn+1(d)|,W

1) →
(|OPn(τ + 1)|,H) in the following way: take the equation of the hypersurface which includes x2n+1 with coefficient 1, bring
it to the form f0 + x2n+1(1+ h) (using the above diffeomorphism) and take the hypersurface defined by the (τ + 1)-jet of f0.
By Lemma 2.12 and the finite determinacy theorem (Theorem 2.8), the preimage of Vτ+1,H will be VUd,W1 .
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In Section 5.2 we obtain an explicit formula for φ (formula (5.2.16)). The linear part of φ is the identity and the quadratic
part depends only on the coefficients of monomials which include xn+1 with degree 1.
Since Vτ+1,H is T-smooth, it is locally defined by a system (*) of τ equations having non-degenerate linear part. Using

φ we obtain a system (**) of equations on VU
d,W1
. This is done in Section 5.3. Since the linear part of φ is the identity, the

linear part of (**) is obtained from the linear part (*) by substituting zeros for the coefficients of monomials of degree more
than d. Since the tangent space to Vd,H has codimension τ − h1, the rank of the linear part of (**) will be τ − h1. This proves
statement (a).
The quadratic part of (**) is the sum of two systems. First is obtained from quadratic part of (*) by substituting zeros for

coefficients of monomials of degree more than d. The second summand is obtained from the linear part of (*) by composing
it with the quadratic part of φ and then substituting zeros for the coefficients of the monomials of degree more than d. We
show that if h1(JZea(H)/Pn(2d− 2)) = 0 then the second summand is non-zero.
In case h1 = 1, (**) has τ − 1 equations with independent linear parts and one more equation with quadratic principal

part which is independent of the linear parts of the previous equations. In Section 5.5 we show that it has rank at least 2 for
m ≥ max{1, 5− d} and at least 3 form ≥ max{1, 6− d}. This finishes the proof of statement (e).
In Section 5.4 we analyze the system (**) in the general case and prove statement (b).
In Sections 5.6 and 5.7 we prove statements (c) and (d) using Lemmas 2.25 and 2.26 on the Castelnuovo function.

5.2. Coordinate changes

First of all, we pass to local coordinates xi =
ti
t0
, and denote f0(x1, . . . , xn) := F0(1, x1, . . . , xn).

Let F(x1, . . . , xn+1) = f0+x2n+1+
∑
aI,jxIx

j
n+1 be a polynomial of degree≤ d.Wewant to find equations on the coefficients

aI,j that F should satisfy in order to define a hypersurface that belongs toVUd,W1 . First of allwemay suppose that the coefficient
of monomial x2n+1 is one.
Now we want to get rid of the coefficients of monomials xIxn+1. In order to do that we make the following series of

coordinate changes: xi 7→ xi for 1 ≤ i ≤ n, xn+1 7→ xn+1 − 1/2aI,1xI . After this coordinate change the new coefficients will
be expressed from the previous ones by the following formula:

a(I)J,k =

max
l
{[Jl/Il]}∑
s=0

(
s+ k
k

)(
−
1
2

)s
aprevJ−sI,s+k(a

prev
I,1 )

s. (5.2.15)

We start from I having smallest degree, and continue in increasing order of degrees. All the coefficients of the form aJ,1
influenced during the coordinate change indexed I have degreemore than degree of aI,1 (except aI,1 which vanishes). Hence
we can continue making such coordinate changes until F has no coefficients aI,1 of degree less than τ + 2. Denote the final
coefficients by a′I,j. From the formula (5.2.15) we see that they can be expressed through the original coefficients by

a′I,0 = aI,0 − 1/2
∑
aJ,1aI−J,1 − 1/4a2I/2,1 + φI(aK ,k) (5.2.16)

where φI ∈ 〈aJ〉3.

5.3. Equations defining VU
d,W1

and proof of statement (a)

We want to find equations on the coefficients aI,j that F should satisfy in order to be analytically equivalent to f0. By the
finite determinacy theorem (Theorem 2.8) we can suppose that all coefficients of F of degree more than τ +1 are zero. Then
we can present F in the form

F = f0 +
∑
a′I,0x

I
+ x2n+1

(
1+

∑
a′I,jx

Ixj−2n+1
)
.

Then, by Lemma 2.12 F
c
∼ f0 if and only if f0

c
∼ f0+

∑
a′I,0x

I . Therefore, in order for F to lie in VU
τ+1,W1

, f0+
∑
a′I,0x

I should
lie in Vτ+1,H . Hence in order to find the needed equations on aI,j we have to take equations that define Vτ+1,H inside the
linear system |OPn(τ + 1)|, substitute there a′I,0 and then using formulas (5.2.16) to express a

′

I,0 through the old coefficients
aI,j.
Let us now investigate the equations on Vτ+1,H . Since h1(JZea(H)/Pn(2d − 2)) = 0, both Vτ+1,H and V2d−2,H are smooth

and have expected codimension τ . That means that there is a system of τ local equations on Vτ+1,H with a non-degenerate
linear part which remains non-degenerate after substituting zeroes in place of all coefficients of monomials of degree bigger
than 2d− 2.
Replacing the system of equations by an equivalent one, we can suppose that the linear part of this system has echelon

form such that every rowhas a special element aLi which appears only in the linear part of this row and satisfies |Li| ≤ 2d−2.
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When we substitute in these equations zeros instead of the coefficients of degree > d the rank of the linear part of the
system drops by h1. That means that h1 rows of the linear part include only coefficients of degrees> d. Renumber the rows
so that those will be the last h1 equations. Denote the index of the special element of equation number i by Li.
As can be seen from formula (5.2.16), the linear part of a′I,0 is aI,0, and the quadratic part is−1/2

∑
aJ,1aI−J,1− 1/4a2I/2,1.

Hence the linear parts of the last h1 equations remain 0 when we express the new coefficients through the old ones.
Therefore the stratum germ VU

d,W1
is locally defined by a system of τ equations, of which only τ − h1 have a linear part,

which is non-degenerate. Hence h1(JZea(W1)/Pn+1(d)) = h
1. By induction the same is true for all VUd,Wm for any m ≥ 1. By

Lemma 2.12 deg Z ea(Wm) = τ . Statement (a) is now proven.

5.4. Proof of statement (b)

We have to show that VUd,Wm has an irreducible component which is reduced of expected dimension for m ≥ h
1
+ 1.

ConsiderW 2. It is obtained fromW 1 by the same procedure of adding a square. Hence we know the form of the equations
on VUd,W2 . The system consisting of the first τ − h

1 equations has a non-degenerate linear part, and it is the same linear part
as in the equations on Vd,H . The last h1 equations start from quadratic forms.
Let us analyze the quadratic form of equation number τ − h1+ j. Letwj0 be the quadratic form appearing in the equation

number τ − h1 + j on Vd,H (it may be zero). The quadratic part of the corresponding equation on VUd,W1 isw
j
0 +w

j
1 wherew

j
1

depends only on coefficients aI,1, and its formwas described above. Hence the quadratic part of the corresponding equation
on VU

d,W2
iswj0 +w

j
1 +w

j
2 wherew

j
1 depends only on coefficients aI,1,0, andw

j
2 is the same asw

j
1 but with variables aI,0,1.

Continuing in the same way we see that for general m, the quadratic part of equation number τ − h1 + j will be
w
j
0(a〈I,0,...,0〉)+w

j
1(a〈I,1,0,...,0〉)+w

j
2(a〈I,0,1,0,...,0〉)+· · ·+w

j
m(a〈I,0,...,0,1〉). For convenience, we denote 0m := (0, . . . , 0) ∈ Zm

and ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zm.
Let Xm be the variety defined by the principle part of the system of equations on VUd,Wm . In order to show that V

U
d,Wm has a

reduced component of expected dimension, it is enough to show that Xm has a reduced component of expected dimension.
To do that we will prove that there is a point in Xm in which the jacobian of the principle part of the system of equations on
VUd,Wm has maximal rank.
For every 1 ≤ j ≤ h1 we choose Jj and Kj (not necessary different) such that Jj + Kj = Lτ−h1+j. Here, Li is the index of the

special element of the linear part of equation number i on Vτ ,H . Let A be the linear subspace spanned by all {aKj,ej}
h1
j=1 and by

all {aI,em}1≤|I|≤d−1.
Consider the minor defined by derivatives with respect to aLi,0m for 1 ≤ i ≤ τ − h

1 and to aJj,ej for 1 ≤ j ≤ h
1. We claim

that the restriction of this minor on the linear subspace A is C · aK1,e1 · . . . · aKh1 ,eh1 where C is non-zero real number. This
minor is a determinant of a block matrix in which the first block is the identity matrix Id(τ−h1)×(τ−h1). It is left to show that
the second block is a diagonal matrix with Cj · aKj,ej on the diagonal.
Indeed, consider, for example, equation number τ−h1+1. The derivative ofw10 w.r.t. aJ1,e1 is 0 sincew

1
0 does not depend

on it at all. The same is true about w1
≥2. The derivative of w

1
1 w.r.t. aJ1,e1 contains aK1,e1 with non-zero coefficient C1. It may

also contain other aI,e1 , but they vanish on our subspace A. Consider now the derivative of equation number τ − h
1
+ j

(for j > 1) w.r.t. aJ1,e1 . Again, the derivatives of w0 and w
j
≥2 is zero. The derivative of w

j
1 does not contain aK1,e1 since the

coefficient aJ1+K1 = aL1 does not appear in the linear part of equation number τ − h
1
+ j on Vτ ,H . Hence this derivative also

vanishes on the subspace A spanned by all {aKj,ej}
h1
j=1 and by all {aI,em}1≤|I|≤d−1.

By the same reason, the restriction to A of the derivative of equation number τ − h1 + jwith respect to aJi,ei is equal to 0
if j 6= i and Ci · aKi,ei if j = i.
Hence on A the minor is a determinant of the diagonal matrix with entries (CjaKj,ej) and hence the minor is CaK1,e1 ·

. . . · aKh1 ,eh1 . Clearly, every neighborhood of 0 in X
m
∩ A contains a point in which CaK1,e1 · . . . · aKh1 ,eh1 6= 0. At this point,

a maximal minor of the jacobian is non-zero, hence the jacobian has maximal rank. Therefore the tangent space to Xm at
this point has codimension τ and hence Xm has a reduced component of expected codimension τ . Hence VUd,Wm also has a
reduced component of expected codimension form ≥ h1 + 1.

5.5. Proof of statement (e)

Now we have h1(JZea(H)/Pn(d)) = 1. By Lemma 2.25, (d) on the Castelnuovo function h1(JZea(H)/Pn(d + 1)) = 0. Hence
from Section 5.3 VUd,W1 is defined by a system of τ − 1 equations with non-degenerate linear part and one more equation
without linear part (since h1 = 1). Hence VU

d,W1
is non-smooth.

In order to show that VUd,Wm has expected codimension (respectively is reduced, respectively irreducible) it is enough
to show that the scheme defined by the principle parts of the above system of equations has expected codimension
(respectively is reduced, respectively irreducible).
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For 1 ≤ i ≤ τ − 1, we can just express aLi from equation number i. Therefore, this scheme is isomorphic to the scheme
Xm defined by the quadratic part w of the last equation in the affine space of coefficients {aI,J |2 ≤ |I + J| ≤ d} \ {aLi,0}

τ−1
i=1 .

Sincew is non-zero, Xm has expected codimension. Xm is reduced if rank(w) ≥ 2 and irreducible if rank(w) ≥ 3.
As in Section 5.4,w = w0(a〈I,0,...,0〉)+w1(a〈I,1,0,...,0〉)+w2(a〈I,0,1,0,...,0〉)+· · ·+wm(a〈I,0,...,0,1〉)where rank(w1) = · · · =

rank(wm) ≥ 1. Hence Xm is reduced for m ≥ 2 and irreducible for m ≥ 3. It is left to deal with m = 1 and m = 2. It is
enough to show that for d = 4 we have rank(w1) ≥ 2 and for d ≥ 5 we have rank(w1) ≥ 3.
We start with the case d ≥ 5. The quadratic formw1 can be expressed by

w1 =
∑

(I,J) s.t. |I+J|=d+1

CI,JaI,e1aJ,e1 .

Note that if I + J = Lτ then CI,J 6= 0. Since |Lτ | = d+ 1, it can be presented as Lτ = I1 + I2 where |I1| = 2 and |I2| = d− 1
and also as Lτ = I3+ I4, where |I3| = 3 and |I4| = d− 2. Note that I1, I2 and I3 are different since they have different degrees
since d ≥ 5. If d = 5, it is possible that I3 = I4. Consider the reductionw′1 ofw1 on the (3 or 4 dimensional) linear subspace
spanned by aI1,e1 , aI2,e1 , aI3,e1 , aI4,e1 . The only sums of pairs of those multiindices whose degrees are d + 1 are I1 + I2 and
I3 + I4. Hence w′1 = CLτ (aI1,e1aI2,e1 + aI3,e1aI4,e1) which has rank 3 or 4. Hence the rank of w1 is at least 3. Hence V

U
d,Wm is

reduced and irreducible form ≥ 1.
Consider now d = 4. As in the previous case, we can find I1 and I2 such that |I1| = 2, |I2| = d− 1 = 3 and I1 + I2 = Lτ .

By reducing w1 on the subspace spanned by aI1,e1 and aI2,e1 we see that the rank of w1 is at least 2. Hence V
U
d,Wm is reduced

form ≥ 1 and irreducible form ≥ 2.

5.6. Proof of statement (c)

By Lemma 2.25(d), it is enough to show that CZea(H)(2d−3) = 0. Let Z(j(f0)) be zero-dimensional scheme defined by the
jacobian j(f0) where f0 is the local equation of H . Then Z ea(H) is a subscheme of Z(j(f0)) and hence by Lemma 2.25(e) it is
enough to show that CZ(j(f0))(2d− 3) = 0. Let C1 = Z(

∂ f0
∂x1
) and C2 = Z(

∂ f0
∂x2
) and let Z ′ be the complete intersection C1 ∩ C2.

Then Z(j(f0)) is a subscheme of Z ′ and hence by Lemma 2.25(e) it is enough to show thatCZ ′(2d−3) = 0. Let k be the degree
of ∂ f0

∂x1
and l be the degree of ∂ f0

∂x2
. By Lemma 2.26, CZ ′(l+ k− 1) = 1− 1 = 0. Since k, l ≤ d− 1 we obtain CZ ′(2d− 3) = 0.

Therefore h1(JZea(H)/P2(2d− 4)) = 0 and hence by (b) the germs V
U
d,Wm have a reduced component of expected dimension

form ≥ h1 + 1.

5.7. Proof of statement (d)

Suppose h1(JZea(H)/Pn(2d − 2)) > 0. Then h1(JZea(H)/Pn(l)) > 0 for all d ≤ l ≤ 2d − 2. Hence by Lemma 2.25,(d) the
Castelnuovo function CZea(H)(l) > 0. Hence h1(JZea(H)/Pn(d)) − h1(JZea(H)/Pn(2d − 2)) =

∑2d−2
l=d+1 CZea(H)(l) ≥ d − 2. Hence

h1(JZea(H)/Pn(2d− 2)) ≤ h1(JZea(H)/Pn(d))− (d− 2) ≤ 0. So h1(JZea(H)/Pn(2d− 2)) = 0 and by (b) the germs VUd,Wm have a
reduced component of expected dimension form ≥ h1 + 1. �

Remark 5.1. If one wishesWm to be unisingular, they can be defined by F0+
∑m
j=1 t

2
n+jt

d−2
0 +

∑m
j=1 λjt

d
n+j, where the λj are

generic. The same proof shows that an analogous theorem will hold about the equisingular family germ Vd,Wm .

Remark 5.2. Statement (c) can be strengthened as follows: letH be a projective plane curve of degree dwhich is not a union
of d lines through the same point. Then h1(JZea(H)/P2(2d− 5)) = 0.

For a proof see [23], Remark 3.4.4.
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