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the case of Artinian monomial complete intersections generated by
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monomial complete intersections in characteristic two.
To establish these results, we first prove an a priori lower bound
on the characteristics that guarantee the Lefschetz properties. We
then use a variety of techniques to complete the classifications.
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1. Introduction

Let K be an infinite field of arbitrary characteristic, and let I be a homogeneous Artinian ideal in
R = K [x1, . . . , xn]. The algebra A = R/I is said to have the strong Lefschetz property, if there exists a
linear form � ∈ A such that for all integers d and k, with k � 1, the map ×�k : [A]d → [A]d+k has
maximal rank. In this case, � is called a strong Lefschetz element of A. If the property holds for k = 1,
then A is said to have the weak Lefschetz property, and � is called a weak Lefschetz element of A.

The Lefschetz properties have been studied extensively; the recent manuscript by Harima, Maeno,
Morita, Numata, Wachi, and Watanabe [12] provides a wonderfully comprehensive exploration of the
Lefschetz properties. In particular, the presence of the properties provides interesting constraints on
the Hilbert functions of the algebras (see, e.g., [1,13,22]).
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The theorem below which motivates our results was first proven by Stanley [26] using algebraic
geometry. It has since been proven in many different ways, most notably by Watanabe [27] using
representations of gl2, and later by Reid, Roberts, and Roitman [25] using purely algebraic techniques.
Recently, Lindsey [17] proved a generalisation of this theorem using techniques from commutative
algebra.

Theorem 1.1. (See [26, Theorem 2.4], [27, Corollary 3.5], [25, Theorem 10].) Every Artinian monomial complete
intersection over a polynomial ring has the strong Lefschetz property in characteristic zero.

For a brief, but extensive overview of the depth with which Theorem 1.1 has inspired explorations
of the Lefschetz properties, see the survey [21] by Migliore and Nagel.

We emphasise that the above result, and most related results, are specific to characteristic zero.
However, there has been a great deal of recent interest in positive characteristic (see, e.g., [5–7,16]).
Specifically, Brenner and Kaid [4] (for three variables) and Kustin and Vraciu [15] (for at least four
variables) completely characterised the characteristics in which the weak Lefschetz property is present
for monomial complete intersections generated by monomials all having the same degree. Although
the failure of the weak Lefschetz property implies the failure of the strong Lefschetz property, we
must do more work to establish the presence of the strong Lefschetz property.

The goal of this note is to provide complements to Theorem 1.1 in characteristic two (see Theo-
rem 7.1) and further in the case of generation by monomials of the same degree (see Theorem 7.2).
The remainder of the manuscript is organised as follows: In Section 2 we describe a few old and new
ways to establish the Lefschetz properties, specifically in the case of monomial complete intersections.
In Section 3 we describe the characteristics in which the Lefschetz properties may fail, and prove they
are bounded linearly in the degrees of the generating monomials. The proofs involve an analysis of
the prime divisors of an associated determinant.

As demonstrated in [15], when fewer variables are used, exploring the presence of the Lefschetz
properties becomes more interesting. In Sections 4 and 5 we consider monomial complete intersec-
tions in two and three variables, respectively. In Section 6 we handle the case of at least four variables.
Throughout these three sections, we use a variety of techniques to establish the presence and failure
of the Lefschetz properties. These techniques include determining syzygy gaps (see Section 4.1), us-
ing basic number theory (e.g., see Lemma 4.6), and finding explicit syzygies of small degree (see
Section 5.1).

Finally, in Section 7 we close with the desired classifications and a few comments.

2. Establishing the Lefschetz properties

Let K be an infinite field of arbitrary characteristic. All Artinian monomial complete intersections
over the polynomial ring R = K [x1, . . . , xn] are of the form R/Id , where

Id = (
xd1

1 , xd2
2 , . . . , xdn

n
)
,

d = (d1,d2, . . . ,dn) ∈ Nn , and, without loss of generality, d1 � d2 � · · · � dn � 2. Throughout the re-
mainder of the manuscript we use the above definition of Id .

2.1. The weak Lefschetz property

Notice that the socle degree of R/Id is t := d1 + · · · + dn − n. Moreover, if the largest generating
degree is sufficiently large (relative to the socle degree), then the weak Lefschetz property always
holds.

Proposition 2.1. (See [19, Proposition 5.2].) Let d ∈ Nn, d1 � d2 � · · · � dn � 2, and t = d1 + · · · + dn − n. If
d1 > � t

2 �, then R/Id has the weak Lefschetz property, regardless of the characteristic of K .
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We recall that for level algebras if multiplication by a linear form is injective in a fixed degree,
then it is injective for all the previous degrees.

Proposition 2.2. (See [20, Proposition 2.1(b)–(c)].) Let A = R/I be a level Artinian standard graded K -algebra,
and let � ∈ A be a non-zero linear form. Consider the homomorphisms ϕd : [A]d → [A]d+1 defined by multi-
plication by � for d � 0.

(i) If ϕd is injective for some d � 1, then ϕd−1 is injective.
(ii) In particular, if dimK [A]d = dimK [A]d+1 , then A has the weak Lefschetz property if and only if ϕd is

injective (or, equivalently, surjective).

Moreover, a monomial algebra has the weak (strong) Lefschetz property exactly when the sum of
the variables is a weak (strong) Lefschetz element.

Proposition 2.3. (See [20, Proposition 2.2].) Let A = R/I be an Artinian standard graded K -algebra with I
generated by monomials. Then A has the weak (strong) Lefschetz property if and only if x1 +· · ·+ xn is a weak
(strong) Lefschetz element of A.

Thus, in the case of an Artinian monomial complete intersection, we have a series of conditions
on the algebra that are equivalent to the algebra having the weak Lefschetz property.

Lemma 2.4. Let � = x1 + · · · + xn. Suppose t is odd and set s = � t
2 �. Then the following are equivalent (where

the ordering on the di is ignored):

(i) The algebra R/Id has the weak Lefschetz property;
(ii) the multiplication map ×� : [R/Id]s → [R/Id]s+1 is an injection;
(iii) the K -dimension of [R/(Id, �)]s+1 is 0;
(iv) the K -dimension of [S/ Jd]s+1 is 0, where S = K [x2, . . . , xn] and

Jd = (
(x2 + · · · + xn)

d1 , xd2
2 , . . . , xdn

n
)
.

Proof. By Proposition 2.3, as Id is a monomial ideal, it suffices to consider � = x1 + · · · + xn .
The equivalences follow as:

(i) and (ii): use Proposition 2.2(ii) and duality;
(ii) and (iii): [R/(Id, �)]s+1 is the cokernel of the map in (ii); and
(iii) and (iv): [R/(Id, �)]s+1 ∼= [S/ Jd]s+1. �

If the socle degree is even, then the weak Lefschetz property is sometimes inherited.

Corollary 2.5. If t is even and R[xn+1]/I(d,2) has the weak Lefschetz property, then R/Id has the weak Lefschetz
property.

Proof. Notice that s = t
2 = � t+1

2 � as t is even. Set � := x1 + · · · + xn .
By Lemma 2.4, if R[xn+1]/I(d,2) has the weak Lefschetz property, then K -dimension of

[R/(Id, �
2)]s+1 is zero. Moreover, this is the cokernel of the map ×�2 : [R/Id]s−1 → [R/Id]s+1; hence

the map is a bijection. This implies ×� : [R/Id]s−1 → [R/Id]s is an injection. Thus, using Proposi-
tion 2.2(ii) and duality we have that R/Id has the weak Lefschetz property. �
2.2. The strong Lefschetz property

If the Hilbert function is symmetric, then demonstrating the strong Lefschetz property is equivalent
to showing certain maps are bijections.
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Proposition 2.6. R/Id has the strong Lefschetz property if and only if R[xn+1]/I(d,t−2k) has the weak Lefschetz
property for each 0 � k � � t

2 �.

Proof. Set � := x1 + · · · + xn . The socle degree of Ak := R[xn+1]/I(d,t−2k) is 2(t − k) − 1, which is odd,

and further � 2(t−k)−1
2 � = t − k − 1. By Lemma 2.4, Ak has the weak Lefschetz property if and only

if the K -dimension of [R/(Id, �
t−2k)]t−k is zero. The latter is equivalent to the map ϕk := ×�t−2k :

[R/Id]k → [R/Id]t−k being a bijection.
Clearly, R/Id has the strong Lefschetz property if and only if ϕk is a bijection (i.e., Ak has the weak

Lefschetz property) for 0 � k � � t
2 �. �

3. Bounding failure of the Lefschetz properties

Let R/Id be an Artinian monomial complete intersection as defined in Section 2, and let t = d1 +
· · · + dn − n be the socle degree of R/Id . If t is odd and d1 � � t

2 �, then Lemma 2.4(iv) holds if and
only if the determinant of Md , the associated matrix defined by the map, is non-zero modulo the
characteristic of K . We use this to describe the characteristics in which the Lefschetz properties may
fail and to prove they are bounded linearly in the degrees of the generating monomials.

3.1. A connection to weak compositions

An ordered n-tuple m = (m1, . . . ,mn) ∈ Nn with m1 + · · · + mn = k is called a weak composition of
k into n parts. Define the set C(n,m,k) to be the set of weak compositions a of k into n parts such
that a is component-wise bounded by m. For elements a,b ∈ C(n,m,k), define a! := a1! · · ·an! and
b −a = (b1 −a1, . . . ,bn −an). Notice that if a is component-wise bounded by b, then b −a ∈ C(n,m,k).

Given an (n − 1)-tuple a = (a2,a3, . . . ,an), we define xa = xa2
2 xa3

3 · · · xan
n . The matrix Md has rows

indexed by the monomials xa of [S/ Jd]s+1−d1 and columns indexed by the monomials xb of [S/ Jd]s+1.
The element in the xa row and the xb column is zero if a is larger than b in at least one component,
otherwise it is the multinomial coefficient

(
d1

b2 − a2, . . . ,bn − an

)
= d1!

(b − a)! .

Notice that the monomials in [S/ Jd]i are in bijection with the weak compositions in C(n − 1, ď −
1, i), where ď = (d2, . . . ,dn) and 1 = (1, . . . ,1). Hence the matrix Md can be seen as a matrix with

rows indexed by a ∈ C(n − 1, ď − 1, s + 1 − d1) and columns indexed by b ∈ C(n − 1, ď − 1, s + 1) with
entries given by zero if a is larger than b in at least one component and d1!

(b−a)! otherwise.
Seeing Md in this new light, a theorem of Proctor computes the determinant of Md in terms of

compositions.

Theorem 3.1. (See [24, Corollary 1].) Let d ∈ Nn, where d1 � d2 � · · ·� dn � 2, and suppose d1 +· · ·+dn −n
is odd. Set s := � d1+d2+···+dn−n

2 �. Then

|det Md| =
∏

a a!∏
b b!

s+1−d1∏
i=0

〈i + 1〉δs+1−d1−h

d1
,

where a and b run over C(n − 1, ď − 1, s + 1 − d1) and C(n − 1, ď − 1, s + 1), respectively, 〈x〉m := x(x +
1) · · · (x + m − 1), and δi = #C(n − 1, ď − 1, i) − #C(n − 1, ď − 1, i − 1).
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Remark 3.2. By the work of Gessel and Viennot [8], we have that the determinant of Md is the
enumeration of signed non-intersecting lattice paths from the hyperplane x2 + · · ·+ xn = s + 1 − d1 to
the hyperplane x2 + · · · + xn = s + 1 in the parallelepiped of size (d2 − 1) × · · · × (dn − 1).

If the top generating degree, d1, is as large as possible such that the preceding theorem is still
applicable, then the matrix has one entry.

Lemma 3.3. Let n � 3 and d2 � · · ·� dn � 2; set d1 = d2 +· · ·+dn −(n−1). Then the algebra R/I(d1,d2,...,dn)

has the weak Lefschetz property if and only if p does not divide
( d1

d2−1,...,dn−1

)
.

Proof. The socle degree is t = 2(d2 + · · · + dn − (n − 1)) − 1 = 2d1 − 1, and so the peak is s = d1 − 1.
Thus, Md is the 1 × 1 matrix with entry

( d1
d2−1,...,dn−1

)
, and so det Md = ( d1

d2−1,...,dn−1

)
. �

3.2. Bounding failure

Using the above connection, and some algebraic considerations, we can bound the prime charac-
teristics in which the weak Lefschetz property can fail. We first recall a useful lemma.

Lemma 3.4. (See [7, Lemma 2.5].) Let A = R/I be an Artinian standard graded K -algebra with I generated
by monomials. Suppose that a is the least positive integer such that xa

i ∈ I , for 1 � i � n, and suppose that the
Hilbert function of R/I weakly increases to degree s. Then, for any positive prime p such that a � pm � s for
some positive integer m, A fails to have the weak Lefschetz property in characteristic p.

Proposition 3.5. Let n � 3 and d1 � · · · � dn � 2; set t = d1 + · · · + dn − n. Suppose K is a field of charac-
teristic p, where p is a positive prime, and suppose d1 � � t

2 �. Then:

(i) If d2 � p � d1 or d1 � pm � � t
2 �, for some positive integer m, then R/Id fails to have the weak Lefschetz

property. In particular, injectivity fails in degree d1 or pm, respectively.
(ii) If p > � t+1

2 �, then R/Id has the weak Lefschetz property.

Proof. Set � := x1 + · · · + xn and ϕk := ×� : [R/Id]k−1 → [R/Id]k .

Assume d2 � p � d1. Then �d1 is zero in R/Id as the coefficients
( d1

i2,...,in

)
are zero modulo p except

for on xd1
i , 1 � i � n, but these are in Id . Hence ϕd1 is not injective and so R/Id fails to have the weak

Lefschetz property.
Next, assume d1 � pm � � t

2 �, for some positive integer m. Then ϕpm is not injective and R/Id fails

to have the weak Lefschetz property by Lemma 3.4. (Recall that xd1
i ∈ Id for 1 � i � n and the Hilbert

function of R/Id weakly increases to t − � t
2 � = � t

2 �.)
Finally, assume p > � t+1

2 �. We consider the two cases given by the parity of t .
Suppose t is odd; then � t+1

2 � = � t
2 �. Moreover, analysing Theorem 3.1 we see that the terms in the

formula are bounded between 1 and � t+1
2 �. Thus, det Md is not divisible by primes p > � t+1

2 �, and
R/Id has the weak Lefschetz property if p > � t+1

2 �.
Suppose t is even; then � t+1

2 � = t
2 + 1 = � t+2

2 �. By the previous paragraph, R[xn+1]/Id,2 has the
weak Lefschetz property for p > � t+2

2 � = � t+1
2 �. Hence, by Corollary 2.5 R/Id has the weak Lefschetz

property if p > � t+1
2 �. �

Notice that the algebras in Proposition 2.6, which we desire to show have the weak Lefschetz
property, all have odd socle degree. We exploit this, along with the preceding proposition, to find a
similar bound in the case of the strong Lefschetz property.
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Theorem 3.6. Suppose K is a field of characteristic p, where p is a positive prime. Then:

(i) If max{d2,2d1 − t} � p � d1 or d1 � pm � t, for some positive integer m, then R/Id fails to have the
strong Lefschetz property.

(ii) If p > t, then R/Id has the strong Lefschetz property.

Proof. Set � := x1 + · · · + xn and Ak := R[xn+1]/I(d,t−2k) . Recall that by Proposition 2.6, R/Id has the
strong Lefschetz property if and only if each Ak , for 0 � k � � t

2 �, has the weak Lefschetz property. Set
r := min{� t

2 �, t − d1} and notice that the largest generating degree of Ak is max{d1, t − 2k}. Thus Ak
satisfies the hypotheses of Proposition 3.5 if and only if 0 � k � r.

Suppose d1 � � t
2 � and max{d2,2d1 − t}� p � d1 or d1 � pm � t , for some positive integer m. Then

max{d2,2d1 − t} = d2, and by Proposition 3.5(i) R/Id fails to have the weak Lefschetz property, hence
fails to have the strong Lefschetz property.

Suppose d1 > � t
2 � and max{d2,2d1 − t} � p � d1. We then have that 0 < t − d1 < � t

2 � and At−d1

fails to have the weak Lefschetz property by Proposition 3.5(i).
Let 0 � k � r. Then by Proposition 3.5(i), Ak fails to have the weak Lefschetz property if max{t −

2k,d1} � pm � t − k, for some positive integer m. Hence ranging k from 0 to r we get that R/Id fails
to have the weak Lefschetz property for d1 � pm � t .

On the other hand, by Proposition 3.5(ii), Ak has the weak Lefschetz property for p > t − k. Hence
if p > t , then each Ak has the weak Lefschetz property and R/Id has the strong Lefschetz property. �

Case (ii) of the preceding theorem can be recovered with some work from results of Lindsey [17,
Lemma 5.2 and Corollary 5.3], or Hara and Watanabe’s proof of [11, Proposition 8].

4. The presence of the Lefschetz properties for two variables

First, we note that any homogeneous Artinian ideal in two variables has the weak Lefschetz
property. This was proven for characteristic zero in [13, Proposition 4.4] and then for arbitrary charac-
teristic in [22, Corollary 7], though it was not specifically stated therein, as noted in [16, Remark 2.6].
(See also [7, Proposition 2.7].)

Proposition 4.1. Let R = K [x, y], where K is an infinite field with arbitrary characteristic. Every homogeneous
Artinian algebra in R has the weak Lefschetz property.

On the other hand, the strong Lefschetz property is much more subtle. By Proposition 2.6, R/I(a,b)

has the strong Lefschetz property if and only if Bk = R[x3]/I(a,b,a+b−2−2k) has the weak Lefschetz
property for 0 � k � � a+b−2

2 �. In this case, if k > b − 2, then Bk always has the weak Lefschetz prop-
erty, by Proposition 2.1; hence we need only to consider 0 � k � b − 2.

A few particular cases stand out. Using Lemma 3.3, we have that the algebra B0 has the weak
Lefschetz property in characteristic p if and only if p does not divide

(a+b−2
b−1

)
. Similarly, Bb−2 has the

weak Lefschetz property in characteristic p if and only if p does not divide
( a

b−1

)
.

For 2 � b � 3, we characterise the strong Lefschetz property with the above. We single out these
cases because they play a special role in the classification of the strong Lefschetz property in charac-
teristic two for arbitrary R/Id given in Section 7.

Lemma 4.2. Let R = K [x, y] and p be the characteristic of K . Then:

(i) R/I(a,2) , for a � 2, has the strong Lefschetz property if and only if p does not divide a.
(ii) R/I(a,3) , for a � 3, has the strong Lefschetz property if and only if p = 2 and a ≡ 2 (mod 4) or p �= 2 and

a is not equivalent to −1, 0, or 1 modulo p.

Proof. By the comments above, R/I(a,2) has the strong Lefschetz property if and only if p does not
divide

(a
1

) = a.
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Similarly, R/I(a,3) has the strong Lefschetz property if and only if p does not divide either
(a+1

2

)
or

(a
2

)
. That is, p does not divide

(a+1
2

)(a
2

) = 1
4 (a − 1)a2(a + 1). Analysing this, we see that this is

equivalent to the claim. �
4.1. Syzygy gaps

Let a � b, and let Bk = R[x3]/I(a,b,a+b−2−2k) for 0 � k � b − 2. Notice that a + b > a + b − 2 − 2k
as k � 0, and b + (a + b − 2 − 2k) > a as b − 2 � k. Thus, by [2, Corollary 3.2], Bk has a stable syzygy
bundle, and so by [3, Theorem 2.2], Bk has the weak Lefschetz property if and only if the syzygy
bundle of Bk splits on the line x + y + z with twists, say, s0 � s1, such that s1 − s0 � 1, i.e., the syzygy
gap (introduced by Monsky [23]) of (xa, yb, (x + y)a+b−2−2k) in R is at most one. Moreover, it is easy
to see that s0 + s1 = −2(a + b − 1 − k), and hence the parity of the syzygy gap s1 − s0 is even.

Han [10] provides a way to compute the syzygy gap via a continuation of the syzygy gap function.
Define δ : N3 → N to be the syzygy gap of (xa, yb, (x + y)c) in K [x, y] (notice δ depends on the
characteristic of K ). Let δ� : [0,∞)3 → [0,∞) be the continuous continuation of δ. Define Z3

odd to be
the integer triples (u, v, w) such that u + v + w is odd. Further, define μ, the Manhattan distance
on R3, to be μ((a,b, c), (u, v, w)) = |u − a| + |v − b| + |w − c|.

Theorem 4.3. (See [10, Theorems 2.25 and 2.29].) Let K be an algebraically closed field of characteristic p > 0,
and assume the entries (a,b, c) ∈ [0,∞)3 satisfy a � b � c < a + b. If there exist a negative integer s and
a triple (u, v, w) ∈ Z3

odd such that μ(ps(a,b, c), (u, v, w)) < 1, then δ�(a,b, c) > 0. Otherwise, if no such s
and (u, v, w) exist, then δ�(a,b, c) = 0.

This approach was used by Brenner and Kaid in [4] to explicitly classify the characteristics in
which K [x, y, z]/(xd, yd, zd) has the weak Lefschetz property. Their result is a special case of [16,
Theorem 3.2], which solves the same problem for K [x, y, z]/(xa, yb, zc).

4.2. Characteristic two

Let n be a positive integer, and n = bs2s +· · ·+b020 be its binary representation, i.e., bi ∈ {0,1}. De-
fine the bit-positions of n to be the set B(n) of indices i such that bi = 1 in the binary representation
of n. For example, B(42) = {1,3,5} and B(2m) = {m}, for m � 0.

The following theorem is due to Kummer [18]. (We thank Fabrizio Zanello for pointing us to this
reference.)

Theorem 4.4. If n � k � 0 and p is a prime, then the largest power of p dividing
(n

k

)
is the number of carries

that occur in the addition of k and n − k in base-p arithmetic.

An immediate (and simple) corollary of this theorem is a classification for when binomial coeffi-
cients are odd.

Corollary 4.5. If n � k � 0, then
(n

k

)
is odd if and only if B(k) and B(n − k) are disjoint.

Using the above classification, we get a useful intermediate result.

Lemma 4.6. If a � b � 2, then
(a+b−2

b−1

)
is odd and

( a
b−1

)
is odd if and only if a = 2m� and b = 2m + 1, where

m � 0 and l � 3 odd.

Proof. Suppose
(a+b−2

b−1

)
and

( a
b−1

)
are odd. Then by Corollary 4.5, B(a − 1) and B(b − 1) are disjoint,

as are B(b − 1) and B(a − b + 1). Thus, B(a) = B(b − 1) ·∪B(a − b + 1) has at least two elements, as
B(b − 1) and B(a − b + 1) each have at least one element.

Suppose B(a − 1) contains 0, . . . ,m − 1 but not m. Then B(a) contains m but not 0, . . . ,m − 1.
Further, for i > m, i ∈ B(a − 1) if and only if i ∈ B(a). As B(b − 1) ⊂ B(a), and B(b − 1) has at least
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one element, then B(b − 1) and B(a − 1) being disjoint implies B(b − 1) = {m}. That is, b − 1 = 2m

and so b = 2m + 1. Moreover, as B(a) contains m but not 0, . . . ,m − 1, a = 2m�, where � is odd. As
a � b, then a � 3.

On the other hand, suppose a = 2m� and b = 2m + 1. Then B(a − 1) = {0, . . . ,m − 1} ·∪ {m + 1 + i |
i ∈ B(�)}, B(b − 1) = {m}, and B(a − b + 1) = B(2m+1 �−1

2 ) only contains values at least m + 1. Thus
B(a − 1) and B(b − 1) are disjoint as are B(b − 1) and B(a − b + 1), and so by Corollary 4.5 we have
that

(a+b−2
b−1

)
and

( a
b−1

)
are odd. �

Using the syzygy gap method described in Section 4.1, we complete the classification in the ex-
ceptional cases.

Lemma 4.7. If a = 2m� and b = 2m + 1, where m � 0 and l � 3 odd, then R/I(a,b,a+b−2(k+1)) fails to have the
weak Lefschetz property in characteristic two if and only if 1 � k � b − 3.

Proof. If k = 0 or k = b − 2, then R/I(a,b,a+b−2) or R/I(a,b,a−b+2) has the weak Lefschetz property by
Lemmas 3.3 and 4.6.

Suppose 1 � k � b − 3 = 2m − 2. We have the following:

μ

(
1

2m
(a,b,a + b − 2 − 2k), (�,1, �)

)
=

∣∣∣∣2m�

2m
− �

∣∣∣∣ +
∣∣∣∣2m + 1

2m
− 1

∣∣∣∣ +
∣∣∣∣2m(� + 1) − 1 − 2k

2m
− �

∣∣∣∣
= 1

2m
+

∣∣∣∣2k + 1

2m
− 1

∣∣∣∣
=

{
1 − k

2m−1 if k � 2m−1,

k+1
2m−1 − 1 if k > 2m−1.

Notice that 1 − k
2m−1 < 1 if and only if k

2m−1 > 0 if and only if k > 0. Further, k+1
2m−1 − 1 < 1 if and only

if k < 2m − 1 if and only if k � 2m − 2 = b − 3.
Thus, μ( 1

2m (a,b,a + b − 2 − 2k), (�,1, �)) < 1 for 1 � k � b − 3. Notice 2� + 1 is odd. Hence, by
Theorem 4.3, R/I(a,b,a+b−2(1+k)) fails to have the weak Lefschetz property in characteristic two. �

Combining the above two lemmas, we classify the strong Lefschetz property in characteristic two
for the two-variable case.

Corollary 4.8. Let a � b � 2. Then R/I(a,b) fails to have the strong Lefschetz property in characteristic two if
and only if one of the following holds:

(i) b = 2 and a is even,
(ii) b = 3 and a �≡ 2 (mod 4), or

(iii) b � 4.

Proof. Parts (i) and (ii) follow from Lemma 4.2 (and also Lemma 4.6 and Lemma 4.7, after considering
each case).

Recall that by Proposition 2.6, R/I(a,b) has the strong Lefschetz property if and only if each Bk :=
S/I(a,b,a+b−2−2k) has the weak Lefschetz property, for 0 � k � b − 2.

Suppose that b � 4. If a �= 2m� for some m � 0 or b �= 2m + 1 for some l � 3 odd, then by
Lemma 4.6,

(a+b−2
b−1

)
is even or

( a
b−1

)
is even. That is, B0 or Bb−2, respectively, fails to have the weak

Lefschetz property in characteristic two.
On the other hand, if a = 2m� and b = 2m + 1, where m � 0 and l � 3 odd, then for 0 < k < b − 2,

Bk fails to have the weak Lefschetz property in characteristic two, by Proposition 4.7. Note that b � 4
implies b − 2 � 2. �
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4.3. Generation in a single degree

Using the syzygy gap method in Section 4.1, we get the following classification of the strong Lef-
schetz property for R/I(d,d) .

Theorem 4.9. Let R = K [x, y], where p is the characteristic of K , and Id = (xd, yd), where d � 2. Then R/Id
has the strong Lefschetz property if and only if p = 0 or 2d − 2 < ps, where s is the largest integer such that
ps−1 divides (2d − 1)(2d + 1).

Proof. By Theorem 3.6, if d � p � 2d − 2, then the strong Lefschetz property fails and if p > 2d − 2
then the strong Lefschetz property holds. By Corollary 4.8, if p = 2, then the strong Lefschetz property
fails. Hence, we need only to consider 2 < p < d.

Next, notice that if such a triple (u, v, w) ∈ Z3
odd exists, then u = v and so w is odd. Otherwise, if

u �= v , then |m − u| + |m − v| � |u − v| � 1 for all m ∈ R by the triangle inequality; in particular, this
holds for m = d

ps .

Set s to be the largest integer such that ps−1 divides (2d − 1)(2d + 1). Further, set e = 2d + 1, if p
divides 2d + 1, otherwise set e = 2d − 1.

As the sum d+d+2(d−1−k) is even, if r = 0, then pr(d,d,2(d−1−k)) is at least one from every
point in Z3

odd, under the Manhattan distance. Suppose 0 < r < s, then p divides e; set e = prn for some

odd integer n (recall e is odd). If e = 2d − 1, then d = prn+1
2 . The minimal value of | d

pr − u| is pr−1
2pr

at u = n+1
2 . The minimal value of | 2(d−1−k)

pr − w| is 1+2k
pr at w = n. However, 2 pr−1

2pr + 1+2k
pr = pr+2k

pr is

at least one for all k. Similarly, if e = 2d + 1, then the Manhattan distance to any point in Z3
odd is at

least one.
Suppose 2d − 2 < ps . Let r � s; then 2d − 2 < pr , and so d

pr � 1
2 . Hence, we may set u = v = 0, and

thus w � 1 as w must be odd. As 2(d − 1 − k) � 2d − 2 < pr , we must choose w = 1. However, for all
k � 0,

μ

(
1

pr

(
d,d,2(d − 1 − k)

)
, (0,0,1)

)
= pr + 2 + 2k

pr
> 1.

Suppose 2d − 2 � ps; then e > ps , and we can write e = psn + j, where p does not divide n and
0 < j < ps ( j > 0 as ps does not divide e). Notice that n > 0 as e > ps . We consider two cases, given
by the parity of n.

Suppose n is even, then j is odd as e is odd. As ps is odd and j is odd, then j �= ps − 1 and
j �= ps − 3. Assume e = 2d − 1, that is, p does not divide 2d + 1. Notice, j �= ps − 2, otherwise,
2d − 1 = ps(n + 1) − 2, and so 2d + 1 = ps(n + 1), which contradicts our choice of e. Thus, j � ps − 4.
Set u = v = n

2 , w = n − 1, and k = j + 1. As n � 2, 2ps < e and so ps � d. This in turn implies

k = j + 1 < ps − 2 � d − 2; thus, k is applicable. As e = 2d − 1, then d = psn+ j+1
2 . Further,

μ

(
1

ps

(
d,d,2(d − 1 − k)

)
, (u, v, w)

)
= 2

∣∣∣∣n

2
+ j + 1

2ps
− n

2

∣∣∣∣ +
∣∣∣∣n + − j − 3

ps
− (n − 1)

∣∣∣∣
= j + 1

ps
+ ps − j − 3

ps

= ps − 2

ps

< 1.
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Assume e = 2d + 1, that is, p does divide 2d + 1. In this case, set u = v = n
2 , w = n − 1, and k = j.

Notice, k � ps − 2. As n � 2, 2ps < e and so ps � d. This in turn implies k = j � ps − 2 � d − 2; thus,
k is applicable. As e = 2d + 1, then d = psn+ j−1

2 . Further,

μ

(
1

ps

(
d,d,2(d − 1 − k)

)
, (u, v, w)

)
= 2

∣∣∣∣n

2
+ j − 1

2ps
− n

2

∣∣∣∣ +
∣∣∣∣n + − j − 3

ps
− (n − 1)

∣∣∣∣
= j − 1

ps
+

∣∣∣∣ ps − j − 3

ps

∣∣∣∣
= ps − 2

ps

< 1.

(�)

Note for (�): If j � ps − 3, then the absolute value disappears; on the other hand, if j = ps − 2, then
the latter term is 1

ps .

Suppose n is odd, then j is even as e is odd. Set u = v = n+1
2 , w = n, and k = j

2 − 1. Notice that

n � 1 and j � 2. As j < ps < 2d − 1 � e, then j � 2d − 3. So k = j
2 − 1 � d − 2; thus, k is applicable.

Suppose e = 2d − 1, then d = psn+ j+1
2 .

μ

(
1

ps

(
d,d,2(d − 1 − k)

)
, (u, v, w)

)
= 2

∣∣∣∣n

2
+ j + 1

2ps
− n + 1

2

∣∣∣∣ +
∣∣∣∣n + 1

ps
− n

∣∣∣∣
= ps − j − 1

ps
+ 1

ps

= ps − j

ps

< 1.

When e = 2d + 1, the result follows similarly with the finally fraction being ps− j+2
ps . We notice that

if j = 2, then e = 2d + 1 = psn − 2 and so 2d − 1 = psn. That is, p divides 2d − 1, contradicting our
choice of e. Thus, j � 4. �
5. The presence of the Lefschetz properties for three variables

In this section, we focus entirely on the strong Lefschetz property for R/I(d,d,d) , where d � 2. We
use the method of Kustin and Vraciu [15] that is based on finding syzygies of low enough degree
which we recall next.

5.1. Minimal degree syzygies

Let S = K [x2, . . . , xn] and d = (d1,d2, . . . ,dn) ∈ Nn . Define φd : ⊕n
i=1 S(−di) → S by the matrix

[(x2 + · · · + xn)d1 , xd2
2 , . . . , xdn

n ], and let syz(d) := kerφd . Next, define Kos(d) to be the S-submodule of
syz(d) generated by the Koszul relations on the entries of the matrix defining φd , and define syz(d)

to be the quotient syz(d)/Kos(d). Last, for a non-zero graded module M , the minimal generator degree
of M is the smallest d such that Md is non-zero; we denote this by mgd M .

Proposition 5.1. (See [15, Corollary 2.2(4) & (6)].) Let d = (d1,d1, . . . ,dn) ∈ Nn, and set t = d1 +· · ·+dn −n.
Then R/Id has the weak Lefschetz property if and only if � t+3

2 � � mgd syz(d).
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Thus, R/Id fails to have the weak Lefschetz property if we can demonstrate that there exists a
non-Koszul syzygy of small enough degree.

5.2. Finding syzygies

First, we describe an explicit non-Koszul syzygy of S/I(k,k+ j,k+ j,k) that will be used repeatedly in
the proceeding proof. This is a generalisation of the syzygy described in the proof of [15, Lemma 4.2].

Lemma 5.2. Let j,k ∈ N, where k � 1. Then (− fk+ j, gk, (−1)k+ j+1 gk, fk+ j) is a non-Koszul syzygy in
syz(k,k + j,k + j,k), where

fk := yk − (−z)k

y + z
=

k−1∑
i=0

yi(−z)k−i−1

and

gk := xk − (x + y + z)k

y + z
= −

k−1∑
i=0

(
k

i

)
xi(y + z)k−i−1.

Proof. Notice that (− fk+ j, gk, (−1)k+ j+1 gk, fk+ j) ∈ syz (k,k + j,k + j,k) as

− fk+ jx
k + gk yk+ j + (−1)k+ j+1 gkzk+ j + fk+ j(x + y + z)k

= fk+ j
(
(x + y + z)k − xk) + gk

(
yk+ j − (−z)k+ j)

= yk+ j − (−z)k+ j

y + z

(
(x + y + z)k − xk) + xk − (x + y + z)k

y + z

(
yk+ j − (−z)k+ j)

= 0.

Furthermore, it is clear that fk+ j /∈ (xk, yk+ j, zk+ j) since fk+ j is a polynomial in y and z of degree
k + j − 1. Thus, the described syzygy is non-Koszul. �

In order to demonstrate that the algebra R/I(d,d,d) does not have the strong Lefschetz property, we
classify the weak Lefschetz property for S/I(d,d,d,d−3) .

Proposition 5.3. Let d � 6, and set d = (d,d,d,d − 3). Then R/Id has the weak Lefschetz property in charac-
teristic p if and only if p = 0 or p > 2d − 3.

Proof. Set β to be the quadruple (xd, yd, zd, (x + y + z)d−3). The proof follows from several cases.
(i) Characteristic two: Let p = 2. If d �= 2m + 1 for some m ∈ N, then d = 2m − k for some 0 � k �

2m−1 − 2, and 2d − 3 = 2m+1 − 2k − 3 � 2m + 1. Thus, d � 2m � 2d − 3 and so R/Id fails to have the
weak Lefschetz property by Proposition 3.5.

Suppose d = 2m + 1 for some m ∈ N. Then α = (yz, xz, xy, xyz(x + y + z)2) is a syzygy in syz(d) as

α · β = x2m+1 yz + xy2m+1z + xyz2m+1 + xyz(x + y + z)2m

= xyz
(
x2m + y2m + z2m + (x + y + z)2m)

= xyz
(
x + y + z + (x + y + z)

)2m

= 0.
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Further, xyz(x + y + z)2 /∈ (xd, yd, zd) and degα = d + 2 � 2d − 3, as d � 6. Hence by Proposition 5.1,
R/Id fails to have the weak Lefschetz property.

Note that many of the following cases are proven almost identically to the case in the preceding
paragraph. In each of the forward cases, we provide only the syzygy, as the rest is straightforward to
check.

(ii) Characteristic three: Let p = 3, and write 2d = 3q + r with unique q, r ∈ N such that 0 � r � 2.
Suppose q = 3m and r = 1, then d = 3m + 3m+1

2 = 3 j − 1, where j = 3m+1
2 . Let α be

(
x j−1 y j(x + y + z) j−3, (x − z)3m

(x + y + z) j−3,−y j z j−1(x + y + z) j−3,−(x − z)3m
y j).

Then α is in syz(d), and degα = 2d−3. Thus, by Proposition 5.1, R/Id fails to have the weak Lefschetz
property.

Suppose 3m < q � 2 · 3m − 1 for some m, then d � 6·3m−3+r
2 � 3m+1 and 2d − 3 = 3q + (r − 3) �

3(3m + 1) − 3 = 3m+1. Thus, R/Id fails to have the weak Lefschetz property by Proposition 3.5.

Suppose 2 · 3m � q < 3m+1 for some m. Set k = d − 3m+1, so 0 � k � 3m+1−1
2 . Let α be

(
ykzk(x + y + z) j, xkzk(x + y + z) j, xk yk(x + y + z) j,−xk ykzk(x + y + z)max{0,3−k}),

where j = max{0,k − 3}. Then α is syz(d), and degα � 2d − 3. Thus, by Proposition 5.1, R/Id fails to
have the weak Lefschetz property.

(iii) Characteristic at least five: Let p � 5 be prime, and let fk and gk be defined as in Lemma 5.2.
Write 2d = qp + r with unique q, r ∈ N such that 0 � r < p. Notice that q and r must have the same
parity as p is odd. We distinguish two sub-cases based on the parity of q and r.

(a) The quotient is even: Suppose q and r are even. Set j = max{0, r
2 − 3}, and α to be

(
y

r
2 z

r
2 (x + y + z) j(− f p

q
2

)
, x

r
2 z

r
2 (x + y + z) j g p

q
2
,

x
r
2 y

r
2 (x + y + z) j((−1)

q
2 +1 g q

2

)p
, x

r
2 y

r
2 z

r
2 (x + y + z)max{0,3− r

2 } f p
q
2

)
.

Then α is in syz(d), and degα � 2d−3. Thus, by Proposition 5.1, R/Id fails to have the weak Lefschetz
property.

(b) The quotient is odd: Suppose q and r are odd. First, suppose r = 1. Then set j = d − q−1
2 p, and α

to be

(
(x + y + z) j−3(− f q+1

2
)p, x j y j−1(x + y + z) j−3 g p

q−1
2

,

x j z j−1(x + y + z) j−3((−1)
q−1

2 +2 g q−1
2

)p
, x j f p

q+1
2

)
.

Notice that d + j − 1 = q+1
2 p. Then α is in syz(d), and degα = 2d − 3. Thus, by Proposition 5.1, R/Id

fails to have the weak Lefschetz property.
Last, suppose r � 3. Then set j = d − r − q−1

2 p, and α to be

(
x j(− f q+1

2
)p, y j g p

q+1
2

, z j((−1)
q+1

2 +1 g q+1
2

)p
, (x + y + z) j+3 f p

q+1
2

)
.

Then α is in syz(d), and degα � 2d−3. Thus, by Proposition 5.1, R/Id fails to have the weak Lefschetz
property. �
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Remark 5.4. Each of the syzygies described in the preceding proof are modifications of extant syzygies
by means of the Frobenius homomorphism and multiplying by an appropriate ring element. This is
similar to the approach used by Kustin and Vraciu [15].

Further, to discuss the cases left out in Proposition 5.3, we notice that the determinants associated
to (4,4,4,1), and (5,5,5,2) are 20 = 22 · 5 and −43 750 = −2 · 55 · 7, respectively. Thus, R/I(4,4,4,1)

fails to have the weak Lefschetz property in exactly characteristics 2 and 5. Similarly, R/I(5,5,5,2) fails
to have the weak Lefschetz property in exactly characteristics 2, 5, and 7.

Theorem 5.5. Let d � 2, and set d = (d,d,d). Then R/Id has the strong Lefschetz property in characteristic p
if and only if p = 0 or p > 3(d − 1).

Proof. By Theorem 3.6, if d � p � 3(d − 1), then R/Id fails to have the strong Lefschetz property, and
if p > 3(d − 1), then R/Id has the strong Lefschetz property.

If d � 6, then by Proposition 5.3, for 2 � p < d, S/I(d,d,d,d−3) fails to have the weak Lefschetz
property. Thus by Proposition 2.6, R/Id fails to have the strong Lefschetz property for 2 � p < d as
d − 3 = t − 2k, where t = 3d − 3 and k = d.

For the remaining four cases, we consider k = 0 and use Lemma 3.3. In particular, notice that( 3
1,1,1

) = 2 · 3,
( 6

2,2,2

) = 2 · 32 · 5,
( 9

3,3,3

) = 24 · 3 · 5 · 7, and
( 12

4,4,4

) = 2 · 32 · 52 · 7 · 11. Hence, for 2 � d � 5,
S/I(d,d,d,t) fails to have the weak Lefschetz property for 2 � p < d, and so R/I(d,d,d) fails to have the
strong Lefschetz property. �
6. The presence of the Lefschetz properties in many variables

We first consider the strong Lefschetz property in characteristic two when n � 3, that is, when R
has at least three variables. Then we consider the strong Lefschetz property for Id having generators
of the same degree d1 = · · · = dn in at least four variables.

6.1. Characteristic two

We expand Corollary 4.5 to classify when multinomial coefficients are odd.

Lemma 6.1. Let a1 � · · ·� an � 1. Then the following are equivalent:

(i)
(a1+···+an

a1,...,an

)
is odd,

(ii) B(ai) and B(a j) are disjoint for all 1 � i < j � n, and
(iii) B(ai1 + · · · + aim ) and B(a j) are disjoint for any 1 � m < n and j /∈ {i1, . . . , im}� [n].

Proof. Set M = (a1+···+an
a1,...,an

)
.

(i) ⇒ (ii): Notice
(ai+a j

ai

)
divides M for all 1 � i < j � n. Thus, if M is odd, then so is

(ai+a j
ai

)
. Hence,

by Corollary 4.5, B(ai) and B(a j) are disjoint.
(ii) ⇒ (iii): Let 1 � m < n and j /∈ {i1, . . . , im} � [n]. As B(a1), . . . ,B(an) are disjoint, B(ai1 + · · · +

aim ) = ·⋃ Bik is disjoint from B(a j).
(iii) ⇒ (i): Recall that

M =
(

a1 + · · · + an

a1, . . . ,an

)
=

n∏
i=2

(
a1 + · · · + ai

ai

)
.

As B(a1 + · · · + ai−1) and B(ai) are disjoint, by Corollary 4.5,
(a1+···+ai

ai

)
is odd. Hence M is a product

of odd integers, that is, M is odd. �
By the preceding lemma, for certain pairs of multinomial coefficients, one must be even.
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Lemma 6.2. Let n � 3, a1 � · · · � an � 1, and suppose a1 � a2 + · · · + an. Then
(a1+···+an

a1,...,an

)
is even or( a1+1

a1+1−(a2+···+an),a2,...,an

)
is even.

Proof. Suppose
(a1+···+an

a1,...,an

)
and

( a1+1
a1+1−(a2+···+an),a2,...,an

)
are odd. By Lemma 6.1, the B(ai) are disjoint

for all 1 � i � n, B(a1) and B(a2 + · · · + an) are disjoint, and B(a1 + 1 − (a2 + · · · + an)) and B(a2 +
· · · + an) are disjoint. Thus we have that B(a1 + 1) = B(a1 + 1 − (a2 + · · · + an)) ·∪B(a2 + · · · + an).
Notice that since an � 1, each B(ai) has at least one element, and so B(a2 + · · · + an) has at least
n − 1 elements.

Suppose B(a1) contains 0, . . . ,m − 1 but not m. Then for k > m, k ∈ B(a1 + 1) if and only if
k ∈ B(a1). Moreover, B(a1 + 1) contains m but not 0, . . . ,m − 1. As B(a2 + · · · + an) ⊂ B(a1 + 1), and
the former has at least n − 1 � 2 elements, there exists a k ∈ B(a2 + · · · + an) ⊂ B(a1 + 1) with k > m.
Thus B(a2 + · · · + an) and B(a1) have k in common, contradicting B(a1) and B(a2 + · · · + an) being
disjoint. This in turn contradicts

(a1+···+an
a1,...,an

)
being odd. �

As a corollary, we classify the strong Lefschetz property in characteristic two for all monomial
complete intersections in at least three variables.

Corollary 6.3. Let d1 � · · · � dn � 2 with n � 3. Then R/Id fails to have the strong Lefschetz property in
characteristic two.

Proof. If d1 � � t
2 �, then t+1

d1
� 2 and so d1 � 2m � t , for some m ∈ N. Thus, by Theorem 3.6 R/Id fails

to have the strong Lefschetz property in characteristic two.
Set � := x1 +· · ·+ xn and Bk := R[xn+1]/I(d,t−2k) . Recall that by Proposition 2.6, R/Id has the strong

Lefschetz property if and only if each Bk has the weak Lefschetz property, for 0 � k � � t
2 �.

Suppose d1 > � t
2 �, that is, d1 � d1 + · · · + dn − (n − 1). Notice B0 has the weak Lefschetz property

in characteristic 2 if and only if
( t

d1−1,...,dn−1

)
is odd. Further, t − d1 � � t

2 � as d1 > � t
2 �, and Bt−d1 has

the weak Lefschetz property in characteristic 2 if and only if
( d1

d2−1,...,dn−1,d1−(d2+···+dn−(n−1))

)
is odd

(notice that t − 2(t − d1) = 2d1 − t = d1 + 1 − (d2 + · · · + dn − (n − 1))).
By Lemma 6.2,

( t
d1−1,...,dn−1

)
is even or

( d1
d2−1,...,dn−1,d1−(d2+···+dn−(n−1))

)
is even, thus B0 or Bt−d1

fails to have the weak Lefschetz property in characteristic 2. Hence, R/Id fails to have the strong
Lefschetz property in characteristic two. �
6.2. Generation in a single degree

In this subsection, we consider monomial complete intersections generated by monomials of the
same degree, that is, d1 = · · · = dn = d � 2. Notice that the socle degree is n(d − 1).

The case when n = 2 is handled in Section 4. In particular, the weak Lefschetz property is classified
in Proposition 4.1, and the strong Lefschetz property is classified in Theorem 4.9. Brenner and Kaid [4,
Theorem 2.6] classify the weak Lefschetz property when n = 3. We note that Kustin, Rahmati, and
Vraciu [14] relate this result to the projective dimension of K [x, y, z]/(xd, yd, zd) : (xn + yn + zn).
Kustin and Vraciu [15, Theorem 4.3] classify the weak Lefschetz property when n = 4. Further still,
Kustin and Vraciu [15] prove the surprising classification of the weak Lefschetz property when n � 5.
We recall the last here, as we will use it.

Theorem 6.4. (See [15, Theorem 6.4].) Let d � 2 and n � 5. Then R/I(d,...,d) has the weak Lefschetz property if

and only if the characteristic of K is 0 or greater than �n(d−1)
2 �.

As a corollary of the above theorem, we get a classification of the strong Lefschetz property when
n � 5.
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Corollary 6.5. Let d � 2 and n � 5. Then R/I(d,...,d) has the strong Lefschetz property if and only if the char-
acteristic of K is 0 or greater than n(d − 1).

Proof. As the strong Lefschetz property implies the weak Lefschetz property, we combine Theo-
rems 3.6 and 6.4 to verify the claim. �

Before classifying the strong Lefschetz property for n = 4, we prove a more general lemma regard-
ing the weak Lefschetz property and monomial complete intersections generated by monomials all
having the same degree, except one.

Lemma 6.6. Let d ∈ Nn, where d � 3, n � 5, d1 = · · · = dn−1 = d and dn = d − 1. If d is odd or n is even, and
2 � p < d, then R/Id fails to have the weak Lefschetz property.

Proof. Set e = (d, . . . ,d) ∈Nn .
By Theorem 6.4, R/Ie fails the weak Lefschetz property for 2 � p < d. Thus, by Proposition 5.1,

mgd syz d < �n(d−1)+3
2 �. Notice that �n(d−1)+3

2 � = n(d−1)+2
2 as n(d − 1) + 3 is odd.

Let α = (z1, . . . , zn) be a homogeneous representative of a non-zero syzygy in syz e of degree
mgd syz e such that z1 /∈ (xd

2, . . . , xd
n). Without loss of generality we may further assume xd−1

n does not

divide z1 (otherwise, the degree of α would be at least n(d − 1), which is larger than n(d−1)+2
2 ), that

is, z1 /∈ (xd
2, . . . , xd

n−1, xd−1
n ).

Then α′ = (z1, . . . , xnzn) is a homogeneous non-zero syzygy in syz d. Further, as z1 is not a
member of (xd

2, . . . , xd
n−1, xd−1

n ), and all relations in Kos d must have an S-linear combination of

xd
2, . . . , xd

n−1, xd−1
n in the first entries, then α′ is not in Kos d. Thus, α′ is a homogeneous represen-

tative of a non-zero syzygy in syz d.
Notice, the degree of α′ is the degree of α, and is strictly bounded above by n(d−1)+2

2 . Hence,

mgd syz d <
n(d−1)+2

2 . Notice though, � (n−1)(d−1)+(d−2)+3
2 � = n(d−1)+2

2 . Therefore, by Proposition 5.1,
R/Id fails to have the weak Lefschetz property for 2 � p < d. �

From this we get a classification of the strong Lefschetz property when n = 4.

Proposition 6.7. Let d � 2. Then R/I(d,d,d,d) has the strong Lefschetz property if and only if the characteristic
of K is 0 or greater than 4(d − 1).

Proof. By Theorem 3.6, we need only to consider 2 � p < d.
By Proposition 2.6, R/I(d,d,d,d) fails the strong Lefschetz property if R[z]/I(d,d,d,d,4d−4−2k) fails to

have the weak Lefschetz property for some 0 � k � 2d − 2.
Suppose d is even, then 4d − 4 − 2k = d when k = 3d−4

2 < 2d − 2. Thus, using Theorem 6.4 we see

that R/I(d,d,d,d) fails to have the strong Lefschetz property for p � � 5(d−1)
2 �. As d < � 5(d−1)

2 � for all d,
then the claim holds.

Suppose d is odd, then 4d − 4 − 2k = d − 1 when k = 3d−3
2 < 2d − 2. Thus, using Lemma 6.6 we

see that R/I(d,d,d,d) fails to have the strong Lefschetz property for 2 � p < d. �
7. Conclusions

We combine Corollaries 4.8 and 6.3 to get the following theorem classifying the strong Lefschetz
property for monomial complete intersections in characteristic two.

Theorem 7.1. Let d1 � · · · � dn � 2 with n � 2, and let I = (xd1
1 , . . . , xdn

n ) ⊂ R = K [x1, . . . , xn], where K is
an infinite field of characteristic two. Then R/I has the strong Lefschetz property if and only if n = 2 and either
(i) d1 is odd and d2 = 2 or (ii) d1 = 4k + 2 for some k ∈N and d2 = 3.
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Moreover, combining Theorem 4.9 (n = 2), Theorem 5.5 (n = 3), Proposition 6.7 (n = 4), and
Corollary 6.5 (n � 5), we completely classify the strong Lefschetz property for monomial complete
intersections generated by monomials all having the same degree.

Theorem 7.2. Let d � 2, n � 2, and I = (xd
1, . . . , xd

n) ⊂ R = K [x1, . . . , xn], where K is an infinite field of
characteristic p. Then R/I has the strong Lefschetz property if and only if p is zero or p is a positive prime and
either

(i) n = 2 and ps > 2(d − 1), where s is the largest integer such that ps−1 divides (2d − 1)(2d + 1), or
(ii) n � 3 and p > n(d − 1).

By Theorem 3.6, for a monomial complete intersection generated in degrees d1 � · · · � dn � 2, the
presence of the strong Lefschetz property is uniform for primes at least d1. However, for small primes
(those less than d1), the strong Lefschetz property appears to behave chaotically when arbitrary de-
gree sequences d = (d1, . . . ,dn) are considered. However, some restrictions, such as characteristic two
or a fixed generating degree, can limit this apparent chaos to only the case of two variables. This
suggests that perhaps more focus should be given to two variables.

Question 7.3. For which prime characteristics p does the algebra K [x, y]/(xa, yb), where a � b � 2,
fail to have the strong Lefschetz property?

Unfortunately, Proposition 3.5 has a gap when the socle degree t is even and p = t
2 + 1. Ex-

perimentally, the weak Lefschetz property always holds in this case. However, Corollary 2.5 can-
not be used in this specific case. As an example, consider A = K [w, x, y]/(w5, x5, y5) and B =
K [w, x, y, z]/(w5, x5, y5, z2). In this case, A has the weak Lefschetz property in characteristic 7, but
B does not.

We formalise the above experimental results.

Conjecture 7.4. Let t be the socle degree of R/Id. If t is even and the characteristic of K is p = t
2 + 1, then the

algebra R/Id has the weak Lefschetz property.

Conjecture 7.4 is true when n = 3.

Remark 7.5. Let a � b � c � 2 such that t = a + b + c − 3 = 2(p − 1) for some prime p, and suppose
that a � � t

2 � = p − 1. Set A = K [x, y, z]/(xa, yb, zc). Let α = p − b and β = b − 1, and notice that
0 < α < a. Consider the following commutative diagram, where B = K [x, y, z]/(xa, yb, zc, xα yβ) and
� = x + y + z.

[A]p−2
×�

∼=

[A]p−1

[B]p−2
×� [B]p−1

Thus, the top map is injective if the bottom map is. Using [7, Proposition 6.12], we see that B
has the weak Lefschetz property, and thus the bottom map is injective, if the characteristic of K is
at least a+b+c+α+β

3 = p. Hence the top map is injective and A has the weak Lefschetz property in
characteristic p.

Moreover, through experiments using Macaulay2 [9], we conjecture that when d1 is “small” (i.e.,
when the weak Lefschetz property is not guaranteed to hold by Proposition 2.1), then the strong
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Lefschetz property only holds when guaranteed by Theorem 3.6. Notice that Theorems 7.1 and 7.2
provide evidence for this conjecture.

Conjecture 7.6. Suppose d1 � � t
2 �, where t is the socle degree of R/Id. Then R/Id has the strong Lefschetz

property if and only if the characteristic of K is either 0 or greater than t.
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