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� Recently observed modulation-induced magnetoresistance oscillations of 2D electron systems are explained.

� The harmonics of the modulation potential, which are relevant for the resistance oscillations, are determined.
� Characteristic differences between electrostatically generated and strain-mediated modulations are emphasized.
� Different types of experiments are explained with the same, well-established formalism.
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a b s t r a c t

Model calculations for commensurability oscillations of the low-field magnetoresistance of two-di-
mensional electron systems (2DES) in lateral superlattices, consisting of unit cells with an internal
structure, are compared with recent experiments. The relevant harmonics of the effective modulation
potential depend not only on the geometrical structure of the modulated unit cell, but also strongly on
the nature of the modulation. While higher harmonics of an electrostatically generated surface mod-
ulation are exponentially damped at the position of the 2DES about 90 nm below the surface, no such
damping appears for strain-induced modulation generated, e.g., by the deposition of stripes of calixarene
resist on the surface before cooling down the sample.

& 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The calculations presented here are motivated by recent mag-
netoresistance experiments [1,2] on two-dimensional electron
systems (2DES) in Al Ga Asx x1− -heterostructures with a special type
of periodic surface modulation. The modulation of the 2DES, lo-
cated 90 nm below the sample surface, was achieved by deposit-
ing a periodic array of identical, parallel metal stripes, with three
stripes per unit cell, onto the sample surface. The three stripes of
width awithin each unit cell were arranged in such a way, that the
distance between neighboring stripes changes periodically from a
over 2a to 3a, so that a superlattice of period A¼9a with broken
inversion symmetry results. Since such samples show interesting
transport properties under electro-magnetic irradiation [1,3–5], it
seemed interesting to investigate also their quasi-static magne-
totransport properties. Indeed, at sufficiently low temperatures
and magnetic fields, commensurability oscillations of the magne-
toresistance were found, less pronounced but similar to the well-
.V. This is an open access article u
known Weiss oscillations observed on a 2DES with a simple har-
monic modulation [6–8].

Conceptually the type of lateral superlattices generated in this
way has some similarities with “hyperlattices”, which have been
investigated some time ago [9] and show also interesting mag-
netotransport oscillations. These hyperlattices were produced by
depositing identical arrays of p parallel stripes of calixarene resist
(p¼3 or 4) with equal center-distances b close to each other onto
the surface of an Al Ga Asx x1− -heterostructure. The arrays were
periodically arranged with a distance qb between neighboring
arrays, so that a hyperlattice of stripes with period A p q b= ( + )
was formed. At low temperatures this caused strain in the semi-
conductor and, probably via piezoelectric effects, a periodic
modulation of the 2DES, which was 90 nm underneath the surface.
We will show that both types of experiments can be described by
the same formalism.

A 2DES of density ns in the x–y plane, with a harmonic potential
modulation V x x Acos 2 /eff π( ) ∝ ( ) of period A in the x-direction,
shows under a homogeneous magnetic field B in z-direction B-
dependent Weiss oscillations of the component ρxx of the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (a) Periodic potentials without inversion symmetry, Eq. (3), built from the
step function V xs ( ) and the smooth function V xc ( ) of Eq. (2). (b) “Hyperlattice”
potentials with inversion symmetry and the same number of building blocks V xc ( )
per unit cell as in (a).
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resistance tensor with minima, if the cyclotron radius
R n eB2 /c sπ= ( ) at the Fermi energy E n m/F s

2π= (with m being
the effective mass of GaAs and e− the electron charge) and the
period A satisfy the commensurability condition [6–8]

R A2 / 1/4 for 1, 2, 3, . 1c λ λ= − = … ( )

This has been explained by quantum-mechanical calculations
[7,8,10,11], which show that the modulation-induced broadening
of Landau energy levels to Landau bands leads to vanishing band
width if Eq. (1) holds, but also by purely classical considerations of
the modulation-induced guiding center drift of cyclotron orbits
[12].

The resistance correction caused by a periodic modulation with
broken inversion symmetry shows also minima at certain values of
the applied magnetic field B, but these B-values do not follow a
simple commensurability relation between cyclotron diameter R2 c

and modulation period A [1]. This is not surprising, since the
modulation with broken inversion symmetry introduces a periodic
potential containing many harmonics, which yield oscillating
contributions with different periods to the resistance. A theoretical
approach, decomposing the modulation potential into its Fourier
components and adding their contributions to the resistance cor-
rection, has been published a long time ago [13]. The basic as-
sumption of this approach is that the modulation is weak enough,
so that interactions between different Fourier components can be
neglected.

Below we will follow this approach [13] and take into account
that the relevance of the Fourier components of a purely electro-
static modulation potential in the surface plane is determined by
exponential damping effects, required by Poisson's equation, and
by electrostatic screening, which we describe by Lindhard's di-
electric constant. We demonstrate that due to these effects, as
already mentioned in [1], rather different surface potentials, e.g.
those with step-like or smooth peaks, can lead to very similar
magnetoresistance oscillations, whereas already slightly different
peak-positions in the unit cells may lead to strong modifications of
these oscillations.

We also apply the formalism of [13] to the case of “hy-
perlattices” investigated experimentally by Endo and Iye [9], who
explained some of their results within the classical guiding center
picture, but did not present a numerical description of the mea-
sured magnetoresistance oscillations. We find nice agreement of
our calculated and their measured results, but only if we neglect
the exponential damping of higher Fourier components, required
by Poisson's equation. This seems reasonable, since Endo and Iye
emphasize, that their modulation procedure introduces strain,
which couples to the 2DES by piezoelectric effects and not by a
simple electrostatic surface potential.
2. Model and formalism

In view of the experiments [1,9] we assume a 2DES of density
n 2 10 cms

11 2∼ × − in a Al Ga Asx x1− -heterostructure in the plane
z d 90 nm= = below the sample surface at z¼0. In both experi-
ments the unit cells of the periodic array consist of a few parallel
stripes, with varying distances between neighboring stripes. We
assume that a stripe of width a located at x x0= and z¼0 produces
in the surface an electrostatic potential V x x , 0str 0( − ), which is
translation invariant in the y-direction and vanishes for
x x a0| − | > . Two stripe-models will be considered, a step potential
V x V x, 0str

s( ) = ( ) and a continuous potential V x V x, 0str
c( ) = ( ), both

with the same maxima and the same average values, given by
V x V a x V x

V
x a a x

2 ,

2
1 cos / . 2

s
max

c

max

θ

π θ

( ) = ( − | |) ( )

= [ + ( )] ( − | |) ( )

To describe the modulation with broken inversion symmetry used
in [1], we write in the unit cell a x a8− ≤ < of width A a9= the
potential

V x V x V x a V x a, 0 , 0 2 , 0 5 , 0 3str str str( ) = ( ) + ( − ) + ( − ) ( )

and repeat this periodically with period A. Fig. 1(a) shows the
result for both the step function and the continuous potential
given in Eq. (2) in an interval containing a unit cell.

To model a “hyperlattice” containing p stripes of center-dis-
tance b a2= per unit cell of width A p q b= ( + ) , we write in the
unit cell a x A a− ≤ < −

V x V x jb, 0 , 0
4j

p

str
0

1

∑( ) = ( − )
( )=

−

and repeat this periodically with period A. Since
V x V x, 0 , 0str str( − ) = ( ), these hyperlattice potentials are inversion
symmetric with respect to certain x-values. Fig. 1(b) shows two
hyperlattice potentials, which contain the same building blocks in
the unit cell of width A a9= as the smooth potential in Fig. 1(a),
but at slightly different positions, and we will see that this leads to
very different resistance corrections. For p q, 1, 0.5( ) = ( ) the cell of
width 9a contains three unit cells of a simpler lattice with period

a p q a2 3( + ) = .
If we choose q¼0, for any integer value of p 0> , the “hy-

perlattice” with period A¼pb is physically equivalent to the simple
lattice with p¼1 and period b a2= . For V Vstr

c= this is a simple
cosine modulation. Fig. 2 shows such a potential together with
three other hyperlattice potentials investigated in [9].

To calculate the resistance corrections caused by such a mod-
ulation potential, we need the Fourier coefficients V 0k ( ) satisfying

V x V e V
A

dxV x e, 0 0 , 0
1

, 0 .
5k

k
ikKx

k
a

A a
ikKx∫∑( ) = ( ) ( ) = ( )

( )=−∞

∞

−

−
−

with K A2 /π= . If this surface potential is an electrostatic potential
and if there are no free charges between surface and the
2DES, Poisson's equation requires an exponential damping of the
Fourier coefficients with the distance z from the surface,
V z V K kz0 expk k( ) = ( ) ( − | |). Furthermore the potentialV x z,( ) will be
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screened by the 2DES. Since we are interested in small magnetic
fields, where Landau quantization and Shubnikov–de Haas oscil-
lations are not resolved, we assume linear screening with the
Lindhard dielectric constant q q a1 2/ Bε ( ) = + (| | ), with a 9.79 nmB =
the effective Bohr radius of GaAs [13,14]. As a consequence one
obtains, in the semiclassical limit of sufficiently low temperatures
and magnetic fields [13], for the modulation induced resistance
correction

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟B k v z

k
B

/ cos
4

,
6

xx
cl

k
k
sc

0 res
1

2 2

res
∑ρ ρ η π πΔ = | ( )| −

( )=

∞

where m e n/ s0
2ρ τ= ( ) is the classical Drude resistance with τ being

the transport scattering time, B A R/2 cres = is a rescaled value of the
applied magnetic field, V A n4 /max s

2 2 2η τ π= ( ) ( ) contains strength
and period of the modulation, and

v z V z V kK/ 7k
sc

k max ε( ) = ( ) [ ( )] ( )

are scaled Fourier coefficients, which depend on the spatial
structure of the modulation but not on its strength. In the fol-
lowing we will write A n/ s

2η η= ˜ ( ) and plot the rescaled resistance
correction

/ , 8res xx
cl

0ρ ρ ρ ηΔ = Δ ( ˜) ( )

which depends only on the shape of the periodic modulation, but
not on its strength. If we consider the “hyperlattice” for any po-
sitive integer p and q¼0, and the potential V Vstr

c= , we obtain
formally the period A pa2= , the rescaled B-value B pa R/res c= and
non-vanishing Fourier coefficients V 0k ( ) only for k¼0 and k p| | = .
As a consequence in the sum in Eq. (6) only the term with k¼p
survives and the ratios B k A n/res s

2( ) and k B/ res reduce to
a R a n/ / 2c s

2( ) [( ) ] and R a/c , respectively, i.e. to the values for the
simple harmonic potential with p¼1 and period a2 , so that the
rescaled resρΔ defined in Eq. (8) is the same for all p.
3. Numerical results

3.1. Periodic array without inversion symmetry

3.1.1. Potential and Fourier coefficients
The Fourier components of V x, 0( ), Eq. (3), built with the step

function of Eq. (2) can be written
⎛
⎝⎜

⎞
⎠⎟

V
V k

e e
k0 sin

1 ,
9

,
9

k
s

max

k i i
k

4 10k k
ξ

π
ξ π( )

= + + =
( )

ξ ξ− −

with V V0 /3s
max0 ( ) = and V V0 0k

s
k
s( ) = ( )−

⋆. (This looks simpler than,
but is equivalent to, Eq. (6) of [1].) Apparently V 0 0k

s ( ) = if k n9=
with n being an integer, but which of the coefficients are relevant
for the resistance correction? To find this out we plot in Fig. 3
(a) the squared modulus of V 0k ( ), but in view of Eq. (6) multiplied
with k.

We include the corresponding data obtained from the mod-
ulation potential built with the smooth function V xc ( ) of Eq. (2),
leading to the Fourier coefficients

⎛
⎝⎜

⎞
⎠⎟

V
V k k

e e
0 sin 2

2 1 4 /81
1 ,

10
k
c

max

k i i
2

4 10k k
ξ

π
( )

=
[ − ]

+ +
( )

ξ ξ− −

again with V V0 /3c
max0 ( ) = , V V0 0k

c
k
c( ) = ( )−

⋆, and with V 0n
c
9 = .

According to Eq. (10), for the smooth modulation potential the
Fourier coefficients V 0k

c ( ) with k 8| | > become very small ( k 3∼| |− ),
whereas, according to Eq. (9), for the modulation with a step po-
tential the magnitude of the V 0k

s ( ) with k| | close to n9 4+ for in-
teger n 0, 1, 2,= … decreases very slowly ( k 1∼| |− ). This very dif-
ferent behavior of step-like and smooth modulation potential can
also be seen from Fig. 3(a). As a consequence, one needs only a few
terms (k 8| | ≲ ) in order to express the smooth modulation as a sum
of its Fourier contributions according to Eq. (5), whereas one gets
only a poor, strongly fluctuation approximation to the step-like
modulation if one sums even all Fourier contributions with
k 50| | ≲ .

This changes drastically, if we consider the electrostatic mod-
ulation potential in the plane of the 2DES d¼90 nm below the
surface. Due to the exponential damping, which becomes in-
creasingly important with increasing k| | and with decreasing
modulation period A, only the Vk(d) with k 5| | ≤ remain relevant for
the largest modulation period A a9 1170 nm= = considered in [1]
and only those with k 1, 2, 3| | = for the smallest considered period
A 630 nm= , as demonstrated in Fig. 3(b). Lindhard screening by
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the 2DES suppresses the Vk-values further and is most effective for
small k| | and for large A. The contribution with k 1| | = is most
strongly suppressed, so that for A 630 nm= only the harmonics
with k 2, 3| | = remain relevant, whereas for A 1170= nm the most
relevant k| |-values are 2, 3, 4, and maybe 5, as is shown in Fig. 3(c).
These results are qualitatively the same for the step-like and the
smooth modulation potential applied in the surface plane.

The effect of Poisson damping and Lindhard screening on the
modulation potential itself is demonstrated in Fig. 4.

Fig. 4(a) shows clearly that the exponential damping of higher
Fourier components, required by Poisson's equation, becomes
more important for arrays with smaller period. Whereas for the
period A 1170 nm= four Fourier components contribute con-
siderably to the resistance correction, for A 630 nm= only two
relevant contributions are left. This is modified by the Lindhard
screening, which reduces most strongly the contributions with
small k, as shown in Fig. 4(b). It is also obvious that the differences
between step-like and smooth surface potential become irrelevant
sufficiently far below the surface and for sufficiently small ratio
A/d.

3.1.2. Modulation correction to the resistance
Fig. 5 shows, for the modulation with broken inversion sym-

metry and for the parameters used in the experiment [1], rescaled
resistance corrections calculated from Eq. (6).

In view of the following discussion the hypothetical case of a
2DES in the surface plane z¼0 (without screening) is included,
Fig. 5(a). For the step-like modulation Fourier coefficients V 0k ( )
with k 50| | ≤ are considered, whereas for the smooth modulation
and for the results in the plane z¼d the consideration of harmo-
nics with k 6| | < is sufficient. Compared with the results for smooth
modulation, those for step-like modulation show much larger
values and strong fluctuations, which indicates the importance of
higher harmonics.

The dependence of the results of Fig. 5(a) on the stripe width a
results only from the prefactor A1/ 2 and would disappear, if resρΔ in
Eq. (8) had been defined with η instead of η̃ in the denominator.
Comparison of Fig. 5(a) and (b) shows that the exponential
damping required by Poisson's equation is most effective for the
modulation with the smallest period A a9 630 nm= = , and that it
strongly reduces the effect of higher harmonics, so that the dif-
ference between step-like and smooth surface modulation be-
comes irrelevant with increasing ratio d/A. Comparison of Fig. 5
(b) and (c) shows that the suppression of the slowly varying lower
harmonics by Lindhard screening may enhance the magnetore-
sistance oscillations due to higher harmonics of the modulation
potential.
As explained in [1], up to the prefactor Bres the resistance cor-
rection resρΔ of Eq. (8) is periodic in B1/ res with period 1, and the
contribution of the kth harmonic vanishes at

B
A
R

k
B k

2 1/4
, for 1, 2, .

11
res

c
resλ

λ λ= =
−

≕ ( ) = …
( )

Apparently the deep minima of resρΔ in Fig. 5(c) are not well
described by Eq. (1), which predicts zeroes at
B 1, 1.33, 0.57, 0.36 ,...res λ( ) = for 1, 2, 3,λ = …. This is understand-
able from Fig. 3(c), which indicates that the harmonics with

k2 5≤ ≤ are much more important than the fundamental har-
monic with k¼1. The zeroes of the important harmonics, at
B 2, 2 1.14res ( ) = , B 3, 3 1.09res ( ) = , B 4, 4 1.07res ( ) = , and
B 5, 5 1.05res ( ) = , are located close to each other and explain the
pronounced minimum of resρΔ at B 1.1res = for the modulation
with period 630 nm, which is dominated by k¼2 and 3, and at
B 1.08res = for the modulations with periods 900 nm and 1170 nm,
which are dominated by k¼2, 3, 4, and 5. Due to the mentioned
periodicity in B1/ res , a zero at B k k,res ( ) implies a zero at B k k, 2res ( ),
i.e. at B 3, 6 0.522res ( ) = , B 4, 8 0.516res ( ) = , etc. This explains the
minima near B 0.52res = in Fig. 5(c). As has been discussed in [1],
these theoretical results explain nicely the positions of minima of
the modulation-induced resistance corrections. The detailed B-
dependence of the oscillatory corrections is hard to extract from
the experiments because of a strong non-oscillating magnetore-
sistance, which also occurs in the modulated systems and is not
considered in the present theory.

3.2. Other symmetries

3.2.1. Importance of stripe positions
So far we have considered a configuration of the three stripes

per unit cell of the imposed superlattice, which breaks the inver-
sion symmetry. It is interesting to investigate how the resistance
correction is affected by a modification of this configuration. In the
following we will consider “hyperlattices” as in Eq. (4), with a unit
cell of width A p q b= ( + ) , which contains a series of p neighboring
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stripes of center distance b a2= and an empty region of width qb.
The surface potential in the unit cell at a x A a− ≤ ≤ − is given by
Eq. (4) with the V Vstr

c= of (2). The Fourier coefficients are
V V p p q0 / / 2max0 ( ) = [ ( + )], V V p p q0 / / 4p q max( ) = [ ( + )]+ if p q+ is in-
teger, and for all other k 0>

V
V p k p q

k k p q
e0

sin /

2 1 /
.

12
k

max i k p p q
2 2

1 /( )π
π

( ) =
( + )

[ − ( + ) ] ( )
π− ( − ) ( + )

As a first example we consider the hyperlattice with p¼3 and
q 3/2= , shown in Fig. 1(b), i.e. we consider stripes centered at
x¼0, x a2= and x a4= , which according to Eq. (2) occupy the
interval a x a5− < < , and leave the interval a x a5 8< < free of
stripes. This is a hyperlattice in the sense of [9] with period A a9= ,
with inversion symmetry, e.g. around x a20 = and around
x a6.51 = . Since p q 9/2+ = is not integer, we obtain from Eq. (12)
the Fourier coefficients V V0 /3hyp

max0 ( ) = and

V
V k

k k
e0

sin 2 /3
2 1 4 /81

for k 0.
13k

hyp max i k
2

4 /9π
π

( ) =
( )

[ − ]
>

( )
π−

For comparison we also consider the “hyperlattice” with p¼1
and q 1/2= , also indicated in Fig. 1(b), which effectively is a simply
periodic lattice with period A a3= with inversion symmetry, e.g.
around x 00 = , but can also be considered as a lattice with period
9a, where the unit cell consists of three unit cells of the simple
lattice. Describing this as the simple lattice with period A a3=
and with K a2 / 3π= ( ), we obtain the Fourier coefficients
V V0 /3sim

max0 ( ) = and

V
V k

k k
k0

sin 2 /3
2 1 4 /9

for 0.
14

k
sim max

2

π
π

( ) =
( )

[ − ]
>

( )

Apparently the Fourier coefficients V 0k ( ) vanish for both models, if
k is an integer multiple of 3.

Fig. 6(a) shows these inversion-symmetric potentials, Poisson-
damped in the plane z¼d, in an interval containing a full period
A a9= , together with the damped modulation of the same period
without inversion symmetry [1]. The effect of both, electrostatic
damping and Lindhard screening, is shown in 6(b).

Although the three modulation types presented in Fig. 6 show
certain similarities, they lead to rather different resistance cor-
rections. Fig. 7 shows for these three models the corresponding
weight factors of the harmonics and the resulting BresρΔ ( ). Since
we generate the modulations from the smooth potential V xc ( ), we
know from Fig. 3(a) that we need to consider only harmonics with
k 8| | ≤ for the modulation without inversion symmetry. We have
checked that this also holds for the other models. In Fig. 7(a)–(c) the
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Fig. 6. Smooth modulation potentials as in Fig. 1 (with the same color code),
Poisson-damped in the plane z d 90 nm= = , (a) without and (b) with Lindhard
screening by the 2DES.
data of Fig. 3 for the smooth modulation with a 100 nm= are re-
produced as black plus signs (þ), and the corresponding results
for the resistance correction, which were given as functions of Bres
by the solid red lines in Fig. 5(a)–(c) are shown as functions of the
un-scaled magnetic field B by the black solid lines (with black plus
signs) in Fig. 7(d)–(f). These results for the modulation with bro-
ken inversion symmetry are compared in Fig. 7 with the corre-
sponding results for the hyperlattice modulation p q, 3, 1.5( ) = ( )
with the same period, but a different arrangement of the three
stripes in the unit cell. The weight factors of the relevant harmo-
nics are indicated by red circles, and the resulting resistance cor-
rections by red lines with red dots. Weight factors for a hypothe-
tical 2DES without screening in the surface plane z¼0 are given in
Fig. 7(a), for the electrostatically damped modulation in the plane
z¼d in (b), and for the damped and screened modulation in (c).
Apparently the harmonics with k¼3 and 6 do not contribute to
this hyperlattice modulation, whereas the harmonic k¼3 yields an
important contribution to the resistance correction (thin broken
black lines in Fig. 7(d)–(f)) in the case of the modulation with
broken inversion symmetry. To describe the hyperlattice mod-
ulation correctly, we need the V 0k

hyp ( ) of Eq. (13) for k 1, 2, 4=
and 5. In Fig. 7(d) and (f) the dominant contribution to the hy-
perlattice modulation comes from the harmonics with k¼4, which
are shown by the thin broken red lines. In Fig. 7(e) the low har-
monics k¼1 and k¼2, which are much less damped than k¼4 and
k¼5, dominate the slow variation of resρΔ with B. However,
screening affects the lower harmonics much more than those with
larger k-values, and therefore the latter recover in Fig. 7(f), where
k¼4 becomes dominant.

As indicated in Fig. 7(a)–(c) by green crosses (x), we need for
the simply periodic modulation the V 0k

sim ( ) of Eq. (14) only for k¼1
and 2. Since this modulation potential effectively has the period
A a3sim = instead of A a9= , we plot in Fig. 7 the resistance cor-
rections as functions of B instead of Bres, and those for the simply
periodic modulation as solid green lines (with green crosses). Due
to the distance between the equally spaced stripes this modulation
potential is not harmonic, and in Fig. 7(a) and (d) a finite con-
tribution of the second harmonic, k¼2, can be seen. But due to the
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small period A a a3 9sim = ⪡ the exponential damping of this har-
monic with the distance from the surface is much stronger than
that with k¼1, and in Fig. 7(e) and (f) only the fundamental os-
cillation with k¼1 survives.

It may be instructive to consider this simple lattice of period
A a3sim = formally as a hyperlattice with period A a9= , with a unit
cell containing three neighboring unit cells of the simple lattice.
Calculating Fourier coefficients according to Eq. (5) with K A2 /π=
one obtains V V0 /3max0 ( ) = and

⎛
⎝⎜

⎞
⎠⎟V

V k

k k
k e k0

sin 2 /9
2 1 4 /81

1 2 cos 2 /3 for

0. 15

k
max i k

2
2 /3π

π
π( ) =

( )
[ − ]

+ ( )

> ( )

π−

This yields for any integer n V 0 0k ( ) = if k n3 1= ± and
V V0 0n n

sim
3 ( ) = ( ), as in Eq. (14). This demonstrates the relevance of
the geometrical arrangement of the three stripes in the unit cell of
the “hyperlattice” for the importance of the harmonics con-
tributing to the resistance oscillations: symmetric arrangement
with equal distance between all neighboring stripes eliminates all
harmonics k n3≠ , arrangement of the three stripes in the unit cell
next to each other eliminates just the harmonics V 0k

hyp ( ) with
k n3= . For the arrangement with broken inversion symmetry, on
the other hand, the harmonics with k 2, 4= are of similar im-
portance as that with k¼3.

3.2.2. Effect of electrostatic damping
We now consider hyperlattice modulations with the geometry

used by Endo and Iye [9] and build the structures with the smooth
potential V xc ( ) of Eq. (2) for b a2 115 nm= = . According to Eq. (4)
the hyperlattice (p q, ) contains in each unit cell an interval of
width pb with p periods of the cosine modulation defined in Eq.
(2) and an interval of width qb without modulation. Following Ref.
[9], we consider p q, 3, 3( ) = ( ), 4, 4( ), and 3, 2.5( ), and compare
these with the simple cosine modulation potential 1, 0( ). These
modulation potentials have been plotted in Fig. 2.
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Weight factors, similar to those of Fig. 3, for the hyperlattice
potentials, are plotted in Fig. 8 for three situations. In Fig. 8(a) and
(b) the modulation potential is assumed in the plane of the 2DES,
and the weight factors are calculated in Fig. 8(a) without and in
Fig. 8(b) with Lindhard screening by the 2DES. In Fig. 8(c) the
modulation is considered as an electrostatic potential in the sur-
face plane d 90 nm= above the plane of the 2DES, and the weight
factors are calculated considering Poisson-damping and Lindhard
screening.

The trivial weight factors for the harmonic modulation with
Fourier coefficients V V0 /2max0 ( ) = , V V0 /4max1( ) = and V 0 0k ( ) = for
k 1| | > are not shown.

Apparently the Poisson-damping suppresses the relevant
Fourier contributions to the original modulation potential drasti-
cally. This is also seen from Fig. 9, which shows the screened po-
tentials corresponding to the situations of Fig. 8(b) and (c). Due to
Poisson's equation, at some distance below the surface the high-
frequency oscillations of an electrostatic potential are strongly
reduced and only the low-frequency oscillations survive.

Since the hyperlattices under consideration contain periodi-
cally sections with the simple cosine oscillation of period b, one
might expect to observe the corresponding magnetoresistance
oscillations, i.e. oscillations similar to those obtained for the simple
cosine modulation. In the experiments [9] this indeed was ob-
served. But if we assume that the modulation produces an elec-
trostatic surface potential of the form as shown in Fig. 2, the ex-
ponential damping ( dK kexp∝ ( − | |)) of higher harmonics leads in
the plane of the 2DES, d 90 nm= below the surface, to the Lind-
hard screened potentials shown in Fig. 9(b). For the weight factors
of the hyperlattice 3, 3( ) with K b/ 3π= ( ) the damping factors

dK kexp 2( − | |) are exp 2 /3 90/115 0.194π( − [ ] ) = for k¼1 and
5.36 10 5× − for k¼6, the harmonic which leads to the same oscil-
lation frequency as the simple modulation with period b. If we also
consider the reduction of the weight factors by the Lindhard
screening, we find that the weight k V V0 /k max

2| ( ) | shown in Fig. 8
(a) is reduced by a factor 3.6 10 4× − for k¼1 and by a factor
2.4 10 6× − for k¼6. The resulting weight factors are shown in Fig. 8
(c), and are dominated by the harmonic k¼1 and the much
smaller harmonic k¼3. The resulting magnetoresistance shows
slow variations with tiny modulations due to the k¼6 harmonic,
which have no similarity with the experimental result of [9]. Thus,
an interpretation of the experimental modulation in terms of an
electrostatic surface potential is not possible. But this is absolutely
in agreement with the statements of Endo and Iye [9], who em-
phasized that their strain-mediated modulation is different from
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an electrostatic one.
Therefore, we make the assumption that the strain-induced

modulation can be described by a potential in the plane of the
2DES, which has essentially the form as shown in Fig. 2. Thus we
assume that the relative magnitude of the Fourier coefficients in
the plane of the 2DES is so as we previously assumed for the
electrostatic surface potential. (About the absolute values, i.e.
about Vmax, we make no assumption.) Then, taking Lindhard
screening into account, we get the screened potentials and the
corresponding weight factors as shown in Figs. 9(a) and 8(b), re-
spectively. Now the weight factors for the hyperlattice 3, 3( ) are
dominated by k¼6 and those for 4, 4( ) by k¼8. The resulting re-
sistance oscillations are shown in Fig. 10. The lowest panel shows
the result for the simple harmonic modulation with period
b 115 nm= and the minima follow Eq. (1) with 3, 4, 5,λ = … as
indicated. The results for the three hyperlattices compare very
nicely with the experimental results of Endo and Iye [9]. The main
differences are that in the experiment the oscillations are damped
at small B-values, where the cyclotron diameter becomes com-
parable with the mean free path, and that apparently some ex-
perimental results show non-oscillatory magnetoresistance ef-
fects. Such effects and collision damping are not included in the
present theory. The result for p q 3= = reproduces characteristic
features of the experiment: most minima coincide with those
described by Eq. (1), but those for 3λ = and 9λ = are missing. The
reason is obviously that near the 3λ = minimum at B 0.467 T= of
the dominant k¼6 harmonic, which oscillates as a function of B
with the same phase as the simple modulation of the lowest panel,
the next important harmonics k¼5 and k¼7 showmaxima. Due to
the mentioned periodicity of Eq. (6) in B1/ res with period 1, for
k¼6 the situation near B k k, / 1/4res λ λ( ) = ( − ) with 9λ = , i.e. near
B 0.147 T= , is similar to that for 3λ = .

For p q 4= = we get similar results, but now the leading har-
monic is k¼8 and near its minima for 4λ = and 12λ = the next
important harmonics k¼7 and k¼9 show maxima. For
p q, 3, 2.5( ) = ( ) we find maxima instead of minima for
4, 5, , 8λ = … , but again minima at 9λ ≥ , also in agreement with
the experiment. Since now the period A b5.5= is not an integer
multiple of b, there is no harmonic with the same phase as the
modulation in the lowest panel of Fig. 10, and the dominating
contributions come from k¼5 and k¼6.
4. Summary

We have applied the semiclassical formula of [13] for the
magnetoresistance oscillations of a 2DES, modulated by a lateral
superlattice with several harmonics, to two types of experiments
[1,9], which investigated different types of modulations. Staab
et al. [1] produced an electrostatic surface potential by a periodic
array of parallel metal stripes with three stripes per unit cell, ar-
ranged in such a way that the modulation potential had no in-
version symmetry. We have demonstrated that the finite distance
between the 2DES and the electrostatic surface potential leads to a
strong damping of its higher Fourier coefficients, so that for the
resulting resistance oscillations the detailed shape of the potential
peaks (step-like or smooth) is not important, as shown in Fig. 5.
The position of the potential peaks, produced by the metal stripes,
within the unit cell is, however, very important, as seen from
Figs. 6 and 7. Unfortunately the experimentally observed re-
sistance oscillation was superimposed by strong non-oscillatory
magnetoresistance effects, and only a few oscillation minima could
be safely determined. These minima are nicely explained by the
calculations and result from the fact that zeros of the most im-
portant harmonics at these magnetic fields nearly coincide [1].

In the second type of experiment [9] surface stripes of calix-
arene resist have been used to produce a strain-mediated lateral
“hyperlattice” as modulation of the 2DES. We assumed that each of
these stripes produces in the plane of the 2DES a smooth potential
peak, and that the center distance of these peaks coincides with
the center distance of the surface stripes. Considering the super-
position of these potential peaks as periodic hyperlattice, we cal-
culated the induced magnetoresistance oscillations and could re-
produce many details of the experimental findings.

It might be interesting to produce modulations with broken
inversion symmetry by the method of [9], with the hope to resolve
more details of the resulting magnetoresistance oscillations than
could be resolved for the modulation by an electrostatic surface
potential. This would allow a more detailed comparison with the
theory.
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