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Technology for the derivation, propagation, and characterization of pluripotent stem cell lines from the
human embryo has undergone considerable refinement and improvement since the first published descrip-
tion of human embryonic stem cells in 1998. In particular, there has been extensive effort to optimize proto-
cols and develop defined culture systems with a view toward future clinical applications of embryonic stem
cell-derived products. Here, we review the current status of methodology for human embryonic stem cell
derivation and culture, and we highlight the challenges that remain for workers in the field.
Introduction
Today the derivation of new pluripotent stem cell lines from

human embryos continues to be a highly active area of research,

for several reasons. First, the technology for derivation and prop-

agation of pluripotent human stem cell lines is constantly being

refined and improved, providing opportunities to optimize devel-

opment of cell lines for clinical use. Second, cell therapies based

on human embryonic stem cells (hESCs) are likely to enter clin-

ical trial very soon. It is predictable that the lessons learned

from the first trials will drive further refinement of stem cell tech-

nology, and that as clinical work progresses, wider panels of cell

lines will be required for particular applications and for tissue

matching. Third, changes to policy for US Federal funding of

embryonic stem cell research now allow workers there to study

a much larger range of cell lines than was previously possible.

Finally, despite the remarkable discovery of adult cell reprog-

ramming to the pluripotent state (induced pluripotent stem cells

[iPSCs]), continued uncertainty about the bioequivelance of

human ESCs and hiPSCs suggests that hESCs will remain the

gold standard for research and therapy for the near to mid-

term future.

Here, we review the current status of human ESC line deriva-

tion. We consider the rationale for generation of new cell lines,

the technologies available now for their derivation and propaga-

tion, and the current standards for their characterization (Figure 1).

Scientific Justification and Ethical Criteria
for New Derivations
Any efforts to derive new hESC lines should be justified scientif-

ically. A recent analysis of the literature indicated that there are

now over 1000 hESC lines in existence and that �70% of these

have been characterized to some degree in peer-reviewed publi-

cations (Löser et al., 2010). However, much of the scientific liter-

ature on hESC is based on only a handful of cell lines (McCor-

mick et al., 2009; Scott et al., 2009). Given that there are over

a thousand hESC lines in existence, there is certainly a case

for more work on a wider range of these established cell lines

(assuming that the majority are in fact available for distribution).
However, what scientific rationale justify generation of additional

cell lines?

First, genetic or epigenetic variation in the ability of hESC lines

to undergo differentiation into particular lineages remains

a largely unknown factor. Thus it is uncertain how many cell lines

might be required to provide a panel with, for example, high

competency for beta islet cell formation. Similarly, little is known

about how genetic or epigenetic stability varies between

different hESC lines. Second, estimates of the number of hESC

lines that will be required to provide adequate coverage for

tissue matching in transplantation vary. Limited studies suggest

that existing cell lines are not representative of a wide range of

ethnic diversity (Laurent et al., 2010 ; Mosher et al., 2010), and

the problem of matching populations of mixed racial origin has

not really been addressed. Third, only a small minority of the

published cell lines have been derived under conditions that

are optimal for future clinical use. Technology for hESC deriva-

tion, maintenance, and expansion are constantly evolving, and

there is a strong argument for deriving cell lines with improved

methodology.

Although the advent of iPSC technology may circumvent

ethical roadblocks around the use of embryos in research, there

are still questions over the biological equivalence and safety of

iPSC lines compared to hESC (Lee et al., 2009). Some concerns

include limitations or reductions in developmental potential (Hu

et al., 2010; Kim et al., 2010), variability relating to the starting

cell type used for reprogramming (Kulkeaw et al., 2010), and

an epigenetic/gene expression profile that may suggest an inde-

pendent pluripotent state for iPSCs when compared to ESCs

(Doi et al., 2009; Chin et al., 2009). hESCs, as such, remain the

standard by which all other pluripotent cell lines are judged

(Hyun et al., 2007; Smith et al., 2009).

The research community has been moving toward uniform

international ethical standards for the derivation of new cell lines.

The European Union started the process in 2004 with Directive

2004/23/EC, the International Society for Stem Cell Research

(ISSCR) followed in 2007, and the National Institutes of Health

(NIH) followed in 2009. Each of these sets of guidelines, sub-

jected to public comment and extensive refinement, adheres
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Table 1. Common Principles Shared across hESC Derivation

Guidelines

Only unused embryos created for the purpose of in vitro fertilization

(IVF) should be used for the derivation of ESCs.

Donors should voluntarily consent to the donation of embryos for

research without influence from those participating in the study.

The standard of IVF care should be unaffected by the decision to

donate.

No financial compensation was made for the donation.

Donors should be informed of alternatives to donation, that embryos

would be used for the derivation of ESCs, that no direct medical

benefit was intended, that the ESCs may have commercial potential

to which they would not be entitled, that identifying information would

remain confidential, and that they may withdraw from the study until

the embryos are actually used.

Figure 1. Schematic of the Process of Human Embryonic Stem Cell
Line Establishment
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to some very basic principles to ensure the highest level of

ethical standards in the study of hESCs (Table 1). The push to

implement these standards is reflected in the European Human

Embryonic Stem Cell Registry (hESCreg) and the NIH Embryonic

Stem Cell Registry. The NIH registry currently comprises 64 lines

that adhere to US federal guidelines with 12 more in submission

as of May 2010. Although hESCreg has over 650 lines listed, the

provenance of only a small fraction has been validated to meet

European/international guidelines.

As hESC technology moves into the translational and clinical

stage, standards for derivation of cell lines will become more

stringent. The first step toward the clinic involves the derivation

and characterization of Good Manufacturing Practice (GMP)

quality cell lines (Ährlund-Richter et al., 2009). In order to qualify

for GMP, the cell lines must be derived and cultured in: (1)

defined and (2) controlled conditions (3) by trained staff (4) with

full documentation. Some proprietary lines have been derived

under GMP conditions (ESI, WiCell), and only one cell line, H1,

has been maintained under GMP conditions and approved for

clinical trials (Geron Corporation). It should be noted that GMP

does not preclude the use of products derived from animal sour-

ces, such as fetal calf serum, so long as the product meets the

GMP standards defined above and no other suitable products
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are available. Future clinical acceptance of any new hESC line,

however, can only be improved by the combination of xeno-

free GMP methods for derivation and maintenance.

Human Embryo Culture, Assessment,
and Establishment of hESCs
Embryo Culture and Assessment

Figure 1 illustrates some key phases in the life history of a hESC

line, beginning with embryo culture. Human embryo culture has

been refined over the 30+ years since the first successful in vitro

fertilization (IVF) procedure. In general, procedures for culture of

the fertilized egg from the two pronuclear (2PN) stage of fertiliza-

tion through initial cleavage and transfer to the uterus for implan-

tation have sought to mimic the conditions that a zygote would

experience while traveling through the fallopian tube. Human

tubal fluid nearest the ovary is high in pyruvate and lactate,

whereas the concentration of glucose increases as the zygote

nears the uterus. Therefore, it is common to culture human

embryos in sequential media wherein a human tubal fluid analog

medium is used from fertilization to the eight-cell stage at day 3,

and this is followed by a switch to a high glucose, complete

medium for compaction and blastocyst formation on days 5–6

(Bongso and Tan 2005; Mercader et al., 2006; Ilic et al., 2007; Sa-

thananthan and Osianlis, 2010). However, some workers argue

that a single-media system yields equivalent results (Biggers

and Summers, 2008). Many embryo culture protocols have em-

ployed coculture systems using fibroblasts, endometrial cells, or

other cell types to support development, and a recent meta-

analysis indicated that coculture does indeed improve embryo

quality (Kattal et al., 2008). However, coculture of embryos has

the same drawbacks as the use of feeder cells during establish-

ment and maintenance.

Embryo quality is a critical factor in hESC derivation. For the

most part, assessment of embryo quality continues to rely on

morphological criteria (Bongso and Tan, 2005), although me-

tabolomics (Botros et al., 2008) and proteomics (Katz-Jaffe

et al., 2009) may ultimately provide more objective and accu-

rate evaluation. The highest level of success comes from

implantation of high-quality, expanded blastocysts on day

5/6 (Figure 2 A), and reported success in hESC derivation is

also greatest under these parameters. Because the best avail-

able embryos are of course used for transfer to the uterus,



Figure 2. hESC Colonies Derived and Cultured under
Various Conditions
Full grown day 6 human blastocyst (A) and isolated ICM (B). (C)
shows an attached ICM with growing pluripotent cells, 1
day after seeding on feeder layer. Morphologies of hESC colo-
nies growing in KSR medium on conventional MEF feeder-
layer (D), in KSR medium on human dermal fibroblast
feeder-layer (E), in KSR medium on xeno-free prepared human
dermal fibroblast feeder-layer (F), in xeno-and feeder-free
medium mTesR2 (G). (A)–(C) are courtesy of Dr Suemori and
were generated according to the methods published in
Suemori et al. (2006).
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surplus embryos for hESC derivation may not always be of the

highest quality. Several groups (Mitalipova et al., 2003) have

reported derivation of ESC lines from poor-quality embryos,

and a recent study confirmed the potential of this approach

(Lerou et al., 2008), although success rates were quite low

unless the embryos were able to reach the blastocyst stage.

Timing of inner cell mass (ICM) isolation is another critical

factor determining the outcome of derivation. Most of hESC

lines have been derived from blastocysts at day 5/6 of culture.

A recent study indicated up to 50% efficiency when blasto-

cysts were allowed to develop until day 6 (Chen et al., 2009).

At this stage, the isolated ICM attaches to the feeder layer

with relative ease and starts proliferating (Figures 2B and

2C). These results are reflective of the higher rates of success-

ful implantation during IVF treatment when blastocyst stage

embryos are used.

Avoiding Immunosurgery and Exposure

to Animal Products

Although some workers have derived hESCs from explanted

blastocysts, most have relied on immunosurgery for isolation

of the ICM (Figure 2B) (Solter and Knowles, 1975; Bongso

et al., 1994). Because trophectoderm cells show rapid rates

of growth and may inhibit the expansion of the ICM in culture,

their early removal is considered beneficial by most workers.

Immunosurgery requires the use of xenomaterials in the form

of animal-sourced antibodies and complement. Whole and

partial-embryo culture methods (Kim et al., 2005) can eliminate

the need for immunosurgery, but do not enrich for ICM during

initial derivation. Two alternate approaches avoid the pitfalls of
C

immunosurgery with animal components and

whole-embryo culture. First, the ICM can be iso-

lated mechanically by dissection with sharpened

metal needles (Ström et al., 2007). The second

possibility is to perform the isolation with infrared

lasers, which are widely used for drilling holes in

the zona pelucida of eggs and early embryos for

preimplantation genetic diagnosis (PGD) testing.

The infrared laser can be used to isolate the

ICM through ablation of the zona pelucida and

trophectoderm (Turetsky et al., 2008). Proof of

concept of this technique was demonstrated on

genetically abnormal embryos identified during

PGD, with three out of eight ICMs producing

disease-specific hESC lines. A more recent

study using laser-assisted derivation in human

embryos reported derivation efficiency as high
as 52% when isolating ICMs from day 6 blastocysts (Chen

et al., 2009).

Blastomere Culture

Several groups have examined the potential for hESC derivation

from single blastomeres. Given that PGD entails biopsy of

a single blastomere and allows for the normal development of

the remaining cleavage-stage embryo, blastomere biopsies

were undertaken to create new hESCs without the destruction

of embryos, to avoid ethical concerns. The technique was first

reported in the mouse in 2006 (Chung et al., 2006), and this

report was closely followed by the derivation of hESCs from

human blastomeres (Klimanskaya et al., 2006). Coculture of

the blastomere with existing hESC cell lines was a necessity in

these studies, a potential limitation to the use of the technique

for deriving clinical grade lines. Another study employed cocul-

ture with the parent embryo with some success (Chung et al.,

2008). This method of coculture with the parent embryo also

produced blastomere derived hESCs in the presence of human

feeders and minimal xenomaterials (Ilic et al., 2009). It is possible

that maintaining the parent embryo in culture with the biopsied

blastomere may restrict its future use in IVF treatment, so elimi-

nation of this step is important. In 2009 a group used four-cell

stage embryos and isolated individual blastomeres (Geens

et al., 2009). Each blastomere was allowed to develop in sequen-

tial medium until day 3 or 4 when they were transferred to inacti-

vated MEFs. Two new cell lines were established, only one of

which was karyotypically normal.

Derivation of hESCs from blastomeres represents an inter-

esting technical achievement, and the technique has the
ell Stem Cell 6, June 4, 2010 ª2010 Elsevier Inc. 523
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potential to provide insight into possible differences in cell lines

derived from presumed totipotent blastomeres of early stages

versus pluripotent cells derived from the later-stage ICM of the

blastocyst. Although it has been argued that such an approach

can leave a viable embryo intact (on the basis of experience

with preimplantation genetic diagnosis) and thus circumvent

ethical issues around embryo destruction, it seems unlikely

that clinicians would chose to implant an embryo that had under-

gone biopsy in preference to one that had not (unless there were

a clinical indication for carrying out the biopsy). Therefore, it is

unclear whether such procedures would ultimately impact on

the long-term viability of the embryos, which would likely be dis-

carded anyway.

Culture Methodology for hESCs
This section, and the following one on cell characterization,

focuses on methodologies developed for hESCs. Although

a detailed discussion of the generation, maintenance and char-

acterization of iPSCs is beyond the scope of this review, it is

worth noting that the same culture systems used to propagate

hESCs have been used in the establishment and expansion of

human iPSCs. There is as yet no evidence that hESCs and iPSCs

differ in terms of the extrinsic signaling mechanisms that control

their growth and differentiation, although the question has not

been systematically investigated. Arguably, human iPSC devel-

opment would not have been possible without previous studies

of hESC culture methodology, the requirements of which are of

course different to those of mouse ESC culture.

Culture Media

Originally, hESCs were established and cultured in medium sup-

plemented with 10%–20% fetal calf serum (FCS) on mouse

embryonic fibroblast (MEF) feeder layers (Reubinoff et al.,

2000; Thomson et al., 1998). Currently, the most common culture

system in research use of hESCs is based on supplementation

with knockout serum replacement (KSR) and 4–10 ng/ml FGF2,

using either MEF feeder cell layers or feeder cell-conditioned

medium (Amit et al., 2000) (Figure 2D). This platform includes

xenomaterials, a significant drawback for clinical use because

of the potential for transmission of pathogens. Therefore, several

media containing human serum (or serum components) instead

of FCS and human feeder layers instead of MEF have been

developed for establishment and maintenance of clinical-grade

hESCs (Crook et al., 2007; Ellerström et al., 2006; Rajala et al.,

2007) (Figure 2E). Recently, xeno-free serum replacements,

such as xeno-free KSR (Invitrogen), or xeno-free culture

medium, such as HESGRO (Millipore) have become commer-

cially available and enable the maintenance of hESCs in an undif-

ferentiated state in feeder cell culture systems (Figure 2F).

Notably, undifferentiated hESCs retain slightly different morphol-

ogies in different culture systems.

hESC culture on a feeder cell layer introduces another source

of possible contamination by adventitious agents. Feeder cell

layers can produce proteins and small molecules that interfere

with studies of stem cell maintenance and differentiation factors

in unpredictable ways. In addition, a human feeder layer may

introduce ambiguity in any subsequent genetic analysis. There-

fore, the development of xeno-free and feeder-free, fully defined

systems for establishment and culture of hESCs had been a goal

in this field for some time. The first attempts to eliminate the
524 Cell Stem Cell 6, June 4, 2010 ª2010 Elsevier Inc.
feeder cell component from hESC culture used MEF-condi-

tioned medium (Xu et al., 2001), which of course still carries

the same risk of contamination with adventitious agents as

feeder cell culture. The elucidation of the key signaling pathways

for hESC self-renewal has enabled replacement of any require-

ment for feeder cells or their secreted products. In contrast to

mESCs, hESCs do not appear to require LIF/STAT3 or BMP

signaling for self-renewal (Dahéron et al., 2004; Humphrey

et al., 2004; Xu et al., 2002). However, activation of signaling

by receptor tyrosine kinases, in particular by FGF2 (Eiselleova

et al., 2009; Gonzalez et al., 2010), IGF/insulin (Bendall et al.,

2007; Levenstein et al., 2008; Li et al., 2007), and sphingosine-

1-phosphate/ PDGF (Wong et al., 2007), upstream of ERK and

PI3K/AKT (Armstrong et al., 2006; Li et al., 2007; Soh et al.,

2007) and in combination with TGF-ß/Activin/ Nodal/activation

of SMAD 2/3 (Amit et al., 2004; Vallier et al., 2005; Vallier et al.,

2009; Xiao et al., 2006), appears to be critical for hESC mainte-

nance. Other studies have implicated WNT/ b-catenin (Dravid

et al., 2005; Lu et al., 2006; Sato et al., 2004), and TNF receptor

superfamilies in hESC survival (Lu et al., 2006). Inhibition of BMP

signaling can prevent spontaneous differentiation (Pera et al.,

2004; Xu et al., 2005). On the basis of these findings, many

feeder-free, xeno-free defined culture media consisting of

combinations of recombinant growth factors activating stem

cell maintenance pathways or inhibiting differentiation have

been reported (Li et al., 2005; Liu et al., 2006; Ludwig et al.,

2006; Peiffer et al., 2010; Swistowski et al., 2009; Wagner and

Vemuri, 2010; Yao et al., 2006). Notably, the use of these defined

media often requires a process of culture adaptation; hESC may

become unstable for a few passages after transfer from feeder

cell culture conditions (Akopian et al., 2010). Some of the xeno-

free and feeder-free defined culture media are now commercially

available, such as mTeSR2 (StemCell Technologies), StemPro

(Invitrogen), SBX (AxCell), NutriStem (Stemgent), and VitroHES

(Vitrolife). hESCs can be expanded and maintained in the undif-

ferentiated state in these media (Figure 2G). However, only

TeSR1, a noncommercially available analog of mTeSR2, has

been reported to support establishment of hESC lines from blas-

tocysts (Ludwig et al., 2006).

Given that all recombinant or purified growth factors are

costly, many groups have used hESCs in high-throughput

screening system to identify small molecules capable of sup-

porting stem cell maintenance (Damoiseaux et al., 2009;

Desbordes et al., 2008; Lin et al., 2009). It was reported that

a combination of a histone deacetylase (HDAC) inhibitor and

an inhibitor of GSK3b could maintain hESCs in the undifferenti-

ated state (Sato et al., 2004; Ware et al., 2009). Recently,

a small-molecule BMP receptor type 1 (BMPR-I)-specific inhib-

itor LDN-193189 that might inhibit spontaneous differentiation

in hESC culture was identified through chemical screening

(Yu et al., 2008). It was also recently reported that the combined

use of a MEK/ERK inhibitor and Activin inhibitor could improve

human iPSC induction (Lin et al., 2009), although given the widely

recognized role for these pathways in hESC maintenance, the

mechanism of this effect requires further study.

One report has suggested that feeder-free culture is associ-

ated with more chromosomal instability than conventional feeder

cell based systems (Catalina et al., 2008). Therefore, feeder-free

culture systems may require more frequent karyotypic
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examination, and it is important to discover what culture condi-

tions favor maintenance of a normal karyotype. Several reports

have demonstrated that low oxygen tension could reduce chro-

mosomal abnormalities and also prevent hESC differentiation

(Ezashi et al., 2005; Forsyth et al., 2006). A very recent study

showed that a small molecule selectively inhibits growth of chro-

mosomally abnormal hESCs and cancer cells, but not normal

hESCs (Gauthaman et al., 2009). This report requires further

confirmation, but this or related strategies might be necessary

to reduce the risk of generating and propagating abnormal cells

in defined culture systems.

Given the limited published success with establishment of

hESC lines in xeno-free/feeder-free medium, it seems realistic

that at present the most reliable strategies for establishment of

clinical grade hESC lines include use of a human feeder cell layer

in xeno-free medium, followed by expansion in a feeder-free

culture system. In general, hESC cultures show a significant

amount of cell death and spontaneous differentiation, which

can be minimized by daily medium exchange and passage

before the culture becomes over grown. Growth rates of hESC

cell lines vary (Cowan et al., 2004) and careful adjustment of

the starting size of the clumps used to seed new dishes at

subculture, colony density, split ratio, and passage interval are

essential. Suboptimal conditions may necessitate removal of

differentiated cells during passage (Ludwig and Thomson, 2007).

Passage Methodology

Initially, hESCs were passaged by mechanical dissociation of

mature colonies into cell clumps with sharpened glass or steel

needles (Reubinoff et al., 2000; Thomson et al., 1998). In the

process of establishment of hESC lines from ICM, differentiated

cells, which may represent extra embryonic lineages, frequently

appear within a colony of undifferentiated cells. Mechanical

dissection produces clumps of an appropriate size for passage

and enables elimination of differentiated cells. The simplest

mechanical passage method is dissection of colonies into

uniform size clumps with a sharp needle (Cowan et al., 2004).

After establishment of hESC lines, large numbers of cells are

required for quality assurance and establishment of cell banks.

Despite considerable efforts to identify factors that improve

cell viability, hESCs survival remains very low after complete

dissociation into single cells, and continuous complete dissoci-

ation may lead to selection of chromosomal abnormal cells

that are capable of survival under these conditions (Hasegawa

et al., 2006). Therefore mechanical, enzymatic, or chemical

dissociation of colonies into 50- to 1000-cell clumps remains

the most common passage method for expansion of hESC

culture. Mechanical dissection is not amenable to scale up or

rapid expansion. Recently, a specialized roller cutting device

for mechanical hESC passage has become commercially avail-

able (EZ passage tool, Invitrogen) (Wagner and Vemuri, 2010),

and such a device might facilitate rapid dissection of a large

number of colonies into uniform size clumps. To further speed

and standardize the process and minimize operator contact,

some workers have used laser dissection of hESC colonies

(Terstegge et al., 2009).

For enzymatic dissociation, collagenase IV, dispase, or

combinations of these and other proteolytic enzymes are

commonly used to detach and dissociate hESCs colonies into

clumps. This procedure requires some experience to produce
clumps of the appropriate size for subculture. Many of these

enzymes are derived from animal products. More recently

commercially available xeno-free enzymes (Accutase, Innova-

tive Cell Technologies, or TrypLE, Invitrogen) have been used

to dissociate hESCs to single cells and are reported to provide

higher cell survival after passage (Bajpai et al., 2008; Ellerström

et al., 2010). These products may prove to be useful in expansion

of cell lines. The small molecule Rho-associated kinase (ROCK)

inhibitor Y-27632 or a combination of ROCK inhibitor and protein

kinase C inhibitor have been shown to enhance hESC survival

after passage as single cells (Damoiseaux et al., 2009; Watanabe

et al., 2007). Another report suggested the ROCK inhibitor-medi-

ated cell-cell interaction was associated with cell surface E-

cadherin stabilization (Xu et al., 2010). In this report, it was also

suggested that enhanced integrin signaling synergizes with

growth factors to enhance hESC survival (Xu et al., 2010).

Nonenzymatic dissociation of hESC can also be achieved by

chelation of calcium and magnesium with EDTA (Ludwig and

Thomson, 2007). Either enzymatic or chemical dissociation

may carry a higher risk of induction of chromosomal abnormali-

ties than mechanical colony dissection (Mitalipova et al., 2005)

(Catalina et al., 2008), possibly because either technique can

release single cells. Many of the common chromosomal abnor-

malities seen in cultured hESCs provide a survival advantage,

and dissociation to single cells is a selective pressure, favoring

expansion of abnormal clones.

To date, no approach has provided for high survival of single

hESCs after subculture. Current best practice would probably

utilize mechanical dissection for establishment and maintenance

of hESCs and either enzymatic or chemical harvest, with care to

avoid dissociation to single cells, for expansion of hESCs over

a limited number of passages.

Several studies describe scale-up of hESC cultures in small

bioreactors (Fong et al., 2005; Krawetz et al., 2009), microcar-

rier-based suspension culture (Oh et al., 2009; Phillips et al.,

2008), or an automated culture system (Terstegge et al., 2007;

Thomas et al., 2009). Steiner et al. (2010) recently described

the derivation of hESCs in a suspension culture system using

basal medium extensively supplemented with a serum replace-

ment including beta D-xylopyranose, growth factors (Activin A,

FGF2 and neurotrophic factors), and extracellular matrix mole-

cules (laminin, fibronectin, and gelatin). hESCs could be

expanded and maintained in this system, although cell produc-

tion was lower relative to monolayer culture on feeder cells due

to increased cell loss, and questions remain over long-term

genetic stability in cultures grown with this technique. Although

experience to date with these scaled-up culture systems is

limited, they may provide a future option for rapid expansion of

hESCs.

Feeder Cells

Although several commercial, defined media are now available

for feeder-free propagation of hESCs, there is only limited expe-

rience with the use of these preparations in derivation of cell

lines. Therefore, many groups continue to use feeder cells in

establishment of hESC lines. The original methodology for

hESC derivation used MEF feeder cells. Subsequently, several

groups reported the use of human fibroblasts as feeder cells,

including cells derived from fetal, neonatal, and adult tissues

(Unger et al., 2008). Cell lines have been derived under GMP
Cell Stem Cell 6, June 4, 2010 ª2010 Elsevier Inc. 525
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conditions with human feeder cells (Crook et al., 2007). Also,

fibroblast-like cells derived from hESC culture have been shown

to support hESC growth (Stojkovic et al., 2005), through a para-

crine mechanism (Bendall et al., 2007).

More recently, several groups have shown that extracellular

matrix from human fibroblasts can support hESC maintenance,

either with the use of conditioned medium from the feeder cells

or without it (Escobedo-Lucea and Stojkovic, 2010; Meng

et al., 2010a). In both studies, the fibroblasts were grown in

medium containing human serum. These and related culture

systems, though xeno free, nevertheless are still undefined.

Extracellular Matrix

Derivation of new cell lines in fully defined conditions will require

provision of a natural or synthetic extracellular matrix capable of

supporting hESC attachment survival and growth. As discussed

above, single hESC do not survive in suspension, and even

suspension cultures of cell clumps require supplementation

with extracellular matrix or extracellular matrix addition to micro-

carriers. Most studies have employed serum, Matrigel (BD

Biosciences), or extracellular matrix deposited by the feeder

cell layer to support adhesion, spreading, and growth of hESCs.

None of these systems provides for fully defined culture condi-

tions and many contain animal-derived products. The definition

of the active components in these complex biological prepara-

tions might help in designing a more defined system. The major

attachment factors in serum are fibronectin and vitronectin. Ma-

trigel is a commercial extract of natural basement membrane

that contains laminin, collagen type IV (Braam et al., 2008), en-

tactin, and heparan sulfate proteoglycans. Feeder cells secrete

fibronectin, collagen types I and IV, and laminin. Finally, hESCs

themselves synthesize laminin 511 and nidogen 1 (Evseenko

et al., 2009), and differentiated derivatives in the cultures are

likely to synthesize other matrix components. This information,

alongside analysis of integrin expression in stem cell cultures,

provides a rational basis for the use of defined natural or

recombinant extracellular matrix components to support hESC

growth and derivation. hESCs have been reported to express the

integrin subunits a-2,-5,-6,-v and b1,-3,-5 (Braam et al., 2008;

Evseenko et al., 2009; Meng et al., 2010b; Xu et al., 2001) . Func-

tionally, the a6b1 integrin has been defined as a laminin receptor

in hESC, the aVb5 and aVb3 integrins have been identified as

vitronectin receptors, and the a5b1 receptor shown to be a

receptor for fibronectin (Braam et al., 2008; Meng et al., 2010b).

The first report of purified extracellular matrix components in

a defined culture system used a combination of fibronectin, lam-

inin, collagen IV, and vitronectin (Ludwig and Thomson, 2007).

These proteins, purified from natural sources, may contain

various contaminants and generally are not xeno free. Recombi-

nant laminins 332, 511, and 111 were shown to support hESC

maintenance for up to ten passages under defined conditions

(Miyazaki et al., 2008). However, in one study of hESC establish-

ment from explanted blastocysts, it was necessary to combine

a laminin substrate with the use of a feeder cell layer to derive

cell lines (Fletcher et al., 2006). Vitronectin was identified some

years ago as a key attachment factor for pluripotent human

embryonal carcinoma cells (Cooper and Pera, 1988). More

recently, three groups have reported maintenance of hESCs or

human iPSCs in defined conditions on natural or recombinant

vitronectin (Braam et al., 2008; Manton et al., 2010; Rowland
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et al., 2009). One study has employed short peptide ligands for

the aVb3 a6b1 and a2b1 integrins to support hESC adhesion

and growth (Meng et al., 2010b). The peptides were only able

to support hESC maintenance for short periods, which suggests

that the full-length integrin ligands might contain other domains

that are important for longer-term propagation of hESCs. One

study showed that laminin 511 and nidogen together enabled re-

assembly of single hESCs into clumps of cells (Evseenko et al.,

2009). Although the authors of this study focused on embryoid

body formation, it is possible that reaggregation and adhesion

mediated by these factors would enable survival of hESCs after

dissociation.

In addition to these extracellular matrix molecules, hyaluronan

is a candidate factor for promotion of hESC survival. Hylaruronan

may be particularly relevant to hESC derivation because of its

presence in the female reproductive tract and its known roles

in early embryo growth. hESC express the hyaluronan receptor

RHAMM on their surface (Choudhary et al., 2007). Knockdown

of this receptor resulted in death and differentiation. One report

has described long-term maintenance of hESCs in hyaluronan

containing hydrogels, although the study was carried out in the

presence of conditioned medium from mouse embryo fibro-

blasts (Gerecht et al., 2007).

Cryopreservation

In general, the recovery of hESCs after cryopreservation is very

low after use of conventional slow cooling and rapid thawing

protocols widely employed for cultured cells (cryopreservation

medium containing 5%–10% DMSO and culture medium sup-

plemented with serum or serum replacement and freezing at

�1�C/min) (Fujioka et al., 2004; Reubinoff et al., 2001). Several

groups reported marked improvement in cell recovery by using

vitrification in straws or vials (Fujioka et al., 2004; Hunt and

Timmons, 2007; Reubinoff et al., 2001; Richards et al., 2004).

Given that these vitrification media consist of simple culture

medium and chemical regents only, they provide a means to

cryopreserve cells without animal components. However, these

vitrification protocols often require contact with liquid nitrogen,

posing contamination risks. There are several reports demon-

strating liquid nitrogen contact-free cryopreservation with

controlled cooling systems (Lee et al., 2010; Morris et al.,

2006; Ware and Baran, 2007). In addition, there are several

reports of methods to enhance survival of hESCs after cryopres-

ervation, such as the use of ROCK inhibitor (Li et al., 2009;

Martin-Ibañez et al., 2008), caspase inhibitors (Heng et al.,

2007), or microcarriers (Nie et al., 2009). In general, for cryopres-

ervation, hESC colonies need to be dissociated into clumps, just

as in routine passage, and concentrated to high density for

freezing. Closed straws or vials should be used for freezing,

and the vials or straws should be stored in either ultra-low

temperature freezer (�150�C) or vapor phase of the liquid

nitrogen tank.

Characterization
Standard methods for the characterization of hESC lines typi-

cally include cell-surface marker profiling, gene expression anal-

ysis, and biological assay of differentiation potential, as well as

examination of genetic integrity. The International Stem Cell

Initiative study of 59 cell lines from 17 laboratories established

a panel of cell-surface markers and pluripotency genes that



Cell Stem Cell

Protocol Review
were consistently expressed across this diverse group of cell

lines (Adewumi et al., 2007). Flow cytometry using surface

markers and some of the key pluripotency transcription factors

yields quantitative information about the proportion of cells in

the culture that are positive for these indicators and is an impor-

tant addition to immunofluorescence, which defines cellular

localization of the markers. Likewise, quantitative RT-PCR

(qRT-PCR) should be employed for measuring pluripotency

markers and comparing them with established hESC cultures.

These parameters should be examined at early passage levels

and then at regular intervals.

Characterization of cell lines should include in vitro tests of

differentiation potential. The most commonly used paradigm is

embryoid body formation, with assessment of gene expression

in differentiated cells in the embryoid body or in adherent

cultures derived from it, by immunoflourescence and qRT-

PCR, for lineage-specific markers representative of the three

embryonic germ layers. The reaggregation technique (Ng et al.,

2005) provides for uniform input of cell numbers and avoids

heterogeneity that results from incorporating only selected

regions of colonies into the embryoid body.

The advent and widespread adoption of reprogramming tech-

nology for the derivation of pluripotent cell lines has engendered

a certain amount of debate over the vexed issue of how best to

evaluate pluripotency of cultured human cells (Ellis et al., 2009;

Maherali and Hochedlinger, 2008). The increasing availability of

robust protocols with quantitative endpoints for the neural,

mesodermal, and endodermal differentiation of hESC has led

some to suggest that a panel of such assays could supplant

the need for in vivo teratoma assays. The International Stem

Cell Initiative is convening a series of expert discussion groups

to assess currently available assays and make recommenda-

tions concerning their use.

In the absence of an agreed and proven set of surrogate

in vitro assays, the gold standard for pluripotency in the human

is the formation of teratomas in immunodeprived animals (Przy-

borski, 2005). Protocols for formation of teratomas and their

histological assessment have been published (Gertow et al.,

2007), but they may not always be followed and/or reported in

detail (Müller et al., 2010). Some groups have combined stan-

dard histological examination with immunochemistry to validate

the human origin of various differentiated tissues in the graft and

to better define the cell lineages represented. However, quanti-

tative assessment of differentiation, and thus definitive evalua-

tion of the ability to give rise to a wide variety of tissue lineages,

remains problematic with this assay. Recent studies have sug-

gested that certain sites and modes of injection might provide

improved yields of tumors (Cooke et al., 2006; Prokhorova

et al., 2008). It is important to remember that in vivo teratoma

formation can provide information not only about differentiation

potential but also about the propensity of cell lines to form malig-

nant growths (teratocarcinomas) (Blum and Benvenisty, 2008;

Przyborski, 2005). hESCs with a normal karyotype generally

give rise only to teratomas, which do not contain undifferentiated

cells. By contrast, chromosomally abnormal cells, or hESC lines

with small genetic lesions, can yield teratocarcinomas that

contain undifferentiated cells resembling embyonal carcinoma

cells. The presence of undifferentiated cells within a teratoma

is thus a cause for concern.
Genetic stability of hESC cell lines is routinely assessed by G-

banded karyotype or, less frequently, spectral karyotyping, at

regular intervals during the development and growth of cell lines

in vitro. More recently, it has become apparent that hESCs can

acquire submicroscopic genetic alterations, including small

amplifications and deletions, that are not detected by karyotype

analysis. It appears that there are hotpsots for such changes

(Närvä et al., 2010) and that small changes may be associated

with alterations in cell behavior such as reduced growth factor

requirements, reduced ability to undergo differentiation, and

formation of teratocarcinomas (Werbowetski-Ogilvie et al.,

2009). In one recent study, copy-number variants (CNVs) were

reported to occur frequently in regions containing genes associ-

ated with cancer, but the biological significance of this observa-

tion remains unclear (Närvä et al., 2010). Assessment of CNV is

thus becoming more important to the assessment of genetic

integrity of cell lines. None of the current methodologies has ad-

dressed the possibility that hESCs may acquire point mutations

in oncogenes or tumor suppressor genes. As costs of genomic

sequencing decline this may become a realistic option. Preser-

vation of DNA from the blastocyst at hESC derivation would

enable unambiguous determination of whether CNVs are consti-

tutional or acquired during culture.
Conclusions
Our understanding of the basis of the extrinsic regulation of plu-

ripotency in hESC (Pera and Tam, 2010) has progressed

considerably and this knowledge has been put to practical im-

plementation in the design of new culture systems. There is

now a variety of technological options for workers wishing to

derive new hESC lines. Nevertheless significant challenges to

the field remain. Among these are the development of defined

culture systems that function robustly in hESC derivation, the

development of defined extracellular matrix components for

support of hESC cultures, the improvement of single-cell survival

of hESCs, and the definition of conditions that provide for long-

term genetic and epigenetic stability. In the areas of hESC char-

acterization, the establishment of a standard panel of in vitro

assays for the assessment of pluripotency should be a priority

for the field. Finally, the cost of many defined culture systems

is a major roadblock to their wider use in expansion of hESC

cultures. It can be anticipated that given the current pace of

human pluripotent stem cell research, platforms that address

these challenges will emerge and come into widespread use

within the next few years.
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E., and Brüstle, O. (2007). Automated maintenance of embryonic stem cell
cultures. Biotechnol. Bioeng. 96, 195–201.

Terstegge, S., Rath, B.H., Laufenberg, I., Limbach, N., Buchstaller, A., Schü-
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