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We consider the problem of partitioning (in a certain manner) a rectangle into n regions of 

equal area so that the total lengths of the boundaries is a minimum. A closed form solution to 

the problem is presented. 

1. Introduction 

The problem of partitioning a rectangle into n regions of equal area so that the 

total length of the boundaries is a minimum arose in the work of S. Fuller [4] on 
multiprocessor solutions of partial differential equations over a two dimensional 

field. T. C. Hu modified the problem in the following way: The regions are 
required to be rectangles and the partitions are obtained by dividing existing 

rectangles into two rectangles. 
In order to state the modified problem precisely we introduce the following 

definitions. 

Definition 1. The set 9 of dissections of a rectangle, R, can be defined recursively 

as follows: 
(1) The partition consisting of R alone is in 9. 

(2) If D ~9 and D’ is a partition obtained from D by dividing one of the 
rectangles of D into two rectangles, then D’ E 9. 

Definition 2. An equidissecrion is a dissection in which all the rectangles (or parts) 

have equal area. 

Fig. la is an 

equidissection. 

example of an equidissection. The partition in Fig. lb is not an 

EH 

n 

El b 
Fig. 1. 
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To each equidissection, D, we associate a cost C(D), which is the sum of the 

lengths of all the line segments partitioning R. For example if D is 

then C(D) = $p +&, where (Y is the length of the horizontal side of the rectangle 
and p is the length of the vertical side. 

Hu’s problem may, thus, be stated as follows: Given a rectangle R, find an 

equidissection of R into n parts, which is of minimum cost among all equidissec- 
tions of R into n parts. We will call such an equidissection a minimal equidissec- 

tion. 
In this paper we obtain a closed form solution of Hu’s problem. A class of 

equidissections whose members are called grids is introduced in the next section. 
In Section 3, by using a discrete variational technique, we show that these 

equidissections are extremal, that is, we show that for any rectangle a minimal 
equidissection can be found in the class of grids. A precise recipe for finding a grid 
that is minimal is obtained in Section 4. 

2. Grids 

Definition 3. A vertical (horizontal) m-strip is a column (row) of m congruent 
rectangles, in an equidissection, which extends vertically (horizontally) through 

the entire rectangle. 

An example of a vertical 4-strip is given in Fig. 2. The shaded area is the 

4-strip. 

Fig. 2. 

Definition 4. A vertical (horizontal) grid is an equidissection which consists only 
of vertical (horizontal) m-strips and/or vertical (horizontal) in + l-strips. 

An example of a vertical grid is given in Fig. 3a and of a horizontal grid in Fig. 

3b. Fig. 3c is a grid that is both horizontal and vertical. Fig. 2 is an equidissection 

which is not a grid. 
We shall denote the vertical (horizontal) grid having k vertical (horizontal) 

m-strips and j vertical (horizontal) m + l-strips, by V(m, k, j) (H(m, k, j)). It will 
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B  b f  

Fig. 3 

also be convenient to denote the rectangle whose horizontal side has length a! and 
whose vertical side has length p by R(cx, /3). 

In the following lemma we present the cost of a grid. 

Lemma 1. Let R be Ihe rectangle R(a, p). Zf D = V(m, k, j) on R, then 

C(D)=(k+j-l)p+ a, 

where n = km + j(m + 1) is the number of rectangles into which R is partitioned. 
Similarly if D = H(m, k, j) on R, then 

C(D)= 

Proof. The proof is a straightforward computation and is omitted. 

3. The extremal equidissections 

The main result of this section is the following theorem. 

Theorem 1. Every minimal equidissection is a grid (horizontal or vertical). 

Before we begin the proof of Theorem 1, we need to prove a rather technical 
lemma and state a definition. 

Lemma 2. Let R be the rectangle R(cw, 0). Zf V(m, k, j) is a minimal equidissection 

of R, then the following hold: 

(1) if O<j~m, then (m+l)/(j+k+l)<~/q 
(2) if j 3 m, rhen m (m + 1 )/n S /3/a, 

(3) if 0 < k s m + 1, then (k +j - l)P/a G nz, 
(4) if ksm+l, then P/a~m(m+l)/n, 

where n = km + j(m + 1) is the number of rectangles into which R is partitioned by 

V(m, k, j). Zf H(m, k, j) is a minimal equidissection of R then (l)-(4) hold with (Y 
and p interchanged. 

Proof. We let D be the grid V(rn, k, j) on R. To prove (l), we also let D’ be the 
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grid, H(k +j, m-j, j) on R. We see that the number of rectangles of D’ is 

(m -j)(k +j)+j(k +j + l), which is equal to n. Hence it follows from the minimal- 
ity of D that 

C(D’)-C(D)sO. 

Lemma 1 gives 

C(D)=(k+j-l)p+ a, 

and 

C(D’)=(k+j--I+ jtk +; + l))p + (m - l)(y. 

After subtracting we have 

j(k + j + 1) 
P- 

j(m+l)a50 
n I1 

Since j> 0, this reduces to 

/3/a! 2 (m + l)/(k + j + 1) 

as asserted. 
We use a similar argument to establish the rest of the lemma. For parts (2), (3), 

and (4) we let D’ be the grid, V(m, k+m+l, j-m), H(k+j-1, k, m+l- k), 

and V(m, k - 1 - m, j + m) respectively. 

We will use the notion of a cur in the proof of Theorem 1. A cut is a line in an 
equidissection of R which divides R into two rectangles. 

Proof of Theorem 1. The proof will be carried out by induction on n, the number 
of rectangles in the equidissection. For n = 1, the result is trivial. Assume the 

theorem holds when the equidissection has less than n rectangles. 
Let D be a minimal equidissection of some rectangle R, into n parts. Assume 

that D is not a grid. Every equidissection must have a vertical or a horizontal cut. 
Therefore assume that D has a vertical cut. 

We claim that D has exactly one vertical cut. If there are two vertical cuts in D, 
let R, be the rectangle on the left of the right cut and let R2 be the rectangle on 

the right of the left cut (see Fig. 4). 

Ri 
Fig. 4. 
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We also let II, be D restricted to RI and D2 be D restricted to R,. The 
minimality of D implies that both D, and D2 are minimal. Thus by the induction 

hypothesis D, and D, are grids. They must be vertical grids since they both have 
vertical cuts. This implies that D consists only of different types of vertical strips. 
Thus the only way that D is not a grid is if D has an s-strip and a r-strip, where 
s + 1 Ct. Rearrange the strips so that an s-strip and a t-strip are adjacent. (This 

will not alter the cost.) Let R’ be the rectangle formed by the two adjacent strips. 
Since the rearranged equidissection is still minimal its restriction to R’, which 
consists of the s-strip and r-strip, is also minimal; hence by the induction 

hypothesis, the s-strip and t-strip form a grid. But this is impossible since s + 1< t. 
Thus we have reached a contradiction and therefore our claim that D has only 
one vertical cut holds. 

We now let 0, be the equidissection obtained by restricting D to R,, where RI 
is the rectangle to the left of the vertical cut. We also let Dz be the equidissection 
obtained by restricting D to R,, where R, is the rectangle to the right of the 

vertical cut. Clearly D, and D2 are minimal equidissections. Thus by the induction 
hypothesis, D, and D, are grids. They are horizontal grids since we have just 
shown that they have no vertical cuts. Therefore we let D, be H(m, k, i) and D2 
be H(I, h, i), where 

k171+j(~l~+l)+hl+i(l+l)=i~. 

It is convenient to let 

n, =krn+j(nz+ 1) and n2= hl+i(l+lJ. 

Observe that 

n,+n,,=n. 

We can see what D looks like from Fig. 5. 

There are four cases to consider. 
Case 1: j>O,i>O. 

Case 2: i=O,j>O. 
Case 3: i>O,j=O. 
Case 4: i =O,j=O. 
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We shall show that each of the four cases cannot occur and thereby contradict our 
assumption that D is minimal but is not a grid. 

Case 1. Assume j > 0 and i > 0. We will construct equidissections D’ and D” that 
consist of n rectangles. D’ will have a vertical cut a/n units to the left of the 
vertical cut in D. Let D{ be H(m, k +l, j- 1) on R; and D$ be H(I, h-l, i+l) 
on R$ where R’, is the rectangle to the left of the new vertical cut and R$ is the 
rectangle to the right of the new vertical cut. Let D’ be the dissection of R, whose 
restriction to R; is D{ and to R$ is D$ (see Fig. 6). 

Fig. 6. 

It can be shown that the area of a rectangle in 0; is aP/n and in 0s is also 
aP/n. Therefore D’ is an equidissection that consists of n rectangles. 

The equidissection D” is constructed similarly to the way in which D’ was 
constructed. The vertical cut in D” is a/n units to the right of the one in D. Let 
0’; be H(m, k - 1, j-t 1) on R; and 0: be K(I, h + 1, i - 1) on RG, where R; and 
R; are the rectangles to the left and right of the cut, respectively. Let D” 

restricted to R; be 0’; and to R;’ be 0;. Since D’ is an equidissection of R into n 
rectangles, by symmetry, D” is one also. 

The minimality of D gives 

C(D’)+C(D”)-2C(D)sO. (1) 
Since 

C(D) = C(W) + C(h) + P, 

by Lemma 1 we have 

Similarly 

(2) 

C(D’) = ( 
m+I-l+(i-l)(m+l)+(i+l)(l+l) 

nr-1 nz+l P 

n2+l 
+(h+i-l)n (3) 
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and 

nl+l-l+(i+l)(m+l)+(i-l)(l+l) ~- 
n,+l nz-1 

P 

+ ( n,+1 nz-1 
(k+j-l)n+(h+i-l)n (Y 

) 
(4) 

By combining (l)-(4) we obtain 

(m+1)(~+~-2~)+(I+l~(~+~-:i)~0. 
n2 

But we have 

(5) 

j-l j+l 2j ---= 
n,--l+n,+l 

W-nJ <o 
nl nl(nl - l)h + 1) 

Similarly we also have 

i+l -A<(). i-l 

n,+l+n,-1 n2 

Therefore (5) cannot be valid and we have reached a contradiction. 

Case 2. Assume j > 0 and i = 0. Since i = 0 there aren’t any horizontal I + l-strips 
in D2. Thus D2 only has horizontal I strips. If I> 1, then D, has a vertical cut, 
which means that D has two vertical cuts. Since this cannot be, I = 1 (see Fig. 7). 

k I 
Jl 

Fig. 7. 

There are three subcases of Case 2. 
Subcase (a). Assume h < k + j. Again we construct an equidissection D’ having n 

rectangles. Let D’ have a vertical cut a/n units to the left of the vertical cut in D. 
Let 0; be H(m, k + 1, j- 1) on R; and D$ be H(1, h + 1,O) on Ri, where R; and 
R$ are the rectangles to the left and right of the cut, respectively. Let D’ 

restricted to R; be 0; and D’ restricted to R$ be 0;. Just as in Case 1, each of 
the rectangles in 0; has area a/3/n, and each of the rectangles in 0; has area 
a/3/n. Thus D’ is an equidissection with n rectangles. 

Since 

C(D’) = C(D;) + C(D$) + p, 

by Lemma 1 we have 

(6) 

m+(minl)(:-l))p+((k+j-l)nl-l ; h(h+l)),. (7) 
1 n n 
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From (2) it follows that 

Thus (7), (8), and the minimality of D yield 

(n1 + 1) 
j-n, +2h-k-j+lE,0 

fll(nl- 1) n 6 . 

Because of our assumption that 

h<k+j, 

which is equivalent to 

hck+j-1, 

we can replace h by k + j - 1 in (9) which results in 

( nz + 1) i-n, +k+j-1 a! 

n,(n, - 1) 
-20 

‘1 P 

(8) 

(9) 

(10) 

We shall apply Lemma 2 to D, to reach a contradiction. D, is a minimal 
equidissection since D is minimal. Since D, is H(m, k, j) on R((n,/n)a, /3), 

Lemma 2 gives 

(i) if k G 171 + 1, then 

(k+j-l)y<nl, 

and 
(ii) if k > m + 1, then 

(11) 

(12) 

Since k + j - 1> 0, (11) is the same as 

a/p < mn/nl(k + j- 1). (13) 

We can also simplify (12) to obtain 

a/p s rn(m + 1)/H,. (14) 

Thus, either (13) or (14) must hold. 
Combining (13) and (10) yields 

j(m+l)-n,-nzZO (15) 

But since n, = km + j(m + 1) (15) reduces to -k - 12 0, which is a contradiction. 

Combining (14) and (10) yields 

(j-n,)n+(k+j-l)m(n,-l)aO 
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we replace the first n, with km + j(m + 1) and this time we obtain 

-(k+j)n+(k+j-l)(n,-1)aO. 

This is also a contradiction, since k + j > k + j - 1 and n > n, - 1. Thus, we have 

shown that Subcase 2(a) is impossible. 
Subcase (b). Assume h > k + j. This case is eliminated in a similar manner. We 

construct an equidissection D’ having n rectangles and having a vertical cut cu/n 

units to the right of the vertical cut in D. Let D’ be H(m, k - 1, j + 1) on R; and 
D$ be H(1, h - 1,O) on R;, where R; and R$ are the rectangles to the left and 
the right of the cut, respectively. Let D’ restricted to R; be 0; and D’ restricted 

to R$ be 0;. Again 0’ is an equidissection with n rectangles. 
We use Lemma 1 to compute the cost of D’ and obtain 

(k+j-l)- 
n,+l+(h-2)(h-1) 

CY. (16) 
n n 

The minimality of D together with (8) and (16) yield 

(m + 1) nl-i 
(n,+l)n,- 

2h-k-j-1c,0 

n P- . 
(17) 

Recall that we are assuming h > k + j, or equivalently h > k + j + 1. Replacing h 

by k + j+ 1 in (17) results in 

(m + 1) n,-i k+j+l (Y -____ 
nloll+ 1) 

->O. 
n P 

(18) 

We apply Lemma 2 to D, and obtain the following: 
(i) if j < m, then 

m + 1 (nJn)a 
jTizT p ’ 

and 
(ii) if j 2 nz, then 

(m + 1)m (n,/n)a 

4 <P. 

Thus we have that either 

or 
n(nz+l)/n,(j+k+l)~~lP, (19) 

n(m + l)m/n:Sa/P. (20) 

Combining (18) and (19) yields n,-j-nI--1 SO, which is clearly a contradic- 

tion. 
Combining (18) and (20) yields 

(21) 
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Since nl = (k +j)m +j, (21) becomes 

nr(k+j)-(k+j+l)(n,+l)sO 

which is clearly impossible. 
Subcase (c). Assume h = k + j. We let D’ be H(m + 1, k, j) on R. The number of 

rectangles in D’ is k(m + l)+j(m+2) which is equal to n. By Lemma 1, 

By (8), since h - 1 = k + j - 1, we have 

= 

Since D is minimal it follows that 

OCj 
( 

J?l + 2 ‘71 + 1 --- 
n nl ) 0, 

which reduces to 

O<n,(m+2)-n(m+l) 

=n,(m+2)-(rz,+k+j)(m+l)=-k 

Again, we have a contradiction. Thus, we can eliminate Case 2. 

Case 3. Assume j = 0 and i > 0. This case is symmetric to Case 2. Thus Case 3 is 

also eliminated. 

Case 4. Assume i = 0 and j = 0. We have shown that if i = 0, I= 1 and so by 

symmetry if j = 0, then m = 1 (see Fig. 8). 

Fig. 8. 

We assume h 2 k. Since D is not a grid, h - 1 > k. We let D’ be an equidissec- 

tion consisting of a vertical k + l-strip and a vertical h - l-strip. D’ clearly has n 
rectangles. 
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We easily compute the costs to be 

C(D’) = 
k(k+l)+(h-2)(h-1) 

a! +P, n 

C(D) = 
k(k - l)+ h(h - 1) 

n 
a! +p. 

After subtracting we obtain 

OSC(D’)-C(D)= 
2k-2(h-1) 

a! 
n 

Since h - 1 > k we clearly have a contradiction and, thus, the proof of the theorem 
is complete. 

We have thus reduced the problem of finding a minima1 equidissection of a 
rectangle to that of finding a minima1 grid. 

4. The solution 

Throughout this section we shall use 1x1 to denote the greatest integer less than 
or equal to x and [xl to denote the smallest integer greater than or equal to x. 
The closed form solution of the problem is an immediate consequence of the 
following theorem. 

Theorem 2. Assume we are given the positive integer, n, and the rectangle, 
R = R(a, p), where /3 ~a. Let s be the integer such thar 

S(S-l)-Cin<s(s+l), (22) 

and let r = n - [n/s] s and t = Ln/s] - r. 
(1) If (s + l)/(t + r + 1) </~/C-X then V(s, t, r) is a minimal equidissection of R into 

n rectangles. 
(2) If (s - l)/(t + r) < /3/a! c (s + l)/(t + r + l), then H(r + t, s - r, r) is a minimal 

equidissection of R into n rectangles. 
(3) If P/a s (s - l)/(t + r) then V(s - 1, s-r, r +2r + 1 -s) is a minimal equidis- 

section of R into n rectangles. 

We shall apply this theorem to the following example. Let n = 47, (Y = 11, and 
/3 = 7. Then we have 

P 47(7) n-=-=2$)+:. 
a 11 
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Thus we find that s = 5 since 

20= 5(4)<29+e<5(6) = 30. 

Now we have 

r=47-[?]5=2 and r= LyJ -2~7 
Thus, 

s+l 6 -=- and ‘-’ 4 -=- 
r+t+l 10 r+t 9’ 

We compare /3/a with (s - l)/(r + t) and (s + l)/(r+ t + 1) and obtain 

s+l =6&J! 
r+t+l 10 11 (Y 

Hence by part (1) of the theorem, V(5,7, 2) is a minimal equidissection 
The three lemmas that follow are essential in proving Theorem 2. 

Lemma 3. Let R = R(cI, p) where 6 ~a! and let n and s be positive integers such 
that 

s(s-l)<%<s(s+l). (23) 
a 

If the vertical grid, D, is a minimal equidissection of R into n rectangles, then 

D = V(s, t, r) and t>O, 
or 

D=V(s-l,s-r,t+2r+l-s) and t+2r+l-s>O, 
where 

and 

Proof. Since D is a vertical grid, D = V( m, k, j) for some m > 0, k > 0 and j 2 0. 
We begin by showing that m = s or m = s - 1. 

First it will be shown that m ss. Assume m > s or equivalently 

nz>s+l. (24) 

There are three cases to consider: j = 0, 0 < j < m, and j L m. If j = 0, then 

D = V(m, k, 0) = V(m - l,O, k). 

If we also have k < m - 1 then part 1 of Lemma 2 gives 

m/(k + 1) < p/al. 

But since we assumed that p G(Y, we have m/(k + 1)~ 1, which contradicts 
k<m-1. Thus we have ksm-1. Lemma 2 gives 

m(m - 1)/n <B/a. 
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Combining this with (23) yields m(m - 1) < s(s + l), which contradicts (24). Thus 

i#O. 
If 0 < j < m, then by Lemma 2, we have 

(m+l)/(j+k+l)~~/~. (25) 

By (23) and (24) this implies 

n(m+l)<(j+k+1)S(S+l)~(j+k+l)(m-l)m. 

From this it follows that 

n<(j+k+l)(m-1) (26) 

Since p < (Y, (25) implies m <j + k. This inequality combined with (26) yields 

j < - 1, which is clearly a contradiction. 
We now assume j 2 m. Lemma 2 gives 

m(m + 1)/n < p/a. 

This inequality combined with (23) yields m(m + 1) < s(s + l), which contradicts 
(24). Thus the case j > m is also eliminated and it follows that 

WI c s. (27) 

Assume now that m <s - 1 or equivalently 

m+l<s-1 (28) 

We will show that this cannot hold in each of the two cases k < m + 1 and 
kstn+l. 

If k < m + 1, then by Lemma 2 we have 

(k + j- l)p/cz sm. 

Combining this inequality with (23) yields 

s(s-l)(k+j)<nm+s(s-1) 

Since /3 G(Y, (23) gives 

s(s-l)<n. 

(29) 

Combining this with (28) and (29) yields s(k + j) < n which, implies s < m + 1. This 

contradicts (28). 
If k 5 m + 1, then by Lemma 2, we have 

p/a S m(m + 1)/n. 

Since m <s - 1 we have 

P/a <(s - lb/n, 

which contradicts (23). Therefore it holds that m 3 s - 1, which together with (27) 
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implies 

nz=s or m=s-1. 

We now must show that if m = s, then 

We first show that if m = s, then j < m. If j 3 m, then Lemma 2 implies 

m(m + 1)/n c p/C-Y. 

But since m = s, (23) is contradicted. Thus j C m. Since n = rn(j + k) + j, it follows 
that 

I1 
1 J - =j+k, 

m 

and 

j=n-[tJin=n-LfJS=r 

Thus k = t and j = r and so we have 

D = V(s, t, r) 

It also follows that t > 0, since we assumed k to be positive. 
We claim now that if rn = s - 1 then it follows that 

We first show that k < m + 1. If k 3 m + 1, then by Lemma 2 we have 

/3/a c rn(m + 1)/n. 

Since nr = s - 1, this contradicts (23). Thus k < m + 1. Since n = (m + l)(j + k) - k, 
it follows that 

=j+k n = k. 

Since m = s - 1, we have 

(30) 

We now assert that 

n 11 II n +1. -=- 
S S 
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Lf not, then 

n n n 11 IJ - = - =- 
s s s’ 

Hence (30) becomes 

k&&c& 
S 

which is impossible since k is positive. Therefore 

n H IJ - = ‘z +1. 
s s 

Combining this equation with (30) results in k = s - r. We also have 

= (11 ) 11 +l -(s-r)=t+2r-s+l. 
s 

Therefore we arrive at 

D=V(s-l,s-r,r+2r-s+l). 

We must also show that 

t+2r-s+ l>O. 

If not, we have t + 2r G s - 1, which implies that s(t +2r) s s(s - 1). By (23), since 

P G(Y, it follows that 

s(t+2r)<n =s(t+r)+r. 

This results in r(s - l)< 0, which is impossible. Thus we must have t+2r-s + 
l>O. 

We therefore have our desired conclusion that D is either V(s, t, r), with t > 0, 
or V(s-l,s-r,t+2r-s+l) with t+2r-s+l>0. 

There is a similar lemma for horizontal grids. 

Lemma 4. Let R = R(a, /3) where p s (Y and let n and s be positive integers such 

that 

s(s-l)<pn<s(s+l). (31) 
a 

lf the horizontal grid D is a minimal equidissection of R into n rectangles, then 

D = H(t + r, s-r, r), 
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where 

and 

Furthermore, we also have 

rSt+r and s-rst+r+l. 

Proof. Since D is a horizontal grid D = H(m, k, j) for some III > 0, k > 0 and 
j 5 0. We begin by showing that k 6 m + 1 and j G nr. 

Assume that 

k > IN + 1. 

By Lemma 2, we have 

n/m(m+l)SP/a, 

(32) 

from which it follows that II s m(m + 1). Therefore we have m(j + k)s m(m f l), 
which implies j + k G m + 1. Since this contradicts (32), we must conclude that 

k s m + 1. (33) 

Hence again by Lemma 2 we have 

(k +j - 1)/m <p/a, 

which implies k + j - 1s m. Since k 3 1, we have 

j C in. (34) 

We now show that the lemma holds for the case j =O. If j =O then D is a 
vertical grid as well as a horizontal grid. Thus Lemma 3 implies that D = V(s, t, r) 
and t>O, or D=V(s-l,s-r,t+2r+l-s) and t+2r+l-s>O. The latter can- 

not hold, since the inequalities, s-r>0 and t+2r+l-s>O, imply that 
V(s - 1, s - r, t + 2r + 1 -s) is not horizontal. Thus D = V(s, r, r) and t > 0. Hence 

r = 0 and we have 

D = V(s, t, 0) 

= H(t, s, 0) = H(t + r, s - r, r), 

as asserted. Furthermore, since j = 0 = r, it follows that 

t+r=nz and s-r=k. 

Thus from (33) and (34) we have 

s-rst+r+l and r<t+r. 

For the case j > 0, we shall first show that k + j = s. Since k < m + 1, Lemma 2 
gives 

(k+j-l)/m<fi/cx. 



Minirnurn cosf parfitiom of a rectangle 321 

Combining this inequality with (31) yields 

n(k+j-l)<ms(s+l). 

If k + j 2 s + 1 then it follows that 

n(k+j-l)<m(k+j-l)(k+j). 

Thus we arrive at n < m(k + j), which is a contradiction. Hence it must hold that 

k+j<s. (35) 

Since 0 < j s m, Lemma 2 gives 

P/a<(j+k+l)/(m+l). 

This inequality combined with (31) yields 

S(S-l)(m+l)<(j+k+l)n. 

If k + j< s - 1, then it follows that (k + j)(nz + 1) <n which is a contradiction. 
Hence we have 

k+j>s. 

This inequality together with (35) yields 

k+j=s. 

Since n = (k + j)nz + j and k > 0 we have 

(36) 

II 
I J k+j = m and n- 

By (36) we can conclude that 

and 

jzn- 

and 
k=s-j=s-r, 

Therefore we have D = H(t + r, s - r, r). 

Furthermore (33) and (34) yield 

s-r=k<m+l=t+r+l and r=jGm=t+r. 

This completes the proof of Lemma 4. 

Lemma 5. Let R = R(a, /3) where p GCW and let n and s be positive integers such 
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that 

s(s-l)<%<s(s+l). 
a 

If r = n - ln/sJ s and t = [n/s] - r, then the following hold: 
(1) If V(s, t, r) is a minimal equidissection and V(s, t, r) # H( t + r, s - r, r), then 

(s + l)/(t + r + 1) G p/ar. 

(2) If H(t + r, s - r, r) is a minimal equidissection, then 

(s-l)/(t+r)GP/a. 

Furthermore, if H(t + r, s - r, r) # V(s, t, r), then 

P/a<(s+l)/(t+r+l). 

(3) If V(s - 1, s - r, t +2r + 1 -s) is a minimal equidissection, then 

/3/a S (s - l)/(t + r). 

Proof. This lemma is a consequence of Lemma 2. 
(1) If V(s, t, r) is minimal and V(s, t, r) # H(r+ r, s-r, r), then by Lemma 4 

V(s, t, r) is not a horizontal grid. Thus r must be positive. Therefore since r < s, 

Lemma 2 gives 

(s + l)/(t + r + 1) < P/a. 

(2) If H(r+r, s-r, r) is minimal then by Lemma 4 we have 

s-rSt+r+l. 

Since s - r is positive by Lemma 2 we have 

(s - l)/(t + r) s P/a. 

If H(t + r, s - r, r) # V(s, t, r), then r must be positive since H(t, s, 0) = V(s, t, 0). 
Since r > 0 and by Lemma 4 r G t + r, applying Lemma 2 to H(t + r, s - r, r) yields 

p/aG(s+l)/(t+r+l). 

(3) Since O<s-r<s, if we apply Lemma 2 to V(s-l,s-r, t+2r+l-s) we 

get 

P/a C (s - l)/(t + r). 

Proof of Theorem 2. We first prove the theorem for the case in which all the 
inequalities are strict. By Theorem 1 we have that a minimum equidissection of R 
into n rectangles is a vertical or horizontal grid. Thus by Lemmas 3 and 4, a 
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minimal equidissection of R into n rectangles must be either V(s, t, r), H(t + r, s - 
r,r), or V(s-l,s-r,t+2r+l-s). 

(1) If (s + l)/(t +r+ 1) <@/a, then Lemma 5 implies that if V(s, t, r) # H(t + 

r, s - r, r), then H(t + r, s - r, r) is not minimal. If it is shown that (s - l)/(t + r) S 
(s + l)/(t + r + l), then Lemma 5 will imply that V(s - 1, s - r, t +2r + 1 -s) is not 
minimal. Hence the only remaining possibility will be V(s, t, r) and so V(s, t, r) 
will have to be minimal. 

We assume 

(s-l)/(t+r)>(s+l)/(t+r+l), 

which reduces to 2(t + r) < s - 1. Thus we have 

s(s-1)>2(t+r)s=2 4 
II 

San, 

which contradicts (22) since p ~a. Thus we can conclude that 

(s-l)/(t+r)G(s+l)/(t+r+l), 

and hence that V(s, t, r) is minimal. 
(2) If (s - l)/(t + r)< P/a <(s + l)/(t + r+ l), then Lemma 5 implies that if 

V(s, t, r) # H(t + r, s-r, r) then V(s, t, r) is not minimal. Lemma 5 also implies that 
V(s- 1, s-r, t +2r+l-s) is not minimal. Since H(t +r, s-r, r) is the only re- 
maining possibility, H(t + r, s -r, r) is minimal. 

(3) If p/a! <(s - l)/(t + r), Lemma 5 gives that H(t + r, s-r, r) is not minimal 
and also that V(s, t, r) is not minimal, since (s- l)/(t +r)<(s+ l)/(t +r+ 1). 
Therefore V(s - 1, s - r, t + 2r + 1 -s) is minimal. 

The theorem for the general case in which the inequalities are not strict follows 
immediately from the following assertion: If the grid D on R(a, /3) is minimal for 
c <P/a <d, then D is minimal for c < P/Q Ed. We shall use a continuity argu- 
ment to prove this. Let D,, . . . , D, be the collection of all grids on R(a, p) 

having n parts and let y = p/a. For each i = 1,2,. . . , PJ, fi(r) = C(Q)/cx is a 
continuous function of y over the positive reals. It follows that 

f(~)=~=f?ift. Nfi(~) . . . 

is also continuous. If Di is minimal for c <y < d, then f(-y) =fi(-y) for c < y< d. 

Since f(r) and fi(r) are two continous functions agreeing on an open interval, 
they must agree on the closure of the interval. Therefore 

f(-y)=fi(y) for c<-y~d. 

Note that we leave one side of the inequality strict in order to include the case 
c = d. It follows that from this that Di is minimal for c < y G d. This completes the 
proof of the theorem. 
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5. Related problems 

Problems of a somewhat similar nature to the minimum cost partition problem 
are packing problems. In these problems rectangles (or boxes) of a given size or 
shape are packed into a rectangle (or box). This must be done in a way that 
minimizes the wasted space in the rectangle. Some results on packing problems 
can be found in [l], [2] and [3]. 

For a problem more closely related to the one presented here, consider 
partitions less restrictive than equidissections. The only requirement on the 
partitions is that the parts must be rectangles. Thus Fig. lb is allowed. We 
conjecture that a minimum cost partition in this case is a minimum cost equidis- 
section. The conjecture holds for n ~6. 

Another question we can ask is the following: Does a result analogous to ours 
hold for partitions of rectangular boxes? 
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