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a b s t r a c t

Jumping spiders (Salticidae) are renowned for their high performing visual system. In addition to their
prominent forward-facing telescope-like principal eyes, salticids possess two or three pairs of secondary
eyes used for wide-angle motion detection. Salticids orient towards relevant sources of motion detected
by the secondary eyes, enabling them to inspect the stimulus with their spatially acute principal eyes. The
anteriormost pair of secondary eyes, the anterior lateral (AL) eyes, also faces forward and has higher spa-
tial acuity than the other, laterally-facing, secondary eyes. We used small computer-generated targets to
elicit orienting saccades from tethered jumping spiders in order to examine the perceptual limits of the
AL eyes. We describe the contrast thresholds of male and female spiders, investigate the reaction time
between stimulus appearance and initiation of orientation, as well as the minimum distance a stimulus
must travel before eliciting a saccade. Our results show that female spiders react to lower contrast stimuli
than males and demonstrate that the secondary eyes can detect stimulus displacements considerably
smaller than the inter-receptor angle.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction receptor kinetics fast enough to limit motion blur. Unsurprisingly,
Jumping spiders use outstanding eyesight to locate, stalk and fi-
nally pounce on their prey (Jackson & Pollard, 1996). Their princi-
pal eyes function like moveable miniature telescopes (Land, 1969a;
Williams & McIntyre, 1980) and are specialised for high resolution
vision (Land, 1969b), but are limited by their small field of view.
The three pairs of secondary eyes have wide fields of view which
collectively encompass up to 360� (Homann, 1928) and are espe-
cially sensitive to motion (Duelli, 1978; Land, 1971, 1972; Zurek
et al., 2010; Zurek & Nelson, 2012) but also support high spatial
acuity, owing to densely spaced, optically isolated photoreceptors
(Eakin & Brandenburger, 1971). Targets detected by the secondary
eyes lead to turning movements of the spider, with the goal of cen-
tring the object of interest in a frontal fixation region in the field of
view of the principal eyes for closer inspection. Among the second-
ary eyes, it is the anterior-lateral (AL) eyes that are especially inter-
esting. Due to having both a wide field of view with considerable
binocular overlap, as well as a central acute zone (Homann,
1928; Land, 1985), they are likely involved in other aspects of vi-
sual processing (Forster, 1979; Zurek et al., 2010) in addition to
motion detection.

For an eye to be able to reliably detect motion and to locate the
origin of it, sufficiently high spatial acuity is needed, as well as
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fast flying insects, having to cope with extreme angular speeds, pos-
sess some of the fastest photoreceptors known (Gonzalez-Bellido,
Wardill, & Juusola, 2011). The contrast threshold for behavioural re-
sponses to moving targets is dependent on both spatial and tempo-
ral resolution, as well as on the amount of reduction in light flux in
one photoreceptor that is sufficient for eliciting response (Nord-
ström, Barnett, & O’Carroll, 2006; Vallet & Coles, 1991). While the
detection of fast targets is a challenge for a visual system, the same
holds true for very slow movement. Theoretically, stimuli can be
detected when at least two receptors are sufficiently stimulated
in succession (Hassenstein & Reichardt, 1956). Generally this
equates to a minimum detectable stimulus movement of at least
one inter-receptor angle, however, higher order integration can en-
able the detection of even smaller displacements (‘hyperacuity’;
Westheimer, 1975). Field observations of the eucalypt bark-dwell-
ing salticid Servaea vestita (Koch) orienting to the most miniscule of
motions compelled us to investigate the limits of this ability. In par-
ticular, we determined the minimum reaction time to orient to a
stimulus, the stimulus contrast threshold leading to orienting
behaviour, and the minimum angular distance a stimulus has to tra-
vel before it can be detected.
2. Methods

2.1. Experimental setup

Because these methods are almost identical to those described
in Zurek et al. (2010), only an overview and relevant details will
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Fig. 1. Psychometric functions of female (black, N = 10, n = 500, R2 = 0.9636.
k = 0.083 ± 0.0004, k = 3.852 ± 0.099) and male (grey, N = 9, n = 450, R2 = 0.9440.
k = 0.228 ± 0.0025, k = 1.79 ± 0.028) spiders responding to moving targets of differ-
ent contrast. Data points represent mean response ± SEM.
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be provided here. Firstly, all eyes except for the anterior lateral (AL)
eyes were covered with dental silicone (Coltene Whaledent) by
restraining spiders without the need for anaesthesia, following
methods described in Zurek et al. (2010). The dental silicone is
opaque and removable, and no detrimental short- or long-term
effects were observed. Spiders were suspended from and adjust-
able frame by thin wire attached to the cephalothorax by a drop
of wax. For stimulus presentation, we used two 1700 TFT screens
(resolution 1280 � 1024 px, 75 Hz) placed at an angle of 120� with
respect to one another on a vibration isolation table (Kinetic
Systems). Colour, contrast, and brightness levels of the screens
were equalised and calibrated using an Eye One colorimeter
(X-Rite Inc.). Spiders were filmed at 60 fps.

Stimuli were generated using Vpixx v2.36. As we used small
dark targets on uniform grey background, we defined contrast as
Istimulus � Ibackground/Ibackground (Peli, 1990). Spiders were placed
150 mm away from the screen, and at this distance 1 pixel equated
to 0.1�. At speeds slower than 1�/s, spiders were positioned further
away from the screen (300 mm at 0.5�/s, and 600 mm at 0.25�/s)
and stimulus size was increased accordingly. Suspended spiders
held onto a polystyrene ball (diameter 15 mm) marked with
crosshair lines, which spiders could easily turn and grasp without
dropping for several hours (Zurek et al., 2010). Stimuli elicit a
series of whole-body saccades with magnitude corresponding to
stimulus position (Zurek & Nelson, 2012), which lead to a turn of
the ball in the opposite direction. It has previously been shown that
the moment of inertia of the ball is low enough that it can be
assumed not to impact orientation turns (Land, 1972; Zurek &
Nelson, 2012).

2.2. Contrast threshold tests

Spiders were starved for 5–7 days prior to testing in order to
maximise responsiveness to visual stimuli (Zurek et al., 2010). In
order to test contrast thresholds for orienting responses mediated
by the AL eyes, we used an interleaved staircase protocol for the
presentation of stimuli. Each spider (female N = 10, male N = 9)
was given 50 trials with a 3� square stimulus, which were ran-
domly presented on either the left or right screen, (same number
of stimuli for both sides). Stimuli appeared outside the AL eye field
of view at the peripheral edge of the screens, 10� below horizon
and moved at 10�/s towards the screen centre. This size and speed
is comparable to biologically relevant stimuli evoking responses,
and has previously elicited maximum response rates from S. vestita
(Zurek et al., 2010). To avoid habituation, a pause of 2 min was
inserted after every stimulus presentation.

Two alternating lists of contrast values were used to determine
which stimulus was used: one of the lists started with contrasts
rising from 0.01 to 1 and one descending from 1 to 0.01. Below a
contrast of 0.1 the steps differed by 0.005 units; above 0.1 the step
size was increased (see Fig. 1). Within each staircase, when the
spider responded to a contrast, the following lower contrast was
used. If no response occurred, the following higher contrast
stimulus was used. This method leads to an equilibrium contrast
at which both staircases oscillate around the perceptual threshold,
with most of the 50 samples crowded around it. The averages of
the responses were computed separately for both sexes, and were
fit with Weibull cumulative distribution functions,

f ðx; k; kÞ ¼ 1� e�ðx=kÞ
k
; ð1Þ

with x being the response rate, k the scale parameter (inflection
point) and k the shape parameter (slope) of the curve. k and k are
free parameters. In order to force the fit to near zero values at very
low contrasts, the data were ‘padded’ with zero-response values at
contrasts that were below the minimum detected contrast of each
sex. Best-fit values for females and males were compared using
an extra sum-of-squares F test as implemented in Prism v5.0.

Appearance of stationary stimuli rarely elicits saccades from sal-
ticids (Duelli, 1978; Land, 1971). We verified that this holds true in
our setup by running controls with stationary maximum contrast
stimuli (N = 10, n = 40). These trials elicited only two responses.
2.3. Reaction time tests

We used two different stimulus sizes to test for reaction time,
here defined as the time between stimulus appearance and initia-
tion of the first saccade (determined by first video frame in which
the stimulus was visible, and first frame showing displacement of
the ball) and, by extension, the minimum distance that a stimulus
needs to cover in order to elicit a saccade.

(a) We tested for sex differences using maximum contrast
square stimuli with an edge length of 3�, moving at 1, 9, or
27�/s. Both female (N = 13) and male (N = 11) spiders were
suspended as described above, with stimuli appearing on
either the left or right screen inside the field of view of the
AL eyes (at 35.5� laterally, n = 2 stimuli per speed and spi-
der). For S. vestita, the average inter-receptor angle in the
corresponding retinal area has been ophthalmologically
determined to be 1� (O’Carroll, pers. comm.). For compari-
son, the salticid with the highest spatial acuity described
so far, Portia fimbriata, achieves 0.55� in the acute zone
and 0.97� at the lateral margins of the AL retina (Land,
1985). Two stimuli at each velocity were presented to each
spider, one per side, in randomised order. In trials where
the spider responded, reaction time was determined, and
angle travelled by the stimulus was calculated. As the
screens are flat, the angular velocity varies slightly during
the path of the stimulus, and the calculated stimulus posi-
tions were adjusted to take this into account. Two-way ANO-
VAs were used to test for effects of stimulus speed and sex
on reaction time and stimulus travel.

(b) In order to investigate the perceptual limits of the system, a
smaller stimulus subtending less than one inter-receptor
angle was used (0.5� edge length). The stimulus appeared
at 35.5� laterally and was presented to 10 females at veloc-
ities of 0.25, 0.5, 1 and 9�/s (n = 20 each for 0.25, 0.5, 9�/s and
n = 60 for 1�/s). Data from trials where spiders responded
were analysed as described under (a).
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3. Results

3.1. Contrast threshold

First, we investigated target contrast thresholds in female and
male spiders (Fig. 1). We found a superlinear increase in response
at low contrasts, and significant sex differences in the psychomet-
ric functions (extra sum-of-squares F test for scale parameter k and
shape parameter k, F = 2308, df = 2, p < 0.0001). Female spiders had
a lower contrast threshold for orienting responses than males (fe-
male: C50 = 0.076; male: C50 = 0.192), as well as a steeper slope of
the psychometric function (Fig. 1).
3.2. Reaction time

Next, we investigated reaction time to high contrast stimuli
appearing within the field of view, and determined the minimum
distance a stimulus must travel before being detected by the AL
eyes. Two different angular stimulus sizes were used:

(a) We presented 3� square stimuli to both sexes, and found
that sex had no effect on reaction time T (2-way ANOVA,
F = 0.002, df = 1, p = 0.969) (Fig. 2a). T significantly
decreased in response to higher stimulus velocities (F =
6.828, df = 2, p = 0.002). Consequently, travel distances
before a response increased with stimulus velocity (F =
123.3, df = 2, p < 0.001) equally for both sexes (F = 0.323,
df = 1, p = 0.571) (Fig. 2b). Overall, the minimum reaction
time at all stimulus velocities was between 80 and
120 ms, corresponding to minimum stimulus travel
distances of approximately 0.1� (equivalent to 1 pixel on
screen) at 1�/s, 1� at 9�/s, and 2.5� at 27�/s. As minimum
stimulus travel was only a tenth of the inter-receptor angle
at slow speed, we decided to investigate even smaller dis-
placements using stimuli that subtend angles below the
acceptance angle of the receptors.

(b) Next, we presented 0.5� square stimuli to females, and
determined minimum detected stimulus travel for four
different stimulus velocities (Fig. 3a). Moving at 1�/s, even
these small stimuli were consistently detected at travel
distances below 1� (Fig. 3b). At very slow speeds of under
1�/s, stimuli were often responded to only after long delays,
which lead to comparatively long stimulus travel distances.
The high variation in detected stimulus travel at the slower
speeds indicates that they lie at the limit of what the spiders
could perceive as motion.
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Fig. 2. (a) Reaction time between appearance of 3� square stimulus and initiation of the fi
1�/s (female n = 16, male n = 15), 9�/s (female n = 26, male n = 21) and 27�/s (female n =
travel distance between stimulus appearance and initiation of the first saccade. Whiske
4. Discussion
We found that S. vestita were able to detect angular movement
considerably smaller than the inter-receptor angle of photorecep-
tors in their AL retina and that females have a markedly lower con-
trast threshold for orientation responses than males. Visual
reaction times were comparable to other animals across phyla (hu-
mans (Brebner & Welford, 1980), monkeys (Saslow, 1972) and fe-
male houseflies (Srinivasan & Bernard, 1977), all with average
reaction times between 150 and 300 ms), but were slower than
those of insects specialised for detection of fast objects, such as
male houseflies and tiger beetles, which achieve reaction times be-
low 50 ms (Gilbert, 1997; Land & Collett, 1974).

Land (1971) observed orientation turns of salticids in response
to stimulus movements of 1�, which is close to the inter-receptor
angle the posterior lateral (PL) eyes and this has since been as-
sumed as the minimum detectable movement. We show here that
stimulus motion is detected by the AL eyes even when it is smaller
than the inter-receptor angle. A comparable observation was re-
cently made in the ctenid spider Cupiennius salei (Fenk & Schmid,
2010), where gratings with wavelength smaller than twice the in-
ter-receptor angle of the lateral eyes elicited saccades of the AM
retinae. Optical resolution does require this minimum angular sep-
aration, but target detection can be achieved with less salient stim-
uli. Hoverflies possess small target motion detecting neurons that
respond to moving targets subtending much smaller angles than
the receptive fields of single photoreceptors (Nordström, Barnett,
& O’Carroll, 2006). In humans, it has been found that ‘hyperacute’
discrimination abilities of a visual system other than spatial acuity
can exceed the limits dictated by inter-receptor angles (Westhei-
mer, 1975). For example, while the human eye can only discrimi-
nate two parallel lines as separate if they are at least 1 min of arc
(0.0167�) apart, a misalignment of 1/10th of that distance can be
detected without problems, a phenomenon known as Vernier acu-
ity. Motion hyperacuity, which can be an order of magnitude more
sensitive than spatial acuity, is a similar phenomenon. Motion
hyperacuity has not yet been described in spiders, but is well
understood in humans (Westheimer, 2009) and a number of other
vertebrates, such as rabbits (Collewijn, 1972; Grzywacz, Amthor, &
Merwine, 2009) and owls (Harmening, Gobbels, & Wagner, 2007).
In insects, the phenomenon has been described in dipterans, where
grating displacements of a tenth of the interommatidial angle were
sufficient to elicit responses from large-field motion detecting H1
neurons (Coombe, Srinivasan, & Guy, 1989; Moya, Wilcox, &
Donohoe, 1992). Unlike the small targets we used, these gratings
covered a large part of the visual field of the eye, and input from
many ommatidia could be integrated.
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Fig. 3. (a) Median travel distance between appearance of 0.5� square stimulus and initiation of the first saccade by female spiders (N = 10) at velocities of 0.25�/s (n = 14), 0.5�/s
(n = 16), 1�/s (n = 32), 9�/s (n = 16). Whiskers represent min and max travel distance and (b) comparison of travel distance for large and small stimuli moving at 1�/s.
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Fig. 4. Hypothetical angular sensitivity distributions of AL retina photoreceptors.
Grey area under curves represents response of the photoreceptors to a square
stimulus subtending 0.5�. (a) Photoreceptor response to a centred stimulus and (b)
stimulus displacement of 0.2� would lead to ca. 12.3% total change in response over
3 receptors.
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Hardie and Duelli (1978) found that the width of the angular
sensitivity function of a PL eye photoreceptor at the 50% response
level was 0.89� ± 0.12� in S. vestita. As the AL eyes share many
characteristics with the PL eyes (Blest, 1983; Eakin & Brandenburg-
er, 1971), and the inter-receptor angle of�1� in the relevant area in
our study is close to conditions in the PL retina (Duelli, 1978), the
sensitivity function of the photoreceptors is likely similar. The
photoreceptors of salticid secondary eyes are optically isolated
from each other by pigment sheaths (Blest, 1983) and therefore
optical crosstalk should have no influence on minimum detected
stimulus motion. The image of the larger stimulus used here falls
on at least nine receptors simultaneously, and a small stimulus
displacement would lead to small light intensity modulations in
all receptors at the edge of the image. However, the small stimuli
we used subtended an angle that is smaller than one inter-receptor
angle, and small displacements were still detected. In this case,
hyperacute motion detection by AL receptors with assumed gauss-
ian sensitivity distribution and a full function width of 1� at 50% re-
sponse may arise because a centred, full contrast 0.5� stimulus
would lead to 22.7% reduction in light falling on the receptor it is
centred upon, and to only 1.2% reduction in the adjacent receptors,
based on the volume integral of the three-dimensional sensitivity
function (Fig. 4). When the stimulus moves by 0.2�, the combined
change in photon flux on the three adjacent receptors would be
12.3% (left and central receptors experiencing an increase, and
the right receptor experiencing a decrease in photon flux), which
is above the contrast threshold we determined. However, the exact
acceptance angle of the receptors in question is still unknown, so
these specific values should be viewed with caution.

The changes in receptor potential are likely integrated upstream
by a correlation type motion detection unit (Hassenstein &
Reichardt, 1956), as indicated by the superlinear increase in
response to increasing contrast at low contrast values. Perhaps it
is not surprising that jumping spiders, whose behaviour is largely
dominated by vision, exhibit hyperacute sensitivity to motion.
Duelli (1978) hypothesised a movement detecting unit in the
salticid Evarcha arcuata using similar methods as in our study,
but because of the considerable difficulty obtaining electrophysio-
logical recordings from salticid neurons, no higher order neurons
responding specifically to visual motion have been described to
date.

Not much is known about sex differences in contrast perception
in non-human animals. Some dipterans show sexual dimorphism
in their visual systems, such as the dorsal ‘bright zone’ of male
hoverflies that allows for increased contrast sensitivity (Straw,
Warrant, & O’Carroll, 2006), and the higher spatial acuity of male
houseflies compared with females (Franceschini et al., 1981;
Hornstein et al., 2000). However, the apparent higher contrast
sensitivity we found among female salticids may be underpinned
by differences in motivation rather than physiology per se, as we
found no sex differences in reaction time, and body sizes of both
sexes are similar (Zurek et al., 2010). Further, the steeper slope of
the psychometric function in females indicates higher consistency
in orientation propensity, and male salticids appear to be less likely
to complete behavioural tasks (Jackson & Hallas, 1986; Jackson &
Pollard, 1996; Zurek et al., 2010), possibly due to lower nutritional
demands (Givens, 1978) and a resulting lower motivation to inves-
tigate potential prey. In the field, a lower contrast threshold for
orientation turns could potentially translate to more detected prey
items.
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S. vestita’s visual reaction times seem slow when compared with
fast-moving insects, and these differences are likely adaptations to
the distinct challenges posed by different natural history. Male
houseflies profit from their fast visual reaction time when they
chase conspecifics, and tiger beetles, which prefer to attack fast
moving prey (Layne, Chen, & Gilbert, 2006), must react quickly
during their characteristic stop-and-go chases. Flies and tiger bee-
tles excel at rapid responses to high velocity stimuli while S. vestita
are slower to react, but are extremely sensitive to small move-
ments. These responses are well suited to their foraging strategy
of sit-and-wait followed by stealthy stalking. High-speed chases
are rare, and stimuli moving at velocities that flying insects
encounter are of little interest to a jumping spider, while the detec-
tion of small prey items at a distance is of considerable importance.
These results provide another compelling example of how the
unique lifestyle and ecology of animals is mirrored by their visual
systems (O’Carroll et al., 1996).
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