
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 24, 409-429 (1968) 

The Postulational Foundations of Linear Systems* 

A. H. ZEMANIAN 

State University of New York at Stony Brook, 

Stony Brook, New York, 11790 

I. INTRODUCTION 

In this work we propose and compare six sets of postulates. The dynamic 
behavior of various linear input-output systems can be derived from each 
of them. Moreover, every postulational system that has appeared in the 
literature can be related to one of the sets of postulates suggested here. One 
of our objectives is to devise the weakest postulates one can use and still 
obtain there from time-domain or frequency-domain characterizations for 
various types of input-output systems. In this sense our postulates are a 
refinement of those suggested elsewhere. We accomplish this by using the 
kernel or convolution representations for the system to extend the system 
from the very restricted domains indicated in the postulates onto much 
larger spaces of distributions. 

The second objective is to compare the six sets of postulates, which we 
denote by P*, P, Q*, Q, S*, and S. The P*, Q*, and S* sets of postulates are 
appropriate for systems that are active, whereas the P, Q, and S sets of 
postulates impose the passivity hypothesis. (By an active system we mean one 
for which the passivity hypothesis may or may not hold; thus, we view a 
passive system as being a special case of an active one.) On the other hand, 
the P and P* sets are suitable for systems that are single-valued, whereas 
the Q*, Q, S, and S* sets provide greater generality by allowing multivalued 
systems to be taken into account. (Our use of the word “multivaluedness” 
allows single-valuedness as a special case.) Moreover, we will establish the 
system of implications indicated in Fig. 1. In this figure the symbol P a Q 
means that any system that satisfies the P postulates will also satisfy the Q 
postulates; the other implications signs are interpreted similarly. 

We also trace out how the time-domain and frequency-domain character- 
izations for the system are developed from the proposed postulates. It is 
through this very discussion that the aforementioned objectives are acheived. 

* This work was supported by the Air Force Cambridge Research Laboratories, 
Bedford, Massachusetts, under Contract AF19 (628)-2981. 
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410 ZEMANIAN 

For example, the equivalence of the Q and S postulates are derived from the 
frequency-domain characterization of the system. Most of the proofs for 
this discussion already appear in the literature and are therefore omitted 
here; in such cases we refer the reader to the bibliography. Theorems 5 and 9 
have the character of a survey; they gather together a variety of diverse results 
in the literature. 

Active systems: 

Passive systems: 

Single-valued Multivalued 
systems systems 

, 

P* Q* e S* - 

n B h 
P * Q * S 

FIG. 1. 

Raisbeck [l] was apparently the first to propose a postulational approach 
to linear passive systems that are not restricted to special types of physical 
systems such as the lumped networks. His postulates resemble the P* and P 
postulates stated below, but his analysis is only formal. The earliest rigorous 
and complete theories for passive systems were those due to Kijnig and 
Meixner [2] and Youla, Castriota, and Carlin [3]. The former authors use 
P-type postulates, whereas the latter authors use Q-type postulates. Subse- 
quent theories were offered by Zemanian [4] using P-type postulates, by 
Wohlers and Beltrami [5] using P-type, Q-type, and S-type postulates, by 
Newcomb and his associates [6]-[8] using Q-type postulates, and by 
Guttinger [9] using S-type postulates. Finally, we note that the causality 
of active systems whose impulse responses are Laplace-transformable have 
been discussed by a number of authors. See, for example, [IO] and the biblio- 
graphy therein. 

We assume throughout that the dependent variables are one-dimensional 
rather than n-dimensional (n > 1) vectors since almost all the important 
ideas can be discussed in this context. The n-dimensional discussion follows 
essentially the same development but requires a more complicated notation. 
We also require that the input and output variables be real since nothing is 
gamed by allowing complex quantities. Furthermore, we think of the input 
variable and the output variable as being a voltage v and a current u respect- 
ively; as a result, we call the system function an admittance. Actually, v and u 
may be anything at all. However, in order for our definition of passivity to 
have a physical significance, v and u must be such that their product (if it 
exists) represents power being absorbed by the system. An example of such a 
system is the one-port: an electrical network wherein v and u occur at the 
same pair of terminals. 
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The symbols and terminology used in this paper follow that employed in 
[ll], and we refer the reader to that source or to 1121 for a more detailed 
discussion of the definitions used here. 9 and 9’ denote the conventional 
Schwartz spaces of testing functions of compact support and distributions, 
respectively. Also, 9’ is the space of testing functions of rapid descent and 
9” the space of distributions of slow growth. 8’ is the space of distributions 
with compact supports. The strong topologies for .9 and Y and the weak 
topologies for 9, ,Y’, and 8’ are understood. 

&? denotes the real line and throughout this paper t, T, X, 0, and w are 
variables in 9; also, p is a complex variable with p = u + iw. [u, b] and (a, b) 
denote respectively a closed and an open interval on the real line with end- 
points a and b, a < b; the notations [a, b) and (a, b] are defined similarly. 
supp f denotes the support of either a conventional function or distribution f. 
ffn) denotes the nth derivative of$fis the transpose off; i.e.,f(t) =f(- t). 
A smooth function is one having continuous derivatives of all orders at all 
points of its domain. 

gR (respectively, 9;) denotes the space of smooth functions (respectively, 
distributions) on 9 whose supports are bounded on the left. 9; is not the 
dual of gR; also, gR C 9; . 9: is the space of distributions on 9 whose 
supports are bounded on the left at the origin. Thus, f E 9: if and only if 
f E 9 and supp fC [0, co). A se q uence {I&} converges in BR if and only 
if there is a fixed real number T > - co such that supp & C [T, co) for all 
n and, for each nonnegative integer K, {$h”>n converges uniformly on every 
compact subset of 9. Similarly, a sequence {fn} converges in 9; if and only 
if, for some fixed real number T > - co, supp fn C [T, co) for all 71 and 
{ fn} converges in 9.9 is dense in 9 and 9; . 

The notation y = y(t) E % 1 t [or y = y(t, T) E % ) t,7] indicates that y is a 
conventional function or distribution on the real line - CO < t < co [or, 
respectively, on the (t, T) plane] and belongs to the space %. 

A standard form in distribution theory is Schwartz’ kernel representation 
1131, which is defined in the following way. Let y = y(t, T) E 9 1 t,7 and let 
P, = v(T) E g I7 . Then, y l ZJ = y(t, T) . v(T) denotes a distribution in 9’ 1 t 
defined as follows: For any + = 4(t) E 9 It , 

<Y * v,6> = (Y(C 42 V(T) b(t)>* 

Thus, v +-, y * v is a mapping of 9 into 9’ and is in fact linear and continuous 
from 9 into 9’. The converse also happens to be true: every continuous 
linear mapping of 9 into 9’ has a kernel representation. Under suitable 
restrictions on y this mapping can be extended from .9 onto wider spaces of 
distributions (say, onto &‘). But, in the latter case the right-hand side of the 
above definition may not possess a sense. (The extension is made via the 
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continuity of the mapping on & and the denseness of 9 in J&‘.) We shall 
make use of these facts later on. 

II. THE ADMITTANCE FORMULISM 

We represent the input-output system as an operator % mapping the input 
variable v into the output variable U; thus, we write u = %v. It is understood 
that u and v are conventional functions or distributions on the real time 
axis - co < t < co. We now impose a series of postulates in order to obtain 
several characterizations of %. 

Pl. 9I is a single-valued mapping of 9 into 9. 

As is indicated here, we at first restrict the domain of % to the space 9 
in order to obtain as weak a postulate as possible. Later on, ‘8 will be extended 
in a unique way onto various spaces of distributions by means of Schwartz’ 
kernel representation. 

P2. 9I is linear on 59. 

P3. % is continuous from 9 into 9. 

These first three postulates allow us to invoke Schwartz’ kernel theorem 
[13] to show that 9 has a kernel representation on 9. 

THEOREM 1. % satisfies Pl, P2, and P3 ; f  and only if there exists a unique 
kernel y  = y(t, T) E 9’ / t,r suchthat!R=y*on9.(Thatis,!Rv=y*vfor 

all v  E 9.) 

We call y the admittance of the system. 

P4. % is time-invariant on 9. 

To explain this, let (T# be the shifting operator defined on any conventional 
function or distributionf(t) by u5f(t) = f  (t + X) where x is any real number. 
Then, the postulate means that ‘% commutes with ol: whenever ‘92 operates on 
a member of 9 (i.e., a,‘% = %,v for all v E 9 and all x.) 

Under this additional postulate the kernel representation becomes a con- 
volution representation [12; Vol. II, pp. 53-541; that is, y(t, T) becomes 
y(t - T) where y(t) is now a member of 9 It . In particular, we have 

THEOREM 2. W satisfies PI through P4 if and only if there exists a unique 
y  = y(t) E 9’ j t such that ‘3 = y  * (i.e., 9Iv = y  c v  = (Y(T), v(t - T)) for 
all v  E 9.) 

We can now extend % via its convolution representation onto the space 8’. 
That is, for any v E d’, %v is defined as y + v E 9’. Because 9 is dense in b’, 
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this extension of 3 is unique: There cannot be another continuous linear 
mapping of 6’ into 5$’ that agrees with 8 on 9 but differs from ‘% on some 
other member of &‘. Now, y can be identified as the unit impulse response 
of %; that is, y = 928 = y c S where 8 denotes the delta functional. Further- 
more, if the distribution y happens to be suitably restricted, we can extend % 
onto still larger spaces of distributions via the convolution representation. 
For example, if y E 9; , then % can be extended onto 9; , and, if y E B’, 
then % can be extended onto all of 9. These extensions are also unique be- 
cause 9 is dense in 9; as well as in 58’. 

Since every distribution has a Fourier transform in the Gelfand-Shilov- 
Ehrenpreis sense [ll; Chapter 71, we can conclude from Theorem 2 that ‘8 
possesses a frequency-domain description whenever % satisfies Pl through 
P4. Its system function is defined as the Fourier transform 9 of y, and the 
convolution y * D is transformed into the product j% at least whenever 
z, E 8” [ll; Section 7.91. Postulates PI through P4 appear to be the weakest 
set of assumptions under which one can arrive at such a frequency-domain 
description for 8. 

In case !JJ does not satisfy P4, the same sort of unique extension as above 
can be made via the kernel representation: ‘% =y *. Let’s be more precise. 
Assume that ~2 is a FrCchet space of smooth functions on W or a countable 
strict inductive limit of such spaces [14; p. 85 and p. 1261. Let d’ be the 
weak dual of .d. Suppose that the following four conditions are satisfied. 

I. 9 is a dense subset of &, and the topology of 2 is stronger than the 
topology induced on 9 by &. 

II. If 4 E Lclz and if h is a smooth function on &’ such that, for each non- 
negative integer K, A(k) is bounded on B?, then A$ E JZZ’. 

III. 9 is dense in &“. 

IV. For certain (but not necessarily all) w E 5B’, the operator w * is defined 
on .M’ and is a continuous linear mapping of d’ into 9 [13; pp. 224-2251. 

Condition I implies that JZY’ is a subspace of 9’ and that the topology of z?’ 
is stronger than that induced on fl by 3. We will use condition II in a 
subsequent proof. It is conditions III and IV that allow us to extend W = y * 
onto 19e, if y happens to be one of the w indicated in IV. From now on we 
shall always assume that % has been extended through the right-hand side 
of % = y * onto every such space of distributions &” that satisfies the above 
stated conditions with y = w. Condition III implies that this extension is 
unique in the aforementioned sense. We also assume that W is extended no 
further. 

DEFINITION OF CAUSALITY. Let o1 and o2 be distributions in the domain 
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of an operator U mapping 9’ or a subset of 9 into 9’, and let p1 = &.J~ and 
ua = &a . U is said to be causal (or to satisfy causality) if the condition 
vi(t) = va(t) on - cc < t < t, implies that q(t) = u,(t) on - 00 < t < t,, 
and if this property holds for all real values of t, . 

The equalities herein are understood in the sense of equality in 9’. Also, 
a causal operator is clearly single-valued. 

We can characterize causality in the following way: 

THEOREM 3. Let ?TI satisfy Pl, P2, and P3; then, (the extended) 9I is causal 

;f  and only ;f  the support of y  = y(t, r) is contained in the half-plane 
A = ((t, T) : t > T}. N ex , t assume in addition that 9I satkjies P4; then, (the 

extended) 9I is causal if and only if the support of y  = y(t) is contained in the 
interval 0 < t < cg. 

PROOF. The second sentence follows from the first one because under P4 
the kernel has the form y(t - T) where y is a distribution on 9%“. To prove 
the first sentence, let et E 9 be such that U(T) s 0 for 7 < t, , and let 4 E 9 be 
such that supp 4 C (-co, to). Then, the support of D(T)+(t) is contained in 
the half-plane ((t, T) : t < T}. Moreover, 

(m% +> = (Y ’ 74 d> = (Y(t, 7)~ +) ‘@)> 

The only way that the right-hand side can equal zero for every such v and $ 
is that supp y(t, T) C (1. This proves the “only if” part of the first sentence. 

This also proves that u(t) = (‘%v) (t) = 0 distributionally for t < t, 

whenever supp y(t, T) C fl, vE9,andv(t)=Oon-co<t<t,,.Weshall 
show that the same result holds when w is any distribution in the domain of W 
that is distributionally equal to zero on - cc < t < t, . Indeed, by the way’% 
was extended, v is a member of some space of distributions s?” on which ‘8 
is a continuous linear mapping into 9’ and in which 9 is dense. Given any 
E > 0, choose a sequence {nn} with V~ E 59 such that v, + v in zz?’ as n -+ CO 
and supp v, C (t,, - E, 00) for all n. 

That the supports of the ZI, can be so restricted is a consequence of con- 
dition II above in the following way. Let { fn} be a sequence of elements in 58 
with fn -+ ZI in &’ as n -+ co. Also, let X be a smooth function identically 
equal to 1 on a neighborhood of [t,, , co) and identically equal to zero on 
(- co, to). Then, for any 0 E &, XB is also in JS! according to condition II, and 
in addition 

(hfn ,e) = (f, , w - (0, w = 04 6. 

Upon setting w(n = hfn , we obtain a sequence {o,} possessing the desired 
properties. 

By a previous result, u = SW,, = 0 distributionally on - a < t < to - E. 
But, u,, ---f u = WV in 9’ since % is continuous from d’ into 9. Therefore, 
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u = 0 distributionally on - co < t < to - E. Since E > 0 was arbitrary, 

this is true on - co < t < to. 
The “if” part of the first sentence now follows from the linearity of N. 

Q.E.D. 

Theorem 3 and its proof show that, if % satisfies Pl, P2, and P3 and in 
addition is causal on the subset 9 of its domain, then it must be causal on all 
of its domain. Thus, we are lead to a fifth postulate: 

p5*. !X is causal on 9. 

We shall refer to the five postulates stated so far as the P* postulates. They 
are appropriate for single-valued linear systems that may be active. The 
identity operator is an example of a system satisfying the P* postulates; this 
verifies their consistency. (In fact, the consistency of any of the other sets 
of postulates appearing subsequently is also established in this way by the 
identity operator.) 

We mention in passing that any system that satisfies the P* postulates can 
be characterized in the frequency domain by the fact that its system function, 
when regularized in a certain way, becomes an entire function satisfying 
certain growth conditions [ 151. 

The next postulate coupled with Pl, P2, and P3 implies that ‘!II is causal 
(see Theorem 4 below), and hence we number it as a replacement for P5*. 

P5. % is passive on 9. 

This means that, for every v E 9, u = %v is locally integrable (i.e., 
Lebesgue integrable on every bounded interval), and in addition, for every 
real finite number t, we have that 

s 
t V(X) u(x) dx > 0. (1) --m 

Note that, if W satisfies PI through P4, then, for any v E 9, u = y * a is 
smooth and therefore locally integrable. 

By the “P postulates” we mean the set Pl, P2, P3, P4, and P5. 
An obvious result that we shall need later on is 

LEMMA 1. If W is a causal mapping of S2A into 52’ and is passive on 9, then, 
for all v E gR , u = YIv is locally integrable and (1) holds for all t < CO (i.e., 
9l is passive on BR as well). 

A remarkable fact discovered by Youla, Castriota, and Carlin [3] states 
essentially that linearity and passivity imply causality. For one-ports possess- 
ing kernel representations, this fact can be stated as follows. 
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THEOREM 4. If  % satisfies Pl, P2, P3, and P5, then % is causal. 

For a proof, see [11; pp. 301-3031. (That proof requires now a modification 
to make it applicable to kernel representations; the arguments needed are 
given in the proof of Theorem 3 in this paper.) 

Theorem 4 shows that the P postulates imply the P* postulates. However, 
the converse is not true, as is indicated by the example (J1 = - 6*. 

The next theorem characterizes in six different ways one-ports that satisfy 
the P postulates. 

THEOREM 5. If  % satisJies the I’ postulates, then y  = %nS (the extended 8 
is understood here) satisfies the following six equivalent conditions. Conversely, if 

y  E 9’ satisfies any one of the following conditions, then % = y* satisfies the P 
postulates. 

1. The Laplace transform Y of y  is a positive-real function. 

2. y  has the representation: 

y(t) = ~~‘l’(t) + 1+(t) 1” (1 + 7”) cm 7)t dH(d, 
--m 

where LY. is a real nonnegative number, H(q) is a real nondecreasing bounded 
function on - CO < 7 < 00, and 

r 

0 t<o 
l+(t) = $ t=O 

1 t >o. 

3. y  also has the representation: 

r(t) = ~vt) + P+(t) + p(t) l+(t) + $ U+(t) [P(O) - P(W 

Here, a and p are real nonnegative numbers, and 

(3) 

p(t) = /I, ~0s $ dMd, (4) 

where M(T) is a real nondecreasing bounded function that is continuous at the 
origin. 

4. y  = CA(~) + y,, where a: is a real nonnegative number, andy, is a member 
of 9; and a distribution of zero C-order; moreover, the even part of y, namely; 

Ye(t) = B [r(t) +Y(- t)l 
is a nonnegative-dejnite distribution. 

5. yes@;, and, for every real nonnegative number c and every (b E 9, 

<r(t) e-Ct, C(t) * b(- 9) 2 0. (5) 
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6. Let y  denote the Fourier transform of y. Then, 

T(W) = iw [a + Srn dH(?)] + (1 + ~2) [z-H(r)(w) - iH’l)(w) * Pv J-1 , 
--m 

(6) 

where 01 and H are restricted as in condition 2 and Pv 1 /w is the standard pseudo- 
function arising from Cauchy’s principal value. 

REMARKS. Let us make some explanations about each of these conditions. 

CONDITION 1. A positive-real function W(p) is a complex-valued func- 
tion that is defined on the open right-half plane {p : Rep > 0) and satisfies 
there the following conditions: 

(i) W(p) is analytic. 

(ii) W(p) is real whenever p is real. 

(iii) Re W(p) > 0. 

For a proof of this part of the theorem, see [l 1; Chapter lo]. 

CONDITION 2. The integral in (2) must be interpreted in the generalized 
sense since it doesn’t converge in general in the conventional sense. In par- 
ticular, the second term on the right-hand side of (2) is a distribution of slow 
growth and the value that it assigns to any 4 E Y can be shown to be equal to 

j,” dt j)$(t, cos r]t dH(rl) + j,” dt j;m4(2’(f) (1 - ~0s qt) dH(rl) 

Again, see [ll; Chapter IO]. 

CONDITION 3. This representation is due to Kiinig and Meixner [2]. 
Generalized differentiation is understood in (3), as well as in (6). 

CONDITION 4. This representation is proven in [16]. By the C-order of a 
distribution we mean the least nonnegative integer r for which the (r + 2)th- 
order primitives of y0 are continuous functions. Also, a distribution f  is said 
to be nonnegative-definite if, for every testing function + in 9, ( f ,  4 * 6) > 0 
where B(t) = $(- t). 

CONDITION 5. This was established by Wohlers and Beltrami [5; p. 1681. 

CONDITION 6. This condition is also due to Beltrami and Wohlers [lo; 
pp. 86-891. It can be viewed as a generalized Kronig-Kramer+Bode equation 

409!24/2-I 2 
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characterizing positive-real functions. These authors also show that Y(W) 
is the limit as (T -+ 0 + of the Laplace transform Y(u + iw) of y in the sense 
of convergence in the space Y’. 

(Before leaving this section, it is worth pointing out a remarkable result due 
to H. Konig [19]. It states that a linear time-invariant passive operator is 
continuous, where now some of these properties of the operator are defined 
difierently than they are in the present paper). 

III. THE SCATTERING FORMULISM 

We turn now to the scattering formulism for ‘8. This is obtained by 
defining two new variables as follows: 

a = Q (v + u) (7) 

b = Q (0 - u) (8) 

a and b can be physically interpreted as incident and reflected waves. If % 
satisfies Pl, P2, P3, and P4, then u = %J = y * o, and 

b=&(S-y)*er. 

If, in addition, !R satisfies P5, then 6 +y possesses an inverse in the con- 
volution algebra g;P . That is, there exists a unique member of 9; , which 
we denote by (6 + y)*-l, such that 

(6 +y>*-l * (6 +y) = 6. 

Indeed, the Laplace transform of S + y is 1 + Y(p), which is positive-real. 
Consequently, [l + Y(p)]-l is also p osi ive-real and therefore the Laplace t 
transform of a unique member of 9; , namely, (6 + y)*-l. 

These results show that, if % satisfies the P postulates, then, for every 
v E 9; and u = We, and for a and b given by (7) and (S), we have 

where 
b=s*a, (9) 

s = (6 -y) * (6 +y)*-l. (10) 

Equation (9) is the scattering representation, and s is called the scattering 
parameter for 92. Wohlers and Beltrami [5; p. 1681 have pointed out that the 
representation (9) contains all a E 9; in its domain because for every a E 9; 
there exists a unique v E 9; such that 2u = v + WV. We can establish this 
by again taking Laplace transforms and invoking the positive-reality of 
1 + Y(p) as above. 
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Actually, we can arrive at a scattering formulism in another way and indeed 
obtain greater generality if we employ a different set of postulates. The 
postulates, which we now present, are a modified form of those suggested by 
Youla, Castriota, and Carlin [3] and are very similar to those used by 
Newcomb [17]. 

Ql. ‘$I is a multivabed mapping of a subset of 59’ into 9’. 

(As was mentioned above, our use of the word “multivalued” allows 
“single-valued” as a special case.) 

We have not as yet specified the domain of ‘LX. A rather restricted domain 
for 8 is implied by the next postulate Q2. 

In contrast to postulate PI, Ql allows % to have more than one response 
u E 3’ to any given v E L@’ in the domain of %. An example of a multivalued !I2 
that is not single-valued is the short circuit. Its domain contains only one 
voltage, the zero distribution; but, it can respond with any current in 9’. 
The short circuit was prohibited under postulate PI. 

Q2. 9I is uniquely solvable from 9 into 9; with solutions in ~3~ . 

By this we mean that, given any e E 9, there exists a unique v E 58; which 
satisfies 

e=v+%v 

and that this v will be a member of gR . If we view the system as a one-port, 
the last equation signifies that a unit resistor has been connected in series 
with the port and that e is the voltage applied to the resulting series circuit; 
this is illustrated in Fig. 2. 

Postulate Q2 implicitly specifies a rather restricted domain for % and also 
restricts the range values. In particular, let C(v, u) denote the set of all pairs v, 
u appearing as solutions of the equations: 

e=v+flv, u=%v 

c 
u=Nv 

I 
0 k/Y/- 

+ + 

e V ONE- PORT 

0 

FIG. 2. 
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as e traverses 9. In symbols, 

C(v, u) = {v, u : e = v + %v, II = !Jlv, e E 9}. 

By Q2, every such v, u is a pair of elements in gR . (When !R is the ideal 
short circuit, v is always the zero distribution, whereas u can be any member 
of 9 because in this case u = e E 9.) We will assume for the moment that the 
domain of % is restricted to the set of v’s appearing in C(v, U) and that the 
range of % is also restricted in accordance with C(v, u). Subsequently, the 
domain and range of % will be extended by means of a kernel representation 
for the socalled “augmented operator” ‘& . 

As is suggested by Fig. 2 and Q2, this new operator !R= is defined on any 
e E 9 by u = ?BZ,e where u = %v = e - v, v E gR . Moreover, !BG turns 
out to be a single-valued mapping of 9 into 9; with its range in sR . Indeed, 
by Q2, given any e E 9, v and therefore u = !Bv = e - v are unique mem- 
bers of 9; that are both in gR , which verifies our assertion. 

Because ‘%, is single-valued from 9 into 9; , we can define it as a single- 
valued operator from 9 into 9’ simply by prohibiting !Bae (for any e E 9) 
from having any other values in 9’. Henceforth, we adopt this convention. 
The physical significance of this is that we are requiring that the system 
a2, be initially at rest. For example, consider the network of Fig. 3. We have 
that 

e 

e = v + u = v + v(l). 

No 

____-------________- / N 
____ ------ ---. 

IJ I ____ --- ----- / -- 
- 

lchm +/ 

z 

“_ j 
I ford 

.: 

FIG. 3. 

Every free oscillation of this network is of the form: e = 0, v = cc-t, where c 
is any constant. It follows that W satisfies Q2 because the only solution of 
0 = v + vu) in 9; is the zero distribution (i.e., if c # 0, then cc-t 6 9;). 
On the other hand, 0 = v + v(l) has an infinity of solutions in 9, namely, 
v = cc-t with c arbitrary. Hence, ‘LR~ is not single-valued as a mapping of 59 
into 9. But, if we add the additional condition that %a be initially at rest (so 
that c = 0), then, %, becomes a single-valued mapping of 9 into 9’. 
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Q3. !Il is linear on C(v, u). 

In other words, if v, , u, and vs , ua are two pairs in C(v, 21) and if OL and /I 
are real numbers, then 01vr + @a, arur + @a is another pair in C(v, u). 

It readily follows from Q2 and Q3 that ‘Sa is linear on 9; that is, %a satis- 
fies P2 , as well as PI. 

Q4. !R is passive on C(v, u). 

This means that, for every pair v, u in C(v, u), (1) holds for all finite t; that 
is, 

F” v(x) u(x) dx 3 0 (1) 
J -ma 

A useful result can now be established: Under the preceding four postu- 
lates, ‘& is a continuous mapping of 9 into 9’. Indeed, let n be any positive 
integer. For any e,, E 9, e, = v,, + ‘Sv, , and u, = ‘Sv,, , Q2 implies that 
both v,, and u, are members of ~9~. Hence, all the integrals in the following 
equation exist for each finite value of t. 

i t t 
e,,2 dx = vn2 dx + 

-co s -co s t un2 dx + 2 s t v,u,, dx. (11) 
-cc --m 

Furthermore, the last term is nonnegative according to Q4, and so are all 
the others. Assume now that e,, -+ 0 in 9 as n + co. The left-hand side of 
(11) tends to zero as n + co. Therefore, each term on the right-hand side 
does too. Next, let 4 E 9 with supp $ C [T, p], - co < T < p < co. Then, 

which verifies that !%a satisfies P3. 
Moreover, when 9I satisfies Ql through Q4, ‘iRa also satisfies P5 since for 

any e E 9, we have 

I t t t 
eu dx = s vu dx + s u2 dx 3 0. 

-co -02 --m 

We have just seen that the augmentation technique allows us to start with 
an operator !R which is neither single-valued now continuous and to obtain 
from it an operator a0 which is. Moreover, even though % may not contain 
all of B in its domain, ‘%, will. Furthermore, we have 

THEOREM 6. If 92 satis$es Ql, Q2, Q3, and Q4, then 91a satisfies Pl, P2, P3, 
and P5. Moreover, 9&, is causal and has a kernel representation %,, = ya l where 

Yo = Y&P 4 E 3 I t.7 * 
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PROOF. We have already established the first statement; we remind the 
reader that the satisfaction of PI by ‘Sa is a consequence of our convention 
concerning the single-valued definition of the range of !& in 9’. The second 
statement follows from Theorems 1 and 4. 

ya is called the augmented admittance of %. 
As was done in the admittance formulism, we can now extend ‘$1, via the 

kernel representation !R2, = ya * onto every space of distributions Se’ that 
satisfies the conditions stated in the preceding section. This extension is 
unique in the aforementioned sense, and we henceforth assume that it has 
been made. This automatically extends the operator 8, under the constraint 
that it has been augmented, into a mapping from a subset of LB’ into 9’ 
according to 

u = YR(e - u) 
where u = ‘SL,e = ya * e. 

We add one more postulate: 

QS. ‘3 is time-invariant on C(v, u). 

That is, if v, u is a pair in C(v, u) and if u, is the shifting operator as before, 
then u,v, U,U is also a pair in C(v, u), whatever be the value of x. Since u = %v, 
this implies that a,‘% = ‘Su,v for every pair v, WV in C(v, u). 

If % satisfies Ql, Q2, and Q5, then ‘91a satisfies P4 (i.e., ‘9& is time-invariant 
on 9). To show this, we start from e = v + ‘Sv, e E 9. Thus, 

a,& = u&v + u,ik = u,v + myl, 

and this decomposition is unique by Q2. Therefore, for all e E 9, 

u,&e = u,%v = 9&v = !&u,e, 

which verifies our assertion. 
Henceforth, when referring to the “Q postulates,” we mean all the postula- 

tes from Ql through Q5. 
Under the additional postulate QS, Theorem 6 becomes 

THEOREM 7. If ‘3 satisfies the Qpostulates, then %a satisjies the Ppostulates. 
Moreover, ‘S2, is causal and has a convolution representation !R2, = y,, x where 

Ya =Ya(t> ELF It. 

The scattering formulism for an operator % that satisfies Ql, Q2, Q3, and 
Q4 is derived as follows: We have that 

Therefore, 

u =ya*e =ya*(v +u). 

ya*v=(6-yJ*u. 
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[Here, S denotes the kernel s(t - T), so that 6 l u = u.] Now, substitute the 
quantities: et = a + b, u = a - b. This yields 

b =S’U, (12) 

where 

a = 4 (v + u), b = J= (v - u) 

and s is the kernel: 

s = 6 - 2ya. (13) 

The time-variable scattering parameter for !X is s. 

THEOREM 8. If % sutisjes Ql,Q2, Q3, and Q4, then 9l has the scattering 
formulism (12) and (13), where ya is the augmented admittance of 92. Moreover, 
supp s(t, T) C ((t, T) : t > r}. If, in addition, 9l sutis$es Q5, then 

b=s*u 

where s = s(t) E 9’1 t and supp s C [0, co). 

(14) 

PROOF. Invoke Theorems 3, 6, and 7. 
As one of our principal conclusions, we have that the P postulates imply 

the Q postulates. Indeed, assume that % satisfies the P postulates. Then, % 
obviously satisfies Ql. That it satisfies Q2 can be established through an 
argument due to Wohlers and Beltrami [5; p. 1681. Q3 and Q5 are also clearly 
satisfied since u = ‘SZJ = y * v where y E 91 . This also shows that !R is a 
causal mapping of 9a into SR , and it now follows from Lemma 1 and P5 
that W satisfies Q4. 

Turning now to active systems, we obtain a suitable set of Q-type postu- 
lates by replacing the postulate Q4 by the postulates Q4* and Q6*. We shall 
refer to the collection: Ql, Q2, Q3, Q4*, Q5, and Q6* as the Q* postulates. 

Q4*. 9l is continuously solvable for C(v, u). 

By this we mean that % fulfills Q2 and that the following statement is true: 
Whenever the sequence {v, , un},“cl of pairs in C(o, u) is such that v, + u, 
converges in .9 to, say, the limit e, it is also true that v, converges in 9 to v 
where e = v + ‘Rv (or, equivalently, that u, converges in 9’ to u = ‘SW). 

Q4* means that 9& is continuous from 9 into 9’. Newcomb [17; p. 241 
refers to those % that satisfy this kind of property as being “completely 
solvable.” We prefer the phrase “continuously solvable” as being more 
descriptive. 

Q6*. 9l has a cuusul augmentation for C(v, u). 

This is taken to mean that, whatever be the choice of the real number t, , 
if the pairs ran , ur and o 2 , ua in C(U, u) are such that w1 + u, = oa + ua for 
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t < t, , then a1 = ua for t < t,, . In other words, we are simply assuming 
that 8& is causal on 9. 

We have already seen that the Q postulates imply Q4* (see the discussion 
after Q4) as well as Q6* (see Theorem 6). Thus, the assertion Q * Q* in 
Fig. 1 is valid. 

Moreover, we can revise Theorem 6 as follows: 

COROLLARY 6a. Theorem 6 remains true when Q4 is replaced by Q4* and 

Q6* together, and in addition P5 is replaced by P5*. 

Indeed, that !I& satisfies Pl and P2 follows as before from Ql, Q2, and Q3. 
Q4* states that !Ra satisfies P3, and Q6* states that !l& satisfies P5*. By 
Theorem 1, ‘%= has a kernel representation. Also, by P5* and the argument in 
the first paragraph of the proof of Theorem 3, supp ya(t, 7) C {(t, 7) : t > T) 
so that !I& is causal. 

As an immediate consequence, we can revise Theorems 7 and 8 as follows: 

COROLLARY 7a. Theorem 7 remains true when the symbols Q and P are 

replaced by Q* and P*, respectively. 

COROLLARY 8a. Theorem 8 remains true when Q4 is replaced by Q4* and 

Q6* together. 

Let us now list some of the properties of the operator 8.X = s* assuming 
that fl satisfies the Q postulates. In view of Theorem 8 and the properties of 
distributional convolution, we have the following: 

Sl. ‘&II is a single-valued mapping of 9 into 9’. 

S2. m is linear on 9. 

S3. 9.X is continuous from 9 into W. 

S4. 9.I is time-invariant on 9. 

S5. YJI is causal on 9. 

S6. !Dl is weakly passive on 9. 

Property S5 means that the causality property defined in the preceding 
section holds for !JX whenever the elements a in the domain of !LN are restricted 
to 9. 

Property S6 means that, given any a E ~9, the integral: 

i 

co 
vu dt = 

s 
* (a2 - b2) dt 

-co --m 
(15) 

exists and is nonnegative. That 9X = s* truly satisfies S6 can be shown as 
follows. For any a E 9, we have that b = ?I.Ra = s * a E gR since s E gk . 
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Hence, w = a + b E 9~~ and II = a - b E BR . Also, v, u is a pair in C(V, U) 
since v + u = 2a E .9. By Q4 and the fact that vu = a2 - b2, we have that 
for all finite t 

1 

t 

a2dx 3 
--3c .i 

t 

b2 dx > 0. 
-cc 

The left-hand side converges as t + co, and therefore the middle term does 
too. Hence, (15) exists and is nonnegative. 

Wohlers and Beltrami [5] have proposed that S-type properties be used as 
postulates on the operator ‘9JI relating the reflected wave b to the incident 
wave a and have shown that a theory for linear systems can be derived there- 
from. In the present case, Sl through S4 read precisely the same as PI 
through P4. Therefore, Sl through S3 imply that YJI has a kernel representa- 
tion !N = s *. Moreover, Sl through S4 imply that ‘9N has a convolution 
representation W = s*, as well as a system function S. The additional 
postulate S5 and the argument in the first paragraph of the proof of Theorem 3 
show that s satisfies the same restrictions on its support as does y in that 
theorem. We can now extend 2JI onto larger spaces of distributions via those 
representations and this extension must be unique as explained before. 

We refer to Sl through S5 as the S* postulates and to Sl through S6 as 
the S postulates. The S* (and S) postulates are suitable for active (respect- 
ively, passive) systems that may be multivalued in the sense that more than 
one u = 4 (u - b) may correspond to a given z, = 3 (u + 6). The frequency- 
domain characterization [15] for !R under the P* postulates holds also for !IJI 
under the S* postulates. 

Theorem 3 and its proof show that, if 2X satisfies Sl, S2, S3, and S4 and is 
also passive in the sense that 

s 
t (2 - b2) dx > 0 (I E 9, --cot<<, (16) 
--m 

then ‘98 is causal. It is also weakly passive on 9. Conversely, Wohlers and 
Beltrami [5; p. 1671 have shown that the S postulates imply that !N is passive 
in the sense of (16). Thus, assuming that Sl through S4 are satisfied, we can 
conclude that postulates S5 and S6 are equivalent to the single assumption 
that llJz is passive in the sense of (16). H owever, using S5 and S6 is preferable 
since causality and weak passivity are independent assumptions. Indeed, that 
S5 does not imply S6 follows from the example s = 26. That S6 does not 
imply S5 follows from the example s(t) = 8(t + c), where c is a positive 
number. 

By itself, postulate S6 allows one-ports that up to finite instances of time 
have emitted more energy than they have received but will ultimately (i.e., 
as t -+ CO) absorb at least as much energy as they have emitted. 

It is worth noting that, when % satisfies PI through P4, the nonnegativity 
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of (15) for all a E 9 and the causality of % do not imply the passivity of % 
according to P5. In regard to this, consider the example % = - S(l) *. 

It may also be argued, especially when the one-port is a part of a wave 
propagation system, that the basic physical variables are the incident wave a 
and the reflected wave b. If this point of view is accepted, then the axioms that 
ought to be used are the S* or S postulates and not the P*, P, Q, or Q* 
postulates. 

Operators )IJz that satisfy the S postulates can be characterized as follows: 

THEOREM 9. If 9JI satisfies the S postulates, then s = ‘$X6 (as always, the 
extended 9JI is understood) satisfies the following three equivalent conditions. 

Conversely, ifs E B’ satisfies any one of the following conditions, then $YII = s * 
satisfies the S postulates. 

1. The Laplace transform G(p) f o s is a bounded-real function. [G(p) is called 
bounded-real if on the open right-half p plane {p : Rep > 0} we have that 

G(p) is analytic, G(p) is real whenever p is real, and 1 G(p) 1 < I.] 

2. s E 9; n g, ) and, for every 4 E 9, 

(s-s**s,+*;)30, 

where!(t) =f(- t). (For a definition of g;, , see [12; Vol. II, pp. 55-561.) 

3. Let s” denote the Fourier transform of s. Then, S(u) is a conventional func- 
tion such that / f((w) 1 < 1 almost everywhere on - co < w < CO, f(- w) is 

equal to the complex conjugate of Z(m), and 

W(W) = ; Ply,) * Pv 1, 
6J 

where Pv l/w is again the standard pseudofunction arising from Cauchy’s 
principal value. 

This theorem is proven in [lo; pp. 89-931 and [18]. The third condition 
presents another example of a generalized Kronig-Kramers-Bode equation. 

We have seen that the P postulates imply the P* postulates as well as the Q 
postulates, and that the Q postulates imply the S postulates, which in turn 
obviously imply the S* postulates. We have also noted that the Q postulates 
imply the Q* postulates. That the Q* postulates imply the S* postulates 
follows directly from Corollary 8a. To complete Fig. 1, we have to show that 
S* 3 Q* and that S => Q. 

Under the S* postulates, we have that b = s * a for any a E 9 where 
s E 9: . Therefore, corresponding to the input: 

v=a+b=(6+s)*aE.BR, (17) 
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we have the output: 

%v=u=a-b=(s-s)*aE9~. (18) 

So truly, the mapping % : v --f u satisfies Q 1. 
Moreover, a degenerate case arises when s = - 6. Under the restriction 

that a = $ (v + u) E 58, this requires that v be the zero element in 58, 
whereas u can be any member of 9. In this case, it is obvious that the Q* 
(as well as the Q) postulates are satisfied. As was pointed out before, when % 
is a one-port, this case corresponds to the short circuit. 

For other s E 9: (i.e., for s f - a), we can show that % satisfies the other 
Q* postulates by using the equation: 

v-u=s*(v+u) V$UE9. (19) 

For example, to demonstrate Q2, we first note that e = v + %v is solvable 
for any e E 9; its solution is given by (17) with a = 8 e. We want to show 
that it is uniquely solvable. Suppose that vi is another solution in 9; , and 
set 24r = e - v1 . Then, v, + a1 = e = v + u, so that, by (19), 
vr - u1 = v - u. Consequently, v1 = v and ur = u. 

It is equally straightforward to prove from (19) that ‘8 satisfies the other 
Q* postulates whenever ‘% satisfies the S* postulates and s f - 6. We omit 
the details. 

Finally, consider S a Q. Condition 1 of Theorem 9 and a Theorem of 
Youla, Castriota, and Carlin [3; pp. 116-1171 assert that the S postulates 
imply their form of the Q postulates. Under the present formulation we can 
get from the S postulates to the Q postulates in the following way. 

We mentioned before that the Q postulates are obviously satisfied in the 
degenerate case where s = - 6. So, assume that s f - 6 and that the S 
postulates are satisfied. The Laplace transform Y(p) of the unit impulse 
response y of the operator % : v -+ u exists and is equal to 

Y(p) = 1 - W) 
1 + WI 

for at least Rep > 0. Indeed, by Theorem 9, G(p) is bounded-real; also, 
G(p) $ - 1 for Rep > 0. By the maximum-modulus theorem, 1 + G(p) f 0 
at every point p such that Rep > 0. Since (20) maps the unit circle in the 
G-plane onto the right-half Y-plane, Y(p) is positive-real and therefore a 
Laplace transform in the Schwartz sense. We can now verify our assertion 
by setting v = 6, II = y and taking the Laplace transform of (19). Moreover, 
Theorem 5 shows that ‘iR satisfies the P postulates. Consequently, % satisfies 
the Q postulates as well. Our proof of the assertion S + Q is finished. 
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We can also conclude at this time that the only possible multivalued one- 
port satisfying the Q postulates is the short circuit. On the impedance basis, 
it would be the open circuit. 

[In the case of n-ports (n > l), however, there are many operators ‘% 
that exhibit multivaluedness and yet satisfy the n-port analogues to the Q and 
S postulates. When the n-port % is treated on an admittance basis as above, 
it is multivalued when and only when the 71 x II matrix 1, + G(p) is singular 
everywhere in the right-half plane Rep > 0. Here, 1, denotes the n x n 
unit matrix. On the impedance basis, ‘$J is multivalued when and only when 
the n x 71 matrix 1, - G(p) is singular everywhere in the half-plane 
Rep > 0.1 

Finally, it is worth noting that none of the following assertions are true. 

P* a P. Counterexample: m=-s*. 
Q*-8. Counterexample: a = -226 +. 
s* =+- s. Counterexample: m =26 *. 
Q* a P*. Counterexample: ‘3 = the short circuit. 

Q z. P. Counterexample: % = the short circuit. 

s* 3 P". Counterexample: % = the short circuit. 

P* z- Q*. Counterexample: 112=--s*. 

P* 3 s*. Counterexample: %=-s*. 
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