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Abstract

Chari proved that if Δ is a (d − 1)-dimensional simplicial complex with a convex ear decomposition,
then h0 � · · · � h�d/2� [M.K. Chari, Two decompositions in topological combinatorics with applications
to matroid complexes, Trans. Amer. Math. Soc. 349 (1997) 3925–3943]. Nyman and Swartz raised the
problem of whether or not the corresponding g-vector is an M-vector [K. Nyman, E. Swartz, Inequalities
for h- and flag h-vectors of geometric lattices, Discrete Comput. Geom. 32 (2004) 533–548]. This is proved
to be true by showing that the set of pairs (ω,Θ), where Θ is a l.s.o.p. for k[Δ], the face ring of Δ, and ω

is a g-element for k[Δ]/Θ , is nonempty whenever the characteristic of k is zero.
Finite buildings have a convex ear decomposition. These decompositions point to inequalities on the flag

h-vector of such spaces similar in spirit to those examined in [K. Nyman, E. Swartz, Inequalities for h-
and flag h-vectors of geometric lattices, Discrete Comput. Geom. 32 (2004) 533–548] for order complexes
of geometric lattices. This also leads to connections between higher Cohen–Macaulay connectivity and
conditions which insure that h0 < · · · < hi for a predetermined i.
© 2005 Published by Elsevier Inc.
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0. Introduction

One of the most basic combinatorial invariants of a (finite) simplicial complex is its f -vector,
or equivalently, its h-vector. In order to analyze h-vectors of matroid independence complexes
Chari introduced the notion of a convex ear decomposition [7]. He showed that (d − 1)-di-
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mensional complexes which have such a decomposition satisfy hi � hd−i and hi � hi+1 for
all i � �d/2�. In addition, he proved that independence complexes of matroids have a PS-ear
decomposition, a special type of convex ear decomposition. Spaces with a PS-ear decomposition
satisfy the additional condition that their g-vector, (g0, g1, . . . , g�d/2�), where gi = hi − hi−1, is
an M-vector [27]. Our main result, Theorem 3.9, is that this holds for all spaces with a convex
ear decomposition.

In Section 2 we introduce a convex ear decomposition for finite buildings. In addition to
the enumerative conclusions above, this will allow an analysis of the flag h-vectors of such
complexes. We end with an examination of a connection between higher Cohen–Macaulay con-
nectivity and increasing h-vectors.

Throughout, Δ is a finite (d − 1)-dimensional abstract simplicial complex with vertex set V ,
|V | = n. A maximal face (under inclusion) of Δ is a facet. The f -vector of Δ is (f0, . . . , fd),
where fi is the number of faces of Δ of cardinality i. (Note: Our fi is frequently denoted by
fi−1.) The h-vector of Δ is (h0, . . . , hd) where

hi(Δ) =
i∑

j=0

(−1)i−j

(
d − j

d − i

)
fj (Δ). (1)

Equivalently,

fj (Δ) =
j∑

i=0

(
d − i

d − j

)
hi(Δ). (2)

We use Δ − v for the complex consisting of Δ with all of the faces containing the vertex v

removed. Similarly, if A ⊆ V , then Δ − A is Δ with all of the faces which contain any vertex in
A deleted.

The order complex of a poset P is the simplicial complex whose faces are the chains in P .
However, if P contains a maximal element 1̂ or a minimal element 0̂, then we will always assume
that the order complex refers to the poset P − {1̂, 0̂}.

1. Convex ear decompositions

A convex ear decomposition of Δ is an ordered sequence Δ1, . . . ,Δm of pure (d − 1)-
dimensional subcomplexes of Δ such that:

(1) Δ1 is the boundary complex of a simplicial d-polytope. For each j = 2, . . . ,m,Δj is a
(d − 1)-ball which is a proper subcomplex of the boundary of a simplicial d-polytope.

(2) For j � 2,Δj ∩ (
⋃j−1

i=1 Δi) = ∂Δj .
(3)

⋃m
j=1 Δj = Δ.

The initial subcomplex is Δ1. Each Δj , for j � 2, is an ear of the decomposition.
Convex ear decompositions were originally introduced by Chari. His original example of a

convex ear decomposition was the independence complex of a matroid. In fact, he proved that
the independence complex of a matroid has a special type of convex ear decomposition, a PS-
ear decomposition. In a PS-ear decomposition the initial subcomplex is a join of boundaries of
simplices, and each ear is a join of a simplex and boundaries of simplices [7].

Using an idea of Björner [3], Nyman and Swartz showed that order complexes of geomet-
ric lattices have a convex ear decomposition [18]. In this case, the initial complex is the first
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barycentric subdivision of the boundary of a simplex and each ear is a shellable ball which is a
subcomplex of such a space. In addition to the enumerative conclusions of Theorem 3.9 below,
this approach led to several inequalities for the flag h-vector of such complexes.

Definition 1.1. A balanced complex is a (d − 1)-dimensional simplicial complex Δ and a map
φ :V → S, |S| = d , such that φ(v) 	= φ(w) for any pair of distinct vertices v and w which are
contained in a face of Δ.

Equivalently, the one-skeleton of Δ is properly d-colorable. Our balanced complexes were
called completely balanced in [21]. A common example of a balanced complex is the order
complex of a ranked poset, with φ(x) the rank of x. For balanced complexes there is a natural
refinement of the f - and h-vectors.

Definition 1.2. Let (Δ,φ) be a balanced complex. Let A ⊆ S.

ΔA = {
ρ ∈ Δ: ∀v ∈ ρ, φ(v) ∈ A

}
.

fA = f|A|(ΔA).

hA =
∑
B⊆A

(−1)|A−B|fB.

Proposition 1.3. [25, pp. 95–96] Let (Δ,φ) be a pure balanced complex. Then

fi =
∑
|A|=i

fA, hi =
∑
|A|=i

hA.

The inequalities for the flag h-vector of the order complex of a rank d + 1 geometric lattice
in [18] can be described in terms of the weak order (also known as the weak Bruhat order) on
the symmetric group Sd+1. Let π be permutation in Sd+1. The inversion set of π is the set of all
pairs inv(π) = {(i, j): 1 � i < j � d + 1, π−1(i) > π−1(j)}.

Definition 1.4. The weak order on Sd+1 is defined by

π � π ′ ↔ inv(π) ⊆ inv(π ′).

The descent set of π ∈ Sd+1 is des(π) = {i: π(i) > π(i+1)}. Obviously, des(π) ⊆ [d]. Given
A ⊆ [d], the descent class of A is D(A) = {π ∈ Sd+1: des(π) = A}. Finally, for A and B subsets
of [d] we say A dominates B if there exists an injection ψ :D(B) ↪→ D(A) such that π � ψ(π)

for all π ∈ D(B).

Theorem 1.5. [18] Let Δ be the order complex of a rank d + 1 geometric lattice. If A and B are
subsets of [d] such that A dominates B , then

hB � hA.

Several order complexes of posets have convex ear decompositions. These include rank-
selected subposets of geometric lattices, supersolvable lattices with nonzero Möbius function on
every interval and their rank-selected subposets, and d-divisible partition lattices (d � 3) [20].
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The flag h-vectors of rank (d + 1) supersolvable lattices with nonzero Möbius function on every
interval also satisfy the conclusion of Theorem 1.5.

There is a general construction which includes all of the above examples and the buildings in
the next section. Let Σ be a contractible, shellable d-polytopal complex. For polytopal shellings
see, for instance, [30, Chapter 8]. Let Σ1, . . . ,Σm be a shelling order of the facets and assume
that all of the facets are simplicial d-polytopes. Removing all the open d-cells leaves a (d − 1)-
dimensional simplicial complex with a convex ear decomposition. The initial subcomplex is
∂(Σ1). For 2 � j � m, the ear Δj is the closure of ∂(Σj ) − ⋃j−1

i=1 ∂(Σi).

2. Finite buildings

Finite buildings have a convex ear decomposition. This is an immediate consequence of [11,
Lemma 3.5]. We will use this decomposition when examining the complementary h-vector in
Section 4. However, for reasons we will make clear below (see Theorem 2.4), we prefer another
proof here.

There are several standard references on buildings. We mention [4,6,28], as all of the facts
we use can be found in those references. Let (W,S) be a finite Coxeter system with associated
Coxeter complex Σ(W,S). Specifically, W is a finite group generated by reflections of (linear)
hyperplanes in U , a d-dimensional real vector space, and S is a generating set of reflections
defined below. The collection of hyperplanes is assumed to be essential, that is their intersection
is the origin, and contains all of the hyperplanes of the reflections in W . The intersection of the
unit sphere of U with the hyperplane arrangement results in a (spherical) simplicial complex
Σ(W,S) which is a triangulation of the (d − 1)-sphere.

The group W acts transitively and freely on the facets (also called chambers) of Σ(W,S).
Let σ be a fixed facet of Σ(W,S). The simply transitive action of W on the facets allows us
to identify w ∈ W with the facet w · σ . The linear span of each (d − 2)-face of the boundary
of σ is one of the hyperplanes in the arrangement. The corresponding set of reflections is S =
{s1, . . . , sd−1} and generates W .

Given w ∈ W , the minimal  such that w = si1 · · · si is (w), the length of w. The weak order
on W (also known as the weak Bruhat order) is defined by w < w′ if there exists s1, . . . , sj ∈
S such that w · s1 · · · sj = w′ and (w′) = (w) + j . An equivalent formulation given by the
geometry of Σ(W,S) is as follows. A path (also called a gallery) in Σ(W,S) is a sequence,
(σ0, . . . , σt ), of facets such that for each i the intersection of σi and σi+1 is a (d − 2)-face
(usually called a wall). The length of the path is t . A geodesic is a path of minimal length among
all paths beginning and ending with the same facets. The weak order on (W,S) is equivalent to
w � w′ if and only if there is a geodesic from σ to w′ · σ which contains w · σ .

Example 2.1. Let W be the group generated by the collection of hyperplanes Hij = {(x1, . . . ,

xd+1) ∈ R
d+1: xi = xj }, i < j . This is not an essential arrangement as it contains the line x1 =

· · · = xd+1. Intersecting with the d-dimensional subspace U = {(x1, . . . , xd+1) ∈ R
d+1: x1 +

· · · + xd+1 = 0} does give an essential arrangement. The group generated by the corresponding
reflections in U is the symmetric group Sd+1. If we choose σ to be the facet which contains those
(x1, . . . , xd+1) such that x1 < · · · < xd+1, then S corresponds to the transpositions (i, i + 1) and
the weak order on (W,S) is the same as defined in Section 1.

The descent set of w ∈ W is des(w) = {s ∈ S: (w · s) < (w)}. The descent set of w can also
be defined via Σ(W,S). Let V(W,S) be the vertices of the Coxeter complex Σ(W,S). For each
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(d − 2)-face τ of ∂σ , set ψ(τ) to be the corresponding hyperplane in S. Define ψ :V(W,S) → S

by first defining ψ on the vertices of σ to be ψ of the opposite face. Then extend ψ to a labeling
of all of VΣ(W,S) in the only way possible that insures that Σ(W,S) and ψ form a balanced
complex. This also labels the (d − 2)-faces of Σ(W,S). Simply assign ψ(τ) to be ψ(v), where
v is any vertex such that τ ∪ {v} is a facet. With this definition of ψ on the (d − 2)-faces of
Σ(W,S), the descent set of w is the set of all s such that there exists a geodesic (σ, . . . , σ ′,w ·σ)

with ψ(σ ′ ∩ (w · σ)) = s.

Definition 2.2. Let Σ(W,S) be a finite Coxeter complex. A finite building of type (W,S) is a
(finite) simplicial complex Δ which is the union of subcomplexes Σ , called apartments, such
that:

• Each apartment Σ is isomorphic to Σ(W,S).
• For any two faces ρ1 and ρ2 in Δ, there is an apartment Σ containing both of them.
• If Σ and Σ ′ are two apartments containing ρ1 and ρ2, then there is an isomorphism Σ → Σ ′

fixing ρ1 and ρ2 pointwise.

For the rest of this section Δ is a finite building of type (W,S). Let τ be a facet of Δ and let
ρ be any face of Δ. A geodesic from τ to ρ is a geodesic (τ = τ0, . . . , τt ) such that ρ 	⊆ τi for
any i < t and ρ ⊆ τt . There exists a unique facet pρ(τ), the projection of τ on ρ, such that every
geodesic from τ to ρ ends with pρ(τ) [28, 3.18–3.19].

Let σ be any fixed base facet. A facet σi is opposite σ if it is maximally distant from σ . Let
σ1, . . . , σm be the facets opposite σ . For each σj , there is a unique apartment, Σj , which contains
σ and σj . It is the union of all geodesics from σ to σj . Finally, set Δ1 = Σ1 and for j � 2, define
Δj to be the union of the facets of Σj not contained in any Σi , i < j . Since Δ = ⋃

Σj , it is
immediate that Δ = ⋃

Δj .

Theorem 2.3. Let Δ,Δ1, . . . ,Δm be as above. Then Δ1, . . . ,Δm is a convex ear decomposition
of Δ.

Proof. We begin by proving that for j � 2, Δj is a shellable subcomplex of Σj , and hence a
ball. Since σj is not in any other Σi , σj ∈ Δj . What other facets of Σj are contained in Δj ?
A facet τ ∈ Σj is in Δj if and only if for all i < j , τ it is not contained in any geodesic from σ

to σi .
Let τ1, . . . , τt be an ordering of the facets in Δj which is a linear extension of the order dual

of the weak order restricted to Δj . Specifically, if τ < τ ′, τ = τk , and τ ′ = τl , then l < k. From
the above discussion we know that if τ < τ ′ and τ ∈ Δj , then τ ′ ∈ Δj . Thus, τ1, . . . , τt is an
initial segment of a linear extension of the order dual of the weak order on all of Σj . By [4,
Theorem A.1], τ1, . . . , τt is an initial segment of a shelling of Σj and hence Δj is a ball.

In order to see that Δj ∩ ⋃j−1
i=1 Δi = ∂Δj , we first note that a face ρ is in ∂Δj if and only if

ρ is contained in facets τ1 and τ2 with τ1 ∈ Δj and τ2 ∈ Σj − Δj . Now suppose ρ is a face in
Δj and Δi with i < j . Let τ = pρ(σi), the projection of τ on ρ. Since ρ ∈ Σi ∩ Σj , τ must also
be in Σi ∩ Σj . Hence, ρ ⊆ τ with τ a facet of Σj not in Δj . Thus ρ ⊆ ∂Δj . The other inclusion
is obvious. �

The above construction suggests inequalities for the flag h-vector of a finite building similar
in spirit to Theorem 1.5. For A ⊆ S the descent class of A is D(A) = {w ∈ W : desw = A}.
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If A,B ⊆ S, then A dominates B if there exists an injection ψ :D(B) ↪→ D(A) such that
w < ψ(w) for all w ∈ D(B).

Theorem 2.4. Let (W,S) be a finite Coxeter system. Let A and B be subsets of S and assume A

dominates B . If Δ is a finite building of type (W,S), then

hB � hA.

Proof. Let ψ :D(B) ↪→ D(A) be an injection such that w < ψ(w) for all w ∈ D(B). Let σ be
a fixed base facet. For any B ⊆ S,hB is the number of facets τ in Δ whose descent set is B ,
where the descent set is computed in any apartment containing σ and τ [4]. By the proof of
Theorem 2.3, each τ with descent set B is in exactly one Δj , and if τ corresponds to w in Σj ,
then the facet τ ′ which corresponds to ψ(w) in Σj is also in Δj and has descent set A. Hence,
there is an injection from facets with descent set B to facets with descent set A. �

For buildings associated to GF(q), the above theorem follows easily from the formula [4]

hA =
∑

w∈D(A)

q(w). (3)

One possible approach to looking for a combinatorial proof of some of the inequalities implied
by Corollary 3.10 for finite buildings would be to consider the following problems.

Problem 2.5. Let (W,S) be a finite Coxeter system and let d −1 be the dimension of the Coxeter
complex associated to (W,S).

(1) For which subsets A,B of S does A dominate B?
(2) Suppose i � d/2. Does there exist an injection ι from i-subsets of S to (i + 1)-subsets of S

such that ι(B) dominates B for all i-subsets B?
(3) Is there an injection α :

⋃
|B|=i D(B) ↪→ ⋃

|A|=i+1 D(A) such that w < α(w)?
(4) Is there a bijection β :

⋃
|B|=i D(B) ↪→ ⋃

|A|=d−i D(A) such that w < β(w)?

Some of these problems were explored for the symmetric group in [18].

3. Face rings

One of the most powerful tools for studying enumerative properties of simplicial complexes,
especially Cohen–Macaulay complexes, is the face ring, also known as the Stanley–Reisner ring.
Let k be any field and set R = k[x1, . . . , xn]. For any homogeneous ideal I of R we use (R/I)i
to represent the degree i component of R/I .

Definition 3.1. The face ring of Δ is

k[Δ] = R/IΔ,

where IΔ = 〈{xi1 · · ·xij : {vi1, . . . , vij } /∈ Δ}〉.

Let Θ = {θ1, . . . , θd} be a set of one-forms in R. We will also use Θ to represent the ideal
〈Θ〉 in R or k[Δ], relying on context to make it clear what is intended. Write each θi = θi1x1 +
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· · · + θinxn and let T be the matrix (θij ). To each facet σ in Δ let T |σ be the submatrix of T ,
(θij )vj ∈σ , consisting of the columns of T corresponding to the vertices of σ . If T |σ has rank |σ |
for every facet σ , then Θ is a linear set of parameters (l.s.o.p.) for k[Δ]. If k is infinite, then it is
always possible to choose Θ such that every set of d columns of T is independent.

Two of the most useful facts concerning k[Δ] are the following.

Theorem 3.2. [19] Let k[Δ] be the face ring of Δ. Then k[Δ] is a Cohen–Macaulay ring if and
only if for all faces σ ,

H̃j (lkσ ; k) = 0 for all j < d − |σ | − 1.

We call Δ a Cohen–Macaulay complex if k[Δ] is a Cohen–Macaulay ring. It can be shown
that the property of being Cohen–Macaulay is a purely topological property [16].

A Mayer–Vietoris argument applied inductively to the number of ears shows that spaces with
a convex ear decomposition are Cohen–Macaulay. As we shall see in Section 4, they are doubly
Cohen–Macaulay.

Theorem 3.3. [23] If Δ is a Cohen–Macaulay complex, then for any l.s.o.p. Θ ,

hi(Δ) = dimk

(
k[Δ]/Θ)

i
.

An immediate consequence of this result is that hi � 0 for any Cohen–Macaulay complex.
In addition, the h-vector of a CM complex is an M-vector. A sequence (h0, h1, . . . , hd) is an
M-vector if it is the Hilbert function of a homogeneous quotient of a polynomial ring. A purely
arithmetic criterion is the following description due to Macaulay.

Given positive integers h and i there is a unique way of writing

h =
(

ai

i

)
+

(
ai−1

i − 1

)
+ · · · +

(
aj

j

)

so that ai > ai−1 > · · · > aj � j � 1. Define

h〈i〉 =
(

ai + 1

i + 1

)
+

(
ai−1 + 1

i

)
+ · · · +

(
aj + 1

j + 1

)
.

Theorem 3.4. [25, Theorem 2.2] A sequence of nonnegative integers (h0, . . . , hd) is an M-vector
if and only if h0 = 1 and hi+1 � h

〈i〉
i for all 1 � i � d − 1.

We denote the canonical module of k[Δ] by Ω(k[Δ]). The canonical module is an R-module
and can be defined using homological methods. In fact, IΔ is contained in the annihilator of
Ω(k[Δ]), so the canonical module is also a k[Δ]-module. The only properties of Ω(k[Δ]) that
we will use are in the following theorem. As usual, k[Θ] is the ring k[θ1, . . . , θd ].

Theorem 3.5. [25, Sections I.12, II.7] Let Δ be a (d −1)-dimensional Cohen–Macaulay complex
and let Θ = {θ1, . . . , θd} be a l.s.o.p. for k[Δ].

(1) Ω(k[Δ]) ∼= Homk[Θ](k[Δ], k[Θ]), where the R-module structure is given by (f φ)(p) =
φ(f · p), f ∈ R, φ ∈ Ω(k[Δ]) and p ∈ k[Δ].
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(2) There is a grading of Ω(k[Δ]) so that as an N-graded R-module

dimk

(
Ω

(
k[Δ])/ΘΩ

(
k[Δ]))

i
= dimk

(
k[Δ]/Θ)

d−i
.

The grading of Ω(k[Δ]) is such that if f ∈ Ω(k[Δ]) maps degree i elements of k[Δ] to
degree i − d elements of k[Θ], then f has degree 0. Note that this is a shift of the usual grading
of Ω(k[Δ])/ΘΩ(k[Δ]) whose first nonzero module is in degree −d instead of 0.

Let Δ be a Cohen–Macaulay complex and let Θ be a l.s.o.p. for k[Δ]. A g-element for k(Δ) =
k[Δ]/Θ is a one-form ω ∈ R such that multiplication

ωd−2i : k(Δ)i → k(Δ)d−i

is an injection for every i,0 � i � �d/2�. When the multiplication maps are isomorphisms ω is
usually called a Lefschetz element.

Let G(Δ) be the set of all pairs (ω,Θ) ⊆ kn(d+1) such that Θ is a l.s.o.p. for k[Δ] and ω is
a g-element for k(Δ). While the following is well known, we include it for the sake of complete-
ness.

Proposition 3.6. If Δ is a Cohen–Macaulay complex, then G(Δ) is a Zariski open set.

Proof. Given i < d/2, let Gi be the set of pairs (ω,Θ) such that ωd−2i : k(Δ)i → k(Δ)d−i is an
injection and Θ is a l.s.o.p. for k[Δ]. As G(Δ) is the intersection of all of the Gi , it is sufficient
to show that each Gi is a Zariski open set.

Since Δ is Cohen–Macaulay, it is a pure complex, so for each facet σ ∈ Δ, T |σ is a square
matrix. Let fσ be its determinant. Each fσ is polynomial in the θij . Therefore, Θ is a l.s.o.p. for
k[Δ] if and only if the product of all the fσ is nonzero. Denote this product by fΔ.

Let M be the collection of all subsets U of monomials in R of degree less than or equal to d

such that the number of monomials of degree i in U is hi . The monomials in U form a k-basis
of k(Δ) if and only if for each j the collection of all the monomials of the form us · vt , with us

a monomial of degree s in k[Θ], vt a monomial of degree t in U , and s + t = j , form a basis of
k[Δ]j . Hence, there is a polynomial, fU , a product of d + 1 determinants (one for each degree)
in the θij -variables, such that fΔfU is nonzero if and only if Θ is a l.s.o.p. for k[Δ] and the
monomials in U are a k-basis of k(Δ).

Fix U ∈ M. For each j , let Uj be the degree j monomials in U . Now we attempt to compute
the matrix for multiplication ωd−2i : k(Δ)i → k(Δ)d−i using the “basis” Ui for k(Δ)i , and the
“basis” Ud−i for k(Δ)d−i . If Θ is a l.s.o.p. for k[Δ] and Ud−i is a basis for k(Δ)d−i , then we
could compute the coefficients of ωd−2i · u for each u ∈ Ui in the Ud−i -basis using Cramer’s
rule. These coefficients are rational functions in the ω and Θ variables, with the denominator
equal to the determinant which indicates whether or not Ud−i is a basis of k(Δ)d−i . Instead,
use Cramer’s rule without the divisor. When Ud−i is a basis for k(Δ)d−i the matrix for the
linear transformation ωd−2i : k(Δ)i → k(Δ)d−i we obtain will be a nonzero scalar multiple of
the correct matrix. In any event, the coefficients of the matrix are polynomials in the ω and Θ

variables.
Let A be a subset of Ud−i of cardinality hi . If hi > hd−i , then there are no such A. However,

this implies that Gi = ∅, a Zariski open set. So we may assume that there are such sets. Let fA

be the determinant of the corresponding hi × hi minor of the matrix determined by our modified
Cramer’s rule. If fAfUfΔ(ω,Θ) 	= 0 for some U and A, then (ω,Θ) ∈ Gi . Conversely, suppose
(ω,Θ) ∈ Gi . Since there exists some U ∈ M such that the monomials in U form a k-basis of
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k(Δ), there must be some hi -subset A of some Ud−i so that fAfUfΔ(ω,Θ) 	= 0. As there are
only finitely many polynomials fAfUfΔ, Gi is a Zariski open set. �

Using the above proposition, the necessary part of the g-theorem for simplicial polytopes can
be stated in the following form.

Theorem 3.7. [14,24] Let Δ be the boundary complex of a simplicial polytope and let k be a
field of characteristic zero. Then G(Δ) is not empty.

Kalai and Stanley used Theorem 3.7 to establish restrictions on the h-vectors of balls which
were full dimensional subcomplexes of the boundary of a simplicial polytope.

Theorem 3.8. [13,22] Suppose Δ is homeomorphic to a (d − 1)-ball and is a subcomplex of Σ ,
where Σ is the boundary of a simplicial d-polytope. Then for any ω ∈ G(Σ), multiplication
ωd−2i : k(Δ)i → k(Δ)d−i is surjective.

Theorem 3.9. If Δ has a convex ear decomposition and the characteristic of k is zero, then G(Δ)

is not empty.

Proof. The proof is by induction on m, the number of ears. Theorem 3.7 is m = 1. Let Σ =⋃m−1
j=1 Δj . Let I be the kernel in the short exact sequence of R-modules

0 → I → k[Δ] → k[Σ] → 0.

Evidently I is the ideal of k[Δ] generated by the interior faces of Δm. As an R-module, I is also
the kernel in the short exact sequence

0 → I → k[Δm] → k[∂Δm] → 0.

By a theorem of Hochster [25, Theorem II.7.3], I is isomorphic to Ω(k[Δm]) as a Z-graded
module.

Dividing out by Θ gives the short exact sequence of R-modules

0 → I/(I ∩ Θ) → k(Δ) → k(Σ) → 0.

For each i,dimk(I/(I ∩ Θ))i = hi(Δ) − hi(Σ) = hi(Δm) − gi(∂Δm). This is hd−i (Δm) [22].
Now, (I/ΘI)i ∼= (Ω(k[Δm])/ΘΩ(k[Δm]))i , so dimk(I/ΘI)i = hd−i (Δm). Since ΘI ⊆ I ∩ Θ

we must have

Ω
(
k[Δm])/ΘΩ

(
k[Δm]) ∼= I/ΘI ∼= I/(I ∩ Θ).

Consider the commutative diagram,

0 I/(I ∩ Θ)i

ωd−2i

k(Δ)i

ωd−2i

k(Σ)i

ωd−2i

0

0 I/(I ∩ Θ)d−i k(Δ)d−i k(Σ)d−i 0

As Ω(k[Δm])/ΘΩ(k[Δm]) ∼= Homk(k(Δm), k), I/(I ∩ Θ) must also be isomorphic to
Homk(k(Δm), k). By Theorem 3.8, multiplication ωd−2i : k(Δm)i → k(Δm)d−i is a surjection
for the nonempty Zariski open set G(∂Pm), where Pm is a simplicial d-polytope such that
Δm ⊂ ∂Pm. As the left-hand vertical arrow is the k-dual for this map, it must be an injection
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for pairs (ω,Θ) ∈ G(∂Pm). The induction hypothesis provides another nonempty Zariski open
subset of pairs such that the right-hand vertical arrow is an injection. The intersection of these
two sets is a nonempty Zariski open subset such that the middle vertical arrow is an injection. �

We note that if at some point in the future Theorem 3.7 is extended to a more general class of
homology spheres, say S, then it would be possible to define S ear decompositions. In that case,
the above proof would still be valid.

Corollary 3.10. Let Δ be a (d − 1)-dimensional simplicial complex with a convex ear decompo-
sition.

(a) If i � �d/2�, then hi � hd−i and hi � hi+1.
(b) If gi = hi − hi−1, then (g0, g1, . . . , g�d/2�) is an M-vector.

Proof. Let ω be a g-element for k(Δ) and let i � �d/2�. As multiplication ωd−2i : k(Δ)i →
k(Δ)d−i is an injection, hi � hd−i and multiplication ω : k(Δ)i → k(Δ)i+1 is also an injection.
Hence hi � hi+1. To see that (g0, g1, . . . , g�d/2�) is an M-vector we simply note that for i �
�d/2�, gi = dimk(k(Δ)/ < ω >)i . �

The inequalities in (a) are originally due to Chari [7].
Theorem 3.9 was first proved for independence complexes of rationally represented matroids

by Hausel and Sturmfels [9]. They used the theory of hyperkähler toric varieties. Swartz proved
this for all matroids [27]. In [8] Hausel presents a proof for all matroids which is based on
ideas from both papers. The above proof is an extension of this idea to spaces with a convex ear
decomposition.

4. Higher Cohen–Macaulay connectivity

In the previous section we said that spaces with a convex ear decomposition are doubly
Cohen–Macaulay. A Cohen–Macaulay complex Δ is doubly Cohen–Macaulay if for all vertices
v in Δ, the dimension of Δ − v equals the dimension of Δ, and Δ − v is still Cohen–Macaulay.
More generally, Δ is q-CM if Δ is Cohen–Macaulay and for every subset A of vertices of Δ

with |A| < q , dim(Δ − A) = dimΔ and Δ − A is still Cohen–Macaulay. The maximum q such
that Δ is q-CM is the CM connectivity of Δ.

Theorem 4.1. If Δ has a convex ear decomposition, then Δ is doubly Cohen–Macaulay.

As is conjecturally the case with Theorem 3.9, this result extends to a more general construc-
tion using homology spheres and balls since we only use the homological properties of balls and
spheres in the proof. Here, a homology sphere has the homology of a sphere and every link has
the homology of a sphere of the appropriate dimension. Homology spheres are also called Goren-
stein* complexes. A homology ball is homologically acyclic and every link is either a homology
ball or a homology sphere of the appropriate dimension. Furthermore, the faces whose links are
homology balls form a subcomplex, the boundary, which is a homology sphere of one lower di-
mension. Removing a vertex from a homology sphere leaves a homology ball with boundary the
link of the vertex in the original homology sphere.
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Proof. Let v be a vertex in Δ and let σ be a face of Δ − v. We must show lkΔ−v σ is Cohen–
Macaulay. The link of σ in Δ− v is the union of the links of σ in Δ̃1 − v, . . . , Δ̃t − v, where the
Δ̃j is a sequential renumbering of all the Δi which contain σ . The proof is by induction on t . If
t = 1, then the link is either a homology ball or homology sphere, depending on whether or not
v is in the link of σ in Δ̃1. In either case the link is Cohen–Macaulay.

When j > 1, σ is on the boundary of Δ̃j , hence its link in Δ̃j is a homology ball. Let Y =⋃t−1
j=1 lkΔ̃j −v σ and Z = lkΔ̃t−v σ . For the induction step there are three possibilities. In each

case, Mayer–Vietoris arguments are sufficient to compute the homology of Y ∩Z,Z and see that
their union, lkΔ−v σ , is Cohen–Macaulay.

(1) v /∈ lkΔ̃t
σ . Then Z is a (d − 1 − |σ |)-homology ball and Y ∩ Z is a d − 2 − |σ |-homology

sphere.
(2) v is an interior point of lkΔ̃t

σ . Then Y ∩ Z and Z have the homology of a (d − 2 − |σ |)-
homology sphere. For Z, this follows from the Mayer–Vietoris sequence for the homology
ball lkΔ̃t

σ written as the union of Z and the closed star of v in lkΔ̃t
σ . In addition, the

inclusion map Y ∩ Z → Z is an isomorphism in homology.
(3) v is a boundary point of lkΔ̃t

σ . Now Y ∩ Z and Z are homologically acyclic. �
Doubly Cohen–Macaulay complexes and q-CM complexes were introduced by Baclawski [2].

Spheres, and more generally homology spheres, are 2-CM, but balls are not. Baclawski proved
that the order complex of a semimodular poset P is 2-CM if and only if P is a geometric lattice.
Furthermore, if P is a geometric lattice, then its order complex is q-CM if and only if every
line of P has at least q atoms. In his study of buildings and Coxeter complexes Björner proved
that finite buildings are 2-CM and any finite building associated to GF(q) is (q + 1)-CM [4].
Welker showed that order complexes of supersolvable lattices are 2-CM if and only if the Möbius
function is nonzero on every interval [29]. Since all of the above examples of 2-CM complexes
either have a convex ear decomposition, and hence satisfy the conclusion of Theorem 3.9, or are
conjectured to satisfy Theorem 3.9, it seems natural to ask the following question which was also
suggested by Björner.

Problem 4.2. Do all 2-CM complexes satisfy the conclusion of Theorem 3.9?

Nevo has shown that for 2-CM complexes and d � 3,ω : k(Δ)1 → k(Δ)2 is injective for a
generic set of pairs (ω,Θ) [17]. An affirmative answer to this question would also show that
all homology spheres satisfy the g-theorem [25, Conjecture II.6.2]. The face ring of any 2-CM
complex is a level ring (see [25, p. 94] for a discussion). Combined with [12], this implies that
for any 2-CM complex

h0 + h1 + · · · + hi � hd + hd−1 + · · · + hd−i .

Another property shared by all (d − 1)-dimensional 2-CM complexes which comes from the
fact that their face rings are level, is that the reversed h-vector, (hd, . . . , h0) is a sum of hd

M-vectors [23]. For spaces with a convex ear decomposition, this fact expresses itself in the
following formula [7]:

hd−i (Δ) = hi(Δ1) + · · · + hi(Δm). (4)

When Δ has a convex ear decomposition, hd−i − hi is nonnegative for i � d/2. So it seems
natural to consider the following complementary h-vector of Δ.
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Definition 4.3. The complementary h-vector of Δ is

h̄ = (hd − h0, hd−1 − h1, . . . , hd−�d/2� − hd−�d/2�).

For any homology ball Δ, hi(Δ) − hd−i (Δ) = gi(∂Δ) (see, for instance, [15]). If (Δ1, . . . ,

Δm) is a convex ear decomposition for Δ, then Eq. (4) implies

hd−i (Δ) − hi(Δ) =
m∑

j=2

hi(Δj ) − hd−i (Δj ) =
m∑

j=2

gi(∂Δj ).

Thus, if the boundaries of the ears are known to be combinatorially equivalent to the boundaries
of (d − 1)-polytopes, then by Theorem 3.7 h̄ is the sum of hd − 1 M-vectors.

Proposition 4.4. If Δ has a PS-ear decomposition, then h̄ is a sum of hd − 1 M-vectors.

Proof. The boundary of each ear in a PS-ear decomposition is the join of the boundaries of
simplices. �

In order to analyze h̄ when Δ is a finite building we use von Heydebreck’s convex ear decom-
position.

Proposition 4.5. [11, Lemma 3.4] Let Δ be a finite building of type (W,S). Then Δ has a convex
ear decomposition such that each ear is isomorphic to Σ(W,S) ∩ H+

1 ∩ · · · ∩ H+
t , where the

H+
i ’s are closed half-spaces of distinct reflecting hyperplanes of W .

Lemma 4.6. Let A = {H1, . . . ,Hs} be an essential arrangement of hyperplanes in R
d . Let P

be any d-polytope whose face fan is the fan of A. Let H+
i1

, . . . ,H+
it

be closed half-spaces of

distinct hyperplanes in A. If B = ∂P ∩ H+
i1

∩ · · · ∩ H+
it

is nonempty, then ∂B is combinatorially
equivalent to the boundary of a (d − 1)-polytope.

Proof. For notational convenience we renumber the hyperplanes so that Hij = Hj . So, A =
{H1, . . . ,Ht ,Ht+1, . . . ,Hs} and B = ∂P ∩ H+

1 ∩ · · · ∩ H+
t .

By a familiar vertex figure argument, it is sufficient to find P ′, a d-polytope whose face fan is
the same as the face fan of P , and a point y ∈ R

d such that the facets of P ′ that can be seen from
y are precisely those in B ′ = ∂P ′ ∩ H+

1 ∩ · · · ∩ H+
t .

Let z1, . . . , zs be nonzero vectors such that zi is orthogonal to Hi , and for i � t , zi ∈ H+
i .

Let Z be the zonotope [−z1, z1] + · · · + [−zs, zs], where + is Minkowski sum. For an s-tuple
(ε1, . . . , εs), εi = ±1, let xε = ∑s

i=1 εizi . While some of the xε may be interior points of Z, all
of the vertices of Z are equal to some xε .

Set P ′ to be Z�, the polar of Z. The face fan of P ′ is the fan of A and the facets of P ′ are of
the form Fε = P ′ ∩ Hε , where Hε = {w ∈ R

d : xε · w = 1, xε a vertex of Z}. If xε is a vertex
of Z, then xε · w � 1 for all w ∈ P ′. Therefore, a facet Fε of P ′ is visible from y ∈ R

d if and
only if xε · y > 1.

The facets of B ′ = P ′ ∩ H+
1 ∩ · · · ∩ H+

t are those facets Fε with εi = +1 for i � t . Since B

is nonempty we can choose y ∈ Rd so that zi · y > 0 for i � t . By rescaling all the zi by positive
scalars, we can choose z1, . . . , zs and y so that zi · y = 1 for i � t , and

∑s
i=t+1 |zi · y| < 1/100.

Now it is easy to see that for some δ > 0 the only facets of P ′ visible from (1 + δ)y will be the
facets of B ′. �
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Corollary 4.7. If Δ is a finite building, then h̄ is the sum of hd − 1 M-vectors.

If the g-theorem was known to hold for the boundary of every ball which is a full dimensional
subcomplex of the boundary of a simplicial polytope, then h̄ of any d-dimensional space with a
convex ear decomposition would be the sum of hd − 1 M-vectors.

Problem 4.8. If Δ is 2-CM, is h̄(Δ) the sum of hd − 1 M-vectors?

Björner has observed that for q � 0, Eq. (3) implies that finite buildings associated to GF(q)

must satisfy hB < hA for B ⊂ A [5]. This means that for these spaces high CM connectivity
implies that the h-vector is increasing. This is part of a general phenomenon involving complexes
with large links. Since the removal of q − 1 vertices from a q-CM complex Δ leaves a pure
complex, the link of every nonfacet of Δ must contain at least q vertices. A pure complex with
large links must have an increasing h-vector. To prove this we use an extension of h̃, the short
simplicial h-vector introduced in [10] as a simplicial analogue of the short cubical h-vector in [1].

Definition 4.9.

h̃
(m)
i (Δ) =

∑
σ∈Δ|σ |=m

hi(lkσ).

For example, h̃(0) is the usual h-vector and h̃(1) is the short simplicial h-vector defined in [10].

Proposition 4.10. Let Δ be a pure (d − 1)-dimensional complex. For m � d − 1 and i � d − m,

(m + 1) h̃
(m+1)
i−1 = ih̃

(m)
i + (d − m − i + 1)h̃

(m)
i−1. (5)

Proof. The case m = 0 is [26, Proposition 2.3]. For larger m,

h̃
(m)
i =

∑
|σ |=m

hi(lkσ)

= 1

i

[ ∑
|σ |=m

{
h̃

(1)
i−1(lkσ) − (d − m − i + 1)hi−1(lkσ)

}]

= 1

i

[ ∑
|σ |=m

({ ∑
v∈lkσ

hi−1
(
lk

(
σ ∪ {v}))

}
− (d − m − i + 1)hi−1(lkσ)

)]

= 1

i

[
(m + 1) h

(m+1)
i−1 − (d − m − i + 1)h

(m)
i−1

]
. �

Theorem 4.11. Fix d and i � d . There exists q(i, d) such that if Δ is a pure (d − 1)-dimensional
complex and the link of every (i − 2)-dimensional face of Δ has at least q(i, d) vertices, then

h0 < · · · < hi. (6)

Proof. The proof is by induction on i and d , with i = 1 being trivial. We can assume that
q(i, d) � q(i′, d ′) whenever i � i′ and d � d ′. Suppose that i � 2 and q(i − 1, d) satisfies the
theorem. For the induction step we only need to find q so that hi−1 < hi whenever Δ is pure,
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(d −1)-dimensional and the link of every (i −2)-dimensional face has at least q vertices. Indeed,
given such a q , q(i, d) = max{q, q(i − 1, d)} satisfies the theorem.

Let q be the minimum number of vertices in the link of an (i − 2)-dimensional face of Δ.
In order to show that for q sufficiently large hi−1 < hi we argue by contradiction. So, suppose
hi−1 � hi . First we estimate h̃

(j)
i−j using (5) and hi−1 � hi . For 0 � j � i − 1,

h̃
(j)
i−j � pi,j (d)hi−1, (7)

where pi,j (d) is a degree j polynomial. When j = 0, pi,0 = 1. For higher j , (7) is proved by

induction using h̃
(j)

i−j−1 < h̃
(j)
i−j and

h̃
(j+1)

i−j−1 = 1

(j + 1)

[
(i − j)h̃

(j)
i−j + (d − i + 1)h̃

(j)

i−j−1

]
.

We can also estimate h̃
(i−1)
1 using the induction hypothesis and q:

h̃
(i−1)
1 =

∑
|σ |=i−1

h1(lkσ) �
(
q − (d − i + 1)

)
fi−1 >

(
q − (d − i + 1)

)
hi−1.

The last inequality follows from (2) and the fact that h0, . . . , hi−1 are positive for sufficiently
large q by the induction hypothesis on i. Putting these estimates together,(

q − (d − i + 1)
)
hi−1 < pi,i−1(d)hi−1.

Hence, q is bounded. �
The above proof gives q(i, d) as a polynomial of degree i − 1 in d . Can this be improved?

Problem 4.12. What are the minimum values of q(i, d)?

The dependence on d in the above theorem is essential. Indeed, h2 of two simplices connected
at one vertex is always negative once d > 2. What if we impose the additional condition that Δ is
Cohen–Macaulay? An affirmative answer to Problem 4.2 would imply that links of size q(i,2i)

would be sufficient to imply at least inequality (as opposed to strict inequality) in (6) for 2-CM
complexes. For balanced q-CM complexes it is possible to remove the dependence on d .

Theorem 4.13. Let (Δ,ψ) be a balanced q(i, i)-CM complex. Then for any B ⊂ A with |A| � i,

hB < hA.

Proof. Our first observation is that for any A ⊆ S, ΔA is also q(i, i)-CM. Removing q(i, i) − 1
vertices from ΔA is the same as removing q(i, i) − 1 vertices from Δ and then restricting
to ΔA. The combination of these operations preserve dimension and the CM property [25, The-
orem III.4.5]. Hence,

hB(Δ) = hB(ΔA) � h|B|(ΔA) < h|A|(ΔA) = hA(Δ). �
Corollary 4.14. If Δ is a q(i, i)-CM balanced complex and d � i + 1, then

h0 < · · · < hi.
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Proof. In order to show that hj−1 < hj for every j � i, fix j � i. Let φ be any map from
(j − 1)-subsets of S to j -subsets of S such that B ⊆ φ(B) for all B .

hj−1(Δ) =
∑

|B|=j−1

hB(Δ) =
∑

|B|=j−1

hB(Δφ(B)) =
∑

|A|=j

∑
B∈φ−1(A)

hB(ΔA)

�
∑

|A|=j

hj−1(ΔA) <
∑

|A|=j

hj (ΔA) =
∑

|A|=j

hA(Δ) = hj (Δ). �
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