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Abstract 

Basically, when a wave meets a different depth, it will scatter into a transmitted wave and a reflected wave. In this paper, we 
study the relevance of sinusoidal beds as shoreline protection through the Bragg scattering mechanism. As well known, a 
relatively small amplitude of sinusoidal beds can reduce the amplitude of incident waves effectivelly, due to Bragg resonance. 
Bragg resonance will occur if the wavelength of the monochromatic wave is twice the wavelength of sinusoidal beds. We apply 
the multiple scale asymptotic expansion method to the linear Shallow initial value problem for sinusoidal beds. the effect of 
Bragg resonance pass through sinusoidal beds has been studied for surface displacement of water waves. We found that a larger 
amplitude disturbance leads to larger reflected wave amplitude. This result explains that the long shore sandbar indeed can reduce 
the amplitude of incident wave. Actually, wave’s propagation not only derives from surface displacement, but also from potential 
velocity. At the end, we show that the sinusoidal beds can reduce the potential velocity of incident wave.   
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1. Introduction 

           Beach damage has becoming familiar to us. Many factors can cause beach damage either from human activity 
or because of natural activity. The natural activity often occurs due to the tidal wave that comes with large 
amplitude, i.e.: tsunami. Basically, when a wave meets a different depth, it will scatter into a transmitted wave and a 
reflected wave. Based on these facts, many researchers analyze the breakwater by exploiting the nature of the wave. 
It aims to reduce the amplitude of incoming wave so it becomes not dangerous when hit the beach. 
           Breakwater can be in the form of strong and powerful bar with certain size and distance as needed. The 
optimum bar size can reduce the incoming wave’s amplitude optimally1.  Bottom undulation on seabed can occur 
naturally and it forms can also split the wave into transmission and reflection. Based on this analysis the author is 
interested to learn about the effect of the bottom undulation on seabed in minimizing the amplitude of the wave that 
transmitted to the beach. 
           Bragg resonance gives a significant influence to reduced wave amplitude. It occurs when a wave propagates 
through the impermeable sinusoidal beds which wave number is twice the incoming wave numbers2. The influences 
of Bragg resonance and current on the wave propagation over permeable beds have also been studied3,5. In another 
side, LH Wiryanto7 has also been reviewing propagation on unsteady wave through the permeable beds. 
           The presence of hard-wall beach on the right of sinusoidal patch will increase the incident wave amplitude 
that hit the shore much higher, and hence increase the hazard to the shore. The situations will less severe if the shore 
can absorb the wave partially4,8. 
          These researches about the modeling of wave propagation through the bottom undulation on deviation of the 
water surface. In this paper, we will study the other factors that can affect on waves propagation, specifically on 
potential velocity of water. The potential velocity is the velocity of water particles; so that the velocity will be 
different on each position and times. Potential velocity of water is analogous as the first derivative function of the 
surface displacement of the water. We will analyze whether potential velocity give the significant effect for wave 
amplitude or not. The method used to obtain approximations solution is multiple scale asymptotic expansion 
method. 

 

2. Boundary Value Problem of Potential Velocity 

 

Figure 1. Water waves with small bottom undulation 

See figure 1. Consider the depth of water as follows 
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 , (1)  
 
where c(x) is a function that representation of bottom topography, h  is flat depth,  is small undimensioneless 
parameter ( . The parameter ε is used to express that the amplitude of bottom topography is relatively small 
compared with the flat depth. 
         Assume that the water is incompressible (material density is constant within a fluid parcel) and irrotational, so 
that we use Laplace equation for governing equation as follows 
 
 

 (2) 

 
 (3) 

 
 (4) 

 
where  is potential velocity of surface wave at position x and time t,   is angular frequency constant of 

incoming wave with time function , g is gravitation coefficient , and   directional derivative at point .  
Incoming wave represented by 
 

 
 

(5) 

 
where  is monochromatic wave number, and K declared as 
 
  (6) 

 
When a wave meets a different depth, it will scatter into a transmitted and reflected wave. Let us imagine an 

incident wave running above a flat bottom with a small undulation. During its evolution, there occur many scattering 
processes. Assume that the beach on the right of the small undulation beds can absorb wave completely, then the 
transmitted wave is wave that running to right and reflected wave is the opposite. Therefore, the potential velocity 
can be written as  
 

 (7) 

 
where  and  are reflected wave and transmitted wave coefficient, respectively. 

Substitute equation (5) into (7) to get 
 

 
 (8) 

 
When the bottom satisfy the condition  at , then these condition can be change to first order 
equation as  
 
 

 
(9) 
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3. Transmitted And Reflected Coefficient 
 

Using multiple scale expansion, we expand 
 

                     (10) 

 
Substitute equation (10) into  (2), (3), (8), and (9) so that the boundary value problem for orde  ε, as follows  
 

 
                     (11) 

 
                      (12) 

 
                      (13) 

 
                      (14) 

 
Assume that the characteristic of potential velocity at order O(ε) and order O(1) are the same, that is 

periodically monochromatic wave and expressed as a complex function. Because of that, we use Fourier transform 
to solve boundary value problem (11) – (14) which is infinite domain. After these transformations, we get the 
reflected and transmitted wave coefficient as follows  

 
                          (15) 

 

                                  (16) 

 

4. Analytic Solution for Sinusoidal Beds 

Consider that the bottom undulation is a sinusoidal bed, and then c(x) can be written as  
 
                       (17) 

 
where  is amplitude of sinusoidal beds and   is wave number of sinusoidal beds. 
Substitute equation (17) into (15), we get 
 
                                                (18) 

 
In equation (18), write the term  into the form 
 



507 Viska Noviantri and Wikaria Gazali  /  Procedia Computer Science   59  ( 2015 )  503 – 509 

                                                (19) 

 
Using algebra manipulation and integrate the equation (19), we get 
 

 
                    (20) 

 
That can be changed into exponent form, that is 
 

 
   

(21) 

  
Substitute (21) into (18), and the choose 

l
mL

l
nL 21           and            

So we get 
 

                      (22) 

 
Here, take the value of  and  so that satisfy  and , then the reflected coefficient represented by  
 

                      (23) 

 

5. Simulation 

There is no relevant data in Indonesia to this research. Because of that, in this paper, analytic simulation using the 
data of Martha, Bora, & Chakrabarti, 2009 shown in Table 1. We use these data because these data is relevant and 
more useful for this research. Our researches are the same topic, but use different method for solving the governing 
equation and numerical method. At the end, we compare the result of this research with them. 
 
          Table 1. Data of analytic simulation 

Variable Value 
Amplitude of sinusoidal beds/ flat depth  0.1 
Wave number of sinusoidal beds  flat depth  1 

Wave number of sinusoidal beds  1,3,5 
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Figure 2.  The reflected coefficient (Analytic Solution) 

 
Figure 2 shows the reflected coefficient as a function of incident wave number multiply by flat bottom 

(k0h). The reflected coefficient plotting for some cases wave numbers of sinusoidal beds. The reflected coefficient 
when k0 = 1, 3, and 5 represented by red, green, and blue line, respectively. 
 
          Table 2.The maximum reflection coefficient      

Wave number of 
sinusoidal beds (l) 

Flat depth (h) k0 x h The maximum reflected 
coefficient 
(R1 maximum) 

Wave number of incident 
wave (k0) when R1 
Maximum 

1 1 0.5 0.073166 0.5 
3 1/3 0.5 0.217668 1.5 
5 1/5 0.5 0.361306 2.5 

 
After see Figure 2 and table 2, we know that for same value of a/h, the larger amplitude of sinusoidal beds 

leads larger amplitude of reflected wave. Besides that, it shows that the maximum reflected coefficient occur when 
the wave number of sinusoidal beds is twice the wave number of incident wave.  
 
 
6. Conclusion 
 

Sinusoidal beds give the effect for surface wave propagation. The solution of wave equation over 
sinusoidal-beds based on potential velocity obtains by perturbation method and Fourier transform. Sinusoidal beds 
may lead to Bragg resonance. Bragg resonance occurs when wavelength of incident wave is twice of the wavelength 
of the periodic bottom disturbance. The larger amplitude of sinusoidal beds and potential velocity leads larger 
amplitude of reflected wave and leads smaller amplitude of transmitted wave. The maximum reflected coefficient 
occurs when the wave number of sinusoidal beds is twice the wave number of incident wave. 
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