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Abstract

The sub-Ramsey number sr(K,, k) is the smallest integer m such that in any edge-colouring of K,, which uses every
colour at most £ times some subgraph K, has all edges of different colours. It was known that, for a fixed &, the function
st(Ky, k) is O(n*) and Q(n). We improve these bounds to O(n?) and Q(n*?) (slightly less for small values of k).
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1. Background and notation

An edge-colouring of a graph G (i.e., a mapping of E(G) to a set of ‘colours’) is k-bounded if each colour is used at
most k times. If k =1, i.e., if all edges of G have different colours, we say that G is polychromatic. The sub-Ramsey
number sr(G,k) is the smallest integer m such that each k-bounded edge-colouring of K, contains a polychromatic
subgraph isomorphic to G. Recall that the Ramsey number r(G,k) is the smallest integer m such that each edge-colouring
of K,, with k colours contains a monochromatic (i.e., all edges coloured with the same colour) subgraph isomorphic to G.
Thus sub-Ramsey numbers are in this sense dual to Ramsey numbers, and it is easy to see that each sr(G, k) < r(G, k),
and hence each sr(G, k) is guaranteed to be finite [2].

Galvin appears to be the first person to suggest investigating sr(G, k) [9]. In [2] it is shown that sr(K,,k) is O(kn®)
and Q(kn). In [12] the authors show that sr(P,, k) = sr(C,, k) =n when n is large enough with respect to k. (P, and
C, denote respectively the path and the cycle with n vertices.) Results on sub-Ramsey numbers of stars can be found in
[5,10,11]. Related questions on k-bounded edge-colourings without polychromatic subgraphs which are not necessarily of
fixed size (such as polychromatic Hamilton paths or cycles) are investigated in [1,4,8,12,14].

In this note we improve both the upper bound and the lower bound for sr(K,, k). In particular we prove that sr(K,, k)
is O(kn?) (better than O(kn*)) and, for k greater than or equal to 15, sr(K,, k) is Q(n*?) (better than Q(kn) for any
fixed k). The lower bound for k between 3 and 15 is Q(n*?). (We have no improvement of the lower bound when k =2.)

2. The upper bound

Theorem 1. Let n >3 and k = 2 be positive integers. Then

st(Kn, k) < (2n — 3)(n — 2)(k — 1) + 3.
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Proof. Assume that K,, admits a good edge-colouring, i.e., a k-bounded edge-colouring in which no subgraph isomorphic
to K, is polychromatic. We shall show that m < (2n — 3)(n —2)(k — 1) + 2.

Fix a good edge-colouring of K,,, with colours 1,2,...,r, and denote by d; the number of edges coloured i. Note that
each d; < k. Let W denote the number of unordered pairs of edges of K,, coloured by the same colour. We claim that

W<<’:>"21 (1)

Indeed, (%) =|E(Kn)| =Y, di and W =3"7_ (%). Thus

" odi—1 "L ok—1 my\ k—1
W= di= <_de2‘<2>2'

Consider now a subgraph O of K, isomorphic to K, for some integer ¢ > n. We claim that O must have many pairs of
edges of the same colour, otherwise some subgraph of Q isomorphic to K, would be polychromatic. Specifically, denote
by T(g,n) the maximum number of edges of a graph with ¢ vertices which does not have a complete subgraph of n
vertices. (The value of T(g,n) is known by Turan’s theorem [3].) If Q obtained more than 7'(g,n) colours then taking
one edge of each colour would result in a graph G with ¢ vertices and more than 7(¢,n) edges, which therefore would
have to contain a subgraph isomorphic to K,. This contradicts the fact that we have a good edge-colouring. Therefore,
Q 1is coloured by at most 7'(g,n) colours, say, the colours 1,2,...,¢, where ¢t < T'(g,n). Denote by w(Q) the number of
unordered pairs of edges of O which obtain the same colour, and by d;(Q) the number of edges of O of colour 7, i < ¢.
We claim that

q
w(Q) = <2> = T(g,n). (2)
Indeed,

t dl(Q) t ) t
w0)=3" ( ) ) =Y @) - N = 3" @) -1
i=1 i=1

i=1

t q q
- (de(@) —i= ( ) —i> ( ) — T(g.n).
i=1 2 2

Let 2 denote the set of all subgraphs of K, isomorphic to K. Since each pair of edges of K, belongs to <';:33 > or

';’:f graphs in 2, depending on whether the two edges are adjacent or not, we see that MW > ZQE , w(Q), where

m—3 m—4
w=ma {(72).(22)
Suppose first that ’Zj < "’:j . This inequality implies that m —3 < g — 3 and thus m < q. Therefore, our desired

q
conclusion m < (2n—3)(n—2)(k—1)+2 will follow as long as we choose g not too big. Let us in fact choose ¢g=2n—2.

In the remaining case, ('"_3> > (';:j), we have (:’:;) W =3 e, w(Q) which by (1) and (2) implies that

q—3

() G ()= (D) -em)

Since (n — 1) divides ¢,

n—2 2
on—21

T(g,n)=

[3], and then, using g = 2n — 2, we have

q (19 n—2 5, ¢
(2) —Tlgnm) = <2> _2n—2q T
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Therefore, we obtain from (3) that
(m—3)! .m(mfl).(k71)> m! 9
(g —3)(m —q)! 2 2 (m—gq)lq! 2
Simplifying the last inequality we reach the conclusion that
m—2<(k—1)(g—1)g—2)2
which is equivalent to m < (2n —3)(n —2)(k—1)+2. U

3. The lower bound

Let m and ¢ be positive integers.

Let U(?) denote the maximum number of ways a set can be written as a union of two ¢-element subsets. For instance,
U(2) =3 because the set {1,2,3,4} can be written as {1,2} U {3,4}, or {1,3} U {2,4}, or {1,4} U {2,3}, and no set
can be written as the union of two 2-element subsets in four different ways. It is easy to check also that U(3) = 15.

Let F(m,t) be the maximum size of a union free family of z-element subsets of {1,2,...,m}. (A family of sets S;, i€/

is union free if all the <‘§‘) unions S; U S, S;,S; € F, are distinct.)
The following result of Frankl and Fiiredi gives the asymptotic behaviour of F(m,t):

Theorem 2 (Frankl and Fiiredi [7]). Let t be a positive integer.
There exist positive constants ¢,,c, so that

4 / 4t
am' 312 < F(m,t) < em3 12,
The relevance of the functions U(¢) and F(m,t) to our problem arises from the following fact:

Theorem 3. If ' n > F(m,t) and k = U(t), then

st(K, k) = <m> .
t

Proof. Consider the complete graph K(m,t) whose vertices are all the 7-element subsets of {1,2,...,m}, in which the
edge SS’ has colour S US’. Then this colouring of K(m,?) is k-bounded, since k > U(t). At the same time, there is no
polychromatic K, since n > F(m,t). [

Corollary 4. If k > 15, then (for a positive constant c)
st(Kn k) = en™?

and, if 3 <k < 15, then
st(Ky, k) > en'.

4
Proof. If k > 15=U(3), then we can choose =3 in Theorem 3. For # =3, any choice of m with n > em' 312 = cm?

assures that we have n > F(m,3). We may choose m = [(c;”2 — s)nl'lz], for a small positive &. Such a value of m yields

(’3”) > cn’?, thus sr(K,, k) = cn®? (for a positive constant ¢). For k >3 = U(2), we proceed analogously, taking ¢ = 2
and m satisfying n > com®?, yielding st(K,,k) = (7) = en*?. O

We remark that using [6], in which F(m,3) is evaluated exactly as F(m,3)= |m(m — 1)/6], we find, for k > 15, that
sr(Ky, k) = (\/6 — e) 2.

Addendum
We have just learned that similar results were obtained in [13]. Our upper bounds are slightly better than the corresponding
bounds of [13]; this improvement is particularly pronounced for small values of k. (We note that our upper bounds
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correspond to the lower bounds in [13], and vice versa, due to a dual formulation of the problem.) On the other hand,
our lower bounds are not as good as those of [13], where random graphs are used to obtain a lower bound of the

order n* divided by a polylogarithmic factor. However, our lower bounds are constructive, and also apply to small
values of n.
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