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Abstract

The sub-Ramsey number sr(Kn; k) is the smallest integer m such that in any edge-colouring of Km which uses every
colour at most k times some subgraph Kn has all edges of di2erent colours. It was known that, for a 5xed k, the function
sr(Kn; k) is O(n3) and 8(n). We improve these bounds to O(n2) and 8(n3=2) (slightly less for small values of k).
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1. Background and notation

An edge-colouring of a graph G (i.e., a mapping of E(G) to a set of ‘colours’) is k-bounded if each colour is used at
most k times. If k = 1, i.e., if all edges of G have di2erent colours, we say that G is polychromatic. The sub-Ramsey
number sr(G; k) is the smallest integer m such that each k-bounded edge-colouring of Km contains a polychromatic
subgraph isomorphic to G. Recall that the Ramsey number r(G; k) is the smallest integer m such that each edge-colouring
of Km with k colours contains a monochromatic (i.e., all edges coloured with the same colour) subgraph isomorphic to G.
Thus sub-Ramsey numbers are in this sense dual to Ramsey numbers, and it is easy to see that each sr(G; k)6 r(G; k),
and hence each sr(G; k) is guaranteed to be 5nite [2].

Galvin appears to be the 5rst person to suggest investigating sr(G; k) [9]. In [2] it is shown that sr(Kn; k) is O(kn3)
and 8(kn). In [12] the authors show that sr(Pn; k) = sr(Cn; k) = n when n is large enough with respect to k. (Pn and
Cn denote respectively the path and the cycle with n vertices.) Results on sub-Ramsey numbers of stars can be found in
[5,10,11]. Related questions on k-bounded edge-colourings without polychromatic subgraphs which are not necessarily of
5xed size (such as polychromatic Hamilton paths or cycles) are investigated in [1,4,8,12,14].

In this note we improve both the upper bound and the lower bound for sr(Kn; k). In particular we prove that sr(Kn; k)
is O(kn2) (better than O(kn3)) and, for k greater than or equal to 15, sr(Kn; k) is 8(n3=2) (better than 8(kn) for any
5xed k). The lower bound for k between 3 and 15 is 8(n4=3). (We have no improvement of the lower bound when k=2.)

2. The upper bound

Theorem 1. Let n¿ 3 and k¿ 2 be positive integers. Then

sr(Kn; k)6 (2n− 3)(n− 2)(k − 1) + 3:
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Proof. Assume that Km admits a good edge-colouring, i.e., a k-bounded edge-colouring in which no subgraph isomorphic
to Kn is polychromatic. We shall show that m6 (2n− 3)(n− 2)(k − 1) + 2.
Fix a good edge-colouring of Km, with colours 1; 2; : : : ; r, and denote by di the number of edges coloured i. Note that

each di6 k. Let W denote the number of unordered pairs of edges of Km coloured by the same colour. We claim that
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Consider now a subgraph Q of Km isomorphic to Kq, for some integer q¿n. We claim that Q must have many pairs of
edges of the same colour, otherwise some subgraph of Q isomorphic to Kn would be polychromatic. Speci5cally, denote
by T (q; n) the maximum number of edges of a graph with q vertices which does not have a complete subgraph of n
vertices. (The value of T (q; n) is known by Turan’s theorem [3].) If Q obtained more than T (q; n) colours then taking
one edge of each colour would result in a graph G with q vertices and more than T (q; n) edges, which therefore would
have to contain a subgraph isomorphic to Kn. This contradicts the fact that we have a good edge-colouring. Therefore,
Q is coloured by at most T (q; n) colours, say, the colours 1; 2; : : : ; t, where t6 T (q; n). Denote by w(Q) the number of
unordered pairs of edges of Q which obtain the same colour, and by di(Q) the number of edges of Q of colour i; i6 t.
We claim that
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Let Q denote the set of all subgraphs of Km isomorphic to Kq. Since each pair of edges of Km belongs to
(
m−3
q−3

)
or(

m−4
q−4

)
graphs in Q, depending on whether the two edges are adjacent or not, we see that MW ¿

∑
Q∈Q w(Q); where
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Suppose 5rst that
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)
. This inequality implies that m− 36 q− 3 and thus m6 q. Therefore, our desired

conclusion m6 (2n−3)(n−2)(k−1)+2 will follow as long as we choose q not too big. Let us in fact choose q=2n−2.

In the remaining case,
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Since (n− 1) divides q,
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[3], and then, using q = 2n− 2, we have(
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Therefore, we obtain from (3) that
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(q− 3)!(m− q)!
· m(m− 1)

2
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2
¿
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· q
2
:

Simplifying the last inequality we reach the conclusion that

m− 26 (k − 1)(q− 1)(q− 2)=2

which is equivalent to m6 (2n− 3)(n− 2)(k − 1) + 2.

3. The lower bound

Let m and t be positive integers.
Let U (t) denote the maximum number of ways a set can be written as a union of two t-element subsets. For instance,

U (2) = 3 because the set {1; 2; 3; 4} can be written as {1; 2} ∪ {3; 4}, or {1; 3} ∪ {2; 4}, or {1; 4} ∪ {2; 3}, and no set
can be written as the union of two 2-element subsets in four di2erent ways. It is easy to check also that U (3) = 15.

Let F(m; t) be the maximum size of a union free family of t-element subsets of {1; 2; : : : ; m}. (A family of sets Si; i∈ I
is union free if all the

(
|I|
2

)
unions Si ∪ Sj , Si; Sj ∈F , are distinct.)

The following result of Frankl and FOuredi gives the asymptotic behaviour of F(m; t):

Theorem 2 (Frankl and FOuredi [7]). Let t be a positive integer.
There exist positive constants ct ; c′t so that

c′tm
� 4t
3 �=26F(m; t)6 ctm

� 4t
3 �=2:

The relevance of the functions U (t) and F(m; t) to our problem arises from the following fact:

Theorem 3. If n¿F(m; t) and k¿U (t), then

sr(Kn; k)¿

(
m

t

)
:

Proof. Consider the complete graph K(m; t) whose vertices are all the t-element subsets of {1; 2; : : : ; m}, in which the
edge SS′ has colour S ∪ S′. Then this colouring of K(m; t) is k-bounded, since k¿U (t). At the same time, there is no
polychromatic Kn, since n¿F(m; t).

Corollary 4. If k¿ 15, then ( for a positive constant c)

sr(Kn; k)¿ cn3=2

and, if 36 k ¡ 15, then

sr(Kn; k)¿ cn4=3:

Proof. If k¿ 15 =U (3), then we can choose t = 3 in Theorem 3. For t = 3, any choice of m with n¿ctm� 4t
3 �=2 = c3m2

assures that we have n¿F(m; 3). We may choose m= 	(c−1=2
3 − �)n1=2
, for a small positive �. Such a value of m yields(m

3

)
¿ cn3=2, thus sr(Kn; k)¿ cn3=2 (for a positive constant c). For k¿ 3 = U (2), we proceed analogously, taking t = 2

and m satisfying n¿c2m3=2, yielding sr(Kn; k)¿
(m
3

)
¿ cn4=3.

We remark that using [6], in which F(m; 3) is evaluated exactly as F(m; 3) = �m(m− 1)=6�, we 5nd, for k¿ 15, that

sr(Kn; k)¿
(√

6 − �
)
n3=2:

Addendum
We have just learned that similar results were obtained in [13]. Our upper bounds are slightly better than the corresponding
bounds of [13]; this improvement is particularly pronounced for small values of k. (We note that our upper bounds



322 P. Hell, J.J. Montellano-Ballesteros /Discrete Mathematics 285 (2004) 319–322

correspond to the lower bounds in [13], and vice versa, due to a dual formulation of the problem.) On the other hand,
our lower bounds are not as good as those of [13], where random graphs are used to obtain a lower bound of the
order n2 divided by a polylogarithmic factor. However, our lower bounds are constructive, and also apply to small
values of n.
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