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I. INTRODUCTION AND BACKGROUND 

Much attention has centered recently on Birkhoff interpolation, which can 
be described as follows. Let E = (e&Z: yCO be a matrix of zeros and ones, 
with exactly n -t- 1 ones. (For the sake of convenience, our notation will 
differ slightly from the usual.) Let x0 < x1 < ... x~+~ be interpolation nodes. 
Without loss of generality, it is possible to specify two of the nodes, and we set 
x, = - I ) .Y(;+l = 1. Denote by P, the set of algebraic polynomials of degree 
< n. Let X =:= (.x1 , s2 ,..., x,.), and suppose that the system of equations 

P’j’(Xi) = cij for eij=l, p(x) = i h,X”, (1) 
II =” 

has a unique solution for all C<j . Then E is said to be X-poised. Since we seek 
a unique solution, it is clear that we need only consider the homogeneous 
case, cij x 0. Since p(x) = 0 is always a solution in this case, E will be X- 
poised if p(x) = 0 is the only polynomial in P, which annihilates E (i.e.. 
satisfies the zero data). If E is X-poised for all X, then E is said to be poised, 
whereas if for some A’, E is X-poised and for others it is not, then E is said 
to be conditionally poised. (in the literature, the term nonpoised has generally 
been used for matrices which are not poised, without making a distinction 
between those that are conditionally poised and those that are not X-poised 
for any X. The latter type, however, is easily distinguished: they fail to 
satisfy the Pblya conditions (see below), [4, 201). Examples of poised matrices 
include Lagrange matrices, where eij = 0 for j >, 1, i = 0, l,..,, k !- 1. 
and Hermite matrices, where each row begins with a single sequence of ones 
followed by a single sequence of zeros. Tn the latter case, each row is said to 
contain Hermite data. 
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The intriguing problem of Birkhoff interpolation is to find a characteriza- 
tion of poised matrices. As of now, no such characterization has been found, 
and the possibility of obtaining one seems remote. As a result, attention has 
turned to finding classes of poised and nonpoised matrices [l, 2, 6-9, 12, 13, 
18, 221. We mention just two examples of these types of studies, which will 
be needed in this paper. 

Let mj = CrTt eij , j == 0, I ,. .., n, and M, =- ci=, mj , r = 0, 1 ,..., n. E 
satisfies the Polya conditions if IV,. > r + 1, r = 0, I,..., n. The Polya condi- 
tions are known to be a necessary, but not sufficient condition for the poised- 
ness of E PO]. 

A maximal sequence of ones in row i of E, beginning in column j, is said to 
be supported if there exist i, < i, iz > i, j, <j, j, <j, such that eilj, = 
eiZjZ = 1. Such a sequence is odd(even) if if consists of an odd (even) number of 
ones. The following results illustrate the importance of this concept. 

THEOREM A. [l]. If E satisfies the Polya conditions and has no odd 
supported sequences, then E is poised. 

THEOREM B [6, 71. If AI, > r -I- 2, r = 0, I,..., n - 1 and ifsome row of E 
has exactly one odd supported sequence, then E is conditionally poised. 

Many other examples of nonpoised matrices are given in [2, 8, 9, 13, 18,221. 
Although new classes continue to be found, the basic problem remains 
unsolved. It may be useful, therefore, to investigate other aspects of the 
subject. For example, very little has been done on conditionally poised 
matrices. There is some work on lacunary interpolation (known as O-2, 
O-1-3, etc.) [19, 251 and on symmetric interpolation [24, 281. In these cases, 
however, only certain configurations of nodes and derivatives are considered. 
The purpose of this paper is to study conditionally poised matrices in greater 
generality. 

2. FURTHER RESULTS AND EXAMPLES 

One important result on conditionally poised matrices is due to D. 
Ferguson. In this setting, complex interpolation nodes are allowed. 

THEOREM C [4]. If E is conditionally poised, then the set of vectors, X, 
for which E is not X-poised is a closed, nowhere dense set in complex k-space. 

Because of its generality, one shouldn’t expect this theorem to yield informa- 
tion about the set of vectors for which a particular matrix is not X-poised. 
But it does give a clue to what one may expect; that is, it would not be sur- 
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prising to find what one may call “intervals of poisedness.” We illustrate 
with some simple examples. 

EXAMPLE 1. Let 

It is easily seen that El is X-poised if and only if x1 # 0, i.e., if and only if 
x1 E (-1, 0) u (0, 1). 

EXAMPLE 2. Let 
,I 0 0 0 
‘0 1 0 01 

I-1’ ~ 0100 
110 0 0 

A calculation of the determinant of the linear system shows that E, is X- 
poised unless xlxZ = - l/3. Hence, if x1 , x2 E (- I/ d/3, l/ d3) or x1 , x2 $ 
[-I/ d/3, l/ ~‘51, then E is X-poised. Moreover, if x2 < l/3 or x1 > -l/3, 
then again Ez is X-poised. Our results in Section 3 will help us understand 
these examples. 

3. THE MAIN RESULT 

We consider the following class of matrices. Let rows 0 and k + I be 
arbitrary, except for a one in column 0. Let row i, i = 1, 2,..., k, begin with 
a zero, followed by a sequence of ones, and then by a sequence of zeros. A 
typical matrix would thus be 

/10010 ‘I 
~01100 

011100. 
0 1 0 0 0 
11001 

Suppose also that E satisfies the Polya conditions, and let Ii be the number of 
ones in row i, i = 0, l,..., k + 1. It follows from Theorems A and B and 
[l, p. 2311 that E is poised if Ii is even, i = 1, 2,..., k, and E is conditionally 
poised if some 1, , 1 < i < k, is odd. Suppose the latter is the case and that 
Xis a fixed set of nodes. Let p E P, annihilate E and let 4 = p’. Then q E P,-, 
and St1 q = p(l) - p( - 1) = 0. 
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Now let 

(4 

be any quadrature formula, exact for P,-, , with aj > 0, j = 1, 2 ,..., N. Let 
y = {Y, 3 y2 ,..., yN}, Ii = ( yi , Y~+~), j = I, 2 ,..., N - 1, and let vi = Eli , 
j = 1, 2,..., N - 1, where the sum extends over those indices i for which 
Xi E Ij a 

DEFINITION. (E, X) is evenly distributed with respect to Y if 

vj is even,,j = I, 2 ,..., N - I, and (3) 

if x, E X n Y, then I, is even. (4) 

THEOREM 1. Suppose there exists a quadrature formula (2) exact for P,-, , 
with a, > 0, j = 1, 2 ,..., N, such that (E, X) is evenly distributed with respect 
to Y. Then E is X-poised. 

ProoJ We show first that if q = p’ is not identically 0, then q can’t 
have any zeros in (-1, I), other than the ones specified by E. This is clear if 
rows 0 and k + 1 consist of Hermite data only, since then q will have n - 1 
zeros specified by E (counting multiplicities). In the more general case, we 
invoke the Budan-Fourier Theorem [14], used in the following form: If q is a 
polynomial of exact degree n - 1, then 

Z[q; (- 1, I)] + S+((-I)’ 9(i)(--l))?:; + S+(q(i’(l))y$ ,< n - I. (5) 

Here Z[q; (-1, l)] is the number of zeros of q in (-1, I), counting multi- 
plicities, and S+(b$!:t is the maximal number of sign changes in the sequence 
b,, , b, ?..., b,-, which can be obtained by replacing zero terms by terms of 
arbitrary sign. Each one in row 0 and k + 1 corresponds to a zero of some 
derivative of q. It may easily be seen that every zero term in the sequence 
b, , b, ,...> b,_, contributes at least one variation in sign to S+(bi)&’ . Now q 
annihilates E’, which is the matrix E with the first column deleted. Since 
there are a total of n - 1 conditions specified by E’, each one contributing 
at least one to the left-hand side of (5), q can have no other zeros in (- 1, I). 
In particular, q can change sign only at the points of X. 

We next show that Y - X # a. Note first that we must have 2N - 1 > 
n - 1, since 2N - 1 is the maximal degree of precision possible in a quadra- 
ture fo.rmula based on N nodes [23, p. 1361. Now suppose Y C X. Then, 
since (& X) is evenly distributed with respect to Y, q must have a zero of even 



40 ELI PASSOW 

degree at ~9, ?,j =z 1, 2,..., N. But this yields a total of at least 2fi ’ II zeros for 
q, which implies that (I 1:: 0, so that E is X-poised. 

Hence, we can suppose that there exists yi $ X, so that q(yJ :+= 0. Assume, 
without loss of generality, that q/(~*~) ;- 0. Since (E, X) is evenly distributed 
with respect to Y, (/ changes sign an even number of times in I, ,,j I, 2,..., 
N - I, while if j‘j E X n Y, then y does not change sign at y, . Thus q(yJ -2 0 
for all S, and q(v,) ;:. 0. We obtain 0 =- J”T1 q =: xj”;, aj q(‘j) > ai q(yj) ;- 0. 
It follows that 4 :- 0, so that E is X-poised. 1 

COROLLARY 1. If all xi’s lie outside [yl , yN], then E is X-poised. 

We can also obtain a special case of Theorem A. 

COROLLARY 2. If Ii is even, i = 1, 2,..., k, (so that there are no odd 
sequences), then E is poised. 

To illustrate our results, we return to our examples of Section 2. 

EXAMPLE 1. For El , we have q E PI . We use Gaussian quadrature [5, 
p. 3901, .I-'1 4 = 2qm exact for P, . Clearly, if x, # 0, then I$ is X-poised. 

EXAMPLE 2. For E, , we have q E P, . Using Gaussian quadrature, we 
obtain ST-I q y= q( - I /I/T) + q(1 / v’3), exact for P,. Here Y = { - l/ d??,l/ 2/3}, 
so that ifx,, x2 E (-l/d/5, l/q/s) or x1, x2 4 [-l/4/3, l/dY], then (I?,, X) is 
evenly distributed with respect to Y. Hence, E, is X-poised. We can, however, 
go a step further. The strength of Theorem 1 is that it can be used with any 
quadrature formula with positive coefficients. Thus, if we apply Radau 
quadrature [5, p. 4061, J?1 (I =- 1/2q(--1) + 3/2q(1/3), exact for P, , we 
obtain Y = {- 1, l/3}, so that x2 < l/3 implies Ez is X-poised. Similarly, 
since Jfml q = 3/2q(- l/3) + I /2q(l), we see that E2 is X-poised if x1 > - 113. 
These results are in agreement with our earlier observations. 

4. REMARKS AND EXTENTIONS 

1. A class of quadrature formulae with positive coefficients, based on N 
nodes and exact for P,,-, , has been obtained in [17]. Many other such 
formulae are known [3], such as Newton-Coates for N < 8 [23, p. 1131 and 
Lobatto quadrature [5, p. 4091. Other results connecting Birkhoff inter- 
polation and quadrature formulae (in different contexts) include [I 1, 16, 211. 

2. It is tempting to think that the converse of Theorem 1 is true; i.e., if E is 
X-poised then there exists some quadrature formula with positive coefficients, 
CL ajf(Yi), exact for P,-I , such that (E, X) is evenly distributed with 
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respect to Y. This can be demonstrated for the matrix Ez by a calculation, and 
the conjecture seems plausible in general. 

3. The ideas of Theorem 1 can also be used to show that certain matrices 
are not X-poised, when the interpolation takes place at the nodes of an 
appropriate quadrature formula. Specifically, we have the following: 

THE:OREM 2. Let Y = {yl , yd ,..., y,, 1 be the nodes of a quadrature 
formu,la (not necessarily with positive coeficients) which is exact for I’,-, . 
Let X == (- 1, 1) u Y and suppose that E is an (N f 2) x (n + 1) matrix 
in the class of Section 3 which has Hermite data in rows 0 and N -I 1. Then E 
is not X-poised. 

Prosof. As in the proof of Theorem I, we have n < 2N, so that at least 
one interior row of E has just one 1. By Theorem B, E is conditionally 
poised. Now let q(x) = (x + 1)Zo-1(~ - l)zN-l-l & (X - y#i, and let 
p(x) =:: SF1 q(t) dt. Then p E P, ,p(-1) = 0, and St1 q = CL, aj q(yj) = 0, 
so that p( I) : 0. Thus,p is a non-trivial polynomial in P, which annihilates E, 
so that E is not X-poised. 1 

As a special case of Theorem 2, let Y be the set of zeros of the Legendre 
polynomial of degree N and let n = 2N. Let X = {- 1, l} u Y and let E 
satisfy the conditions of Theorem 2. Then E is not X-poised. For example, 

I!110 
‘010 j 

E== ‘d; ; 01 

0 1 1 
1100 

is not X-poised for X = (-1, I} u {y, , y, , y, , y4}, where the y’s are the 
zeros of the Legendre polynomial of degree 4. 

4. We noted that Ez is X-poised unless xlxZ = -l/3. In general, to obtain 
the algebraic equation for which a matrix is nonpoised requires evaluating a 
determinant. If, however, rows 0 and k + 1 contain Hermite data, then this 
equation may be obtained simply, since 

q(.y) _: (.y + ] y-1 (x - ] pt1-1 li 
n -1 

g (x - X$’ = c (-I){ uixn -l-i: 
i=O 

where (~~1 are the elementary symmetric functions based on - I, x . . 
xlC , 1, counting multiplicities. Since E is not X-poised if and only if J!: ,“” d: 
we obtain the following result. 



42 ELI PASSOW 

THEOREM 3. Suppose E contains Hermite data in rows 0 and k : 1. Then 
E is not X-poised if and only if 

5. We saw in the case of E, that additional information can be obtained 
about the poisedness of a matrix by considering various quadrature formulae. 
Similarly, quadrature formulae with multiple nodes can also be useful, 
although the arguments become more delicate and a general theory remains 
to be developed. We illustrate with an example. Let 

Here q E P, , so that we can use Gaussian quadrature based on the four nodes 
-.86, -.34, .34, .86 (rounded to 2 places). In particular, if x1 , sz $ [-.87, .87], 
then E is X-poised. We now consider the quadrature formula 

1 ’ cl = &7(Yl) + A,d(Yl) + A,q”(y,) + B,q( y2) + B,q’(y,) ~-~ B,q”( )‘.‘), 
u-1 

(6) 

which is exact for P, [24, 26, 271. The nodes and coefficients have been 
calculated [24] and been determined to be y, = -.63, y2 = .63, B,, -: A,, , 
B, = -A,, B, = A, , where Ai > 0, i == 0, 1, 2. Now suppose x1 <: y1 , 
.Q > yz , and let q(x) = c(x - x#o - x.J3, where c < 0. It is easily seen 
that q(yl) > 0, q( yJ > 0, q’( y,) > 0, q’(yJ < 0. Moreover, a calculation 
shows that q”(y,) > 0 and y”(y,) > 0. Hence, each term in the quadrature 
formula is positive, so that J-i q > 0, and E is X-poised. A similar, but more 
subtle calculation yields the same result if x1 < y1 , x2 < y1 , or or ;:- yz , 
x2 > yz (here the magnitudes of the coefficients become important, not just 
the signs). We thus see that E is X-poised if x1 , x, 4 [-.63, .63], which is a 
substantial improvement over the result obtained using simple Gaussian 
quadrature. 

A similar calculation yields analogous results for the matrix 

100000 
OII1llo, 

11 011111 
~100000 c 
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It thus seems that quadrature formulae with multiple nodes can be of use in 
determining X-poisedness. In order to apply this method to more general 
cases, however, a good deal of analysis of such formulae is still needed. In 
particular, knowledge of the signs and magnitudes of the coefficients will 
likely be important factors. In connection with this, see [15, p. 4291. 
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