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a b s t r a c t

If S = ⟨d1, . . . , dν⟩ is a numerical semigroup, we call the ring C[S] = C[td1 , . . . , tdν ] the
semigroup ring of S. We study the ring of differential operators on C[S], and its associated
graded in the filtration induced by the order of the differential operators.We find that these
are easy to describe if S is a so-called Arf semigroup. If I is an ideal in C[S] that is generated
by monomials, we also give some results on Der(I, I) (the set of derivations which map I
into I).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the ring D(C[S]) of differential operators of a semigroup ring C[S] = C[td1 , . . . , tdν ], where C is the
complex field, is a subring ofD(C[t, t−1

]), the ring of differential operators of the Laurent polynomialsC[t, t−1
].D(C[t, t−1

])
is a non-commutativeC[t, t−1

]-algebra generated by ∂ , the usual derivation d/dt . It is also known thatD(C[S]) is aC-algebra
finitely generated and a set of generators was found independently in [4,5]. The ring D(C[S]) inherits a grading from the
ring of differential operators of C[t, t−1

], where deg(ts) = s and deg(∂) = −1. Its associated graded is a commutative
Noetherian subring of the ring of polynomials in two indeterminates C[t, y] and it is a semigroup ring C[Σ], whereΣ ⊆ N2

is a semigroup, with |N2
\ Σ | finite. It follows that D(C[S]) is right and left Noetherian.

In this paper we study that commutative associated ring C[Σ], in terms of the starting numerical semigroup S. Many
properties of the semigroup Σ , including the minimal set of generators, can be predicted looking at S. If S is of maximal
embedding dimension, then Σ behaves well with respect to the blowup of the maximal ideal. If, moreover, S is an Arf
semigroup, then we show how Σ , and the ring C[Σ] as well, is completely determined by S. In Section 4 we characterize
the irreducible ideals of Σ , i.e. the irreducible monomial ideals of C[Σ] and determine the number of components for a
principal monomial ideal as irredundant intersection of irreducible ideals. Finally in Section 5 we observe that, if I is a
monomial ideal of C[S], then Der(I, I), the C[S]-module of derivations which map I into I is isomorphic to the overring I : I
of C[S]. Thus we study the overrings of this form in relation with the monomial ideals I which realize them.

2. Numerical semigroups

We fix for the whole paper the following notation. S is a numerical semigroup, i.e. a subsemigroup of N, with zero and
with finite complement H(S) = N \ S in N. The numerical semigroup generated by d1, . . . , dν ∈ N is S = ⟨d1, . . . , dν⟩ =

{
ν

i=1 nidi; ni ∈ N}.M = S \ {0} is themaximal ideal of S, e = e(S) is themultiplicity of S, that is the smallest positive integer
of S, g = g(S) is the Frobenius number of S, that is the greatest integer which does not belong to S, n = n(S) is the number
of elements of S smaller of g . Thus we have S = {0 = s0 < s1 = e < s2 · · · < sn−1 < sn = g + 1, g + 2, . . .}.
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A relative ideal of S is a nonempty subset I of Z (which is the quotient group of S) such that I + S ⊆ I and I + s ⊆ S, for
some s ∈ S. A relative ideal which is contained in S is an integral ideal of S.

If I , J are relative ideals of S, then the following is a relative ideal too: I − J = {z ∈ Z | z + J ⊆ I}.
If I is a relative ideal of S, then I − I is the biggest semigroup T such that I is an integral ideal of T . There is a chain of

semigroups S ⊆ (I − I) ⊆ (2I − 2I) ⊆ · · · ⊆ N, which stabilizes on a semigroup B(I) = (hI − hI) for h >> 0, called the
blowup of I . Setting S0 = S, S1 = B(M) and Si+1 = B(Mi), where Mi is the maximal ideal of Si, the multiplicity sequence of
S is (e0, e1, e2, . . .), where ei = e(Si). If z ∈ Z, set S(z) = {s ∈ S; s ≥ z}, which is an ideal of S. If, with the notation above,
x = si, we denote for simplicity S(si) with Ii.
Definitions. For each z ∈ Z, we define the valency of z with respect to a semigroup S as valS(z) = |{s ∈ S; z + s /∈ S}| (in
[4] this numerical function is called σ ). Let Vi(S) = {a ∈ Z; valS(a) ≤ i}. When there is no ambiguity about the semigroup
S, we will write simply val(z) and Vi respectively.

Lemma 2.1. (a) S = V0.
(b) S − M = V1.
(c) For each z ∈ Z, val(−z) = val(z) + z.
(d) Ii − Ii ⊆ Vi.
(e) If a ∈ N, then val(a) ≤ n.
(f) Vi is a relative ideal of S.

Proof. (a) and (b) follow immediately from the definitions.
(c) is given in [4, Proposition 2], [7, Lemma 3.3] and [5].
(d): Let a ∈ Ii − Ii. Then a + sj ∈ Ii ⊆ S if j ≥ i, so at most {a + s0, a + s1, . . . , a + si−1} are not in S.
(e): By (d), In − In = N ⊆ Vn, so val(a) ≤ n for each a ∈ N.
(f): Assume a ∈ Vi and s ∈ S, then val(a + s) ≤ i. In fact if (a + s) + b /∈ S, with b ∈ S, also a + (s + b) /∈ S, with s + b ∈ S.
Moreover by (c) Vi has a minimumm ≤ 0. Thus s + Vi ⊆ S, for some s ∈ S. Take for example s = g + 1 − m. �

We denote by T (S) the set {x ∈ Z; x /∈ S, x + M ⊆ M}, called in [8] the set of pseudo-Frobenius numbers. With the
notation above, T (S) = V1 \ V0. The cardinality of T (S) is the type t of the semigroup S. It is well known that t ≤ e − 1
and t = e − 1 if and only if the numerical semigroup S is of maximal embedding dimension, i.e. when the number ν of
generators equals the multiplicity e, i.e. when |M \2M| = e, cf. e.g. [8, Corollaries 2.23 and 3.2, 3)]. It is also well known that
S is of maximal embedding dimension if and only ifM − e is a semigroup (cf. e.g. [8, Proposition 3.12]). In this case we have
S1 = M − e. Setting ±H(S) = {±h; h ∈ N \ S}, we have

Lemma 2.2. Let S be a numerical semigroup of maximal embedding dimension. Then valS1(z) = valS(z)−1, for each z ∈ ±H(S).

Proof. Let z ∈ ±H(S). Denote by ΩS(z) (respectively ΩS1(z)) the set of pairs (s, s + z), with s ∈ S and s + z /∈ S (resp.
the set of pairs (s1, s1 + z), with s1 ∈ S1 and s1 + z /∈ S1). By definition of valency, valS(z) is the cardinality of ΩS(z) and
valS1(z) is the cardinality of ΩS1(z). If (s, s + z) ∈ ΩS(z), with s ≠ 0, then (s − e, s − e + z) ∈ ΩS1(z) and, conversely, if
(s1, s1 + z) ∈ ΩS1(z), then (s1 + e, s1 + e+ z) ∈ ΩS(z). Thus there is a one-to-one correspondence between ΩS(z) \ {(0, z)}
and ΩS1(z) and the conclusion follows. �

An Arf semigroup is a numerical semigroup S such that Ii − si is a semigroup for each i ≥ 0. Thus, if S is Arf, then M − e
is a semigroup and S is of maximal embedding dimension. Given an Arf semigroup S = {0 = s0 < s1 < s2 · · ·}, the
multiplicity sequence of S is {s1 − s0, s2 − s1, s3 − s2, . . .}. It follows that the multiplicity sequence e0, e1, . . . of an Arf
semigroup is such that for all i, ei =

k
h=1 ei+h, for some k ≥ 1. Conversely, any sequence of natural numbers e0, e1, . . .

such that en = 1, for n ≫ 0, and, for all i, ei =
k

h=1 ei+h, for some k ≥ 1, is the multiplicity sequence of an Arf semigroup
S = {0, e0, e0 + e1, e0 + e1 + e2, . . .}, [1].

Lemma 2.3. If S is an Arf semigroup, then Ii − Ii = Vi ∩ N.

Proof. By Lemma 2.1(d), Ii− Ii ⊆ Vi∩N. Conversely let a ∈ N and observe that, since S is Arf, if a+si ∈ S, then also a+sj ∈ S
for each j ≥ i. In fact a + si ∈ S if and only if a + si ∈ Ii if and only if a ∈ Ii − si. If j ≥ i, since a, sj − si ∈ Ii − si, which is a
semigroup, then a + sj − si ∈ Ii − si, so that a + sj ∈ S. Thus val(a) = i if and only if a + sj ∈ S for j ≥ i. �

3. Differential operators on numerical semigroup rings

Let R be a commutative C-algebra. The ring of differential operators D(R) of R is inductively defined in the following way.
Setting

D0(R) = {Θa; a ∈ R}
Di(R) = {Θ ∈ HomC(R, R); [Θ,D0(R)] ⊆ Di−1(R)}

where Θa: R → R is the multiplication map r → ar , and [Θ, Φ] = ΘΦ − ΦΘ is the commutator, the ring of differential
operators is

D(R) =


i≥0

Di(R).
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This is a filtered ring, Di(R)Dj(R) ⊆ Di+j(R) for all i and j, and Di(R) ⊆ Di+1(R), and its associated graded is gr(D(R)) =

⊕i≥0Di(R)/Di−1(R), where D−1(R) = 0.
The module of derivations Der(R) is {Θ ∈ Homk(R, R); Θ(ab) = Θ(a)b + aΘ(b), a, b ∈ R} and it is well known that

Der(R) is {Θ ∈ D1(R); Θ(1) = 0}.
The rings of differential operators of semigroup rings have been studied by e.g. Perkins [7], Eriksen [4] and Eriksson [5]. It

is shown that the ring of differential operators of a semigroup ring C[S] is a subring of D(C[t, t−1
]) = C[t, t−1

]⟨∂⟩. The ring
of differential operators of a semigroup ring inherits a grading from D(C[t, t−1

]), where deg(ts) = s and deg(∂) = −1. Its
associated graded is a commutative Noetherian subring of the ring of polynomials C[t, y] and it is a semigroup ring C[Σ],
whereΣ ⊆ N2 is a semigroup, with |N2

\Σ | finite. More precisely, by [4, Lemma 5] or by [5] and Lemma 2.1(a), (c), it follows
that:

Theorem 3.1 ([4,5]). If S = ⟨d1, . . . , dν⟩ is a numerical semigroup and C[S] its semigroup ring, then gr(D(C[S])) is a C-
subalgebra of C[t, y] minimally generated by the monomials

{td1 , . . . , tdν , yd1 , . . . , ydν } ∪ {ty} ∪ {tval(−h)yval(h)
; h ∈ ±H(S)}.

Thus gr(D(C[S])) is a semigroup ring C[Σ], where Σ is a subsemigroup of N2 minimally generated by

(d1, 0), . . . , (dν, 0), (0, d1), . . . , (0, dν), (1, 1), {(val(−h), val(h)); h ∈ ±H(S)}.

Wewill study this semigroupΣ . For all this section, S = ⟨d1, . . . , dν⟩ is a numerical semigroup and gr(D(C[S])) = C[Σ].
If z ∈ Z, denote by ∆z the diagonal {(a, b) ∈ N2

; a − b = z}. Observing the minimal set of generators of Σ , we can
immediately say that all the diagonals ∆s, with s ∈ ±S are contained in Σ (here, as above, we set ±S = {±s; s ∈ S}). On
the other hand the diagonals ∆h, with h ∈ ±H(S) are not contained in Σ in general. In the example after Proposition 3.5
below, for example the elements (1, 0), (2, 1), (3, 2) of ∆1 are not in Σ .

Since H(S) is finite, Σ is finitely generated and, setting |H(S)| = δ, the number of minimal generators of Σ is
2ν + 1 + 2δ. Thus Σ is an affine monoid of rank 2, and gp(Σ), the group generated by Σ is Z2. The normalization of
Σ , Σ̄ = {α ∈ gp(Σ);mα ∈ Σ for somem ∈ N,m ≥ 1} is N2. We denote by Σ+ the maximal ideal Σ \ {(0, 0)}, and we set
T (Σ) = {τ ∈ gp(Σ); τ /∈ Σ, τ + Σ+ ⊆ Σ+}.

Observing that, if z ∈ Z and (val(−z), val(z)) = (a, b), then (val(z), val(−z)) = (b, a) (cf. Lemma 2.1 (c)), we get for Σ

the following symmetric property:

Corollary 3.2 ([4,5]). If a, b ∈ N, then (a, b) ∈ Σ if and only if (b, a) ∈ Σ .

Lemma 3.3. Let S be a numerical semigroup. Let a, b ∈ N. Then (a, b) ∈ Σ if and only if a − b ∈ Vb.

Proof. Note first that:
(i) If (a, b) ∈ Σ , then (a, b) ∈ ∆z , with either z ∈ ±S or z ∈ ±H(S).
(ii) If (a, b) ∈ ∆h, with h ∈ H(S), then (a, b) = (val(−h), val(h)) + c(1, 1), with c = b − val(h).
We already observed that Σ contains all the diagonals ∆s, for s ∈ ±S. If s ∈ S, then for each element (a, b) ∈ ∆s

(respectively (a, b) ∈ ∆−s), we get val(a − b) = val(s) = 0 and 0 ≤ b (respectively val(a − b) = val(−s) = val(s) + s =

0 + s = s and s ≤ b). Thus in both cases val(a − b) ≤ b, i.e. a − b ∈ Vb.
Further, if h ∈ ±H(S), then (val(−h), val(h)) = (val(h) + h, val(h)) ∈ ∆h is a minimal generator of Σ . Since (1, 1) ∈ Σ ,

it follows that an element (a, b) of ∆h is in Σ if and only if b − val(h) ≥ 0, i.e. b ≥ val(h) = val(a − b), i.e. a − b ∈ Vb. �

Definition LetΓ be a subsemigroup ofN2, and let γ ∈ Γ . The Apery set ofΓ with respect to γ is Apγ (Γ ) = {α ∈ Γ ; α−γ /∈
Γ }.

Lemma 3.4. Ap(1,1)(Σ) = {(0, s); s ∈ S} ∪ {(s, 0); s ∈ S} ∪ {(val(−h), val(h)); h ∈ ±H(S)}.

Proof. Let (a, b) ∈ Ap(1,1)(Σ). We can suppose that a ≥ b due to the symmetry of Σ . It is clear that (s, 0) ∈ Ap(1,1)(Σ)
if and only if s ∈ S. Suppose h ∈ H(S). We know that α = (h + val(h), val(h)) ∈ ∆h is a minimal generator of Σ . Thus
α ∈ Ap(1,1)(Σ) and no other element σ of ∆h ∩ Σ is in Ap(1,1)(Σ), because σ − (1, 1) ∈ Σ . �

Proposition 3.5. Let τ ∈ Z2. Then the following conditions are equivalent:
(1) τ ∈ T (Σ).
(2) τ + (1, 1) is a minimal generator of Σ of the form (val(−h), val(h)) with h ∈ ±H(S).

Proof. (2) ⇒ (1). It is clear that τ /∈ Σ since τ + (1, 1) is a minimal generator. It is also clear that if τ = (τ1, τ2), then
τi ≥ 0, i = 1, 2. We can suppose that τ1 ≥ τ2 due to the symmetry of Σ . Thus τ = (h + i, i) for some h ∈ H(S), i ≥ 0. We
have σ = (h + val(h), val(h)) ∈ Ap(1,1)(Σ) according to Lemma 3.4. Let σ ′ be a minimal generator. Then σ + σ ′ is not a
minimal generator, so σ +σ ′ /∈ Ap(1,1)(Σ), since certainly σ +σ ′ /∈ {(0, s); s ∈ S}∪{(s, 0); s ∈ S}. Thus σ +σ ′

−(1, 1) ∈ Σ ,
so τ = σ − (1, 1) ∈ T (Σ).
(1) ⇒ (2). If τ = (τ1, τ2) ∈ T (Σ), then τi ≥ 0, i = 1, 2, τ /∈ Σ , and τ + (1, 1) ∈ Σ . Thus τ + (1, 1) ∈ Ap(1,1)(Σ), so
τ + (1, 1) = (val(−h), val(h)) for some h ∈ ±H(S) according to Lemma 3.4. �



V. Barucci, R. Fröberg / Journal of Pure and Applied Algebra 217 (2013) 230–237 233

Example. Let S = ⟨3, 5⟩. Then H(S) = {7, 4, 2, 1} and val(7) = 1, val(4) = 2, val(2) = 2, val(1) = 3. Thus,
if gr(D(C[S])) = C[Σ], then Σ is minimally generated by (3, 0), (5, 0), (1, 1), (0, 3), (0, 5), (8, 1), (6, 2), (4, 2), (4, 3),
(1, 8), (2, 6), (2, 4), (3, 4). Thus T (Σ) = {(7, 0), (5, 1), (3, 1), (3, 2), (0, 7), (1, 5), (1, 3), (2, 3)}.

Proposition 3.5 gives a one-to-one correspondence between T (Σ) and the minimal generators of the form
(val(−h), val(h)) with h ∈ ±H(S), so we get:

Corollary 3.6. The minimal set of generators of Σ has cardinality 2ν + 1 + |T (Σ)|.

We know by Lemma 3.3 that Σ = ∪b≥0(b + Vb, b). In a similar way, we can describe Σ ∪ T (Σ):

Proposition 3.7. Σ ∪ T (Σ) = ∪b≥0(b + Vb+1, b).

Proof. If σ ∈ Σ , then, for some b ≥ 0, σ ∈ (b+ Vb, b) ⊆ (b+ Vb+1, b). If σ ∈ T (Σ), then σ + (1, 1) ∈ (b+ Vb, b), for some
b ≥ 1, thus σ ∈ ((b − 1) + Vb, b − 1), for some b ≥ 1. Finally, if σ ∈ N2

\ (Σ ∪ T (Σ)), then σ + (1, 1) /∈ (b + Vb, b), for
any b ≥ 1, so σ /∈ ((b − 1) + Vb, b − 1), for any b ≥ 1. �

Proposition 3.8. Let S be a numerical semigroup of maximal embedding dimension and let gr(D(C[S1]) = C[Σ1]. Then
(i) Σ1 = Σ ∪ T (Σ).
(ii) If a, b ∈ N, then (a, b) ∈ Σ1 if and only if (a + 1, b + 1) ∈ Σ .

Proof. The proof follows combining Lemma 2.2 and Proposition 3.7. �

Example. Let S = ⟨4, 6, 9, 11⟩. Then

T (Σ) = {(3, 2), (2, 0), (4, 1), (5, 0), (7, 0), (2, 3), (0, 2), (1, 4), (0, 5), (0, 7)}

and N2
\ Σ = T (Σ) ∪ {(1, 0), (3, 0), (2, 1), (0, 1), (0, 3), (1, 2)}. The blowup of S is S1 = ⟨2, 5⟩, Σ1 \ Σ = T (Σ), and

T (Σ1) = {(2, 1), (3, 0), (1, 2), (0, 3)}. The blowup of S1 is S2 = ⟨2, 3⟩, Σ2 \ Σ1 = T (Σ1), and T (Σ2) = {(1, 0), (0, 1)}. The
blowup of S2 is N2, N2

\ Σ2 = T (Σ2).

Now let’s consider the case when the starting numerical semigroup S is Arf.

Lemma 3.9. Let S be an Arf numerical semigroup. Let a, b ∈ N, a ≥ b. Then (a, b) ∈ Σ if and only if a − b ∈ Ib − sb.

Proof. By Lemma 3.3 (a, b), with a ≥ b is an element of Σ when a− b ∈ Vb and a− b ≥ 0. By Lemma 2.3 this is equivalent
to a − b ∈ Ib − Ib. But Ib − Ib = Ib − sb, because S is Arf. �

Proposition 3.10. If S is an Arf semigroup, S ≠ N, then

T (Σ) =

n−1
b=0

((T (Sb) + b) × {b}) ∪

n−1
a=0

({a} × (T (Sa) + a)).

Proof. Let τ = (t + b, b), with t ∈ T (Sb) and b ∈ N. Since τ ∈ N2, to show that τ ∈ T (Σ), by Lemma 3.4 and
Proposition 3.5 it is enough to show that τ /∈ Σ and τ + (1, 1) ∈ Σ . Since t ∈ T (Sb), we have t ∈ Sb+1 \ Sb. So
τ = (t + b, b) /∈ (Sb + b) × {b} and (t + b, b) + (1, 1) ∈ Sb+1 × {b + 1} ⊆ Σ (cf. Lemma 3.9). By the symmetry of
Σ it follows that each element of the form (a, t + a), with t ∈ T (Sa) and a ∈ N is in T (Σ). For the opposite inclusion,
note that, by Lemma 3.5, |T (Σ)| = 2|H(S)|. Counting the elements in ∪

n−1
b=0((T (Sb) + b) × {b}) ∪ ∪

n−1
b=0({a} × (T (Sa) + a)),

we have 2((e0 − 1) + (e1 − 1) + · · · + (en−1 − 1) = 2|H(S)| elements, since for an Arf semigroup S with multiplicity e,
|T (S)| = e − 1. �

Proposition 3.11. If S is an Arf semigroup, S ≠ N with multiplicity sequence e0, e1, . . . , en−1 ≠ 1, en = 1, en+1 = 1, . . ., then
(a) |N2

\ Σ | = 2(e0 + 2e1 + · · · + nen−1 −
n+1

2


) = 2(nsn − (s1 + s2 + · · · + sn−1) −

n+1
2


).

(b) Σ is minimally generated by 2e0 + 1 + 2((e0 − 1) + (e1 − 1) + · · · + (en−1 − 1)) elements.

Proof. (a) By the symmetry of Σ and since (1, 1) ∈ Σ , it suffices to consider the set {(a, b) ∈ N2
; a > b}. The number of

(a, 0) ∈ N2
\Σ is sn−n = (e0+e1+· · ·+en−1)−n. The number of (a, 1) /∈ Σ , a > 1, is e1+e2+· · ·+en−1−(n−1). The number

of (a, 2) /∈ Σ , a > 2, is e2 +· · ·+ en−1 − (n−2), and so on. Thus we get the left hand side. Since e0 + e1 +· · ·+ ei−1 = si, we
have nsn−(s1+s2+· · ·+sn−1) = n(e0+e1+· · ·+en−1)−(e0+(e0+e1)+· · ·+(e0+e1+· · ·+en−2)) = e0+2e1+· · ·+nen−1.
(b) We have seen that Σ is minimally generated by 2ν + 1 + 2δ elements. Since S is Arf, we have ν = e0 and δ =

(e0 − 1) + (e1 − 1) + · · · + (en−1 − 1). �

Proposition 3.12. If S is any numerical semigroup, S ≠ N, the numberµ ofminimal generators ofΣ satisfies g+6 ≤ µ ≤ 4g+3,
with equality to the left if and only if S is 2-generated and equality to the right if and only if S = ⟨g + 1, g + 2, . . . , 2g + 1⟩.

Proof. We know that the number of minimal generators of Σ is 2ν +1+2δ, where ν is the number of generators for S, and
δ is the number of gaps. The number of gaps is at least (g + 1)/2, and the number of generators is at least 2. The number of
gaps is at most g , and the number of generators at most g + 1. If ν = 2, then S is symmetric, thus δ = (g + 1)/2 and we
have equality to the left. On the other hand, it is δ = g if and only if S = ⟨g + 1, g + 2, . . . , 2g + 1⟩. This is a semigroup of
maximal embedding dimension of multiplicity e = g + 1, so ν = e = g + 1 and we have equality to the right. �
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We give two examples of the ring of differential operators and its associated graded ring for Arf semigroup rings.

Example 1. If S = ⟨2, 5⟩, then Σ is given by all (a, b) ∈ N2 except

{(1, 0), (3, 0), (0, 1), (0, 3), (2, 1), (1, 2)}.

A minimal set of generators for C[Σ] is

{t2, t5, y2, y5, ty, t4y, t3y2, t2y3, ty4}

so T (Σ) = {(3, 0), (2, 1), (0, 3), (1, 2)}. A corresponding set of generators for the ring of differential operators D(C[S]) is

{t2, t5, ∂2
− 4t−1∂, ∂5

− 10t−1∂4
+ 45t−2∂3

− 105t−3∂2
+ 105t−4∂, t∂,

t4∂, t3∂2
− t2∂, t2∂3

− 3t∂2
+ 3∂, t∂4

− 6∂3
+ 15t−1∂2

− 15t−2∂}.

This is not a minimal generating set, e.g. [t4∂, t2] = 2t5. The blowup of S is S1 = ⟨2, 3⟩. All monomials except t and y belong
to C[Σ1] = gr(D(C[S1])). In general, if S = ⟨2, 2k + 1⟩, |N2

\ Σ | = k(k + 1). All elements (a, b), a, b ∈ N2, except those
where a + b = 2i − 1, i = 1, . . . , k, belong to Σ .

Example 2 (cf. [4, Section 8]). If S = ⟨3, 4, 5⟩, then Σ is given by all (a, b) ∈ N2 except

{(1, 0), (2, 0), (0, 1), (0, 2)}.

A minimal set of generators for C[Σ] is

{t3, t4, t5, y3, y4, y5, ty, t2y, t3y, ty2, ty3}

so T (Σ) = {(1, 0), (2, 0), (0, 1), (0, 2)}. A corresponding set of generators for D(C[S]) is

{t3, t4, t5, ∂3
− 6t−1∂2

+ 12t−3∂, ∂4
− 8t−1∂3

+ 28t−2∂2
− 40t−3∂,

∂5
− 10t−1∂4

+ 50t−2∂3
− 140t−3∂2

+ 180t−4∂, t∂, t2∂, t3∂, t∂2
− 2∂, t∂3

− 4∂2
+ 6t−1∂}.

This is not a minimal generating set, e.g. [t2∂, t3] = 3t4. The blowup of S is N and gr(D(C[N]) = C[t, y].

4. Irreducible ideals

It is well known that, for a numerical semigroup S, the cardinality of T (S) is the CM type of C[S], i.e. t = |T (S)| is the
number of components of a decomposition of a principal ideal as irredundant intersection of irreducible ideals. We want to
study whether |T (Σ)| has a similar meaning in the ring C[Σ].

Let I be a proper ideal of Σ i.e. a proper subset I of Σ such that I +Σ ⊆ I . I is irreducible if it is not the intersection of two
(or, equivalently, a finite number of) ideals which properly contain I . I is completely irreducible if it is not the intersection of
any set of ideals which properly contain I .

Consider the partial order on Σ given by

σ1 ≼ σ2 ⇔ σ1 + σ3 = σ2 , for some σ3 ∈ Σ (*)

and for x ∈ Σ , set

B(x) = {σ ∈ Σ | σ ≼ x}.

Lemma 4.1. If I is a proper ideal of Σ , then the following conditions are equivalent:
(1) I is completely irreducible.
(2) I is maximal as ideal with respect to the property of not containing an element x, for some x ∈ Σ .
(3) I = Σ \ B(x), for some x ∈ Σ .

Proof. (1) ⇒ (2). Let H be the intersection of all the ideals properly containing I . Then there is x ∈ H \ I , so I is maximal
with respect to the property of not containing x.
(2) ⇒ (1). Each ideal J properly containing I contains x, so I is not the intersection of all such ideals J and it is completely
irreducible. (2) ⇔ (3) is trivial. �

Lemma 4.2. For each a, b ∈ N, a, b > 0, the following are irreducible, non-completely irreducible ideals of Σ :
N(a,0) := Σ ∩ {(x, y) ∈ N2

; x ≥ a}
N(0,b) := Σ ∩ {(x, y) ∈ N2

; y ≥ b}.

Proof. Any ideal J of Σ properly containing N(a,0) contains (a − 1, s), for some s ∈ S, so it contains (a − 1, s + S). It follows
that, if J1, J2 are ideals properly containing N(a,0), then J1 ∩ J2 contains (a − 1,max(s, s′) + g + 1 + S) (if (a − 1, s) ∈ J1
and (a − 1, s′) ∈ J2), so J1 ∩ J2 ≠ N(a,0) and N(a,0) is irreducible. On the other hand N(a,0) is the intersection of all the ideals
properly containing it, so it is not completely irreducible. �
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In all the results of this section max has to be intended with respect to the partial order (*) on Σ .

Proposition 4.3. Let I be an ideal of Σ generated by (a1, b1), . . . , (ah, bh) and let a = min{ai}, b = min{bi}. Then

I =


x∈max(Σ\I)

(Σ \ B(x)) ∩ N(a,0) ∩ N(0,b)

is the unique irredundant decomposition of the ideal I as intersection of irreducible ideals.

Proof. ⊆: let α ∈ I . Then α /∈ B(x) for each x ∈ Σ \ I (otherwise α + β = x, for some β ∈ Σ and so x ∈ I , a contradiction).
Thus α ∈ Σ \ B(x), for each x ∈ max(Σ \ I). Moreover α ∈ N(a,0) ∩ N(0,b). ⊇: observe first that

x∈max(Σ\I)

(Σ \ B(x)) =


x∈(Σ\I)

(Σ \ B(x))

in fact (Σ \ B(x1)) ⊆ (Σ \ B(x2)) if and only if B(x1) ⊇ B(x2) if and only if x2 ≼ x1. Suppose that α ∈ N(a,0) ∩ N(0,b), i.e. that
α = (c, d) ∈ Σ , with c ≥ a and d ≥ b. We have to show that, if α ∈


x∈(Σ\I)(Σ \ B(x)), then α ∈ I . In fact, if α /∈ I , then

(since trivially α ∈ B(α)) α /∈ Σ \ B(x), for some x ∈ Σ \ I (take x = α).
To show that the decomposition is irredundant, it’s easy to see that N(a,0) (respectively N(0,b)) does not contain the

intersection of the other components. Moreover, if x ∈ max(Σ \ I), the only component of the intersection which does
not contain x is Σ \ B(x). Thus this component is not superfluous. �

The following result agrees with [6, Theorem 11.3]:

Corollary 4.4. The unique irreducible ideals ofΣ are N(a,0), for some a > 0, N(0,b), for some b > 0 and those of the formΣ \B(x),
for some x ∈ Σ .

Corollary 4.5. If (0, 0) ≠ σ = (a, b) ∈ Σ , then

σ + Σ =


x∈maxApσ (Σ)

(Σ \ B(x)) ∩ N(a,0) ∩ N(0,b)

is the unique irredundant decomposition of the principal ideal σ + Σ as intersection of irreducible ideals.

Proof. It follows from the Proposition 4.3, observing that Apσ (Σ) = Σ \ (σ + Σ). �

What we got for the ideals of the semigroup Σ can be read in terms of monomial ideals of C[Σ]. In fact each ideal I of
Σ corresponds to the monomial ideal of C[Σ] generated by {tayb; (a, b) ∈ I}. Moreover if a monomial ideal of C[Σ] is
not the intersection of two strictly larger monomial ideals, then it is not the intersection of two strictly larger ideals, even
if non-monomial ideals are allowed [6, Proposition 11, p. 41]. Thus the results above characterize the irreducible monomial
ideals of C[Σ] as well.

Corollary 4.6. Each principal monomial ideal of C[Σ] is an irredundant intersection of |T (Σ)| + 2 = 2δ + 2 irreducible ideals
(where δ = |H(S)|).

Proof. It follows from the previous corollary, recalling that, for each (0, 0) ≠ σ ∈ Σ , 2δ = |T (Σ)| = |maxApσ (Σ)|,
because there is a one to one correspondence between the sets T (Σ) and max Apσ (Σ), more precisely it is proved in [3,
Proposition 4.1] that τ ∈ T (Σ) if and only if τ + σ ∈ maxApσ (Σ). �

5. Derivations

Let I be an ideal in C[S]. Then we denote by Der(I, I) the set of derivations which map I into I .

Lemma 5.1. If I is generated by monomials in C[S], then Der(I, I) ≃ I : I as C[S]-module. Thus Der(I, I) is isomorphic to a
semigroup ring C[T ], where T is a semigroup, S ⊆ T ⊆ N.

Proof. If I is generated by monomials also I : I , which is a fractional ideal of C[S], is generated by monomials. Let {tni} be
the generators of I : I , then Der(I, I) is generated by {tni+1∂}, and tk → tk+1∂ induces an isomorphism as C[S]-modules.
Moreover I : I is a semigroup ring C[T ], for some semigroup T , S ⊆ T ⊆ N and so Der(I, I) is isomorphic to C[T ] as
C[S]-module. �

Observe that, if I : I = C[T ], then also xI : xI = C[T ], for each nonzero x ∈ C[S]. In particular we can say that, for each
monomial principal ideal I of C[S], Der(I, I) ≃ C[S] as C[S]-modules.

If I is not generated bymonomials, the statement in the proposition is no longer true. If I = (t4+t5, t4+t6) in k[t4, t5, t6],
then Der(I, I) is generated by t5∂, t6∂, t7∂ .

For a monomial ideal I of C[S], we denote by min(I) the minimal degree of the monomials in I .
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Proposition 5.2. Let T be a semigroup, S ⊆ T ⊆ N and let C be the conductor ideal C = C[S] : C[T ]. Then:
(i) If J is a monomial ideal of C[S] such that J : J = C[T ], then J ⊆ C andmin(J) ≥ min(C).
(ii) The overring C[T ] of C[S] is of the form I : I , for some monomial ideal I of C[S].
(iii) If J is a monomial ideal of C[S], with min(J) = j, such that J : J = C[T ], then J ⊇ t jC[T ] and t j ∈ C.

Proof. (i) If J is a monomial ideal of C[S] such that J : J = C[T ], then, since J is an ideal of C[T ] too, it is contained in C which
is the biggest ideal that C[S] and C[T ] share. Thus min(J) ≥ min(C).

(ii) We have that C[T ] ⊆ C[S] = C[t] = C[N], so C[T ] is a fractional ideal of C[S] and rC[T ] = I ⊆ C[S], for some
nonzero r ∈ C[S]. Now I : I = rC[T ] : rC[T ] = C[T ] and C[T ] is of the requested form.

(iii) Suppose now that J is a monomial ideal of C[S], with min(J) = j, such that J : J = C[T ]. We claim that J ⊇ t jC[T ].
Indeed the principal ideal t jC[S] is contained in J and so C[T ] = J : J ⊆ J : t jC[S] = t−j(J : C[S]) = t−jJ , hence t jC[T ] ⊆ J .
Then also t jC[T ] ⊆ C[S] and t j ∈ C . �

It is known that the ring C[[T ]] is Gorenstein if and only if the numerical semigroup T is symmetric. The extension of
that result to the non-local case is not difficult:

Lemma 5.3. Let T be a numerical semigroup. Then the ring C[T ] is Gorenstein if and only if T is symmetric.

Proof. C[T ] = C[tn1 , . . . , tnh ] is Gorenstein if and only if each localization at a prime ideal is Gorenstein. For the localization
at P = (tn1 , . . . , tnh), we have thatC[T ]P is Gorenstein if and only if T is symmetric, arguing similarly to the local caseC[[T ]].
For the other nonzero prime ideals Q , we have that Q does not contain the conductor C[T ] : C[t], so C[T ]Q ∼= C[t]Q ′ is a
DVR, thus a Gorenstein ring, where Q ′ is the unique prime ideal of C[t] lying over Q . �

Corollary 5.4. Let C[T ] be a Gorenstein overring of C[S]. If J is a monomial ideal of C[S], then J : J = C[T ] if and only if
J = t jC[T ], where j = min(J).

Proof. We know by Proposition 5.2(iii) that J ⊇ t jC[T ]. In order to prove the opposite inclusion, we show that, if H is a
monomial ideal of C[S] with min(H) = j properly larger than t jC[T ], then H : H ≠ C[T ]. Let g be the Frobenius number
of the semigroup T , which is symmetric because C[T ] is Gorenstein (cf. Lemma 5.3). We can argue equivalently on the
fractional ideals of C[S]. So, let H be a fractional monomial ideal of C[S] with min(H) = 0 and strictly larger than C[T ] and
let th ∈ H \ C[T ]. Then tg−h

∈ C[T ]. Since tg−hth = tg /∈ C[T ], we have tg−h /∈ H : H and so H : H ≠ C[T ]. �

If I , J are ideals of C[S], we say that I and J are equivalent (I ∼ J) if xI = yJ , for some nonzero elements x, y ∈ C[S]. Recall
also that an ideal I is called stable if it is principal in the overring I : I . In a similar way a semigroup ideal I of S is called stable
if it is principal in the over-semigroup I − I = {z ∈ Z | z + I ⊆ I}.

Example. If S = ⟨3, 4, 5⟩, the only semigroups T for which S ⊆ T ⊆ N are S, T1 = ⟨2, 3⟩, and N, so that the only proper
semigroup overrings of C[S] are C[T1] and C[N] = C[t], which are both Gorenstein rings. The conductor ideals coincide,
C[S] : C[T1] = C[S] : C[N] = t3C[t]. By Corollary 5.4 and Proposition 5.2(iii), if J is a monomial ideal of C[S], then
J : J = C[T1] if and only if J = t jC[T1] with j ≥ 3, i.e. J ∼ (t3, t5) and J : J = C[t] if and only if J = t jC[t] with j ≥ 3,
i.e. J ∼ (t3, t4, t5). On the other hand, the trivial overring C[S] is not Gorenstein and C[S] : C[S] = C[S]. We have that
J : J = C[S] if and only if J is a principal ideal of C[S] or J ∼ (t3, t4), so here two equivalence classes of monomial ideals
correspond to the same overring.

Proposition 5.5. The following conditions are equivalent:
(1)There exists a one-to-one correspondence between the semigroup overrings of C[S] and the equivalence classes of monomial
ideals of C[S].
(2) C[S] = C[t2, t2k+1

], for some k ∈ N.
(3) Each semigroup overring of C[S] is Gorenstein.

Proof. (1)⇔ (2). By Proposition 5.2, (ii) and (iii), there exists a one-to-one correspondence between the semigroupoverrings
of C[S] and the classes of stable monomial ideals of C[S] (cf. also [2, Proposition II.4.3]). So we get the requested one-to-one
correspondence if and only if each monomial ideal of C[S] is stable, i.e. if and only if each semigroup ideal of S is stable.
By [2, Theorems I.5.13, (i) ⇔ (iii) and I.4.2 (i) ⇔ (v)], this is equivalent to S = ⟨2, 2k + 1⟩, for some k ∈ N. (2) ⇔ (3). By
Lemma 5.3, condition (3)means that each semigroup T , S ⊆ T ⊆ N is symmetric and that holds if and only if S = ⟨2, 2k+1⟩,
for some k ∈ N (cf. [2, Theorem I.4.2(v) ⇔ (ix)]). �

Example. If S = ⟨2, 5⟩ there are three equivalence classes of ideals generated by monomials with representatives C[S],
(t2, t5) and (t4, t5). These correspond toC[S],C[t2, t3] andC[t], respectively.More generally, if S = ⟨2, 2k+1⟩, there are k+
1 equivalence classes of ideals generated by monomials with representatives C[S], (t2, t2k+1), (t4, t2k+1), . . . , (t2k, t2k+1).
These correspond to C[S], C[t2, t2k−1

], C[t2, t2k−3
], . . . , C[t2, t] = C[t], respectively.
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