OURNAL OF URE AND PPLIED ALGEBRA

Journal of Pure and Applied Algebra 217 (2013) 230-237

Contents lists available at SciVerse ScienceDirect

## Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

# On differential operators of numerical semigroup rings

Valentina Barucci<sup>a</sup>, Ralf Fröberg<sup>b,\*</sup>

<sup>a</sup> University of Roma 1, Italy

<sup>b</sup> University of Stockholm, Sweden

#### ARTICLE INFO

Article history: Received 24 December 2011 Received in revised form 21 May 2012 Available online 20 June 2012 Communicated by A.V. Geramita

MSC: Primary: 13N10; 16S32 Secondary: 13A30; 13N15

#### 1. Introduction

### ABSTRACT

If  $S = \langle d_1, \ldots, d_\nu \rangle$  is a numerical semigroup, we call the ring  $\mathbb{C}[S] = \mathbb{C}[t^{d_1}, \ldots, t^{d_\nu}]$  the semigroup ring of *S*. We study the ring of differential operators on  $\mathbb{C}[S]$ , and its associated graded in the filtration induced by the order of the differential operators. We find that these are easy to describe if *S* is a so-called Arf semigroup. If *I* is an ideal in  $\mathbb{C}[S]$  that is generated by monomials, we also give some results on Der(I, I) (the set of derivations which map *I* into *I*).

© 2012 Elsevier B.V. All rights reserved.

It is well known that the ring  $D(\mathbb{C}[S])$  of differential operators of a semigroup ring  $\mathbb{C}[S] = \mathbb{C}[t^{d_1}, \ldots, t^{d_\nu}]$ , where  $\mathbb{C}$  is the complex field, is a subring of  $D(\mathbb{C}[t, t^{-1}])$ , the ring of differential operators of the Laurent polynomials  $\mathbb{C}[t, t^{-1}]$ .  $D(\mathbb{C}[t, t^{-1}])$  is a non-commutative  $\mathbb{C}[t, t^{-1}]$ -algebra generated by  $\partial$ , the usual derivation d/dt. It is also known that  $D(\mathbb{C}[S])$  is a  $\mathbb{C}$ -algebra finitely generated and a set of generators was found independently in [4,5]. The ring  $D(\mathbb{C}[S])$  inherits a grading from the ring of differential operators of  $\mathbb{C}[t, t^{-1}]$ , where  $\deg(t^s) = s$  and  $\deg(\partial) = -1$ . Its associated graded is a commutative Noetherian subring of the ring of polynomials in two indeterminates  $\mathbb{C}[t, y]$  and it is a semigroup ring  $\mathbb{C}[\Sigma]$ , where  $\Sigma \subseteq \mathbb{N}^2$  is a semigroup, with  $|\mathbb{N}^2 \setminus \Sigma|$  finite. It follows that  $D(\mathbb{C}[S])$  is right and left Noetherian.

In this paper we study that commutative associated ring  $\mathbb{C}[\Sigma]$ , in terms of the starting numerical semigroup S. Many properties of the semigroup  $\Sigma$ , including the minimal set of generators, can be predicted looking at S. If S is of maximal embedding dimension, then  $\Sigma$  behaves well with respect to the blowup of the maximal ideal. If, moreover, S is an Arf semigroup, then we show how  $\Sigma$ , and the ring  $\mathbb{C}[\Sigma]$  as well, is completely determined by S. In Section 4 we characterize the irreducible ideals of  $\Sigma$ , i.e. the irreducible monomial ideals of  $\mathbb{C}[\Sigma]$  and determine the number of components for a principal monomial ideal as irredundant intersection of irreducible ideals. Finally in Section 5 we observe that, if I is a monomial ideal of  $\mathbb{C}[S]$ , then Der(I, I), the  $\mathbb{C}[S]$ -module of derivations which map I into I is isomorphic to the overring I : I of  $\mathbb{C}[S]$ . Thus we study the overrings of this form in relation with the monomial ideals I which realize them.

#### 2. Numerical semigroups

We fix for the whole paper the following notation. *S* is a *numerical semigroup*, i.e. a subsemigroup of  $\mathbb{N}$ , with zero and with finite complement  $H(S) = \mathbb{N} \setminus S$  in  $\mathbb{N}$ . The numerical semigroup generated by  $d_1, \ldots, d_\nu \in \mathbb{N}$  is  $S = \langle d_1, \ldots, d_\nu \rangle = \{\sum_{i=1}^{\nu} n_i d_i; n_i \in \mathbb{N}\}$ .  $M = S \setminus \{0\}$  is the *maximal ideal* of *S*, e = e(S) is the *multiplicity* of *S*, that is the smallest positive integer of *S*, g = g(S) is the *Frobenius number* of *S*, that is the greatest integer which does not belong to *S*, n = n(S) is the number of elements of *S* smaller of *g*. Thus we have  $S = \{0 = s_0 < s_1 = e < s_2 \cdots < s_{n-1} < s_n = g + 1, g + 2, \ldots\}$ .

\* Corresponding author. E-mail addresses: barucci@mat.uniroma1 (V. Barucci), ralff@math.su.se (R. Fröberg).



<sup>0022-4049/\$ –</sup> see front matter s 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2012.06.009

A relative ideal of *S* is a nonempty subset *I* of  $\mathbb{Z}$  (which is the quotient group of *S*) such that  $I + S \subseteq I$  and  $I + s \subseteq S$ , for some  $s \in S$ . A relative ideal which is contained in *S* is an *integral ideal* of *S*.

If *I*, *J* are relative ideals of *S*, then the following is a relative ideal too:  $I - J = \{z \in \mathbb{Z} \mid z + J \subseteq I\}$ .

If *I* is a relative ideal of *S*, then I - I is the biggest semigroup *T* such that *I* is an integral ideal of *T*. There is a chain of semigroups  $S \subseteq (I - I) \subseteq (2I - 2I) \subseteq \cdots \subseteq \mathbb{N}$ , which stabilizes on a semigroup  $\mathcal{B}(I) = (hI - hI)$  for h >> 0, called the *blowup* of *I*. Setting  $S_0 = S$ ,  $S_1 = \mathcal{B}(M)$  and  $S_{i+1} = \mathcal{B}(M_i)$ , where  $M_i$  is the maximal ideal of  $S_i$ , the multiplicity sequence of *S* is  $(e_0, e_1, e_2, \ldots)$ , where  $e_i = e(S_i)$ . If  $z \in \mathbb{Z}$ , set  $S(z) = \{s \in S; s \ge z\}$ , which is an ideal of *S*. If, with the notation above,  $x = s_i$ , we denote for simplicity  $S(s_i)$  with  $I_i$ .

**Definitions**. For each  $z \in \mathbb{Z}$ , we define the valency of z with respect to a semigroup S as  $val_S(z) = |\{s \in S; z + s \notin S\}|$  (in [4] this numerical function is called  $\sigma$ ). Let  $V_i(S) = \{a \in \mathbb{Z}; val_S(a) \le i\}$ . When there is no ambiguity about the semigroup S, we will write simply val(z) and  $V_i$  respectively.

**Lemma 2.1.** (a)  $S = V_0$ .

(b)  $S - M = V_1$ .

(c) For each  $z \in \mathbb{Z}$ , val(-z) = val(z) + z.

(d)  $I_i - I_i \subseteq V_i$ .

(e) If  $a \in \mathbb{N}$ , then val $(a) \leq n$ .

(f)  $V_i$  is a relative ideal of S.

 $\ensuremath{\text{Proof.}}\xspace$  (a) and (b) follow immediately from the definitions.

(c) is given in [4, Proposition 2], [7, Lemma 3.3] and [5].

(d): Let  $a \in I_i - I_i$ . Then  $a + s_j \in I_i \subseteq S$  if  $j \ge i$ , so at most  $\{a + s_0, a + s_1, \dots, a + s_{i-1}\}$  are not in S.

(e): By (d),  $I_n - I_n = \mathbb{N} \subseteq V_n$ , so val $(a) \leq n$  for each  $a \in \mathbb{N}$ .

(f): Assume  $a \in V_i$  and  $s \in S$ , then  $val(a + s) \le i$ . In fact if  $(a + s) + b \notin S$ , with  $b \in S$ , also  $a + (s + b) \notin S$ , with  $s + b \in S$ . Moreover by (c)  $V_i$  has a minimum  $m \le 0$ . Thus  $s + V_i \subseteq S$ , for some  $s \in S$ . Take for example s = g + 1 - m.  $\Box$ 

We denote by T(S) the set { $x \in \mathbb{Z}$ ;  $x \notin S$ ,  $x + M \subseteq M$ }, called in [8] the set of pseudo-Frobenius numbers. With the notation above,  $T(S) = V_1 \setminus V_0$ . The cardinality of T(S) is the *type t* of the semigroup *S*. It is well known that  $t \le e - 1$  and t = e - 1 if and only if the numerical semigroup *S* is of maximal embedding dimension, i.e. when the number v of generators equals the multiplicity *e*, i.e. when  $|M \setminus 2M| = e$ , cf. e.g. [8, Corollaries 2.23 and 3.2, 3)]. It is also well known that *S* is of maximal embedding dimension if and only if M - e is a semigroup (cf. e.g. [8, Proposition 3.12]). In this case we have  $S_1 = M - e$ . Setting  $\pm H(S) = {\pm h; h \in \mathbb{N} \setminus S}$ , we have

**Lemma 2.2.** Let *S* be a numerical semigroup of maximal embedding dimension. Then  $val_{S_1}(z) = val_S(z) - 1$ , for each  $z \in \pm H(S)$ .

**Proof.** Let  $z \in \pm H(S)$ . Denote by  $\Omega_S(z)$  (respectively  $\Omega_{S_1}(z)$ ) the set of pairs (s, s + z), with  $s \in S$  and  $s + z \notin S$  (resp. the set of pairs  $(s_1, s_1 + z)$ , with  $s_1 \in S_1$  and  $s_1 + z \notin S_1$ ). By definition of valency, val<sub>S</sub>(z) is the cardinality of  $\Omega_S(z)$  and val<sub>S1</sub>(z) is the cardinality of  $\Omega_{S_1}(z)$ . If  $(s, s + z) \in \Omega_S(z)$ , with  $s \neq 0$ , then  $(s - e, s - e + z) \in \Omega_{S_1}(z)$  and, conversely, if  $(s_1, s_1 + z) \in \Omega_{S_1}(z)$ , then  $(s_1 + e, s_1 + e + z) \in \Omega_S(z)$ . Thus there is a one-to-one correspondence between  $\Omega_S(z) \setminus \{(0, z)\}$  and  $\Omega_{S_1}(z)$  and the conclusion follows.  $\Box$ 

An Arf semigroup is a numerical semigroup S such that  $I_i - s_i$  is a semigroup for each  $i \ge 0$ . Thus, if S is Arf, then M - e is a semigroup and S is of maximal embedding dimension. Given an Arf semigroup  $S = \{0 = s_0 < s_1 < s_2 \cdots\}$ , the multiplicity sequence of S is  $\{s_1 - s_0, s_2 - s_1, s_3 - s_2, \ldots\}$ . It follows that the multiplicity sequence  $e_0, e_1, \ldots$  of an Arf semigroup is such that for all  $i, e_i = \sum_{h=1}^{k} e_{i+h}$ , for some  $k \ge 1$ . Conversely, any sequence of natural numbers  $e_0, e_1, \ldots$  such that  $e_n = 1$ , for  $n \gg 0$ , and, for all  $i, e_i = \sum_{h=1}^{k} e_{i+h}$ , for some  $k \ge 1$ , is the multiplicity sequence of an Arf semigroup  $S = \{0, e_0, e_0 + e_1, e_0 + e_1 + e_2, \ldots\}, [1]$ .

**Lemma 2.3.** If *S* is an Arf semigroup, then  $I_i - I_i = V_i \cap \mathbb{N}$ .

**Proof.** By Lemma 2.1(d),  $I_i - I_i \subseteq V_i \cap \mathbb{N}$ . Conversely let  $a \in \mathbb{N}$  and observe that, since *S* is Arf, if  $a + s_i \in S$ , then also  $a + s_j \in S$  for each  $j \ge i$ . In fact  $a + s_i \in S$  if and only if  $a + s_i \in I_i$  if and only if  $a \in I_i - s_i$ . If  $j \ge i$ , since  $a, s_j - s_i \in I_i - s_i$ , which is a semigroup, then  $a + s_j - s_i \in I_i - s_i$ , so that  $a + s_j \in S$ . Thus val(a) = i if and only if  $a + s_j \in S$  for  $j \ge i$ .  $\Box$ 

#### 3. Differential operators on numerical semigroup rings

Let *R* be a commutative  $\mathbb{C}$ -algebra. The ring of differential operators D(R) of *R* is inductively defined in the following way. Setting

$$D^{0}(R) = \{\Theta_{a}; a \in R\}$$
  
$$D^{i}(R) = \{\Theta \in \operatorname{Hom}_{\mathbb{C}}(R, R); [\Theta, D^{0}(R)] \subseteq D^{i-1}(R)\}$$

where  $\Theta_a: R \to R$  is the multiplication map  $r \mapsto ar$ , and  $[\Theta, \Phi] = \Theta \Phi - \Phi \Theta$  is the commutator, the ring of differential operators is

$$D(R) = \bigcup_{i \ge 0} D^i(R).$$

This is a filtered ring,  $D^i(R)D^j(R) \subseteq D^{i+j}(R)$  for all *i* and *j*, and  $D^i(R) \subseteq D^{i+1}(R)$ , and its associated graded is  $gr(D(R)) = \bigoplus_{i \ge 0} D^i(R)/D^{i-1}(R)$ , where  $D^{-1}(R) = 0$ .

The module of derivations Der(R) is  $\{\Theta \in \text{Hom}_k(R, R); \Theta(ab) = \Theta(a)b + a\Theta(b), a, b \in R\}$  and it is well known that Der(R) is  $\{\Theta \in D^1(R); \Theta(1) = 0\}$ .

The rings of differential operators of semigroup rings have been studied by e.g. Perkins [7], Eriksen [4] and Eriksson [5]. It is shown that the ring of differential operators of a semigroup ring  $\mathbb{C}[S]$  is a subring of  $D(\mathbb{C}[t, t^{-1}]) = \mathbb{C}[t, t^{-1}]\langle \partial \rangle$ . The ring of differential operators of a semigroup ring inherits a grading from  $D(\mathbb{C}[t, t^{-1}])$ , where  $\deg(t^s) = s$  and  $\deg(\partial) = -1$ . Its associated graded is a commutative Noetherian subring of the ring of polynomials  $\mathbb{C}[t, y]$  and it is a semigroup ring  $\mathbb{C}[\Sigma]$ , where  $\Sigma \subseteq \mathbb{N}^2$  is a semigroup, with  $|\mathbb{N}^2 \setminus \Sigma|$  finite. More precisely, by [4, Lemma 5] or by [5] and Lemma 2.1(a), (c), it follows that:

**Theorem 3.1** ([4,5]). If  $S = \langle d_1, \ldots, d_v \rangle$  is a numerical semigroup and  $\mathbb{C}[S]$  its semigroup ring, then  $gr(D(\mathbb{C}[S]))$  is a  $\mathbb{C}$ -subalgebra of  $\mathbb{C}[t, y]$  minimally generated by the monomials

$$\{t^{d_1},\ldots,t^{d_\nu},y^{d_1},\ldots,y^{d_\nu}\}\cup\{ty\}\cup\{t^{\operatorname{val}(-h)}y^{\operatorname{val}(h)};h\in\pm H(S)\}.$$

Thus gr( $D(\mathbb{C}[S])$ ) is a semigroup ring  $\mathbb{C}[\Sigma]$ , where  $\Sigma$  is a subsemigroup of  $\mathbb{N}^2$  minimally generated by

 $(d_1, 0), \ldots, (d_{\nu}, 0), (0, d_1), \ldots, (0, d_{\nu}), (1, 1), \{(val(-h), val(h)); h \in \pm H(S)\}.$ 

We will study this semigroup  $\Sigma$ . For all this section,  $S = \langle d_1, \ldots, d_{\nu} \rangle$  is a numerical semigroup and  $\operatorname{gr}(D(\mathbb{C}[S])) = \mathbb{C}[\Sigma]$ . If  $z \in \mathbb{Z}$ , denote by  $\Delta_z$  the diagonal  $\{(a, b) \in \mathbb{N}^2; a - b = z\}$ . Observing the minimal set of generators of  $\Sigma$ , we can immediately say that all the diagonals  $\Delta_s$ , with  $s \in \pm S$  are contained in  $\Sigma$  (here, as above, we set  $\pm S = \{\pm s; s \in S\}$ ). On the other hand the diagonals  $\Delta_h$ , with  $h \in \pm H(S)$  are not contained in  $\Sigma$  in general. In the example after Proposition 3.5 below, for example the elements (1, 0), (2, 1), (3, 2) of  $\Delta_1$  are not in  $\Sigma$ .

Since H(S) is finite,  $\Sigma$  is finitely generated and, setting  $|H(S)| = \delta$ , the number of minimal generators of  $\Sigma$  is  $2\nu + 1 + 2\delta$ . Thus  $\Sigma$  is an affine monoid of rank 2, and  $gp(\Sigma)$ , the group generated by  $\Sigma$  is  $\mathbb{Z}^2$ . The normalization of  $\Sigma$ ,  $\overline{\Sigma} = \{\alpha \in gp(\Sigma); m\alpha \in \Sigma \text{ for some } m \in \mathbb{N}, m \ge 1\}$  is  $\mathbb{N}^2$ . We denote by  $\Sigma_+$  the maximal ideal  $\Sigma \setminus \{(0, 0)\}$ , and we set  $T(\Sigma) = \{\tau \in gp(\Sigma); \tau \notin \Sigma, \tau + \Sigma_+ \subseteq \Sigma_+\}$ .

Observing that, if  $z \in \mathbb{Z}$  and (val(-z), val(z)) = (a, b), then (val(z), val(-z)) = (b, a) (cf. Lemma 2.1 (c)), we get for  $\Sigma$  the following symmetric property:

**Corollary 3.2** ([4,5]). If  $a, b \in \mathbb{N}$ , then  $(a, b) \in \Sigma$  if and only if  $(b, a) \in \Sigma$ .

**Lemma 3.3.** Let S be a numerical semigroup. Let  $a, b \in \mathbb{N}$ . Then  $(a, b) \in \Sigma$  if and only if  $a - b \in V_b$ .

#### **Proof.** Note first that:

(i) If  $(a, b) \in \Sigma$ , then  $(a, b) \in \Delta_z$ , with either  $z \in \pm S$  or  $z \in \pm H(S)$ .

(ii) If  $(a, b) \in \Delta_h$ , with  $h \in H(S)$ , then (a, b) = (val(-h), val(h)) + c(1, 1), with c = b - val(h).

We already observed that  $\Sigma$  contains all the diagonals  $\Delta_s$ , for  $s \in \pm S$ . If  $s \in S$ , then for each element  $(a, b) \in \Delta_s$ (respectively  $(a, b) \in \Delta_{-s}$ ), we get val(a - b) = val(s) = 0 and  $0 \le b$  (respectively val(a - b) = val(-s) = val(s) + s = 0 + s = s and  $s \le b$ ). Thus in both cases val $(a - b) \le b$ , i.e.  $a - b \in V_b$ .

Further, if  $h \in \pm H(S)$ , then  $(val(-h), val(h)) = (val(h) + h, val(h)) \in \Delta_h$  is a minimal generator of  $\Sigma$ . Since  $(1, 1) \in \Sigma$ , it follows that an element (a, b) of  $\Delta_h$  is in  $\Sigma$  if and only if  $b - val(h) \ge 0$ , i.e.  $b \ge val(h) = val(a - b)$ , i.e.  $a - b \in V_b$ .  $\Box$ 

**Definition** Let  $\Gamma$  be a subsemigroup of  $\mathbb{N}^2$ , and let  $\gamma \in \Gamma$ . The Apery set of  $\Gamma$  with respect to  $\gamma$  is Ap<sub> $\gamma$ </sub>( $\Gamma$ ) = { $\alpha \in \Gamma$ ;  $\alpha - \gamma \notin \Gamma$ }.

**Lemma 3.4.**  $\operatorname{Ap}_{(1,1)}(\Sigma) = \{(0,s); s \in S\} \cup \{(s,0); s \in S\} \cup \{(\operatorname{val}(-h), \operatorname{val}(h)); h \in \pm H(S)\}.$ 

**Proof.** Let  $(a, b) \in Ap_{(1,1)}(\Sigma)$ . We can suppose that  $a \ge b$  due to the symmetry of  $\Sigma$ . It is clear that  $(s, 0) \in Ap_{(1,1)}(\Sigma)$  if and only if  $s \in S$ . Suppose  $h \in H(S)$ . We know that  $\alpha = (h + val(h), val(h)) \in \Delta_h$  is a minimal generator of  $\Sigma$ . Thus  $\alpha \in Ap_{(1,1)}(\Sigma)$  and no other element  $\sigma$  of  $\Delta_h \cap \Sigma$  is in  $Ap_{(1,1)}(\Sigma)$ , because  $\sigma - (1, 1) \in \Sigma$ .  $\Box$ 

**Proposition 3.5.** Let  $\tau \in \mathbb{Z}^2$ . Then the following conditions are equivalent:

(1)  $\tau \in T(\Sigma)$ .

(2)  $\tau$  + (1, 1) is a minimal generator of  $\Sigma$  of the form (val(-h), val(h)) with  $h \in \pm H(S)$ .

**Proof.** (2)  $\Rightarrow$  (1). It is clear that  $\tau \notin \Sigma$  since  $\tau + (1, 1)$  is a minimal generator. It is also clear that if  $\tau = (\tau_1, \tau_2)$ , then  $\tau_i \ge 0$ , i = 1, 2. We can suppose that  $\tau_1 \ge \tau_2$  due to the symmetry of  $\Sigma$ . Thus  $\tau = (h + i, i)$  for some  $h \in H(S)$ ,  $i \ge 0$ . We have  $\sigma = (h + val(h), val(h)) \in \operatorname{Ap}_{(1,1)}(\Sigma)$  according to Lemma 3.4. Let  $\sigma'$  be a minimal generator. Then  $\sigma + \sigma'$  is not a minimal generator, so  $\sigma + \sigma' \notin \operatorname{Ap}_{(1,1)}(\Sigma)$ , since certainly  $\sigma + \sigma' \notin \{(0, s); s \in S\} \cup \{(s, 0); s \in S\}$ . Thus  $\sigma + \sigma' - (1, 1) \in \Sigma$ , so  $\tau = \sigma - (1, 1) \in T(\Sigma)$ .

(1)  $\Rightarrow$  (2). If  $\tau = (\tau_1, \tau_2) \in T(\Sigma)$ , then  $\tau_i \ge 0$ ,  $i = 1, 2, \tau \notin \Sigma$ , and  $\tau + (1, 1) \in \Sigma$ . Thus  $\tau + (1, 1) \in Ap_{(1,1)}(\Sigma)$ , so  $\tau + (1, 1) = (val(-h), val(h))$  for some  $h \in \pm H(S)$  according to Lemma 3.4.  $\Box$ 

**Example.** Let  $S = \langle 3, 5 \rangle$ . Then  $H(S) = \{7, 4, 2, 1\}$  and val(7) = 1, val(4) = 2, val(2) = 2, val(1) = 3. Thus, if  $gr(D(\mathbb{C}[S])) = \mathbb{C}[\Sigma]$ , then  $\Sigma$  is minimally generated by (3, 0), (5, 0), (1, 1), (0, 3), (0, 5), (8, 1), (6, 2), (4, 2), (4, 3), (1, 8), (2, 6), (2, 4), (3, 4). Thus  $T(\Sigma) = \{(7, 0), (5, 1), (3, 1), (3, 2), (0, 7), (1, 5), (1, 3), (2, 3)\}$ .

Proposition 3.5 gives a one-to-one correspondence between  $T(\Sigma)$  and the minimal generators of the form (val(-h), val(h)) with  $h \in \pm H(S)$ , so we get:

**Corollary 3.6.** The minimal set of generators of  $\Sigma$  has cardinality  $2\nu + 1 + |T(\Sigma)|$ .

We know by Lemma 3.3 that  $\Sigma = \bigcup_{b \ge 0} (b + V_b, b)$ . In a similar way, we can describe  $\Sigma \cup T(\Sigma)$ :

**Proposition 3.7.**  $\Sigma \cup T(\Sigma) = \bigcup_{b \ge 0} (b + V_{b+1}, b).$ 

**Proof.** If  $\sigma \in \Sigma$ , then, for some  $b \ge 0$ ,  $\sigma \in (b + V_b, b) \subseteq (b + V_{b+1}, b)$ . If  $\sigma \in T(\Sigma)$ , then  $\sigma + (1, 1) \in (b + V_b, b)$ , for some  $b \ge 1$ , thus  $\sigma \in ((b - 1) + V_b, b - 1)$ , for some  $b \ge 1$ . Finally, if  $\sigma \in \mathbb{N}^2 \setminus (\Sigma \cup T(\Sigma))$ , then  $\sigma + (1, 1) \notin (b + V_b, b)$ , for any  $b \ge 1$ , so  $\sigma \notin ((b - 1) + V_b, b - 1)$ , for any  $b \ge 1$ .  $\Box$ 

**Proposition 3.8.** Let *S* be a numerical semigroup of maximal embedding dimension and let  $gr(D(\mathbb{C}[S_1]) = \mathbb{C}[\Sigma_1]$ . Then (i)  $\Sigma_1 = \Sigma \cup T(\Sigma)$ .

(ii) If  $a, b \in \mathbb{N}$ , then  $(a, b) \in \Sigma_1$  if and only if  $(a + 1, b + 1) \in \Sigma$ .

**Proof.** The proof follows combining Lemma 2.2 and Proposition 3.7.

**Example.** Let S = (4, 6, 9, 11). Then

 $T(\Sigma) = \{(3, 2), (2, 0), (4, 1), (5, 0), (7, 0), (2, 3), (0, 2), (1, 4), (0, 5), (0, 7)\}$ 

and  $\mathbb{N}^2 \setminus \Sigma = T(\Sigma) \cup \{(1, 0), (3, 0), (2, 1), (0, 1), (0, 3), (1, 2)\}$ . The blowup of *S* is  $S_1 = \langle 2, 5 \rangle$ ,  $\Sigma_1 \setminus \Sigma = T(\Sigma)$ , and  $T(\Sigma_1) = \{(2, 1), (3, 0), (1, 2), (0, 3)\}$ . The blowup of  $S_1$  is  $S_2 = \langle 2, 3 \rangle$ ,  $\Sigma_2 \setminus \Sigma_1 = T(\Sigma_1)$ , and  $T(\Sigma_2) = \{(1, 0), (0, 1)\}$ . The blowup of  $S_2$  is  $\mathbb{N}^2$ ,  $\mathbb{N}^2 \setminus \Sigma_2 = T(\Sigma_2)$ .

Now let's consider the case when the starting numerical semigroup S is Arf.

**Lemma 3.9.** Let *S* be an Arf numerical semigroup. Let  $a, b \in \mathbb{N}$ ,  $a \ge b$ . Then  $(a, b) \in \Sigma$  if and only if  $a - b \in I_b - s_b$ .

**Proof.** By Lemma 3.3 (*a*, *b*), with  $a \ge b$  is an element of  $\Sigma$  when  $a - b \in V_b$  and  $a - b \ge 0$ . By Lemma 2.3 this is equivalent to  $a - b \in I_b - I_b$ . But  $I_b - I_b = I_b - s_b$ , because *S* is Arf.  $\Box$ 

**Proposition 3.10.** If *S* is an Arf semigroup,  $S \neq \mathbb{N}$ , then

$$T(\Sigma) = \bigcup_{b=0}^{n-1} ((T(S_b) + b) \times \{b\}) \cup \bigcup_{a=0}^{n-1} (\{a\} \times (T(S_a) + a)).$$

**Proof.** Let  $\tau = (t + b, b)$ , with  $t \in T(S_b)$  and  $b \in \mathbb{N}$ . Since  $\tau \in \mathbb{N}^2$ , to show that  $\tau \in T(\Sigma)$ , by Lemma 3.4 and Proposition 3.5 it is enough to show that  $\tau \notin \Sigma$  and  $\tau + (1, 1) \in \Sigma$ . Since  $t \in T(S_b)$ , we have  $t \in S_{b+1} \setminus S_b$ . So  $\tau = (t + b, b) \notin (S_b + b) \times \{b\}$  and  $(t + b, b) + (1, 1) \in S_{b+1} \times \{b + 1\} \subseteq \Sigma$  (cf. Lemma 3.9). By the symmetry of  $\Sigma$  it follows that each element of the form (a, t + a), with  $t \in T(S_a)$  and  $a \in \mathbb{N}$  is in  $T(\Sigma)$ . For the opposite inclusion, note that, by Lemma 3.5,  $|T(\Sigma)| = 2|H(S)|$ . Counting the elements in  $\bigcup_{b=0}^{n-1}((T(S_b) + b) \times \{b\}) \cup \bigcup_{b=0}^{n-1}(\{a\} \times (T(S_a) + a))$ , we have  $2((e_0 - 1) + (e_1 - 1) + \cdots + (e_{n-1} - 1) = 2|H(S)|$  elements, since for an Arf semigroup S with multiplicity e, |T(S)| = e - 1.  $\Box$ 

**Proposition 3.11.** If *S* is an Arf semigroup,  $S \neq \mathbb{N}$  with multiplicity sequence  $e_0, e_1, \ldots, e_{n-1} \neq 1, e_n = 1, e_{n+1} = 1, \ldots$ , then (a)  $|\mathbb{N}^2 \setminus \Sigma| = 2(e_0 + 2e_1 + \cdots + ne_{n-1} - \binom{n+1}{2}) = 2(ns_n - (s_1 + s_2 + \cdots + s_{n-1}) - \binom{n+1}{2})$ . (b)  $\Sigma$  is minimally generated by  $2e_0 + 1 + 2((e_0 - 1) + (e_1 - 1) + \cdots + (e_{n-1} - 1))$  elements.

**Proof.** (a) By the symmetry of  $\Sigma$  and since  $(1, 1) \in \Sigma$ , it suffices to consider the set  $\{(a, b) \in \mathbb{N}^2; a > b\}$ . The number of  $(a, 0) \in \mathbb{N}^2 \setminus \Sigma$  is  $s_n - n = (e_0 + e_1 + \dots + e_{n-1}) - n$ . The number of  $(a, 1) \notin \Sigma$ , a > 1, is  $e_1 + e_2 + \dots + e_{n-1} - (n-1)$ . The number of  $(a, 2) \notin \Sigma$ , a > 2, is  $e_2 + \dots + e_{n-1} - (n-2)$ , and so on. Thus we get the left hand side. Since  $e_0 + e_1 + \dots + e_{i-1} = s_i$ , we have  $ns_n - (s_1 + s_2 + \dots + s_{n-1}) = n(e_0 + e_1 + \dots + e_{n-1}) - (e_0 + (e_0 + e_1) + \dots + (e_0 + e_1 + \dots + e_{n-2})) = e_0 + 2e_1 + \dots + ne_{n-1}$ . (b) We have seen that  $\Sigma$  is minimally generated by  $2\nu + 1 + 2\delta$  elements. Since S is Arf, we have  $\nu = e_0$  and  $\delta = (e_0 - 1) + (e_1 - 1) + \dots + (e_{n-1} - 1)$ .

**Proposition 3.12.** *If S is any numerical semigroup, S*  $\neq \mathbb{N}$ , *the number*  $\mu$  *of minimal generators of*  $\Sigma$  *satisfies*  $g+6 \leq \mu \leq 4g+3$ , *with equality to the left if and only if S is 2-generated and equality to the right if and only if S*  $= \langle g+1, g+2, \ldots, 2g+1 \rangle$ .

**Proof.** We know that the number of minimal generators of  $\Sigma$  is  $2\nu + 1 + 2\delta$ , where  $\nu$  is the number of generators for *S*, and  $\delta$  is the number of gaps. The number of gaps is at least (g + 1)/2, and the number of generators is at least 2. The number of gaps is at most *g*, and the number of generators at most g + 1. If  $\nu = 2$ , then *S* is symmetric, thus  $\delta = (g + 1)/2$  and we have equality to the left. On the other hand, it is  $\delta = g$  if and only if  $S = \langle g + 1, g + 2, ..., 2g + 1 \rangle$ . This is a semigroup of maximal embedding dimension of multiplicity e = g + 1, so  $\nu = e = g + 1$  and we have equality to the right.  $\Box$ 

We give two examples of the ring of differential operators and its associated graded ring for Arf semigroup rings.

**Example 1.** If  $S = \langle 2, 5 \rangle$ , then  $\Sigma$  is given by all  $(a, b) \in \mathbb{N}^2$  except

 $\{(1, 0), (3, 0), (0, 1), (0, 3), (2, 1), (1, 2)\}.$ 

A minimal set of generators for  $\mathbb{C}[\Sigma]$  is

 $\{t^2, t^5, y^2, y^5, ty, t^4y, t^3y^2, t^2y^3, ty^4\}$ 

so  $T(\Sigma) = \{(3, 0), (2, 1), (0, 3), (1, 2)\}$ . A corresponding set of generators for the ring of differential operators  $D(\mathbb{C}[S])$  is

$$\{t^2, t^5, \partial^2 - 4t^{-1}\partial, \partial^5 - 10t^{-1}\partial^4 + 45t^{-2}\partial^3 - 105t^{-3}\partial^2 + 105t^{-4}\partial, t\partial, t\partial, t^4\partial, t^3\partial^2 - t^2\partial, t^2\partial^3 - 3t\partial^2 + 3\partial, t\partial^4 - 6\partial^3 + 15t^{-1}\partial^2 - 15t^{-2}\partial\}.$$

This is not a minimal generating set, e.g.  $[t^4\partial, t^2] = 2t^5$ . The blowup of *S* is  $S_1 = \langle 2, 3 \rangle$ . All monomials except *t* and *y* belong to  $\mathbb{C}[\Sigma_1] = \operatorname{gr}(D(\mathbb{C}[S_1]))$ . In general, if  $S = \langle 2, 2k + 1 \rangle$ ,  $|\mathbb{N}^2 \setminus \Sigma| = k(k + 1)$ . All elements (a, b),  $a, b \in \mathbb{N}^2$ , except those where a + b = 2i - 1,  $i = 1, \ldots, k$ , belong to  $\Sigma$ .

**Example 2** (cf. [4, Section 8]). If  $S = \langle 3, 4, 5 \rangle$ , then  $\Sigma$  is given by all  $(a, b) \in \mathbb{N}^2$  except

 $\{(1, 0), (2, 0), (0, 1), (0, 2)\}.$ 

A minimal set of generators for  $\mathbb{C}[\Sigma]$  is

 $\{t^3, t^4, t^5, y^3, y^4, y^5, ty, t^2y, t^3y, ty^2, ty^3\}$ 

so  $T(\Sigma) = \{(1, 0), (2, 0), (0, 1), (0, 2)\}$ . A corresponding set of generators for  $D(\mathbb{C}[S])$  is

$$\{t^3, t^4, t^5, \partial^3 - 6t^{-1}\partial^2 + 12t^{-3}\partial, \partial^4 - 8t^{-1}\partial^3 + 28t^{-2}\partial^2 - 40t^{-3}\partial, \\ \partial^5 - 10t^{-1}\partial^4 + 50t^{-2}\partial^3 - 140t^{-3}\partial^2 + 180t^{-4}\partial, t\partial, t^2\partial, t^3\partial, t\partial^2 - 2\partial, t\partial^3 - 4\partial^2 + 6t^{-1}\partial\}.$$

This is not a minimal generating set, e.g.  $[t^2\partial, t^3] = 3t^4$ . The blowup of S is  $\mathbb{N}$  and  $gr(D(\mathbb{C}[\mathbb{N}]) = \mathbb{C}[t, y]$ .

#### 4. Irreducible ideals

It is well known that, for a numerical semigroup *S*, the cardinality of T(S) is the CM type of  $\mathbb{C}[S]$ , i.e. t = |T(S)| is the number of components of a decomposition of a principal ideal as irredundant intersection of irreducible ideals. We want to study whether  $|T(\Sigma)|$  has a similar meaning in the ring  $\mathbb{C}[\Sigma]$ .

Let *I* be a proper ideal of  $\Sigma$  i.e. a proper subset *I* of  $\Sigma$  such that  $I + \Sigma \subseteq I$ . *I* is *irreducible* if it is not the intersection of two (or, equivalently, a finite number of) ideals which properly contain *I*. *I* is *completely irreducible* if it is not the intersection of any set of ideals which properly contain *I*.

(\*)

Consider the partial order on  $\varSigma$  given by

$$\sigma_1 \preceq \sigma_2 \Leftrightarrow \sigma_1 + \sigma_3 = \sigma_2$$
, for some  $\sigma_3 \in \Sigma$ 

and for  $x \in \Sigma$ , set

 $B(x) = \{ \sigma \in \Sigma \mid \sigma \preceq x \}.$ 

**Lemma 4.1.** If *I* is a proper ideal of  $\Sigma$ , then the following conditions are equivalent:

(1) *I* is completely irreducible.

(2) I is maximal as ideal with respect to the property of not containing an element x, for some  $x \in \Sigma$ .

(3)  $I = \Sigma \setminus B(x)$ , for some  $x \in \Sigma$ .

**Proof.** (1)  $\Rightarrow$  (2). Let *H* be the intersection of all the ideals properly containing *I*. Then there is  $x \in H \setminus I$ , so *I* is maximal with respect to the property of not containing *x*.

 $(2) \Rightarrow (1)$ . Each ideal *J* properly containing *I* contains *x*, so *I* is not the intersection of all such ideals *J* and it is completely irreducible.  $(2) \Leftrightarrow (3)$  is trivial.  $\Box$ 

**Lemma 4.2.** For each  $a, b \in \mathbb{N}$ , a, b > 0, the following are irreducible, non-completely irreducible ideals of  $\Sigma$ :  $N_{(a,0)} := \Sigma \cap \{(x, y) \in \mathbb{N}^2; x \ge a\}$  $N_{(0,b)} := \Sigma \cap \{(x, y) \in \mathbb{N}^2; y > b\}.$ 

**Proof.** Any ideal *J* of  $\Sigma$  properly containing  $N_{(a,0)}$  contains (a - 1, s), for some  $s \in S$ , so it contains (a - 1, s + S). It follows that, if  $J_1, J_2$  are ideals properly containing  $N_{(a,0)}$ , then  $J_1 \cap J_2$  contains  $(a - 1, \max(s, s') + g + 1 + S)$  (if  $(a - 1, s) \in J_1$  and  $(a - 1, s') \in J_2$ ), so  $J_1 \cap J_2 \neq N_{(a,0)}$  and  $N_{(a,0)}$  is irreducible. On the other hand  $N_{(a,0)}$  is the intersection of all the ideals properly containing it, so it is not completely irreducible.  $\Box$ 

In all the results of this section max has to be intended with respect to the partial order (\*) on  $\Sigma$ .

**Proposition 4.3.** Let *I* be an ideal of  $\Sigma$  generated by  $(a_1, b_1), \ldots, (a_h, b_h)$  and let  $a = \min\{a_i\}, b = \min\{b_i\}$ . Then

$$I = \bigcap_{x \in \max(\Sigma \setminus I)} (\Sigma \setminus B(x)) \cap N_{(a,0)} \cap N_{(0,b)}$$

is the unique irredundant decomposition of the ideal I as intersection of irreducible ideals.

**Proof.**  $\subseteq$ : let  $\alpha \in I$ . Then  $\alpha \notin B(x)$  for each  $x \in \Sigma \setminus I$  (otherwise  $\alpha + \beta = x$ , for some  $\beta \in \Sigma$  and so  $x \in I$ , a contradiction). Thus  $\alpha \in \Sigma \setminus B(x)$ , for each  $x \in \max(\Sigma \setminus I)$ . Moreover  $\alpha \in N_{(a,0)} \cap N_{(0,b)}$ .  $\supseteq$ : observe first that

$$\bigcap_{x \in \max(\Sigma \setminus I)} (\Sigma \setminus B(x)) = \bigcap_{x \in (\Sigma \setminus I)} (\Sigma \setminus B(x))$$

in fact  $(\Sigma \setminus B(x_1)) \subseteq (\Sigma \setminus B(x_2))$  if and only if  $B(x_1) \supseteq B(x_2)$  if and only if  $x_2 \preceq x_1$ . Suppose that  $\alpha \in N_{(a,0)} \cap N_{(0,b)}$ , i.e. that  $\alpha = (c, d) \in \Sigma$ , with  $c \ge a$  and  $d \ge b$ . We have to show that, if  $\alpha \in \bigcap_{x \in (\Sigma \setminus I)} (\Sigma \setminus B(x))$ , then  $\alpha \in I$ . In fact, if  $\alpha \notin I$ , then (since trivially  $\alpha \in B(\alpha)$ )  $\alpha \notin \Sigma \setminus B(x)$ , for some  $x \in \Sigma \setminus I$  (take  $x = \alpha$ ).

To show that the decomposition is irredundant, it's easy to see that  $N_{(a,0)}$  (respectively  $N_{(0,b)}$ ) does not contain the intersection of the other components. Moreover, if  $x \in \max(\Sigma \setminus I)$ , the only component of the intersection which does not contain x is  $\Sigma \setminus B(x)$ . Thus this component is not superfluous.  $\Box$ 

The following result agrees with [6, Theorem 11.3]:

**Corollary 4.4.** The unique irreducible ideals of  $\Sigma$  are  $N_{(a,0)}$ , for some a > 0,  $N_{(0,b)}$ , for some b > 0 and those of the form  $\Sigma \setminus B(x)$ , for some  $x \in \Sigma$ .

**Corollary 4.5.** *If*  $(0, 0) \neq \sigma = (a, b) \in \Sigma$ *, then* 

$$\sigma + \Sigma = \bigcap_{x \in \max \operatorname{Ap}_{\sigma}(\Sigma)} (\Sigma \setminus B(x)) \cap N_{(a,0)} \cap N_{(0,b)}$$

is the unique irredundant decomposition of the principal ideal  $\sigma + \Sigma$  as intersection of irreducible ideals.

**Proof.** It follows from the Proposition 4.3, observing that  $Ap_{\sigma}(\Sigma) = \Sigma \setminus (\sigma + \Sigma)$ .  $\Box$ 

What we got for the ideals of the semigroup  $\Sigma$  can be read in terms of monomial ideals of  $\mathbb{C}[\Sigma]$ . In fact each ideal I of  $\Sigma$  corresponds to the monomial ideal of  $\mathbb{C}[\Sigma]$  generated by  $\{t^a y^b\}$ ;  $(a, b) \in I\}$ . Moreover if a monomial ideal of  $\mathbb{C}[\Sigma]$  is not the intersection of two strictly larger monomial ideals, then it is not the intersection of two strictly larger ideals, even if non-monomial ideals are allowed [6, Proposition 11, p. 41]. Thus the results above characterize the irreducible monomial ideals of  $\mathbb{C}[\Sigma]$  as well.

**Corollary 4.6.** Each principal monomial ideal of  $\mathbb{C}[\Sigma]$  is an irredundant intersection of  $|T(\Sigma)| + 2 = 2\delta + 2$  irreducible ideals (where  $\delta = |H(S)|$ ).

**Proof.** It follows from the previous corollary, recalling that, for each  $(0, 0) \neq \sigma \in \Sigma$ ,  $2\delta = |T(\Sigma)| = |\max Ap_{\sigma}(\Sigma)|$ , because there is a one to one correspondence between the sets  $T(\Sigma)$  and  $\max Ap_{\sigma}(\Sigma)$ , more precisely it is proved in [3, Proposition 4.1] that  $\tau \in T(\Sigma)$  if and only if  $\tau + \sigma \in \max Ap_{\sigma}(\Sigma)$ .  $\Box$ 

#### 5. Derivations

Let *I* be an ideal in  $\mathbb{C}[S]$ . Then we denote by Der(I, I) the set of derivations which map *I* into *I*.

**Lemma 5.1.** If *I* is generated by monomials in  $\mathbb{C}[S]$ , then  $\text{Der}(I, I) \simeq I : I$  as  $\mathbb{C}[S]$ -module. Thus Der(I, I) is isomorphic to a semigroup ring  $\mathbb{C}[T]$ , where *T* is a semigroup,  $S \subseteq T \subseteq \mathbb{N}$ .

**Proof.** If *I* is generated by monomials also I : I, which is a fractional ideal of  $\mathbb{C}[S]$ , is generated by monomials. Let  $\{t^{n_i}\}$  be the generators of I : I, then Der(I, I) is generated by  $\{t^{n_i+1}\partial\}$ , and  $t^k \mapsto t^{k+1}\partial$  induces an isomorphism as  $\mathbb{C}[S]$ -modules. Moreover I : I is a semigroup ring  $\mathbb{C}[T]$ , for some semigroup  $T, S \subseteq T \subseteq \mathbb{N}$  and so Der(I, I) is isomorphic to  $\mathbb{C}[T]$  as  $\mathbb{C}[S]$ -module.  $\Box$ 

Observe that, if  $I : I = \mathbb{C}[T]$ , then also  $xI : xI = \mathbb{C}[T]$ , for each nonzero  $x \in \mathbb{C}[S]$ . In particular we can say that, for each monomial principal ideal I of  $\mathbb{C}[S]$ ,  $\text{Der}(I, I) \simeq \mathbb{C}[S]$  as  $\mathbb{C}[S]$ -modules.

If *I* is not generated by monomials, the statement in the proposition is no longer true. If  $I = (t^4 + t^5, t^4 + t^6)$  in  $k[t^4, t^5, t^6]$ , then Der(I, I) is generated by  $t^5\partial$ ,  $t^6\partial$ ,  $t^7\partial$ .

For a monomial ideal *I* of  $\mathbb{C}[S]$ , we denote by min(*I*) the minimal degree of the monomials in *I*.

**Proposition 5.2.** Let *T* be a semigroup,  $S \subseteq T \subseteq \mathbb{N}$  and let *C* be the conductor ideal  $C = \mathbb{C}[S] : \mathbb{C}[T]$ . Then:

(i) If J is a monomial ideal of  $\mathbb{C}[S]$  such that  $J : J = \mathbb{C}[T]$ , then  $J \subseteq C$  and  $\min(J) \ge \min(C)$ .

(ii) The overring  $\mathbb{C}[T]$  of  $\mathbb{C}[S]$  is of the form I : I, for some monomial ideal I of  $\mathbb{C}[S]$ .

(iii) *If J* is a monomial ideal of  $\mathbb{C}[S]$ , with  $\min(J) = j$ , such that  $J : J = \mathbb{C}[T]$ , then  $J \supseteq t^j \mathbb{C}[T]$  and  $t^j \in C$ .

**Proof.** (i) If *J* is a monomial ideal of  $\mathbb{C}[S]$  such that  $J : J = \mathbb{C}[T]$ , then, since *J* is an ideal of  $\mathbb{C}[T]$  too, it is contained in *C* which is the biggest ideal that  $\mathbb{C}[S]$  and  $\mathbb{C}[T]$  share. Thus min(J)  $\geq$  min(C).

(ii) We have that  $\mathbb{C}[T] \subseteq \overline{\mathbb{C}[S]} = \mathbb{C}[t] = \mathbb{C}[\mathbb{N}]$ , so  $\mathbb{C}[T]$  is a fractional ideal of  $\mathbb{C}[S]$  and  $r\mathbb{C}[T] = I \subseteq \mathbb{C}[S]$ , for some nonzero  $r \in \mathbb{C}[S]$ . Now  $I : I = r\mathbb{C}[T] : r\mathbb{C}[T] = \mathbb{C}[T]$  and  $\mathbb{C}[T]$  is of the requested form.

(iii) Suppose now that *J* is a monomial ideal of  $\mathbb{C}[S]$ , with  $\min(J) = j$ , such that  $J : J = \mathbb{C}[T]$ . We claim that  $J \supseteq t^{j}\mathbb{C}[T]$ . Indeed the principal ideal  $t^{j}\mathbb{C}[S]$  is contained in *J* and so  $\mathbb{C}[T] = J : J \subseteq J : t^{j}\mathbb{C}[S] = t^{-j}(J : \mathbb{C}[S]) = t^{-j}J$ , hence  $t^{j}\mathbb{C}[T] \subseteq J$ . Then also  $t^{j}\mathbb{C}[T] \subseteq \mathbb{C}[S]$  and  $t^{j} \in C$ .  $\Box$ 

It is known that the ring  $\mathbb{C}[[T]]$  is Gorenstein if and only if the numerical semigroup *T* is symmetric. The extension of that result to the non-local case is not difficult:

**Lemma 5.3.** Let T be a numerical semigroup. Then the ring  $\mathbb{C}[T]$  is Gorenstein if and only if T is symmetric.

**Proof.**  $\mathbb{C}[T] = \mathbb{C}[t^{n_1}, \ldots, t^{n_h}]$  is Gorenstein if and only if each localization at a prime ideal is Gorenstein. For the localization at  $P = (t^{n_1}, \ldots, t^{n_h})$ , we have that  $\mathbb{C}[T]_P$  is Gorenstein if and only if T is symmetric, arguing similarly to the local case  $\mathbb{C}[[T]]$ . For the other nonzero prime ideals Q, we have that Q does not contain the conductor  $\mathbb{C}[T] : \mathbb{C}[t]$ , so  $\mathbb{C}[T]_Q \cong \mathbb{C}[t]_{Q'}$  is a DVR, thus a Gorenstein ring, where Q' is the unique prime ideal of  $\mathbb{C}[t]$  lying over Q.  $\Box$ 

**Corollary 5.4.** Let  $\mathbb{C}[T]$  be a Gorenstein overring of  $\mathbb{C}[S]$ . If J is a monomial ideal of  $\mathbb{C}[S]$ , then  $J : J = \mathbb{C}[T]$  if and only if  $J = t^j \mathbb{C}[T]$ , where  $j = \min(J)$ .

**Proof.** We know by Proposition 5.2(iii) that  $J \supseteq t^j \mathbb{C}[T]$ . In order to prove the opposite inclusion, we show that, if H is a monomial ideal of  $\mathbb{C}[S]$  with  $\min(H) = j$  properly larger than  $t^j \mathbb{C}[T]$ , then  $H : H \neq \mathbb{C}[T]$ . Let g be the Frobenius number of the semigroup T, which is symmetric because  $\mathbb{C}[T]$  is Gorenstein (cf. Lemma 5.3). We can argue equivalently on the fractional ideals of  $\mathbb{C}[S]$ . So, let H be a fractional monomial ideal of  $\mathbb{C}[S]$  with  $\min(H) = 0$  and strictly larger than  $\mathbb{C}[T]$  and let  $t^h \in H \setminus \mathbb{C}[T]$ . Then  $t^{g-h} \in \mathbb{C}[T]$ . Since  $t^{g-h}t^h = t^g \notin \mathbb{C}[T]$ , we have  $t^{g-h} \notin H : H$  and so  $H : H \neq \mathbb{C}[T]$ .  $\Box$ 

If *I*, *J* are ideals of  $\mathbb{C}[S]$ , we say that *I* and *J* are *equivalent*  $(I \sim J)$  if xI = yJ, for some nonzero elements  $x, y \in \mathbb{C}[S]$ . Recall also that an ideal *I* is called *stable* if it is principal in the overring *I* : *I*. In a similar way a semigroup ideal *I* of *S* is called stable if it is principal in the over-semigroup  $I - I = \{z \in Z \mid z + I \subseteq I\}$ .

**Example.** If  $S = \langle 3, 4, 5 \rangle$ , the only semigroups T for which  $S \subseteq T \subseteq \mathbb{N}$  are  $S, T_1 = \langle 2, 3 \rangle$ , and  $\mathbb{N}$ , so that the only proper semigroup overrings of  $\mathbb{C}[S]$  are  $\mathbb{C}[T_1]$  and  $\mathbb{C}[\mathbb{N}] = \mathbb{C}[t]$ , which are both Gorenstein rings. The conductor ideals coincide,  $\mathbb{C}[S] : \mathbb{C}[T_1] = \mathbb{C}[S] : \mathbb{C}[\mathbb{N}] = t^3\mathbb{C}[t]$ . By Corollary 5.4 and Proposition 5.2(iii), if J is a monomial ideal of  $\mathbb{C}[S]$ , then  $J : J = \mathbb{C}[T_1]$  if and only if  $J = t^j\mathbb{C}[T_1]$  with  $j \ge 3$ , i.e.  $J \sim (t^3, t^5)$  and  $J : J = \mathbb{C}[t]$  if and only if  $J = t^j\mathbb{C}[t]$  with  $j \ge 3$ , i.e.  $J = \mathbb{C}[S]$  is not Gorenstein and  $\mathbb{C}[S] : \mathbb{C}[S] = \mathbb{C}[S]$ . We have that  $J : J = \mathbb{C}[S]$  if and only if J is a principal ideal of  $\mathbb{C}[S]$  or  $J \sim (t^3, t^4)$ , so here two equivalence classes of monomial ideals correspond to the same overring.

**Proposition 5.5.** *The following conditions are equivalent:* 

(1)There exists a one-to-one correspondence between the semigroup overrings of  $\mathbb{C}[S]$  and the equivalence classes of monomial ideals of  $\mathbb{C}[S]$ .

(2)  $\mathbb{C}[S] = \mathbb{C}[t^2, t^{2k+1}]$ , for some  $k \in \mathbb{N}$ .

(3) Each semigroup overring of  $\mathbb{C}[S]$  is Gorenstein.

**Proof.** (1)  $\Leftrightarrow$  (2). By Proposition 5.2, (ii) and (iii), there exists a one-to-one correspondence between the semigroup overrings of  $\mathbb{C}[S]$  and the classes of stable monomial ideals of  $\mathbb{C}[S]$  (cf. also [2, Proposition II.4.3]). So we get the requested one-to-one correspondence if and only if each monomial ideal of  $\mathbb{C}[S]$  is stable, i.e. if and only if each semigroup ideal of *S* is stable. By [2, Theorems I.5.13, (i)  $\Leftrightarrow$  (iii) and I.4.2 (i)  $\Leftrightarrow$  (v)], this is equivalent to  $S = \langle 2, 2k + 1 \rangle$ , for some  $k \in \mathbb{N}$ . (2)  $\Leftrightarrow$  (3). By Lemma 5.3, condition (3) means that each semigroup  $T, S \subseteq T \subseteq N$  is symmetric and that holds if and only if  $S = \langle 2, 2k + 1 \rangle$ , for some  $k \in \mathbb{N}$  (cf. [2, Theorem I.4.2(v)  $\Leftrightarrow$  (ix)]).  $\Box$ 

**Example.** If  $S = \langle 2, 5 \rangle$  there are three equivalence classes of ideals generated by monomials with representatives  $\mathbb{C}[S]$ ,  $(t^2, t^5)$  and  $(t^4, t^5)$ . These correspond to  $\mathbb{C}[S]$ ,  $\mathbb{C}[t^2, t^3]$  and  $\mathbb{C}[t]$ , respectively. More generally, if  $S = \langle 2, 2k+1 \rangle$ , there are k+1 equivalence classes of ideals generated by monomials with representatives  $\mathbb{C}[S]$ ,  $(t^2, t^{2k+1})$ ,  $(t^4, t^{2k+1})$ , ...,  $(t^{2k}, t^{2k+1})$ . These correspond to  $\mathbb{C}[S]$ ,  $\mathbb{C}[t^2, t^{2k-3}]$ , ...,  $\mathbb{C}[t^2, t] = \mathbb{C}[t]$ , respectively.

#### Acknowledgment

We want to thank the anonymous referee for a careful reading.

#### References

- V. Barucci, M. D'Anna, R. Fröberg, ARF characters of an algebroid curve, JP J. Algebra Number Theory Appl. 3 (2) (2003) 219–243.
   V. Barucci, D. Dobbs, M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Memoirs of the American Mathematical Society 125 (598) (1997).
- [3] E. Emtander, On positive affine monoids, preprint.
- [4] E. Eriksen, Differential operators on monomial curves, J. Algebra 264 (2003) 186–198.
  [5] A. Eriksson, Differential operators on some classes of rings, Ph.D. thesis, Stockholm university, 2000.
  [6] E. Miller, B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
- [7] P.T. Perkins, Commutative subalgebras of the ring of differential operators on a curve, Pacific J. Math. 139 (2) (1989) 279-302.
- [8] J.C. Rosales, P.A. García-Sánchez, Numerical Semigroups, Springer, 2009.