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0. Introduction

Fix a field k and positive integers � and σ1 � σ2 � · · · � σ� � 1. The rational normal scroll
Scroll(σ1, . . . , σ�) is the image of the map

Σ : (A2 \ {0})× (A� \ {0})→ PN ,

where N = � − 1 +∑�
i=1 σi and

Σ(x, y; t1, . . . , t�) = (xσ1t1, xσ1−1 yt1, . . . , yσ1t1, xσ2t2, xσ2−1 yt2, . . . , yσ�t�
)
.

From this one sees that the homogeneous coordinate ring of Scroll(σ1, . . . , σ�) ⊆ PN is the subalgebra

A = k
[
xσ1t1, xσ1−1 yt1, . . . , yσ1t1, xσ2t2, xσ2−1 yt2, . . . , yσ�t�

]
of the polynomial ring k[x, y, t1, . . . , t�]. This algebra has a presentation A = S/I2(ψ), where S is the
polynomial ring

S = k
[{Ti, j | 1 � i � � and 1 � j � σi + 1}],

ψ is the matrix ψ = [ψ1 | · · · | ψ� ], and for each u, ψu is the generic catalecticant matrix

ψu =
[

Tu,1 Tu,2 . . . Tu,σu−1 Tu,σu

Tu,2 Tu,3 . . . Tu,σu Tu,σu+1

]
.

Further information about rational normal scrolls, with alternative descriptions and many applications,
may be found in [7,9,15,6].

The class group of the normal domain A is cyclic, and is infinite provided � � 2. One generator
of C�(A) is [ J ], where J is the ideal of A generated by the entries of the first column of ψ . The
positive powers of J are well-understood, in the sense that the nth ordinary power Jn and the nth
symmetric power Symn( J ) are equal, and they coincide with the nth symbolic power J (n) in case
� � 2. Therefore all three nth powers are resolved by a generalized Eagon–Northcott complex, at least
when � � 2. The inverse of [ J ] in the class group of A is [K ], where K is the ideal generated by
the entries of the first row of ψ . The positive powers of [K ] are less well understood. The purpose
of the present paper is to rectify this. In Section 1 we obtain a minimal generating set for K (n); the
graded components of this ideal can also be read from [18, 1.3]. In Section 2 we exhibit a Gröbner
basis for the preimage of K (n) in S . The Gröbner basis is obtained from a minimal generating set
of I2(ψ) in S and a monomial minimal generating set of K (n) in A. In Section 3, we describe a
filtration of K (n) in which all of the factors are Cohen–Macaulay S-modules resolved by generalized
Eagon–Northcott complexes. We use this filtration in Section 4 to describe the modules in a finely
graded resolution of K (n) by free S-modules. More generally, though less explicitly, resolutions of
homogeneous coordinate rings of subvarieties of rational normal scrolls have been approached in
[18, 3.2 and 3.5] in terms of resolutions by locally free sheaves having a filtration by generalized
“Eagon–Northcott sheaves”. We calculate the regularity of the graded S-module K (n) in Section 5. The
interest in this topic is reflected by the existence of papers like [14] and Hoa’s conjecture [13]. As
it turns out, the regularity of K (n) is �n−1

σ�
� + 1 and, in particular, only depends on the size of the

smallest block in the matrix of the scroll. In Section 6 we show that the symbolic Rees ring of K
is Noetherian. (Of course, some symbolic Rees rings are not Noetherian [16,17,8] and positive results
have been obtained in [10,4,11] for instance, but in general the question of when a symbolic Rees
ring is Noetherian remains wide open.)

Our computation of the regularity in Section 5 uses a second filtration of K (n) that is coarser
than the filtration of Section 3. The factors of the coarser filtration are still Cohen–Macaulay modules
resolved by generalized Eagon–Northcott complexes. These resolutions give rise to a resolution of K (n)
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that is sufficiently close to a minimal resolution to allow for a computation of the regularity. On the
other hand, if minimality of resolutions is not an issue, like in the calculation of Hilbert series (see,
for example [12]), then it is advantageous to use the finer filtration of Section 3 as it is easier to
describe.

Let I be a homogeneous ideal of height two in k[x, y]. Suppose that the presenting matrix of
I is almost linear in the sense that the entries of one column have degree n and all of the other
entries are linear. In [12] we prove that the Rees ring and the special fiber ring of I both have the
form A/A, where A is the coordinate ring of a rational normal scroll and the ideals A and K (n)

of A are isomorphic. We use the results of the present paper to identify explicit generators for A,
to resolve the powers I s of I , to compute the regularity of I s , and to calculate the reduction number
of I .

1. The generators of K (n)

Data 1.1. We are given integers σ1 � · · · � σ� � 1 and an integer n � 2. Let S be the polynomial ring

S = k
[{Ti, j | 1 � i � � and 1 � j � σi + 1}].

For each u, with 1 � u � �, let ψu be the generic catalecticant matrix

ψu =
[

Tu,1 Tu,2 . . . Tu,σu−1 Tu,σu

Tu,2 Tu,3 . . . Tu,σu Tu,σu+1

]
. (1.2)

Define ψ to be the matrix

ψ = [ψ1 | . . . | ψ� ] . (1.3)

Let H be the ideal I2(ψ) of S and A the ring S/H . We will write Ti, j for a variable in S and also for
its image in A – the meaning will be clear from context. Recall that A is a Cohen–Macaulay ring of
Krull dimension �+ 1 with isolated singularity. In particular, it is a normal domain. Let K be the ideal
in A generated by the entries of the top row of ψ . Notice that K is a height one prime ideal of A.

In Theorem 1.5 we identify a generating set for K (n) and in Proposition 1.20 we identify a minimal
generating set for K (n) .

Ultimately, we will put three gradings on the rings S and A. The first grading on S is defined by
setting

Deg(Ti, j) = σi + 1 − j. (1.4)

Notice that H is a homogeneous ideal with respect to this grading and thus Deg induces a grading
on A, which we also denote by Deg. Let A�n be the ideal of A generated by all monomials M with
Deg(M) � n.

Theorem 1.5. The nth symbolic power, K (n) , of K is equal to A�n.

Proof. Calculate in A. First observe that

T σi− j
i,σi+1Ti, j = T σi+1− j

i,σi
∈ Kσi+1− j, (1.6)

for all i, j with 1 � i � � and 1 � j � σi . Indeed, the statement is obvious when j = σi . If j = σi − 1,
then the assertion holds because

0 = det

[
Ti,σi−1 Ti,σi

T T

]
.

i,σi i,σi+1
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The proof of (1.6) is completed by decreasing induction on j. Since Ti,σi+1 is not in the prime ideal K ,
from (1.6) we obtain Ti, j ∈ K (σi+1− j) = K (Deg Ti, j) . Thus,

K n ⊆ A�n ⊆ K (n).

Observe that Deg(Ti,σi+1) = 0 for 1 � i � �; hence, Ti,σi+1 is a non-zerodivisor on A/A�n , because
A is a domain and Ti,σi+1 is not zero in A. On the other hand, the localization A[T −1

i,σi+1] is a regular

ring; and hence, in this ring, K (n) coincides with K n , thus with A�n . Since, Ti,σi+1 is regular modulo
A�n , we conclude that A�n is equal to K (n) . �
Observation 1.7. Let R = k[x, y] be a polynomial ring with homogeneous maximal ideal m and write B =
k[x, y, t1, . . . , t�]. Define the homomorphism of k-algebras π : S → B with

π(Ti, j) = xσi− j+1 y j−1ti .

(a) The image of π is the k-subalgebra k[Rσ1 t1, . . . , Rσ�
t�] of B. In particular, the image of π is the special

fiber ring of the R-module mσ1 ⊕ · · · ⊕ mσ� .
(b) The homomorphism π : S → B induces an isomorphism A ∼= π(S), which we use to identify A with the

subring π(S) of B.
(c) We have K ⊆ Bx ∩ A = A�1 .

(d) A monomial xα yβ
∏�

u=1 tcu
u of B belongs to A if and only if

α + β =
�∑

u=1

cuσu . (1.8)

(e) The ring A is a direct summand of B as an A-module.

Proof. The first assertion in part (a) is obvious; the statement about the special fiber ring can be
shown by considering the Rees ring R[mσ1t1, . . . ,m

σ�t�] and giving the variables ti degree −σi . Since
the quotient field of π(S) is

k

(
y

x
, xσ1t1, . . . , xσ�t�

)
,

adjoining x one sees that this field has transcendence degree � + 1 over k. Thus, the Krull dimension
of π(S) is � + 1, which is also the dimension of A. Hence, the prime ideals H ⊆ kerπ have the
same height and π(S) ∼= A. This is (b). On B , we define a grading by giving x degree 1 and the other
variables degree 0. The map π is homogeneous with respect to this grading on B and the grading Deg
on S . Hence, the grading on B induces a grading on the subalgebra π(S) = A that coincides with Deg
as defined in (1.4). Notice that K ⊆ Bx∩ A = A�1, which is (c). (This provides an alternative proof that
K (n) ⊆ Bxn ∩ A = A�n .) Assertion (d) is obvious and (e) follows because a complementary summand
is the A-module generated by all monomials of B that do not satisfy (1.8). �

Now we move in the direction of identifying a minimal generating set for K (n) . In this discussion,
we also use the standard grading, where each variable has degree one, we will refer to it as the total
degree.

Observation 1.9. If f is a monomial of S with Deg( f ) > 0, then there exists a monomial of the form

M = T a1
1,1 · · · T ak

k,1Tk,v T bk
k,σk+1 · · · T b�

�,σ�+1 (1.10)

in S with 1 � v � σk, Deg f = Deg M, and f − M ∈ H.
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Proof. We will use this calculation later in the context of Gröbner bases; so, we make our argument
very precise. Order the variables of S with

T1,1 > T1,2 > · · · > T1,σ1+1 > T2,1 > · · · > T2,σ2+1 > T3,1 > · · · > T�,σ�+1. (1.11)

Observe that there exists α � β such that f = f1 f ′ f2 where f1 = T a1
1,1 · · · T aα

α,1, f2 = T
bβ

β,σβ+1 · · · T b�

�,σ�+1

and

Ti, j | f ′ �⇒ Tα,1 > Ti, j > Tβ,σβ+1.

Let Ti, j be the largest variable which divides f ′ and Tu,v the smallest variable which divides f ′ . We
may shrink f ′ , if necessary, and insist that 1 < j and v < σu + 1. If f ′ has total degree at most one,
then one easily may write f in the form of M . We assume that f ′ has total degree at least two. Take
f ′′ with f ′ = Ti, j f ′′Tu,v . Notice that

h = −det

[
Ti, j−1 Tu,v

Ti, j Tu,v+1

]
= Ti, j Tu,v − Ti, j−1Tu,v+1 (1.12)

is in H and

f − f1hf ′′ f2 = f1Ti, j−1 f ′′Tu,v+1 f2 (1.13)

is more like the desired M than f is. Replacing f by the element of (1.13) does not change Deg
because the element h of (1.12) is homogeneous with respect to this grading. Proceed in this manner
until M is obtained. �

We use the notion of eligible tuples when we identify a minimal generating set for K (n) in Propo-
sition 1.20. We also use this notion in Section 3 when we describe a filtration of K (n) whose factors
are Cohen–Macaulay modules.

Definition 1.14.

(a) We say that a is an eligible k-tuple if a is a k-tuple, (a1, . . . ,ak), of non-negative integers with
0 � k � � − 1 and

∑k
u=1 auσu < n.

(2) Let a be an eligible k-tuple. The non-negative integer f (a) is defined by

k∑
u=1

auσu + f (a)σk+1 < n �
k∑

u=1

auσu + ( f (a) + 1
)
σk+1;

and the positive integer r(a) is defined to be

r(a) =
k∑

u=1

auσu + ( f (a) + 1
)
σk+1 − n + 1.

Be sure to notice that

1 � r(a) � σk+1. (1.15)

(3) We write T a to mean
∏k

u=1 T au
u,1 for each eligible k-tuple a = (a1, . . . ,ak).
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Remark 1.16. The empty tuple, ∅, is always eligible, and we have

f (∅) =
⌈

n

σ1

⌉
− 1, r(∅) = σ1

⌈
n

σ1

⌉
− n + 1, and T ∅ = 1.

Notation. If θ is a real number, then �θ� and �θ� are the “round up” and “round down” of θ , respec-
tively; that is, �θ� and �θ� are the integers with

�θ� − 1 < θ � �θ� and �θ� � θ < �θ� + 1.

Definition 1.17. Let L be the following list of elements of S ,

L =
�−1⋃
k=0

{
T a T f (a)

k+1,1Tk+1,u
∣∣ a is an eligible k-tuple and 1 � u � r(a)

}
.

Observation 1.18. Let M be the monomial T a1
1,1 · · · T ak

k,1Tk,v T bk
k,σk+1 · · · T b�

�,σ�+1 of S. If Deg M � n, then M is
divisible by an element of L.

Proof. We have

n � Deg(M) =
k∑

u=1

auσu + σk + 1 − v.

If
∑k

u=1 auσu < n, then let a be the eligible (k − 1)-tuple (a1, . . . ,ak−1). In this case, f (a) = ak , 1 �
v � r(a), and M is divisible by T a T f (a)

k,1 Tk,v ∈ L. If n �
∑k

u=1 auσu , then identify the least index j with

n �
∑ j

u=1 auσu and let a be the eligible ( j − 1)-tuple (a1, . . . ,a j−1). In this case, f (a) < a j and M is

divisible by T a T f (a)

j,1 T j,1 ∈ L. �
Observation 1.19. The ideals K (n) and L A are equal.

Proof. Recall that K (n) = A�n according to Theorem 1.5. The elements of L have Deg � n, which gives
L A ⊆ A�n = K (n) . To prove the other inclusion, let f be a monomial in S with Deg( f ) � n. By Obser-
vation 1.9 there exists a monomial M with f − M ∈ H and Deg M = Deg f � n. Now Observation 1.18
shows that M is divisible by an element of L. �
Proposition 1.20. The elements of L form a minimal generating set for the ideal K (n) .

Proof. From Observation 1.19 we know that L is a generating set for K (n) . To show it is a minimal
generating set, we use the map π : S → B of Observation 1.7 that identifies A with the monomial
subring k[{xσi− j+1 y j−1ti}] of B = k[x, y, t1, . . . , t�]. The elements of π(L) are monomials in the poly-
nomial ring B , and it suffices to show that if h ∈ π(L) divides g ∈ π(L) in B , then h = g in B .

Let a and b be eligible k and j tuples, respectively, and let

g = π
(
T a T f (a)

k+1,1Tk+1,v
)= xG yv−1ta1

1 · · · tak
k t f (a)+1

k+1 and

h = π
(
T b T f (b)

j+1,1T j+1,w
)= xH yw−1tb1

1 · · · t
b j

j t f (b)+1
j+1 ,

for some v and w with 1 � v � r(a) and 1 � w � r(b), where
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G =
k∑

u=1

auσu + ( f (a) + 1
)
σk+1 − v + 1 and

H =
j∑

u=1

buσu + ( f (b) + 1
)
σ j+1 − w + 1.

The hypothesis that h divides g ensures that j � k and bu � au for 1 � u � j. If j < k, then f (b)+ 1 �
a j+1 and

n �
j∑

u=1

buσu + ( f (b) + 1
)
σ j+1 �

j+1∑
u=1

auσu �
k∑

u=1

auσu < n.

This contradiction guarantees that j = k. Again, the hypothesis ensures that f (b) � f (a), and bi � ai ,
for all i. If bi < ai , for some i, then

n �
k∑

u=1

buσu + ( f (b) + 1
)
σk+1 �

k∑
u=1

auσu + f (b)σk+1 �
k∑

u=1

auσu + f (a)σk+1 < n,

since

σk+1 � σi . (1.21)

This contradiction guarantees that b = a. Again, since h divides g , we also have w � v and H � G . As
b = a, the definition of H and G forces w = v . Thus, indeed, h = g . �
Remark 1.22. The proof of Proposition 1.20 uses the hypothesis

σ1 � σ2 � · · · � σ� (1.23)

in an essential way at (1.21). Furthermore, Proposition 1.20 is false if one removes hypothesis (1.23).
Indeed, the recipe of Definition 1.17 would produce a set of three elements if it were applied to
σ1 = 1, σ2 = n = 2; however, the minimal number of generators of K (n) in this case is two.

Inspired by Observation 1.7 and the proof of Proposition 1.20, we introduce the “fine grading” on S .
Let

εu = (0, . . . ,0,1,0, . . . ,0) (1.24)

be the �-tuple with 1 in position u and 0 in all other positions. The variable Ti, j has “fine degree”
given by

fdeg(Ti, j) = (σi − j + 1, j − 1;εi). (1.25)

The variables of S have distinct fine degrees. Notice that H is homogeneous with respect to fine
degree and therefore fdeg induces a grading on A. Observe that the grading fdeg on A is simply the
grading induced on A by the embedding A ↪→ B = k[x, y, t1, . . . , t�] of Observation 1.7, where the
polynomial ring B is given the usual multigrading.
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The two previous gradings that we have considered (Deg and total degree) can be read from fdeg.
Let σ represent the �-tuple σ = (σ1, . . . , σ�). If M is the monomial

M =
�∏

i=1

σi+1∏
j=1

T
ai, j

i, j

of S , then

fdeg M = (Deg M,σ · ε − Deg M;ε),

where ε is the �-tuple ε = (e1, . . . , e�), with ei =∑σi+1
j=1 ai, j , and σ · ε is the dot product. The total

degree of M is e1 + . . .+ e� = 1 ·ε, where 1 = (1, . . . ,1) is an �-tuple of ones. We return to the notion
of fine degree in (3.3).

2. Gröbner basis

In Theorem 2.4, we identify a Gröbner basis for the preimage of K (n) in S; and as an application,
in Corollary 2.6, we show that depth A/K (n) = 1. Sometimes it is convenient to label the variables
using a single subscript. That is, we write T j for T1, j ; Tσ1+1+ j for T2, j ; Tσ1+σ2+2+ j for T3, j , etc. In
this notation, the matrix ψ of (1.3) is

ψ =
[

T1 . . . Tσ1 Tσ1+2 . . . Tσ1+σ2+1 Tσ1+σ2+3 . . .

T2 . . . Tσ1+1 Tσ1+3 . . . Tσ1+σ2+2 Tσ1+σ2+4 . . .

]
. (2.1)

Order the variables of S with T1 > T2 > · · ·, as was done in (1.11). Impose the reverse lexicographic
order on the monomials of S . In other words, for two monomials

M1 = T α1
1 · · · T αN

N and M2 = T β1
1 · · · T βN

N

one has M1 > M2 if and only if either
∑

αi >
∑

βi , or else
∑

αi =∑βi and the right most non-zero
entry of (α1 − β1, . . . ,αN − βN ) is negative. When we study a homogeneous polynomial from S we
underline its leading term. The next result is well-known, see [2, Theorem 4.11]. We give a proof
for the sake of completeness. This proof provides good practice in using the Buchberger criterion for
determining when a generating set G of an ideal is a Gröbner basis for the ideal. It entails show-
ing that the S-polynomial of any two elements of G reduces to zero modulo G; see, for example,
[3, Section 2.9, Theorem 3].

Lemma 2.2. The set G of 2 × 2 minors of ψ forms a Gröbner basis for I2(ψ).

Proof. Select four columns from ψ ,

ψ ′ =
[

Ta Tb Tc Td

Ta+1 Tb+1 Tc+1 Td+1

]
,

with a � b � c � d. For i < j, let

�i, j = −det

[
Ti T j

T i+1 T j+1

]
= Ti+1T j − Ti T j+1.

We first assume that a < b < c < d. For most partitions of {a,b, c,d} into p < q and r < s, the
leading terms of �p,q and �r,s are relatively prime; and therefore, the S-polynomial S(�p,q,�r,s)
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reduces to zero modulo G (see, for example, [3, Section 2.9, Proposition 4]). The only interesting S-
polynomial is S(�a,c,�b,d) when c = b + 1. In this case, the greatest common divisor of the leading
terms of

�a,c = Ta+1Tc − Ta Tc+1 and �b,d = Tb+1Td − Tb Td+1

is Tc = Tb+1; thus

S(�a,c,�b,d) = Td�a,c − Ta+1�b,d = −Ta Tc+1Td + Ta+1Tb Td+1.

We know the generalized Eagon–Northcott complex associated to ψ ′; and therefore, we know that
the product

P = ψ ′

⎡
⎢⎢⎣

0 −�c,d �b,d −�b,c

�c,d 0 −�a,d �a,c

−�b,d �a,d 0 −�a,b

�b,c −�a,c �a,b 0

⎤
⎥⎥⎦

is identically zero. It follows that

0 = −P1,2 − P2,3 =
{

Ta�c,d − Tc�a,d + Td�a,c,

−Ta+1�b,d + Tb+1�a,d − Td+1�a,b,

and

−Ta�c,d + Td+1�a,b = Td�a,c − Ta+1�b,d = S(�a,c,�b,d). (2.3)

The leading term of each summand of the left-hand side of (2.3) is at most the leading term of the
right-hand side; hence, the S-polynomial S(�a,c,�b,d) reduces to zero modulo G .

There are no complicated calculations to make if some of the indices a,b, c,d are equal. Indeed, it
suffices to consider these cases:

a = b < c < d �⇒ S(�a,c,�a,d) = Td�a,c − Tc�a,d = −Ta�c,d,

a < b = c < d �⇒ the leading terms of �a,b and �b,d are relatively prime,

a < b < c = d �⇒ S(�a,c,�b,c) = Tb+1�a,c − Ta+1�b,c = Tc+1�a,b.

In each case, the relevant S-polynomial reduces to zero modulo G . �
Retain the notation of Data 1.1. Recall the set of binomials G from Lemma 2.2 and the set of

monomials L from Definition 1.17.

Theorem 2.4. The set of polynomials G ∪ L in S is a Gröbner basis for the preimage of K (n) in S.

Proof. Observation 1.19 shows that G ∪ L is a generating set of the preimage of K (n) in S . To prove
it is a Gröbner basis we again apply the Buchberger criterion. We saw in Lemma 2.2 that every S-
polynomial S(h1,h2), with h1,h2 ∈ G , reduces to zero modulo G ∪ L. If M1, M2 are in L, then the
S-polynomial S(M1, M2) is equal to zero. Finally, we study the S-polynomial f = S(M1,h1), where
M1 is an element of L and h1 is in G . The only interesting case is when M1 and the leading term
of h1 have a factor in common. Henceforth, we make this assumption. It is clear that f is monomial.



A.R. Kustin et al. / Journal of Algebra 322 (2009) 1748–1773 1757
We claim that Deg( f ) � n. Once the claim is established, then Observation 2.5 shows that f reduces
to zero modulo G ∪ L. We prove the claim. Write

h1 = −det

[
Ti, j−1 Tu,v

Ti, j Tu,v+1

]
= Ti, j Tu,v − Ti, j−1Tu,v+1

for variables Ti, j−1 > Ti, j � Tu,v > Tu,v+1 from S . There are three possibilities for the greatest com-
mon divisor of M1 and Ti, j Tu,v ,

Ti, j or Tu,v or Ti, j Tu,v .

In the first case, f = M1
Ti, j

T i, j−1Tu,v+1 and

Deg( f ) − Deg(M1) = 1 + Deg(Tu,v+1) � 1.

In the second case, f = M1
Tu,v

T i, j−1Tu,v+1 and

Deg( f ) − Deg(M1) = −1 + Deg(Ti, j−1) � 0.

In the third case, f = M1
Ti, j Tu,v

T i, j−1Tu,v+1 and Deg( f ) = Deg(M1). In each case, Deg( f ) � Deg(M1) � n.

Thus the claim is established and the proof is complete. �
Observation 2.5. If f is a monomial of S with Deg( f ) � n, then f reduces to zero modulo G ∪ L.

Proof. The proof of Observation 1.9 shows that the remainder of f on division by G has the form
of M from (1.10) with Deg(M) = Deg( f ) � n. (The proof of Observation 1.9 does not mention division
by G; however, the binomial h of (1.12) is in G and the leading term of h is Ti, j Tu,v . This leading
term divides the only term of f with quotient

f

T i, j Tu,v
= f1 f ′′ f2.

We calculate the S-polynomial S( f ,h) = f − hf1 f ′′ f2 in (1.13). Proceed in this manner until M is
obtained.) Furthermore, Observation 1.18 shows that M is divisible by an element of L. �
Corollary 2.6. Adopt the notation of Data 1.1 with n � 2, then depth A/K (n) = 1.

Proof. The variable T�,σ�+1 is regular on A/K (n) , because its image in A is not contained in K .
It remains to prove that the maximal ideal m = ({Tij})A of A is an associated prime of C =
A/(K (n), T�,σ�+1 A) = A/(A�n, T�,σ�+1 A), where the last equality holds by Theorem 1.5. Indeed, from
(1.4) and the determinantal relations in A one sees that mn−1T�,σ�

⊆ (A�n, T�,σ�+1 A), which gives
mn−1T�,σ�

C = 0. On the other hand, T�,σ�
C �= 0. For if T�,σ�

A ⊆ (A�n, T�,σ�+1 A), then T�,σ�
A ⊆

T�,σ�+1 A, because Deg T�,σ�
= 1 and A�n is generated by homogeneous elements with Deg � n > 1.

But T�,σ�
A ⊂ T�,σ�+1 A is impossible since A = S/H with H generated by forms of (total) degree 2. �

3. Filtration

In Theorem 3.17, we describe a filtration of the nth symbolic power, K (n) , of K . The factors in this
filtration are Cohen–Macaulay S-modules. We use this filtration to describe the modules in a fdeg-
graded resolution of K (n) by free S-modules, see Theorem 4.5 and (1.25). We calculate the regularity
of the graded S-module K (n) in Theorem 5.5.
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Definition 3.1. Recall the notation of Definition 1.14.

(1) We put a total order on the set of eligible tuples. If b = (b1, . . . ,b j) and a = (a1, . . . ,ak) are
eligible tuples, then we say that b > a if either

(a) j < k and bi = ai for 1 � i � j, or

(b) ∃i � min{ j,k} with bi > ai and bs = as for 1 � s � i − 1. (3.2)

If one pretends that b and a have the same length, filled out as necessary on the right by the sym-
bol ∞, (b1, . . . ,b j,∞, . . . ,∞) and (a1, . . . ,ak,∞, . . . ,∞), then the total order > of (3.2) is simply
the lexicographic order, which means it can be tested using only rule (b). Recall from Remark 1.16
that the empty tuple ∅ is always an eligible tuple. Notice that ∅ is the largest eligible tuple.

(2) For an eligible tuple a we define the A-ideals

Da =
∑
b>a

T b T f (b)

j+1,1(T j+1,1, . . . , T j+1,r(b)) and

Ea =
∑
b�a

T b T f (b)

j+1,1(T j+1,1, . . . , T j+1,r(b)),

where b = (b1, . . . ,b j) is eligible and j is arbitrary. Notice that D∅ = 0, and if the tuple a is not
empty, then

Da =
∑
b>a

Eb,

where the sum is taken over all eligible tuples b with b > a. Notice also that if a is an eligible
k-tuple, then

Ea = Da + T a T f (a)

k+1,1(Tk+1,1, . . . , Tk+1,r(a)).

This gives a finite filtration

(0) � E∅ � · · · � E0�−1 = K (n),

of K (n) , where 0s is the s-tuple (0, . . . ,0). We define two parallel collections of ideals {Ea} and {Da}
simultaneously because there is no convenient way to denote the eligible tuple which is immediately
larger than a particular eligible tuple a. Notice that the modules Ea/Da are exactly the factors of the
filtration {Ea}.

Recall the fine grading (1.25) on S and A. Observe that the ideals Da and Ea are homogeneous in
this grading. Define fdeg-graded free S-modules

E =
{ S(1,−1;0)

⊕
S(0,0;0)

and Fu =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(−σu + 1,−1;−εu)

⊕
S(−σu + 2,−2;−εu)

⊕
...

⊕

(3.3)
S(0,−σu;−εu),
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for 1 � u � � and εu as defined in (1.24). Notice that each ψu : Fu → E is a homogeneous map, with
respect to fdeg; and therefore, for each k, the cokernel of

ψ>k = [ψk+1 | . . . | ψ� ] :
�⊕

u=k+1

Fu → E (3.4)

is a graded S-module, with respect to the fdeg-grading. Let a be an eligible k-tuple. In this section
we prove that Ea/Da is a well-known Cohen–Macaulay module. Let Pk be the ideal

Pk = ({Ti, j | 1 � i � k and 1 � j � σi + 1})
of S , and εa the multi-shift

εa =
k∑

u=1

auεu. (3.5)

In Theorem 3.17 we prove that the fdeg-graded S-modules Ea/Da and

SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)⊗S
S

Pk
(−σ · ε,0;−ε) (3.6)

are isomorphic, for ε = εa + ( f (a) + 1)εk+1. The module of (3.6) might look more familiar if we
observe that

SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)⊗S
S

Pk

∼= (Tk+1,1, Tk+1,2)
r(a)−1 A

Pk A

(
(r(a) − 1)(σk+1,0;εk+1)

);
see the proof of Lemma 3.14. We have written SymS/I2(ψ>k)

r(a)−1 rather than Sym or SymS in order to
emphasize that when r(a) − 1 = 0, then the module of (3.6) is a shift of

S/I2(ψ>k) ⊗S S/Pk = A/Pk A.

Recall, from (1.15), that r(a) − 1 is non-negative and is less than the number of columns of ψ>k . The
ideal I2(ψ>k) has generic height (equal to the number of columns of ψ>k minus 1) and the symmetric
power r(a) − 1 is small enough that Symr(a)−1(cok(ψ>k)) is a perfect S-module and is resolved by a
generalized Eagon–Northcott complex. (See, for example, the family of complexes studied in and near
Theorem 2.16 in [1] or Theorem A2.10 in [5]. Recall that a finitely generated S-module M is perfect if
the grade of the annihilator of M in S is equal to the projective dimension of M .)

The module of (3.6) is annihilated by Pk . The first step in the proof of Theorem 3.17 is to show
that Ea/Da is also annihilated by Pk .

Lemma 3.7. If a is an eligible k-tuple and (κ, r) is a pair of integers with

k + 1 � κ � � and 1 � r �
k∑

u=1

auσu + f (a)σk+1 + σκ − n + 1, (3.8)

then Pk T a T f (a)

k+1,1Tκ,r ⊆ Da . In particular,

(a) Pk Ea ⊆ Da , and
(b) if r(a) = σk+1 , then Pk T a T f (a)

k+1,1Tκ,r ⊆ Da , for all (κ, r) with k + 1 � κ � � and 1 � r � σκ .
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Proof. We notice that (a) and (b) are applications of the first assertion. Indeed, if κ = k + 1, then the
upper bound on r in (3.8) is equal to r(a); furthermore,

Ea = T a T f (a)

k+1,1

({Tk+1,r | 1 � r � r(a)})+ Da.

In (b), the hypothesis r(a) = σk+1 forces
∑k

u=1 auσu + f (a)σk+1 = n − 1, and in this case the bound
on r in (3.8) becomes 1 � r � σκ .

We prove the first assertion. Fix i and s with 1 � i � k and 1 � s � σi + 1. Let

X = Ti,s T a T f (a)

k+1,1Tκ,r .

We will prove that X ∈ Da .
Define ak+1 = f (a) and

bu =
{

au if 1 � u � k + 1 and u �= i,

ai + 1 if u = i.

Notice that for each u, with 1 � u � k, we have

(b1, . . . ,bu) > a,

where we define order as in Definition 3.1.1. We know

k∑
u=1

auσu + f (a)σk+1 < n �
k∑

u=1

auσu + f (a)σk+1 + σk+1 �
k+1∑
u=1

buσu,

where the last inequality holds because σk+1 � σi . Select the least integer j with

n �
j∑

u=1

buσu.

Notice that i � j � k + 1. Select the largest value b′
j with

j−1∑
u=1

buσu + b′
jσ j < n.

Observe that

0 � b′
j < b j.

Let b = (b1, . . . ,b j−1). We see that b is an eligible ( j − 1)-tuple and b > a. We have chosen b′
j so

that b′
j = f (b). It follows that

T b T
b′

j

j,1(T j,1, . . . , T j,r(b)) ⊆ Eb ⊆ Da.

Write ρ = min{r(b), s + r − 1}. Since 1 � ρ � r(b), it suffices to prove that

X ∈ T b T
b′

j

j,1T j,ρ A. (3.9)
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Notice that

if i < j, then b′
j < b j = a j, and (3.10)

if i = j, then b′
j = a j. (3.11)

We prove (3.11). The definition of b′
j says that b′

j is the largest integer with

j−1∑
u=1

buσu + b′
jσi < n.

In other words, b′
j is the largest integer with

∑ j−1
u=1 auσu + b′

jσ j < n. On the other hand, we know

j−1∑
u=1

auσu + a jσ j =
j∑

u=1

auσu < n �
j∑

u=1

buσu =
j−1∑
u=1

auσu + (a j + 1)σ j.

The first equality uses the fact that j = i � k. The last equality holds because b j = bi = ai + 1 = a j + 1.
Assertion (3.11) is established.

To prove (3.9) we use the embedding A ↪→ B = k[x, y, t1, . . . , t�] induced by the map π of Obser-
vation 1.7. Thus (3.9) is equivalent to showing that

xγ ys+r−2titκ

k+1∏
u=1

tau
u = F xδ yρ−1t

b′
j+1

j

j−1∏
u=1

tbu
u ,

for some F ∈ A, with

γ =
k+1∑
u=1

auσu + σi + σκ − s − r + 2 and δ =
j−1∑
u=1

buσu + (b′
j + 1)σ j − ρ + 1.

Clearly such F exists in the quotient field of A. According to (3.10) and (3.11) one has

F =
⎧⎨
⎩

xα yβtκ
∏k+1

u= j+1 tau
u if i = j,

xα yβtκ t
a j−b′

j−1

j

∏k+1
u= j+1 tau

u if i < j,

and F is an element of k(x, y)[t1, . . . , t�]. Notice that

β = s + r − ρ − 1 and α =
{

ν if i = j,

ν + (a j − b′
j − 1)σ j if i < j,

for

ν =
k+1∑

u= j+1

auσu + σκ − s − r + ρ + 1.
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Recall that F is in the quotient field of A and that A is a direct summand of B according to
Observation 1.7(e). Thus, to prove that F ∈ A, it suffices to show that F ∈ B or, equivalently,

α � 0 and β � 0. (3.12)

Clearly, β � 0 by the definition of ρ . Likewise, if ρ = s + r − 1, then α � 0 according to (3.10). Thus
we may assume that ρ = r(b). Use the definition of r(b),

r(b) =
j−1∑
u=1

buσu + (b′
j + 1
)
σ j − n + 1.

Treat the cases i = j and i < j separately. Two straightforward calculations yield

α =
(

k+1∑
u=1

auσu + σκ − n + 1 − r

)
+ (σi + 1 − s) � 0,

where the first summand is non-negative by assumption (3.8) and the second summand is non-
negative because of the choice of s. This completes the proof of (3.12). �

We have established half of Theorem 3.17. The next two lemmas are used in the other half of the
proof.

Lemma 3.13. If a is an eligible k-tuple, then Da ⊆ Pk A and T a is not zero in (A/Da)Pk A .

Proof. Let S be the multiplicative subset of A \ Pk A which consists of the non-zero elements of the
image in A of the polynomial ring k[Tk+1,∗, . . . , T�,∗]. Let Q be the quotient field of this image. We
notice that

S−1 A = Q [T1,∗, . . . , Tk,∗]
H Q [T1,∗, . . . , Tk,∗] .

Furthermore, since k � � − 1, H Q [T1,∗, . . . , Tk,∗] is generated by linear forms, and Ti, j is an associate
of Ti,1 in S−1 A, for all i, j with 1 � i � k and 1 � j � σi + 1. Indeed, S−1 A is naturally isomorphic
to the polynomial ring Q [T1,1, . . . , Tk,1] in k variables over the field Q . Observe that the ring A Pk A is
equal to the further localization Q [T1,1, . . . , Tk,1](T1,1,...,Tk,1) of S−1 A.

We first show that T a is not zero in S−1(A/Da). We have seen that S−1 A is the polynomial ring
Q [T1,1, . . . , Tk,1]. We now observe that the ideal Da of S−1 A is generated by the following set of
monomials,

{
T b T f (b)+1

j+1,1

∣∣ b = (b1, . . . ,b j) is eligible, j < k, and (3.2.a) or (3.2.b) is in effect
}

∪ {T b
∣∣ b = (b1, . . . ,bk) is eligible and (3.2.b) is in effect

}
.

It is obvious that in the polynomial ring Q [T1,1, . . . , Tk,1], none of the monomials in the second set
can divide T a . If some monomial from the first set divides T a , then the definition of f (b), together
with the fact that a is eligible, yields

n �
j∑

buσu + ( f (b) + 1
)
σ j+1 �

k∑
auσu < n,
u=1 u=1
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and of course, this is impossible. Since T a is a monomial, we deduce that T a is not in the ideal Da
of Q [T1,1, . . . , Tk,1]. Thus, T a is not zero in S−1(A/Da), which is a standard graded Q -algebra. We
localize at the maximal homogeneous ideal to see that T a is also not zero in (A/Da)Pk A . In particular,
this is not the zero ring, showing that Da ⊆ Pk A. �
Lemma 3.14. Let a be an eligible k-tuple, B the ring A/Da , and J the ideal T f (a)

k+1,1(Tk+1,1, . . . , Tk+1,r(a)) of A.
Then

(a) the fdeg-graded A-module of (3.6) is isomorphic to

J (A/Pk A)(−σ · εa,0;−εa),

with εa as defined in (3.5), and
(b) Ea/Da = T a J B.

Proof. Assertion (b) is clear. We prove (a) by establishing the following sequence of homogeneous
isomorphisms,

SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)⊗S
S

Pk

α1−→ (Tk+1,1, Tk+1,2)
r(a)−1 A

Pk A

(
(r(a) − 1)(σk+1,0;εk+1)

)
α2−→ (Tk+1,1, . . . , Tk+1,r(a))

A

Pk A
(σk+1,0;εk+1)

α3−→ J
A

Pk A

((
f (a) + 1

)
(σk+1,0;εk+1)

)
.

The ideal (Tk+1,1, Tk+1,2) of the domain A/Pk A is generated by the entries of the first column of ψ>k .
The map

E

[
Tk+1,2 −Tk+1,1

]
−−−−−−−−−−−−−−→ A(σk+1,0;εk+1),

for E in (3.3), induces a natural surjection

cok(ψ>k) ⊗S
S

Pk
� (Tk+1,1, Tk+1,2)

A

Pk A
(σk+1,0;εk+1). (3.15)

The map α1 is the surjection induced by (3.15). Recall that the source of α1 is Cohen–Macaulay and
that it has rank one as a module over the domain A/Pk A. Furthermore, the target of α1 is, up to a
shift, a non-zero ideal in this domain. It follows that α1 is an isomorphism. The ideals

(Tk+1,1, Tk+1,2)
r(a)−1 and T r(a)−2

k+1,1 (Tk+1,1, . . . , Tk+1,r(a))

of the domain A/Pk A are equal, as can be seen from Observation 1.7(b), for instance. Therefore, the
isomorphism α2 is given by multiplication by the unit 1/T r(a)−2

k+1,1 in the quotient field of A/Pk A.

Multiplication by the non-zero element T f (a)

k+1,1 of the domain A/Pk A gives the A-module isomor-
phism α3. �

The next lemma is the final step in our proof of Theorem 3.17. We will also use the same lemma
in the proof of Proposition 5.3.
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Lemma 3.16. Let a be an eligible k-tuple, B the ring A/Da , and J an ideal of A. Assume that

(1) J is fdeg-homogeneous and the elements of some generating set of J involve only the variables {Ti, j}
with i � k + 1, and

(2) Pk annihilates T a J B.

Then the fdeg-graded A-modules T a J B and J (A/Pk A)(−σ · εa,0;−εa) are isomorphic, where εa is as
defined in (3.5).

Proof. We exhibit homomorphisms of fdeg-graded A-modules

α : T a J B(σ · εa,0;εa) −→ J
(

A

Pk A

)
and β : J

(
A

Pk A

)
−→ T a J B(σ · εa,0;εa),

which are inverses of one another.
We first show that β : J ( A

Pk A ) → T a J B(σ · εa,0;εa), given by β(X) = T a X , for all X in J , is a
well-defined A-module homomorphism. Consider the composition

A −→ B −→ T a B(σ · εa,0;εa),

where the first map is the natural quotient map and the second map is multiplication by T a . This
composition restricts to give β ′ : J A → T a J B(σ · εa,0;εa). The first hypothesis ensures that J A ∩
Pk A = J Pk A and the second hypothesis ensures that J Pk A ⊆ kerβ ′ . So, β ′ induces

β : J
(

A

Pk A

)
= J A

J A ∩ Pk A
−→ T a J B(σ · εa,0;εa),

as described above.
Now we show that α : T a J B(σ · εa,0;εa) → J ( A

Pk A ), given by α(T a X) = X , for all X in J , is a
well-defined A-module homomorphism. Let

ϕ : B = A

Da
−→ A

Pk A

be the natural quotient map which is induced by the inclusion Da ⊆ Pk A of Lemma 3.13 and let
π : B → T a B(σ · εa,0;εa) be multiplication by T a .

The kernel of π is the annihilator of T a in B , and the kernel of ϕ is Pk B . We saw in Lemma 3.13
that T a �= 0 in B Pk B . It follows that

kerπ ⊆ kerϕ.

Thus, there exists a unique A-module homomorphism ϕ′ : T a B(σ · εa,0;εa) → A
Pk A for which the

diagram

B

π

ϕ A
Pk A

T a B(σ · εa,0;εa)

ϕ′

commutes. The restriction of ϕ′ to T a J B(σ · εa,0;εa) is the homomorphism α which is described
above. �
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The next result follows from Lemma 3.14 and Lemma 3.16, applied to the ideal T f (a)

k+1,1(Tk+1,1, . . . ,

Tk+1,r(a)) of A; notice that assumption (2) of Lemma 3.16 is satisfied according to Lemma 3.7(a).

Theorem 3.17. Adopt the hypotheses of Data 1.1. Let {Ea}, as a varies over all eligible tuples, be the filtration
of K (n) from Definition 3.1. Then, for each eligible k-tuple a, the fdeg-graded A-modules Ea/Da and (3.6) are
isomorphic.

4. Resolution

We first record the minimal homogeneous resolution of the module Ea/Da by free fdeg-graded
S-modules. Recall the free fdeg-graded S-modules E and Fu of (3.3). These modules have rank 2
and σu , respectively. Let F = F1 ⊕ · · · ⊕ F� . The matrices ψ and ψu of (1.3) and (1.2) describe fdeg-
homogeneous S-module homomorphisms ψ : F → E and ψu : Fu → E . Let Gu be the free fdeg-graded
S-module

Gu =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(−σu,0;−εu)

⊕
S(−σu + 1,−1;−εu)

⊕
...

⊕
S(0,−σu;−εu)

of rank σu + 1, and let ρu : Gu → S be the fdeg-homogeneous S-module homomorphism given by

ρu = [ Tu,1 Tu,2 . . . Tu,σu+1 ] .

For any k with 0 � k � � − 1, let F>k and G�k be the free fdeg-graded S-modules

F>k =
�⊕

u=k+1

Fu and G�k =
k⊕

u=1

Gu,

and let ψ>k : F>k → E and ρ�k : G�k → S be the fdeg-homogeneous S-module homomorphisms

ψ>k = [ψk+1 | . . . | ψ� ] and ρ�k = [ρ1 | . . . | ρk ].
The Koszul complex

Gk,• =
∧•

G�k,

associated to ρ�k : G�k → S , is a minimal homogeneous fdeg-graded resolution of S/Pk by free S-
modules. We see that

Gk,q =
∑

i1+...+ik=q

∧i1
G1 ⊗ · · · ⊗

∧ik
Gk for 0 � q �

k∑
i=1

(σi + 1).

The generalized Eagon–Northcott complex Fa,• , where

Fa,p =
{

Symr(a)−1−p E ⊗∧p F>k if 0 � p � r(a) − 1,

D p−r(a)E∗ ⊗∧p+1 F>k if r(a) � p � rank F>k − 1,
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is a minimal homogeneous fdeg-graded resolution of SymS/I2(ψ>k)

r(a)−1 (cok(ψ>k)) by free S-modules. See,
for example, [1, Theorem 2.16] or [5, Theorem A2.10]. One other generalized Eagon–Northcott complex
is of interest to us. For each integer k, with 0 � k � � − 1, the complex (Fk,•,dk,•), with

Fk,p = D p E∗ ⊗
∧p+1

F>k,

is a minimal homogeneous fdeg-graded resolution of

({Tu, j | k + 1 � u � � and 1 � j � σu}) S

I2(ψ>k)
(1,−1;0) (4.1)

by free S-modules. The complex Fk,• is called C−1 in [5]. The fdeg-homogeneous augmentation map
from the complex Fk,• to the module of (4.1) is induced by the map

Fk,0 = F>k
[ξk+1 ξk+2 . . . ξ� ]−−−−−−−−−−−−−−−−→ S

I2(ψ>k)
(1,−1;0),

where ξu : Fu → S(1,−1;0) is the fdeg-homogeneous map given by

[ Tu,1 Tu,2 . . . Tu,σu ]
and the free fdeg-graded S-module Fu is described in (3.3).

With respect to total degree, the maps in Fa,• are linear everywhere, except Fa,r(a) → Fa,r(a)−1,
which is a quadratic map because it involves 2 × 2 minors of ψ>k . All of the maps in Fk,• are linear.
In other words, with respect to total degree,

reg SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)= {0 if k = � − 1 and r(a) = σ�,

1 in all other cases.

(A thorough discussion of regularity may be found in Section 5.) Furthermore,

reg
({Tu, j | k + 1 � u � � and 1 � j � σu}) S

I2(ψ>k)
= 1

because the generators live in degree one and the resolution is linear.

Observation 4.2. Let k be an integer with 0 � k � � − 1.

(a) If a is an eligible k-tuple, then

(La,•,da,•) = (Fa,• ⊗S Gk,•)(−σ · ε,0;−ε)

is the minimal homogeneous fdeg-graded resolution of the module Ea/Da by free S-modules, for ε =
εa + ( f (a) + 1)εk+1 and εa as defined in (3.5).

(b) The complex Lk,• = Fk,• ⊗S Gk,• is the minimal homogeneous fdeg-graded resolution of the module

({Tu, j | k + 1 � u � � and 1 � j � σu}) A

Pk A
(1,−1;0) (4.3)

by free S-modules.
(c) The S-module Ea/Da and the S-module of (4.3) are Cohen–Macaulay and perfect of projective dimension∑�

u=1 σu + k − 1.
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Proof. Recall that

Ea/Da ∼= SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)⊗S S/Pk(−σ · ε,0;−ε)

by Theorem 3.17. We know that Fa,• is a minimal homogeneous fdeg-graded resolution of

SymS/I2(ψ>k)

r(a)−1 (cok(ψ>k)) and Gk,• is a minimal homogeneous fdeg-graded resolution of S/Pk . Fur-

thermore, the generators of Pk are a regular sequence on the S-module SymS/I2(ψ>k)

r(a)−1 (cok(ψ>k));
therefore,

TorS
i

(
SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)
, S/Pk
)= 0 for all i � 1,

and Fa,• ⊗S Gk,• is a minimal homogeneous fdeg-graded resolution of

SymS/I2(ψ>k)

r(a)−1

(
cok(ψ>k)

)⊗S S/Pk.

Notice that the length of this resolution is

�∑
u=k+1

σu − 1 +
k∑

u=1

(σu + 1) =
�∑

u=1

σu + k − 1,

which is at most the grade of the annihilator of the module it resolves. Assertion (a) and half of
assertion (c) have been established. The rest of the result is proved in the same manner. �

Finally, we resolve K (n) . Let

M = M0 ⊇ M1 ⊇ · · · ⊇ Ms = 0

be a filtration of a module M . If one can resolve each sub-quotient Mi/Mi+1, then one can resolve M
by an iterated application of the Horseshoe Lemma, as explained in Lemma 4.4. We apply the lemma
to the filtration {Ea} of K (n) in Theorem 4.5. One may also apply the lemma to the filtration {E ′

a} of
Section 5 without any difficulty. Neither resolution is minimal.

Lemma 4.4. Let M be a finitely generated multi-graded module over a multi-graded Noetherian ring and let

M = M0 ⊇ M1 ⊇ · · · ⊇ Ms = 0

be a finite filtration by graded submodules. Suppose that for each i, with 0 � i � s − 1,

Fi,•: · · · di,2−−→ Fi,1
di,1−−→ Fi,0

is a homogeneous resolution of Mi/Mi+1 . Then, for each i, j,k, with 0 � i � s − 1, 1 � k � s − i − 1, and
1 � j, there exists a homogeneous map

α
(k)
i, j : Fi, j −→ Fi+k, j−1

such that

(M, D): · · · → M2
D2−→ M1

D1−→ M0



1768 A.R. Kustin et al. / Journal of Algebra 322 (2009) 1748–1773
is a homogeneous resolution of M, where M j =⊕s−1
i=0 Fi, j and D j : M j → M j−1 is the lower triangular

matrix

D j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0, j 0 0 0 . . . 0 0

α
(1)
0, j d1, j 0 0 . . . 0 0

α
(2)
0, j α

(1)
1, j d2, j 0 . . . 0 0

α
(3)
0, j α

(2)
1, j α

(1)
2, j d3, j . . . 0 0

...
...

...
...

...
...

α
(s−1)
0, j α

(s−2)
1, j α

(s−3)
2, j α

(s−4)
3, j . . . α

(1)
s−2, j ds−1, j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. By iteration, it suffices to treat the case s = 2. In this case the proof is a graded version of the
Horseshoe Lemma. �
Theorem 4.5. Adopt the hypotheses of Data 1.1 and recall the resolution (La,•,da,•) of Observation 4.2.
For each triple (a, b, j), where j is a positive integer and b > a are eligible tuples, there exists an fdeg-
homogeneous S-module homomorphism

αa,b, j : La, j −→ Lb, j−1,

such that

(L, D): 0 → Ls → ·· · → L2
D2−→ L1

D1−→ L0

is an fdeg-homogeneous resolution of K (n) , where s =∑�
u=1 σu + � − 2, L j is equal to

⊕
a La, j , and the

component

La, j ↪→ L j
D j−→ L j−1

proj−−→ Lc, j−1

of the map D j : L j → L j−1 is equal to

⎧⎨
⎩

0 if a > c,

da, j if a = c,

αa,c, j if c > a.

Proof. Consider the finite decreasing filtration {Ea} of K (n) given in Definition 3.1(2). According to
Observation 4.2(a), the successive quotients Ea/Da have fdeg-homogeneous resolutions La,• . Now
apply Lemma 4.4. �
Remark. Although the resolution L of K (n) may not be minimal, its length is the same as the projec-
tive dimension of K (n) as an S-module, as may be calculated from the Auslander–Buchsbaum formula.
Indeed, since n � 2 by the hypotheses of Data 1.1, Corollary 2.6 shows that the depth of K (n) , as an
S-module, is 2 and it is clear that S has depth equal to

∑�
u=1 σu + �.

5. Regularity

We turn our attention to the Castelnuovo–Mumford regularity of K (n) . In this discussion all of the
variables of the polynomial ring S have degree one. In Section 1, we referred to this situation as the
grading on S is given by “total degree”. If M is a finitely generated non-zero graded S-module and

0 → Fk → ·· · → F0 → M → 0,
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with Fi =⊕ti
j=1 S(−ai, j), is the minimal homogeneous resolution of M by free S-modules, then the

regularity of M is equal to

reg M = max
i, j

{ai, j − i} = max
{
n
∣∣ Hi

m(M)n−i �= 0 for some i � 0
}
,

where m is the maximal homogeneous ideal of S . For M = 0 one sets reg M = −∞.
There are two contributions to the regularity of K (n) . The highest generator degrees of K (n) and of

E0�−1/D0�−1 coincide, where 0�−1 is the (� − 1)-tuple of zeros. Also, most of the generalized Eagon–
Northcott complexes Fa,• are linear in all positions except one position where the maps are quadratic.
The rest of the generalized Eagon–Northcott complexes are linear in all positions. For example, the
generators of E0�−1/D0�−1 have degree � n

σ�
� and the complex L0�−1,• contains some quadratic maps if

and only if σ� � (n − 1). It follows that

reg(E0�−1/D0�−1) =
{ � n

σ�
� + 1 if σ� � n − 1,

� n
σ�

� if σ� | n − 1

}
=
⌈

n − 1

σ�

⌉
+ 1. (5.1)

We prove in Theorem 5.5 that reg K (n) = reg(E0�−1/D0�−1 ). The filtration {Ea} is too fine to allow us to
read the exact value of reg K (n) directly from the factors of {Ea}. In order to complete our calculation
of reg K (n) , we introduce a second filtration {E ′

a}, with {Ea} a refinement of {E ′
a}.

Definition 5.2. The k-tuple a is eligible′ if a is eligible and either k = � − 1 or r(a) < σk+1. If a is an
eligible′ k-tuple, then

(1) E ′
a = Ea , and

(2) D′
a =∑E ′

b , where the sum varies over all eligible′ tuples b, with b > a.

Notice that the modules E ′
a/D′

a are exactly the factors of the filtration {E ′
a}. The next result, about

the filtration {E ′
a}, is comparable to Theorem 3.17 about the filtration {Ea}. From the point of view of

regularity, Proposition 5.3 says that the factors E ′
a/D′

a of the filtration {E ′
a} are either factors Ea/Da

of the filtration {Ea} or else have linear resolution. We delay the proof of Proposition 5.3 until after
we have used the result to prove Theorem 5.5.

Proposition 5.3. Let a be an eligible′ k-tuple. The S-module E ′
a/D′

a is Cohen–Macaulay and perfect.

(a) If r(a) < σk+1 , then E ′
a/D′

a = Ea/Da and the assertions of Theorem 3.17 apply.
(b) If r(a) = σk+1 , then for some non-negative integer j there is an isomorphism of fdeg-graded A-modules

E ′
a/D′

a
∼= J (A/P j A)(−σ · ε,0;−ε),

where J is the A-ideal generated by the entries in the first row of ψ> j and ε = εa + f (a)εk+1 with εa as
defined in (3.5). Furthermore, the complex L j,•(−σ · ε − 1,1;−ε) of Observation 4.2(b) is a resolution
of E ′

a/D′
a . If all of the variables of S are given degree one, then the minimal homogeneous S-resolution of

E ′
a/D′

a is linear.
(c) The modules E ′

0�−1/D′
0�−1 and E0�−1/D0�−1 are equal.

Lemma 5.4. Let R be a standard graded Noetherian ring over a field, M a non-zero finitely generated graded
R-module, and M = M0 ⊇ M1 ⊇ · · · ⊇ Ms = 0 a finite filtration by graded submodules with factors Ni =
Mi/Mi+1 . If reg N0 � reg Ni for every i, then reg M = reg N0 and depth M � dim N0 .

Proof. Notice that reg M1 � reg N0 and reg M � reg N0. Let m be the maximal homogeneous ideal of
R and let d be such that [Hd

m(N0)]regN0−d �= 0. Clearly d � dim N0. We claim that [Hd
m(M)]regN0−d �= 0,

which gives reg M � reg N0 as well as depth M � d � dim N0.
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Suppose [Hd
m(M)]regN0−d = 0, then the short exact sequence

0 −→ M1 −→ M −→ N0 −→ 0

induces an embedding

0 �= [Hd
m(N0)
]

regN0−d ↪→ [Hd+1
m (M1)

]
regN0−d.

Hence [Hd+1
m (M1)]regN0−d �= 0, which gives reg M1 � reg N0 + 1. �

Theorem 5.5. Adopt the hypotheses of Data 1.1. Then reg K (n) = �n−1
σ�

� + 1.

Proof. Consider the finite filtration {E ′
a} of K (n) as described in Definition 5.2. The factors of this

filtration are denoted E ′
a/D′

a , as a varies over all eligible′ tuples. Notice that 0�−1 is the smallest
eligible′-tuple and K (n)/D′

0�−1 = E ′
0�−1/D′

0�−1 has regularity �n−1
σ�

� + 1 by Proposition 5.3(c) and (5.1).

Hence by Lemma 5.4 it suffices to show that reg(E ′
a/D′

a) � �n−1
σ�

� + 1 for every eligible′ k-tuple a.
The module E ′

a/D′
a is generated in degree

∑
ai + f (a)+ 1 and hence, according to Proposition 5.3,

has regularity at most {∑
ai + f (a) + 2, if r(a) < σk+1,∑
ai + f (a) + 1, if r(a) = σk+1.

If r(a) < σk+1, then
∑

aiσi + f (a)σk+1 < n − 1. The hypothesis σ1 � · · · � σ� ensures that∑
ai + f (a) < n−1

σ�
, and hence reg(E ′

a/D′
a) � �n−1

σ�
� + 1. On the other hand, if r(a) = σk+1, then∑

ai + f (a) � n−1
σ�

, and we still have reg(E ′
a/D′

a) � �n−1
σ�

� + 1. �
Remark. Recall that E ′

0�−1/D′
0�−1 = E0�−1/D0�−1 according to Proposition 5.3(c). Since the latter module

has dimension two, Lemma 5.4 and the proof of Theorem 5.5 yield an alternative proof of Corol-
lary 2.6, the fact that depth K (n) = 2 for n � 2.

We begin our proof of Proposition 5.3 by making a more detailed study of the totally ordered set
of all eligible tuples. In particular, sometimes it is clear when a pair of eligible tuples is adjacent.

Notation 5.6. If a is an eligible k-tuple with k < � − 1, then let N(a) be the (k + 1)-tuple (a, f (a)). If
2 � h < � − k, then let Nh(a) = N(Nh−1(a)). We let N0 denote the identity function.

Lemma 5.7. Let a be an eligible k-tuple with k < � − 1.

(a) The (k + 1)-tuple N(a) is eligible and the eligible tuples a > N(a) are adjacent in the sense that if b is an
eligible tuple with a � b � N(a), then either a = b or b = N(a).

(b) If r(a) = σk+1 , then f (N(a)) = 0 and r(N(a)) = σk+2 .

Proof. It is clear that

k+1∑
u=1

N(a)uσu =
k∑

u=1

auσu + f (a)σk+1 < n.

We conclude that N(a) is an eligible (k + 1)-tuple. Suppose that b is an eligible j-tuple with a � b �
N(a). Since a � b � N(a) we have j � k and bu = au for u � k. As a � b we also have j > k. Now the
inequality b � N(a) implies bk+1 � f (a). Finally, the definition of f (a) ensures bk+1 � f (a). Therefore,
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bk+1 = f (a) and then j = k + 1, again because b � N(a). It follows that b = N(a). Assertion (a) is
established.

The hypothesis of (b) yields

σk+1 =
k∑

u=1

auσu + ( f (a) + 1
)
σk+1 − n + 1;

hence,

n − 1 =
k∑

u=1

auσu + f (a)σk+1 =
k+1∑
u=1

N(a)uσu .

We now see that f (N(a)) = 0 and

r
(
N(a)
)= k+1∑

u=1

N(a)uσu + ( f (N(a)) + 1
)
σk+2 − n + 1 = σk+2. �

Proof of Proposition 5.3. Once items (a) and (b) are shown, then Observation 4.2 implies that the
modules E ′

a/D′
a are Cohen–Macaulay, hence perfect.

(a) It suffices to show that D′
a = Da . Let b > a be the eligible tuple which is adjacent to a. It

suffices to show that b is eligible′ . Suppose that b is a j-tuple. If b is not eligible′ , then j < � − 1 and
r(b) = σ j+1. Now, Lemma 5.7 shows r(a) = σk+1 and this contradicts the hypothesis.

(b) Notice that k is necessarily equal to � − 1. Identify the largest non-negative integer s for which
there exists an eligible (�− 1 − s)-tuple b with a = Ns(b) and r(b) = σ�−s . Let j = �− 1 − s. We know,
from Lemma 5.7, that

b > N(b) > N2(b) > · · · > Ns(b) = a

are adjacent eligible tuples and that if 0 � h � s − 1, then Nh(b) is not eligible′ . Furthermore, for each
integer h, with 1 � h � s, we have

f
(
Nh(b)
)= 0 and r

(
Nh(b)
)= σ j+1+h. (5.8)

The module E ′
a/Db is defined to be

s∑
h=0

T Nh(b)T f (Nh(b))

j+1+h,1 (T j+1+h,1, . . . , T j+1+h,r(Nh(b)))(S/Db).

The calculations of (5.8) show that

T b T f (b)

j+1,1 = T Nh(b)T f (Nh(b))

j+1+h,1 = T a T f (a)

k+1,1,

for 1 � h � s, and

E ′
a/Db = T b T f (b)

j+1,1 J (S/Db),

where J is generated by the entries in the first row of ψ> j . We also know that ε, which is defined to

be εa + f (a)εk+1, is equal to εb + f (b)ε j+1. Lemma 3.7(b) shows that P j annihilates T b T f (b)

j+1,1 J (S/Db).

Apply Lemma 3.16 to the ideal J = T f (b)

j+1,1 J to see that
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E ′
a/Db = T b T f (b)

j+1,1 J (S/Db) ∼= T f (b)

j+1,1 J (A/P j A)(−σ · εb,0;−εb)

∼= J (A/P j A)(−σ · ε,0;−ε).

The final isomorphism holds because T j+1,1 is a non-zero element in the domain A/P j A.
Let c be the eligible i-tuple so that c > b are adjacent. If c is not eligible′ , then i < � − 1 and

r(c) = σi+1. Lemma 5.7(a) then says that b = N(c) and this contradicts the choice of s. Thus, c is
eligible′ , D′

a = Db , and the proof is complete.
(c) Notice that 0�−1 is an eligible′-tuple. Let b be the eligible j-tuple with b > 0�−1 and b adjacent

to 0�−1. It suffices to show that b is eligible′ . If b is not eligible′ , then j < � − 1 and r(b) = σ j+1.
Lemma 5.7 then shows that N(b) = 0�−1; hence,

f
(
0�−1)= f

(
N(b)
)= 0 and r

(
0�−1)= r

(
N(b)
)= σ�.

The definition of r now gives σ� = r(0�−1) = σ� − n + 1; or n = 1, which is a violation of the ambient
hypotheses of Data 1.1. �
6. Symbolic Rees algebra

Retain the notation of Data 1.1.

Proposition 6.1. The symbolic Rees algebra

Rs(K ) =
⊕
n�0

K (n)

is finitely generated as an A-algebra.

Proof. View Rs(K ) as the A-subalgebra of the polynomial ring A[u] which is generated by

∞⋃
n=1

{
θun
∣∣ θ ∈ K (n)

}
.

Let S be the following finite subset of A[u],

S = {Ti, ju
m
∣∣ 1 � i � �, 1 � j � σi, and 1 � m � σi + 1 − j

}
.

We prove that Rs(K ) is generated as an A-algebra by S . Clearly S in contained in Rs(K ), as can
be seen from Theorem 1.5. Conversely, suppose that θ belongs to the generating set of K (n) given in
Definition 1.17. There is an eligible k-tuple a with θ = T a T f (a)

k+1,1Tk+1, j . We have

k∑
u=1

auσu + f (a)σk+1 < n and 1 � j � r(a) � σk+1.

Thus,

θun =
k∏

i=1

(
Ti,1uσi
)ai
(
Tk+1,1uσk+1

) f (a)
Tk+1, ju

σk+1+1−r(a) ∈ A[S]. �
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