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a b s t r a c t

This paper analyzes a data mining/bump hunting technique known as PRIM [1]. PRIM finds
regions in high-dimensional input space with large values of a real output variable. This
paper provides the first thorough study of statistical properties of PRIM. Amongst others,
we characterize the output regions PRIM produces, and derive rates of convergence for
these regions. Since the dimension of the input variables is allowed to growwith the sample
size, the presented results provide some insight about the qualitative behavior of PRIM in
very high dimensions. Our investigations also reveal some shortcomings of PRIM, resulting
in some proposals for modifications.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

PRIM (Patient Rule Induction Method) is a data mining technique introduced by Friedman and Fisher [1]. Its objective is
to find subregions in the input space with relatively high (low) values for the target variable. By construction, PRIM directly
targets these regions rather than indirectly through the estimation of a regression function. The method is such that these
subregions can be described by simple rules, as the subregions are (unions of) rectangles in the input space.
There are many practical problems where finding such rectangular subregions with relatively high (low) values of the

target variable is of considerable interest. Often these are problems where a decision maker wants to choose the values or
ranges of the input variables so as to optimize the value of the target variable. Such types of applications can be found in the
fields of medical research, financial risk analysis, and social sciences, and PRIM has been applied to these fields.
While PRIM enjoys some popularity, and even several modifications have been proposed (see [2–7]), according to our

knowledge, there has been no thorough study of its basic statistical properties. The purpose of this paper is to contribute
such a study in order to deepen the understanding of PRIM. Our study also reveals some shortcomings of the algorithm, and
proposes remedies aimed at fixing these shortcomings. The methodology developed here should be useful in studying the
proposed modifications of PRIM. In particular, we

• provide a rigorous framework for PRIM,
• describe theoretical counterparts of PRIM outcomes,
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Fig. 1. Comparison of theoretical solutions of (2.1) (right, nested squares) and true level sets (right, nested circles) for a unimodal two-dimensional
regression curve. Left plot is the regression curve.

• derive large sample properties for PRIM outcomes, thereby allowing the dimension of the input space to increase with
sample size. These large sample results also provide some information on the choice of one of the tuning parameters
involved.
Last but not least, we also

• reveal some shortcomings of PRIM and propose remedies.

A formal setup is as follows. Let (X, Y ) be a random vector in d + 1-dimensional Euclidean space such that Y ∈ R is
integrable. Suppose that X ∼ F with pdf f which is assumed to be continuous throughout the whole paper. Further let m
denote the regression function m(x) := E[Y | X = x], x ∈ Rd. Without loss of generality we assume throughout the paper
thatm(x) ≥ 0. Assume that F has support [0, 1]d ⊂ Rd also called the input space. Put

I(C) :=
∫
C
m(x) dF(x) and F(C) :=

∫
C
dF(x), C ⊂ [0, 1]d.

The objective of PRIM is to find a subregion C ⊂ [0, 1]d for which

ave(C) =
I(C)
F(C)

> λ, (1.1)

where λ is a pre-specified threshold value. Property (1.1) is equivalent to

I(C)− λ F(C) =
∫
C
(m(x)− λ) dF(x) > 0. (1.2)

From this point of view an ‘optimal’ outcome (maximizing I(C)− λF(C)) is a regression level set

C(λ) = {x : m(x) > λ}.

Thus it can be said that the conceptual idea behind PRIM is to estimate (or approximate) regression level sets, and this
motivation is quite intuitive, as is the algorithm itself. Nevertheless, as will become clear below, the PRIM algorithm does in
general not result in an estimate of the level set C(λ).
In order to understand the conceptual idea behind the actual algorithm underlying PRIM, notice that each subset A of

C(λ) also has the property that ave(A) > λ and each subset A of [0, 1]d \ C(λ) satisfies ave(A) ≤ λ. Hence, as an idea
for an algorithm to approximate level sets, one might think about iteratively finding ‘small’ (disjoint) subsets Bk satisfying
ave(Bk) > λ, and to use the union of those sets as an approximation of C(λ). In fact, this is what the PRIM algorithm is
attempting to do. In a greedy fashion the PRIM algorithm iteratively constructs ‘optimal’ axis parallel rectangles (or boxes)
B∗1, . . . , B

∗

K , each time removing the outcome B
∗

k−1 of the preceding step(s) and applying the algorithm to the remaining
space S(k) = [0, 1]d \

⋃k−1
j=1 B

∗

j , resulting in a partition of [0, 1]
d. The optimal outcomes satisfy

B∗k ∈ argmax
F(B| S(k))=β0

ave
(
B ∩ S(k)

)
, k = 1, . . . , K , (1.3)

where β0 is a (small) tuning parameter to be chosen, and F(·|A) denotes the conditional distribution of F given A. The final
outcome, R∗λ, consists of the union of those sets B

∗

k ∩ S
(k) with ave(B∗k ∩ S

(k)) exceeding λ. (More details on PRIM are given
below.)
However, this procedure does not lead to approximations of level sets in general. The reason for PRIM not following the

intuitive and natural conceptual idea laid out above is that the individual sets B∗j , even though their (conditional) F-measure
are all small (equal to β0), are not really ‘small’ in the sense of ‘local’. This can be seen in Fig. 1.
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One can hope, however, that at least certain features of the level sets are captured by the PRIM outcome. For instance,
if the underlying distribution has two modes, then one should hope for PRIM outcomes reflecting the location of the two
modes, i.e. for an appropriate threshold λ the outcome should consist of two disjoint sets, each located around one of the
two modes. As we will see below, even this not guaranteed.
Besides providing such more conceptual insight into PRIM (for instance, characterizing the outcomes of the PRIM

algorithm), this paper derives theoretical results. These results concern rates of convergence of the outcome regions of
empirical PRIM to their theoretical counterparts for a given β0. For instance, letting R̂λ denote the empirical counterpart to
R∗λ from above (a precise definition of R̂λ is given below), we will derive conditions under which the following holds:
Suppose that E|Y |γ < ∞ for some γ ≥ 3. Let 0 < β0 < 1 and λ be fixed. Choose the peeling parameter

α = αn =
( d
n

) 1
3 log n. Then, under additional assumptions (cf. Theorem 5.3) there exists an R∗λ such that

dF (̂Rλ, R∗λ) = OP

((
d4

n

)1/3
log n

)
. (1.4)

Here dF (A, B) denotes the F-measure of the set-theoretic difference of A and B (cf. (5.1)). Notice that this result just asserts
that there exists an optimal region R∗λ that is approximated by the peeling + jittering outcome. Except for very special cases
(e.g. a unimodal regression function with a uniform F ) we cannot hope for a unique optimal outcome R∗λ, and the above type
of result is the best one can hope for. We will, however, present a description of the possible sets B∗k . It also should be noted
that by their definition the sets B̂k are closely related to so-called minimum volume sets. For fixed d, rates of convergence
of the order n−

1
3 times a log-term have been derived for d-dimensional minimum volume ellipsoids and other minimum

volume sets in so-called Vapnik–Chervonenkis (VC) classes (see [8], and references therein). Since boxes (or rectangles) in
Rd form a VC-class, the above rates seem plausible.
Section 3 explores the outcomes of peeling + jittering, thereby also discussing some shortcomings of PRIM indicated

above. Before that, PRIM is described n some more detail (Section 2). This is necessary to understand the discussions in this
paper aswell as the derivations of the theoretical results, which are presented and proved in Section 5. These results indicate
that tuning of parameters involved in PRIM (see Section 2) should depend on the dimension aswell as onmoment conditions
in terms of the output variable. Section 4 presents a small simulation study, comparing the original PRIM algorithms with
its modifications suggested in this manuscript. Proofs of some miscellaneous technical results related to empirical process
theory can be found in Appendix. Notice again that while the PRIM algorithm is designed to be applicable for both discrete
and continuous X-variables, we only study the continuous case.

2. The PRIM algorithm

Peeling. Given a rectangle B, a peeling step successively peels of small strips along the boundaries of B. The peeling procedure
stops if the box becomes too small. More precisely, let the class of all closed d-dimensional boxes, or axis parallel rectangles
B ⊂ [0, 1]d be denoted byB. Given a subset S ⊆ [0, 1]d and a value β0, the goal of peeling is to find

B∗β0 = argmaxB⊂B

{
ave(B|S) : F(B|S) = β0

}
, (2.1)

where F(·|S) denotes the conditional distribution of X given X ∈ S, ave(B|S) = I(B∩S)
F(B∩S) , and β0 ∈ [0, 1] is a tuning parameter

to be considered fixed in this paper. We always assume that such a set B∗β0 exists. Beginning with B = S = [0, 1]
d at each

peeling step a small subbox b ⊂ B is removed. The subbox to be removed is chosen among 2d candidate subboxes given
by bj1 := {x ∈ B : xj < xj(α)}, bj2 := {x ∈ B : xj > xj(1−α)}, j = 1, . . . , d, where 0 < α < 1 is a second tuning
parameter, and xj(α) denotes the α-quantile of Fj(·|B ∩ S), the marginal cdf of Xj conditional on Xj ∈ B ∩ S. By construction,
α = Fj(bjk|B ∩ S) = F(bjk|B ∩ S). The particular subbox b∗ chosen for removal is the one that yields the largest target value
among B \ bj, j = 1, . . . , d, i.e. b∗ = argmin{I(bjk|S), bjk, j = 1, . . . d, k = 1, 2 }. The current box is then updated (shrunk),
i.e. B is replaced by B \ b∗ and the procedure is repeated on this new, smaller box. Notice that the conditional distribution in
each current box is used. Hence, in the kth-step the candidate boxes b for removal all satisfy F(b|S) = α (1− α)k−1. Peeling
continues as long as the current box B satisfies F(B|S) ≥ β0.
The quantity α is usually taken to be quite small so that in each step only a small part of the space in the current box is

peeled off (hence the terminology patient rule induction). That α cannot be chosen too small is quantified in our theoretical
results.
Pasting has been proposed in order to readjust the outcomes of the peeling strategy. The procedure for pasting is basically

the inverse of the peeling procedure. Starting with the peeling outcome the current box is enlarged by pasting along its
boundary ‘small’ strips b ⊂ S. The (at most) 2d candidate sets b are boxes alongside the 2d boundaries of the current box
B ∩ S of size F(b|S) = α × F(B|S). This is done as long as the average increases, i.e. as long as there exists a candidate set b
with ave((B ∪ b) ∩ S) > ave(B ∩ S).
Covering. The covering procedure leads to the final output region R∗ of the PRIM algorithm as a union of boxes from

iterative applications of the peeling + pasting procedure, each time removing the previous outcome, and thus each time
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changing the input space S for the peeling + pasting procedure. More precisely, the first box B∗1 is constructed via peeling
+ pasting on S = [0, 1]d as described above. The second optimal box B∗2 is constructed in the same fashion by replacing
S = S(1) = [0, 1]d by S(2) = [0, 1]d \ B∗1 , and so on, each time removing the optimal outcome of the previous step. The
hope now is (and as indicated above, in general this is not true) that if the outcome B∗k of the kth iterative application of the
peeling + pasting procedure is such that its average exceeds a pre-specified λ, then it is a subset of C(λ). Thus the final result
of the PRIM algorithm is

Rλ =
⋃

ave(B∗k∩S
(k))>λ

(
B∗k ∩ S

(k)) (2.2)

(see also [13, section 9.3]).

2.1. Jittering

The pasting procedure has the disadvantage that the size (measured by F-measure) of the box resulting from the peeling
procedure cannot be controlled, and under certain circumstances this might lead to a relatively large set to be removed
after the application of one peeling + pasting procedure. We therefore propose to replace pasting by what we call jittering.
Rather than just adding small sets as done in the pasting procedure, we simultaneously add and subtract a box from the 2d
candidate boxes, as long as we can increase the average of the box. This does not change the F-measure of the box. Of course,
the complexity of the algorithm is somewhat increased by doing so. In fact, since pairs of boxes have to be found (and there
are of the order d2 many such pairs, the complexity is increased by a factor of d. (Also the constants in the complexity will
increase.)
Jittering is quite important for the below results. It actually enables us to derive a characterization of the boxes resulting

from peeling + jittering (cf. Lemma 3.1). This fact makes the use of jittering (rather than pasting) attractive from both a
theoretical and a practical perspective. As for the theory, this characterization enables us to derive large sample results
for the PRIM outcomes (see below). Another advantage of jittering shows when realizing that peeling might end up in a
local minimum. Assuming that this happens, pasting would tend to enlarge the peeling outcome quite significantly. While
it might be argued that the covering step following peeling + pasting, or peeling + jittering might eventually remove this
set from consideration (since the average of this set might be too low), there is a clear potential that this relatively large
set contains interesting parts which in fact carry a high mass concentration. For instance, potential modal regions might be
‘eroded’ from below.

2.2. The empirical version

By definition of I(C)we have I(C) = E{Y 1{X ∈ C}}.Hence, if (Xi, Yi), 1 6 i 6 n, is an independent sample with the same
distribution as (X, Y ), the empirical analog of I is given by

In(C) =
1
n

n∑
i=1

Yi 1{Xi ∈ C}.

The empirical analog to F is given by Fn, the empirical distribution of X1, . . . , Xn, and we denote

aven(A) =
In(A)
Fn(A)

.

Then the actual PRIM algorithm is performed as described above but with I and F replaced by their empirical versions In and
Fn, respectively, replacing α = αn by dnαne/n, the smallest k/n, k = 1, 2, . . .which is larger than or equal to αn.

3. PRIM outcomes

Here we provide a characterization of PRIM outcomes along with some discussions and examples.
Local maximizers. For a box B =

⊗d
j=1[aj1, aj2] ∈ B consider two bracketing sets B =

⊗d
j=1[aj1, aj2] ∈ B, B =⊗d

j=1[aj1, aj2] ∈ B with B ⊆ B ⊆ B, and assume that

|ajk − ajk| > ε for at least two distinct pairs (jk), 1 ≤ j ≤ d, k = 1, 2. (3.1)

Here we need the ‘at least two’ (rather than ‘at least one’) in (3.1) because otherwise we in general would not have other
boxes B̃ of the same size as B in the neighborhood, and (3.3) below would not be useful. Based on such bracketing sets for B,
define a neighborhood of B as

U(ε, B) := {̃B : B ⊂ B̃ ⊂ B}. (3.2)

With this type of neighborhood we now define local maximizers B∗β0 consisting of sets of size β0 such that there exists a
neighborhood U(ε, B∗)with B∗ maximizing the average among all the boxes in this neighborhood:
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Definition 3.1. The classM`oc(β0) consists of all boxes satisfying

∃ ε > 0 : B∗β0 ∈ argmax{ave(B ∩ S); F(B|S) = β0, B ∈ U(ε, B
∗)}. (3.3)

For a box B ⊂ [0, 1]d, d ≥ 2, 1 ≤ j ≤ d, and t ∈ [0, 1] let

Fj( t, B) =
∫
(B∩S )̂jt

f (. . . , xj−1, t , xj+1, . . .) dx̂j, (3.4)

Ij( t , B) =
∫
(B∩S )̂jt

(m · f )(. . . , xj−1, t, xj+1, . . .) dx̂j, (3.5)

where x̂j = (x1, . . . , xj−1, xj+1, . . . , xd)′, and for any set A ⊂ Rd we let Âjt = {(x1, . . . , xj−1, t, xj+1, . . . , xd)′ :
(x1, . . . , xd)′ ∈ A} denote the slice through A at the jth coordinate being equal to t . Writing B =

⊗d
i=1[ai1, ai2], let

Fjk(∂B) = Fj(ajk, B) and Ijk(∂B) = Ij(ajk, B), j = 1, . . . , d, k = 1, 2.

For d = 1 we define F1k(∂B) = f (a1k) 1S(a1k) and I1k(∂B) = m(a1k) f (a1k) 1S(a1k). Further denote

avej(x, B) =
Ij( x , B)
Fj( x , B)

, for Fj(x, B) > 0. (3.6)

We also use the notation

∂Bjk =
j−1⊗
i=1

[ai1, ai2] × ajk ×
d⊗

i=j+1

[ai1, ai2], j = 1, . . . , d, k = 1, 2, (3.7)

for the (jk)-th boundary facet of B. We sometimes use the notation ‘(jk)’ rather than ∂Bjk. In case x = ajk, the averages in
(3.6) become boundary averages, which play a special role here. Therefore we also use the notation:

A±jk(∂B) := avej(a
±

jk , B), (3.8)

where avej(a+jk , B) and avej(a
−

jk , B) denote the limits of avej(x, B) as x approaches ajk from the outside of the box B and from
the inside of the box B, respectively. Of course, if B is such that its boundary ∂Bjk is a subset of a boundary of S, then A+jk(∂B)

is not defined. Also, A±jk(∂B) is only defined for such boxes Bwith Fj( ajk , B̂
j) > 0 for all j = 1, 2, k = 1, . . . , d.

Observe that the peeling procedure consists in peeling off that boundary with the smallest average, and hence it has the
tendency to keep boundary averages of the current box during a peeling procedure as close as possible. This motivates the
importance of the following function:

Ψ (B) := max
(`m)6=(jk)

( A+`m(∂B) ) − A
−

jk(∂B) (3.9)

where the max is taken over pairs (jk), (`m) for which A+`m(∂B) exists. In case A
+

`m(∂B) does not exist for all (`m)we define
Ψ (B) = −∞. Lemma 3.1 indicates that boxes B with Ψ (B) ≤ 0 are potential limits of peeling + jittering. Therefore we
define for 0 ≤ β0 ≤ 1

N`oc(β0) =
{
B ∈ B : F(B|S) = β0 and Ψ (B) ≤ 0

}
. (3.10)

Observe that if avej(x, B) is continuous at all x = ajk (so that A+jk(∂B) = A
−

jk(∂B) for all (jk)), thenΨ (B) ≥ 0 withΨ (B) = 0 iff
all the boundary averages of B are equal. Such boxes are typical candidates for PRIM outcomes. However, N`oc(β0) does in
general not only contain local maximizers, but also minimizers and ’saddlepoints’. In order to define a class of typical local
minimizers or saddle points we introduce the properties (m.i) and (m.ii) below. For this we first need some more notation.

Definition 3.2. Let B be such that for ε > c
d for some c > 0 there exists a neighborhood U(ε, B) as defined in (3.2), and let

(j1, k1) 6= (j2, k2)with 1 ≤ j1, j2,≤ d and k1, k2 ∈ {1, 2} denote two pairs for which (3.1) holds. For (j, k) = (j1, k1), (j2, k2)
we define the properties:

(m.i) The function avej(·, B) is strictly decreasing in [ajk, ajk] for k = 1 (i.e. ‘on the left’) and increasing for k = 2 (i.e.‘on
the right’).

(m.ii) For some constant k1 > 0 not depending on Bwe have

k1 |x1 − x2| ≤
∣∣ avej(x1, B)− avej(x2, B) ∣∣ for x1, x2 ∈ [ajk, ajk].

With these properties let

m`oc(β0) = {B∗ ∈ N`oc(β0) such that (m.i) and (m.ii) hold}. (3.11)
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Plot 1: Local Optimal Sets.
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Plot 2: Peeling Result.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Plot 3: Peeling + Pasting.
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Plot 4: Peeling + Jittering.

Fig. 2. Comparison of the optimal solution of (2.1) with peeling/pasting/jittering results for (3.12) by parameters α = .005 and β0 = .12. The optimal
intervals are (local) level sets and all the intervals shown in the plots are drawn at the same height corresponding to the level of the level sets. Plot 1:
Optimal intervals of (2.1) are [.24, .36] and [.64, .76]. Plot 2: Peeling result is [.2993, .4199] with β0 = .1206. Plot 3: Peeling + Pasting result is [.2506, .4199]
with β0 = .1693. Plot 4: Peeling + Jittering result is [.2396, .3602] with β = 0.1206.

The crucial assumption is (m.i). It is obvious that (m.ii) is not necessary for a set being a local minimum or saddle point.
It is included here for technical reasons.
The following lemma says that under certain assumptions, PRIM outcomes do not contain localminima or ‘saddle points’,

i.e. sets inm`oc(β0).

Lemma 3.1. Suppose that assumptions (A2) and (A3) hold (cf. Section 5). Then for every 0 < β0 < 1 we have

M`oc(β0) ⊂ N`oc(β0) \m`oc(β0).

In the following we consider some specific examples in order to provide a better feeling for what the sets inM`oc(β0) are.
The one-dimensional case. Although one would likely not use PRIM in the one-dimensional case, a consideration of this

simple case provides some insight. Supposem is a symmetric bimodal regression curve, and let X be uniformly distributed
in [0, 1]. Fig. 2 shows some outcomes of peeling + pasting and peeling + jittering, respectively for

m(x) =
{
exp(−30(x− 0.3)2), 0 6 x 6 0.5;
exp(−30(x− 0.7)2), 0.5 < x 6 1.

(3.12)

If β0 is small enough, the solution of (2.1) is one of two intervals with support β0 each corresponding to each mode. The
nature of having two disconnected sets indicates that there are two distinct modes. The population version of the peeling
procedure results (when α→ 0) in an interval with support β0 with one endpoint being a mode (see Fig. 2, plot 2).
The proposed bottom-up pasting procedure will increase the average value of the box, but it also increases its support

(see Fig. 2, plot 3). If we apply peeling + jittering, then the result approaches the optimal set as α → 0 (see Fig. 2, plot
4). An application of the covering strategy (i.e. removal of the just found optimal interval, and a second application of the
peeling to the remainder) will result in the analogous interval around the second mode. Thus, the two separate modes will
be recovered.
The multidimensional case. There is a somewhat surprising shortcoming of PRIM in themultidimensional case. In contrast

to the one-dimensional case, in two or higher dimensions PRIM might not be able to resolve two distinct modes, even if β0
is chosen small enough, and also the covering strategy might not help. This is actually what is shown in Fig. 3. The long, thin
box in plot 2 of Fig. 3 is a local maximum, whereas the other two boxes both are global maxima, and the PRIM outcomes
are the local minima. The covering leads to nested boxes of similar shape, and the two modes are not resolved. A possible
remedy is as following.
We want candidate boxes to locate around a single mode. Therefore, one should check whether the conditional

distribution of the data falling inside the 2d candidate boxes for peeling is unimodal (with decreasing or increasing being
special cases). Implementing relevant tests (e.g. [9]) is rather time consuming. A (very) simple shortcut is the following. For a
box B =

⊗d
j=1[aj1, aj2], let `i = |aj2−aj1|, i = 1, . . . , d denote the length of the box in the ith coordinate and RB =

maxi `i
mini `i

the
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Fig. 3. Plot 1 shows the model (symmetric bimodal curve). Plot 2: the level sets (circles) and optimal boxes (squares and rectangles) for β0 = .1. Plot 3:
indicates the (first) peeling procedure and the outcomes. Plot 4: the covering results for the first 6 peeled boxes. The parameters are α = .02 and β0 = .1.

Table 1
Mean and variance of dFn between empirical PRIM outcome and population version of peeling under Model I with α = 0.01 based on 1000 simulations.

Sample size No ratio control Ratio control
Pasting Jittering Pasting Jittering
mean s.d. mean s.d. mean s.d. mean s.d.

100 0.0730 0.0325 0.0542 0.0297 0.0915 0.0243 0.0923 0.0238
125 0.0672 0.0315 0.0534 0.0293 0.0908 0.0237 0.0917 0.0225
150 0.0651 0.0312 0.0546 0.0298 0.0904 0.0212 0.0920 0.0200
200 0.0625 0.0320 0.0529 0.0306 0.0881 0.0200 0.0910 0.0195

ratio of the box. The idea is to first standardize all the marginals to have samemean and variance. Then, in each peeling step
k, to allow only such boxes Bk with RBk ≤ RBk−1 or RBk ≤ r as candidates for next peeling. Here r is a pre-chosen parameter
to control the final peeled box ratio in order to avoid boxes which are too thin. A small simulation study indicated that for
d = 2 a reasonable choice appears to be 1.5 ≤ r ≤ 2.0 as long as one is dealing with mixtures of normals.

4. Simulation study

A small simulation study is presented here for d = 2. The two cases considered both are mixtures of two normals
with identity covariance matrix and means (−1, 0) and (0, 1) (Model I), and (−1,−1) and (1, 1), respectively (Model II).
The Tables 1 and 2 show simulated mean and variance of dFn between the (population) peeling outcomes by using ratio
control and no ratio control, respectively, and the empirical PRIM outcomes with β0 = 0.05. We have been using the
peeling outcome as comparison because all the four different procedures estimate different targets. The only procedures
that estimates the global maximizer with β0 = 0.05 is PRIM with jittering and ratio control in Model I, and PRIM with
jittering and either ratio control or no ratio control in Model II.
The simulations shows that in regular cases (mixture of normals) and for d = 2, both jittering and pasting seem to behave

similar if measured by the variance. As has been discussed above, the target sets are different, however. One can also see
no significant differences in terms of variation between ratio control and no ratio control. Notice again, however, that in
model I the target sets under ratio control and no ratio control are different. We have been using the distance to the peeling
outcomes (without pasting or jittering). These sets are shown in Figs. 4 and 5, respectively.
While this is not surprising that all these procedures behave comparably in the considered regular case, (with different

target sets, however) more significant differences might be expected in less regular situations, and such situations are
difficult to simulate. An application to real data will certainly lead to differing outcomes, and only a thorough study
of the outcomes could reveal whether they are ‘more reasonable’. Such an analysis goes beyond the scope of the
manuscript.

5. Convergence results

Next we derive a result about how far the solution of the peeling result differs from its theoretically optimal counterpart.
To this end we need some more notation and assumptions.
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Fig. 4. Two consecutive peeling outcomes with α = 0.05 for Model I (population version); with ratio control (panel 1); without ratio control (panel 2).
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Fig. 5. Two consecutive peeling outcomes with α = 0.05 for Model II (population version); ratio control and no ratio control give the same result.

Table 2
Mean and variance of dFn between empirical PRIM outcome and population version of peeling under Model II with α = 0.01 based on 1000 simulations.

Sample size No ratio control Ratio control
Pasting Jittering Pasting Jittering
mean s.d. mean s.d. mean s.d. mean s.d.

100 0.0841 0.0310 0.0827 0.0305 0.0825 0.0307 0.0852 0.0324
125 0.0806 0.0296 0.0800 0.0297 0.0841 0.0349 0.0820 0.0322
150 0.0773 0.0311 0.0764 0.0303 0.0819 0.0325 0.0794 0.0316
200 0.0743 0.0298 0.0731 0.0286 0.0730 0.0300 0.0770 0.0301

First we introduce two distance measures between boxes. For two boxes B =
⊗d
j=1[aj1, aj2] and B̃ =

⊗d
j=1 [̃aj1, ãj2] let

dF (B, B̃) := F(B∆ B̃) = F(B \ B̃)+ F (̃B \ B), (5.1)

the F-measure of the set-theoretic symmetric difference between B and B̃, and let

ρ∞(B, B̃) := max
j=1,...,d, k=1,2

|ajk − ãjk|. (5.2)

Remark. Notice that boxes are always defined on [0, 1]d. However, if we consider S = [0, 1]d \ R with R being a union
of (non-empty) boxes, then there exist boxes with at least one boundary facet of B lying completely inside R, e.g. let
S = [0, 1]2 \ [0, 1/2]2 and B = [1/4, 3/4] × [0, 1/4]. In such cases it shall be understood that we are working with
the smallest of such boxes coinciding with B on S. In the above example this means that we work with [1/2, 3/4]× [0, 1/4]
instead of B = [1/4, 3/4] × [0, 1/4]. Observe that this does not change the conditional quantities F(·|S) and I(·|S). This
convention is to be understood in all what follows without further mention, and it is not reflected in the notation (to not
further add to the notation). Obviously, this is non-issue for S = [0, 1]d.

We also need the following quantities in order to deal with the overlap between two candidate boxes for peeling +
jittering. For a box B =

⊗d
i=1[ai1, ai2], 0 ≤ ai1 ≤ ai2 ≤ 1, j, ` = 1, . . . , d, d ≥ 3, and k = 1, 2 let

Fj,`( s, t , B) =
∫
(B∩S )̂j,̂`s,t

f (. . . , xj−1, s, xj+1 . . . , x`−1, t, x`+1 . . .) dx̂j,̂` (5.3)

Ij,`( s, t , B) =
∫
(B∩S )̂j,̂`s,t

(m · f )(. . . , xj−1, s, xj+1 . . . , x`−1, t, x`+1 . . .) dx̂j,̂` (5.4)



W. Polonik, Z. Wang / Journal of Multivariate Analysis 101 (2010) 525–540 533

where x̂j,̂` = (x1, . . . , xj−1, xj+1, . . . , x`−1, x`+1, . . . , xd)′, and for a set A ⊂ Rd, d ≥ 3, 0 ≤ j < k ≤ d, and 0 ≤ s, t ≤ 1 we
let

Âj,̂`s,t = {(x1, . . . , xj−1, s, xj+1, . . . , x`−1, t, x`+1, . . . , xd)
′
: (x1, . . . , xd)′ ∈ A }.

Further we denote

Fjk,`m(∂B) = Fj,`(ajk, a`m, B) and Ijk,`m(∂B) = Ij,`(ajk, a`m, B).

For d = 2 and j, k, `,m = 1, 2, let Fjk,`m(∂B) = f (ajk, a`m) 1S(ajk, a`m) and Ijk,`m(∂B) = (mf )(ajk, a`m) 1S(ajk, a`m).

Assumptions. Let 0 < β0 < 1. For a function h : [0, 1] → R let ‖h‖∞ = supt∈[0,1] |h(t)|, and for ε > 0 let
UF (B, ε) = {B′ ⊂ S : dF (B, B′) < ε}.

(A1) There exists a constant c1 > 0 such that for δ > 0 small enough we have

sup
β∈(0,1):|β−β0|<δ

sup
B∗β0
∈N`oc (β0)

inf
B∗β∈N`oc (β)

ρ∞(B∗β , B
∗

β0
) ≤ c1

δ

d
.

(A2) There exists ε0, K0 > 0 such that for all Bwith F(B|S) ≥ β0/2 we have

0 < ε0 ≤ Fj(t, B) ≤ K0 for all t with
∫
(B∩S )̂jt

dx̂j > 0, 1 ≤ j ≤ d, d ≥ 1.

(A3) The functionm is bounded (uniformly in d).
(A4) There exists a K1 <∞ such that for all 1 ≤ j, ` ≤ d and all dwe have

sup
B:F(B|S)≥β0/2

‖Fj,`(·, ·, B)‖∞ < K1,

(A5) For each 1 ≤ j ≤ d there exists cj1 < · · · < cjL, with L ∈ N not depending on d, such that the functions avej(·, B) are
Lipschitz continuous in [cjk, cj,k+1], k = 1, . . . , L− 1, uniformly in B ∈ UF (B′, ε) for some B′ with F(B′|S) ≥ β0/2, and
Lipschitz constant not depending on d.

(A6) There exists a δ > 0 and a constant c > 0 such that for all B 6∈ N`oc(F(B|S))with | F(B|S)− β0 | < δ we have

Ψ (B) ≥ c inf
B∗∈N`oc (F(B|S))

ρ∞(B, B∗). (5.5)

Discussion of the assumptions. Assumption (A1) says that in a small (enough) neighborhood of an optimal set B∗β0 we
also find an optimal set B∗β for β close to β0. A scenario where (A1) holds is the following. Suppose that F is the uniform
distribution andm is rotationally symmetric locally around B∗β0 (or possesses other appropriate symmetry properties), and
also is monotonically de(in)creasing, again locally around B∗β0 , when moving outward of an optimal set B

∗

β0
(depending on

whether B∗β0 is a local minimum or a local maximum). Then there exist optimal sets {B
∗

β , |β−β0|/d < ε}which form a class
of totally ordered sets (with respect to inclusion). If follows that (A1) holds. Assumptions (A2)– (A4) imply in particular that
boundary averages for not too small boxes are uniformly bounded, and (A5) assumes their Lipschitz continuity.
Assumption (A6) is crucial. It implies that when ‘moving away’ from an optimal set B∗β , while keeping the ‘size’ F(B)

fixed (equal to β) then the maximal difference of boundary averages increases (recall that for an optimal set B∗β we have
Ψ (B∗β) ≤ 0). It is reminiscent of a margin condition introduced in [10], in the context of level set estimation that became
popular when used in [11] in the context of classification. This condition controls the behavior of the target function locally
around the level curve, and condition (A6) is of a similar flavor. It holds under the scenario given in the discussion of (A1)
above, provided, for instance,m is differentiable with partial derivatives bounded away from zero.

5.1. Performance of population version of peeling + jittering

The following results presents conditions such that for given β0 > 0 the outcome of peeling + jittering is ‘close’ to one of
the set inN`oc(β0)\m`oc(β0) (with S = [0, 1]d) as long as dα is small.Wewill see below that under appropriate assumptions
the empirical version of peeling + jittering behaves similarly.

Theorem 5.1. Let 0 < β0 < 1, and let α = αn be such that dαn = o(1) as n → ∞. Suppose that (A1)–(A6) hold for
S = [0, 1]d. Let B̃ denote the result of the population version of peeling + jittering. Then as n→∞ we have

inf
B∗∈N`oc (β0)\m`oc (β0)

dF (B∗, B̃) = O ( dαn ) . (5.6)

It is straightforward to derive the proof of this theorem from the proof of Theorem 5.2 presented next. Both proofs have
the same basic structure. Involving no stochastic elements, the proof of Theorem 5.1 is simpler and hence omitted.
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5.2. Empirical performance of peeling + jittering

Let B̂ denote the outcome of empirical peeling + jittering as applied to S = [0, 1]d. The following result shows that B̂
behaves similar to its population version B̃, and it also shows that one has to balance the choice of αn with the dimension d
and moment conditions on Y in order to obtain good statistical properties.

Theorem 5.2. Suppose that E|Y |γ <∞ for some γ ≥ 2. Let β0 > 0 be fixed, and assume that (A1)–(A6) hold for S = [0, 1]d.
Further suppose that(

d
n
log(d n)

)min( 13 , γ−1γ+3 )

= o(αn), (5.7)

and that dαn = o(1). Then we have

inf
B∗∈N`oc (β0)\m`oc (β0)

dF (B∗, B̂) = OP( dαn). (5.8)

Remarks. (i) The rates in Theorem5.2 are in alignmentwith the rate of the population version given in Theorem5.1. (ii) For a
motivation of the rates of convergence based on known results for the estimation ofminimum volume sets see introduction.

Proof of Theorem 5.2. We prove that

inf
B∗∈N`oc (β0)\m`oc (β0)

ρ∞(B∗, B̂) = OP( αn). (5.9)

The rate for dF (B∗∆ B̂) asserted in (5.8) follows from (5.9) because dF (B∗, B̂) = O( d ρ∞(B∗, B̂) ). For C1 > 0 let

An :=

{
sup
B∈B
|(Fn − F)(B)| ≤ C1

√
d
n

}
∪

{
sup

Fn(B)≤αn
|(Fn − F)(B)| ≤ C1

√
d
n
αn log

d
αn

}

∪

 sup
F(B)≤2αn

|(In − I)(B)| ≤ C1 max

√d
n
αn log

d
αn
,

(
d
nαn

log
⌈
d
αn

⌉) γ−1
2

 .
It follows from Propositions A.1 and A.2 that for each ε > 0 we can choose C1 > 1 such that for n large enough we have
P(An) ≥ 1− ε. We prove the theorem in two steps. First we show that for C large enough we have

P
(

inf
B∗∈N`oc (β0)

ρ∞(B∗, B̂) > 2 C αn; An

)
= 0. (5.10)

To complete the proof we then show that for all c > 0 we have for n large enough that

P
(

inf
B∗∈m`oc (β0)

ρ∞(B∗, B̂) < cαn; An

)
= 0. (5.11)

Let β̂n := F (̂B). By assumption,
√
d
n = o(αn), and thus we obtain that on An for n large enough

β0 ≤ β̂n = Fn(̂B)− (Fn − F)(̂B) < (β0 + αn)+ C1αn
≤ β0 + (C1 + 1) αn. (5.12)

Using (A1) we obtain that for all B∗
β̂n
∈ N`oc(β̂n) there exists a B∗ ∈ N`oc(β0) such that on An we have

ρ∞(B∗β̂n , B
∗) ≤ c1 |βn − β0| ≤ c1 (C1 + 1) αn.

Thus, if B̂ ∈ N`oc(β̂n) then the assertion follows. We therefore assume from now on that B̂ 6∈ N`oc(β̂n). Suppose that for all
B∗β0 ∈ N`oc(β0) we have dF (B∗β0 , B̂) > 2 C dαn for some C > 0. We obtain by using triangular inequality that on An and for
C large enough

ρ∞(B∗β̂n , B̂) ≥ 2 C αn − c1 (C1 + 1) αn ≥ C αn for all B∗
β̂n
∈ N`oc(β̂n).

In other words, for C large enough{
inf

B∗∈N`oc (β0)
ρ∞(B∗, B̂ ) ≥ 2 C αn, An

}
⊂

 inf
B∗
β̂n
∈N`oc (β̂n)

ρ∞(B∗β̂n , B̂ ) ≥ C αn, An

 (5.13)
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We will show that the probability for the event on the r.h.s. equals zero for both C and n large enough. First notice that
because of (A6) we have Ψ (̂B) > c C αn. It follows that there exist two boundary facets of B̂ indexed by, let us say, (jk) and
(`m), respectively, with

A+jk(∂ B̂) ≥ A
−

`m(∂ B̂)+ c C αn. (5.14)

Let bjk and b`m be the two candidate sets for jittering. We almost surely have Fn(bjk \ b`m) = Fn(b`m) = αn, with bjk being
outside the box B̂ and b`m inside. We will show that for C large enough,

In(bjk \ b`m) > In(b`m) (5.15)

which means that adding bjk and removing b`m leads to an increase in In-measure, while leaving the support of the resulting
box constant. In otherwords, B̂ cannot be an outcome of the peeling + jittering procedure. A contradiction that verifies (5.10).
In order to show (5.15), we first consider the non-overlapping case and show that I(bjk) − I(b`m) > Kα2n > 0 for some

K > 0. In a second step we will then show the same with I replaced by In (which is (5.15)). Finally we will address the case
with an overlap between bjk and b`m.
For any (jk) let hjk denote the width of bjk in dimension j. Rewrite

I(bjk) =
∫ ajk

ajk−hjk
avej(x, bjk)Fj(x, bjk ∪ B̂) dx

= F(bjk) avej(a+jk , B̂) +
∫ ajk

ajk−hjk
( avej(x, bjk)− avej(a+jk , B̂) ) Fj(x, bjk ∪ B̂) dx

=: avej(a+jk , B̂) F(bjk)+ rjk. (5.16)

Similarly, we can rewrite I(b`m) as

I(b`m) = F(b`m) ave`(a−`m, B̂)+
∫ a`m

a`m−h`m
( ave`(x, b`m)− ave`(a−`m, B̂) ) Fj(x, bjk ∪ B̂) dx

=: ave`(a−`m, B̂) F(b`m)+ r`m. (5.17)

Using (5.14) we obtain that on An we have

I(bjk)− I(b`m) ≥ c C αn F(bjk)+ ave`(a−`m, B̂) (F(bjk)− F(b`m))+ (rjk − r`m)
=: (I)+ (II)+ (III).

We will show that on An (and for n large enough) that (I) ≥
c Cβ0
2 α2n, (II) = o(α

2
n) and |(III)| ≤ K α

2
n for a constant K > 0.

Since C can be chosen large enough, this then gives

I(bjk)− I(b`m) ≥
c Cβ0
4 α2n . (5.18)

First we show the asserted lower bound for (I). To see this observe that on An for large enough nwe have almost surely

β0

2
αn ≤ F(b`m) ≤ 2 αn. (5.19)

To see this observe that by construction of the PRIM algorithm we have αn β0 ≤ Fn(b`m) ≤ αn + 1
n almost surely (where

the 1n comes from the fact that for the empirical PRIM algorithm we peel off a fraction of
k
n with k the smallest integer with

αn ≤
k
n ). We also have on An that sup(`m) |(Fn − F)(b`m)| ≤ C1

√
d
n αn log

d
αn
= o(α2n) = o(αn). This implies the asserted

inequality for (I).
In order to see that (II) = o(α2n) observe that on An

| F(bjk)− F(b`m) | = a.s.| (Fn − F)(bjk)− (Fn − F)(b`m) |

≤ 2 C1

√
d
n
αn log

d
αn
= o(α2n). (5.20)

The last equality holds a.s. because Fn(bjk) = Fn(b`m) = αn a.s.. Further observe that from (A2) and (A3) we have
A−`m(∂ B̂) ≤ K1/ε0.
In order to finish the proof of (5.18) it remains to show that | (III) | = |rjk − r`m| ≤ K α2n for a fixed constant K > 0. To

see this observe that by using (A2) and (A5) that for some K > 0

|rjk| ≤
∫ ajk

ajk−hjk
| avej(x, bjk)− avej(a+jk , B̂)|Fj(x, bjk ∪ B̂) dx
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≤ K
∫ ajk

ajk−hjk
|x− ajk| Fj(x, bjk ∪ B̂) dx = K hjk F(bjk) ≤ 2 K hjk αn.

It remains to show that hjk = O(αn). In fact, we have uniform upper and lower bounds for these widths, namely,

αnβ0

2K0
≤ hjk ≤

2αn
ε0
. (5.21)

with ε0, K0 from (A2). To see that let bjk =
⊗d
i=1[c

jk
i1, c

jk
i2] and denote the width of bjk by hjk = c

jk
j1 − c

jk
j2 . By using (5.19), the

first inequality follows from

αn β0/2 ≤ F(bjk) =
∫ cjkj1+hjk

cjkj1

Fj(x, bjk ∪ B̂) dx

≤ hjk sup
x
Fj(x, bjk ∪ B̂) ≤ hjk K0,

The second inequality in (5.21) follows similarly. This completes the proof of (5.18). The next step of the proof is to show
that the analog to (5.18) also holds for the difference of the In-measures (rather than the I-measures), i.e. we show that on
An for n large enough

In(bjk)− In(b`m) ≥
c β0
8
C α2n . (5.22)

Writing

In(bjk)− In(b`m) = I(bjk)− I(b`m)+
(
(In − I)(bjk)− (In − I)(b`m)

)
we see that it remains to show that (In − I)(bjk) − (In − I)(b`m) = OP(α2n). We have seen above that on An we have
supjk F(bjk) ≤ 2αn, for n large enough. Consequently, on An

(In − I)(bjk)− (In − I)(b`m) ≤ 2 C1max

 √
d
n
αn log

⌈
d
αn

⌉
,

(
d
nαn

log
⌈
d
αn

⌉ ) γ−1
2

 .
It follows from assumption (5.7) that the r.h.s is o(α2n). This completes the proof of (5.15), and thus the proof of (5.10), in the
non-overlapping case.
Now consider the case of an overlap of bjk and b`m. We can write

I(bjk ∩ b`m) =
∫ cjkj1+hjk

cjkj1

∫ c`m
`2 +h`m

c`m
`1

Ij,`( xj, x` , bjk ∪ b`m ∪ B̂) dxj dx`.

This implies with K1 from (A4) that

I(bjk ∩ b`m) ≤ K1 hjk h`m ≤ 4 K1 α2n/ε
2
0 . (5.23)

A similar inequality (with different constants) also holds for I replaced by In. This follows directly from (5.21) together with
the definition An and assumption (5.7).
We have shown in the proof above that if ρ∞(B∗, B̂) > C 2αn for some C > 0 large enough, then on An the difference

In(bjk) − In(b`m) ≥ C̃ α2n where C̃ increases with C . We also have seen that In(bjk ∩ b`m) ≤ C
′ α2n for some constant C

′ > 0
(also on An). These two inequalities imply that on An the overlap is negligible for C large enough. The above arguments can
now be repeated mutatis mutandis.
It remains to show (5.11). Write Bkn for the current box at a peeling procedure after kn peels. Suppose there exists a set

B∗ ∈ m`oc(β0)with ρ∞(Bkn , B
∗) ≤ c αn ≤ c

d with c > 0 from the definition ofm`oc(β0). We show that on An jittering leads
to a sequence Bkn+1, Bkn+2, . . . , BKn with ρ∞(BKn , B

∗) ≥ 2 C αn, with the same C as in (5.10). This then completes the proof.
We again first consider the case of non-overlapping case, i.e. A+j1(∂Bkn) ≥ A

−

j2(∂Bkn) for some j. Without loss of generality
assume that j = 1. Further let bkn11, b

kn
12 be two corresponding candidate sets for jittering, b

kn
11 lying outside of Bkn and b

kn
12

inside, and Fn(b
kn
11) = Fn(b

kn
12) (a.s.). We show that on An with n large enough we have

In(b
kn
11) > In(b

kn
12). (5.24)

For the moment assume (5.24) to hold. Then, adding bkn11 and subtracting b
kn
12 leads to Bkn+1 with a larger average than Bkn .

Repeating this process leads to Bkn+2with aven(Bkn+2∩ Ŝ
kn) > aven(Bkn+1∩ Ŝ

kn) etc. This process can be repeated (at least) as
long as we are still in the neighborhood U(B∗β0 ,

c
d ) (cf. definition ofm`oc(β0) in (3.11)) whichmeans until for some pwe have
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( bkn+p11 ∪b
kn+p
12 )\( B\B ) 6= ∅. If this happens, then, by definition ofm`oc(β0) (see (3.11))we haveρ∞(Bkn+p, B

∗) ≥ c
d ≥ 2 C αn

for any C > 0 and n large enough since dαn → 0 by assumption.
To complete the proof it remains to show (5.24). Similarly to (5.22) we show that In(b

kn
11) − In(b

kn
12) ≥ K α

2
n . We write

Bkn =
⊗d
i=1[ai1, ai2] so that A

±

1j(∂Bkn) = ave1(a
±

1j, Bkn). Starting from (5.16) (with bjk replaced by b
kn
11) we have by using

(m.ii) from the definition ofm`oc(β0) (see (3.11)) that

I(bkn11) ≥ ave1(a
+

11, Bkn) F(b
kn
11)+

∫ a11

a11−h11
k1|x− a11|F1(x, b11 ∪ Bkn) dx

≥ ave1(a+11, Bkn) F(b
kn
11)+ k1 infx

F1(x, b11 ∪ Bkn)
∫ a11

a11−h11
|x− a11|dx

= ave1(a+11, Bkn), F(b
kn
11)+

k1 inf
x
F1(x, b11 ∪ Bkn)

2
h211. (5.25)

A similar, but simpler, argument shows that I(bkn12) ≤ ave1(a
−

1,2, b12 ∪ Bkn) F(b
kn
12) and hence

I(bkn11)− I(b
kn
12) ≥ ave1(a

+

11, Bkn) F(b
kn
11)− ave1(a

−

12, b12 ∪ Bkn) F(b
kn
12)+

k1 inf
x
F1(x, b12 ∪ Bkn)

2
h211

≥ ave1(a+11, Bkn)
(
F(bkn11)− F(b

kn
12)
)
+

k1 inf
x
F1(x, B)

2
h211 (5.26)

= o(α2n)+ 2Kα
2
n ≥ K α

2
n . (5.27)

The last line follows from (5.21) and (5.20). Hence we have shown (5.24). The fact that on An this lower bound translates to
a similar bound for the difference of the In-measures (rather than the I-measures) follows by using similar arguments used
above to show that on An, (5.18) implies (5.22). In case we have A+jk(∂Bkn) ≥ A

−

`m(∂Bkn)with j 6= m the two candidate boxes
overlap. Similar to the above, the overlap is negligible, so that the analog of (5.24) still follows. As has been outlined above,
this completes the proof. �

5.3. Empirical performance of covering

The peeling + jittering (or peeling + pasting) procedure is applied iteratively, each time removing the optimal set found
by peeling + jittering and applying the procedure to what is left over. In other words, the input space S is different for every
iteration step. For this reason we need an additional condition to ensure that it will be possible to compensate to a certain
degree the small errors made in each step. We will assume that In the following N

(k)
`oc (β0) and m

(k)
`oc(β0) denote the k-step

analogs toN`oc(β0) andm`oc(β0) as defined as in (3.10) and (3.11). For a precise define these classes one has to account for
the iterative nature of the PRIM algorithm. For a given set R ⊂ [0, 1]d letN`oc(β0, R) andm`oc(β0, R) be defined as in (3.10)
and (3.11) with S = R. SetN (1)

`oc (β0) = N`oc(β0) andm
(1)
`oc(β0) = m`oc(β0) and define iteratively

N
(k)
`oc (β0) =

⋃
B∗∈N (k−1)

`oc (β0)

N`oc(β0, [0, 1]d \ B∗), k ≥ 2.

The classesm(k)`oc(β0) are defined analogously. Let

O
(k)
`oc(β0) := N

(k)
`oc (β0) \m

(k)
`oc(β0), k = 1, . . . , K .

For given β0, λ and successive peeling + jittering outcomes B∗(k) ∈ O
(k)
`oc(β0), k = 1, . . . , K , let S

(k)
= [0, 1]d \

⋃k−1
j=1 B

∗

(j), and

K(λ) =
{
1 ≤ k ≤ K : ave

(
B∗(k) ∩ S

(k)) > λ
}
,

and

R∗λ = R
∗

λ(B
∗

(1), . . . , B
∗

(K)) =
⋃
k∈K(λ)

(
B∗(k) ∩ S

(k)
)
.

Such sets R∗λ are possible covering outcomes. Analogously, for successive outcomes B̂(1), . . . , B̂(K) of empirical peeling +
jittering let Ŝ(k) = [0, 1]d \

⋃k−1
j=1 B̂(j) and

K̂(λ) =
{
1 ≤ k ≤ K : aven

(
B̂(k) ∩ Ŝ(k)

)
> λ

}
,
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and
R̂λ =

⋃
k∈K̂(λ),

(̂
B(k) ∩ Ŝ(k)

)
.

Sets of the form R̂λ denote empirical covering outcomes.
We will assume that if, hypothetically, the input space at the (k + 1)-st peeling step of the population version were

somewhat off, while still being close to one of the possible input spaces [0, 1]d \ B∗(k) with some B
∗

(k) ∈ O
(k)
`oc,ε(β0), then the

corresponding optimal outcomes are also close:

(A7) Let Bj, j = 1, . . . , k, be boxes in [0, 1]d, k ∈ N. Let R =
⋃k
j=1 Bj. Suppose that infB∈O(k)

`oc,ε (β0)
dF (R, B) ≤ ε for some k and

some ε > 0. Then, for every B̃ ∈ N`oc(β0, R) \m`oc(β0, R) there exists B∗ ∈ O
(k)
`oc(β0), with dF (̃B, B

∗) ≤ ε.

Theorem 5.3. Let 0 < β0 < 1, λ > 0, and K ∈ N be fixed. Suppose that for any C > 0 the assumptions of Theorem 5.2
and (A7) hold uniformly in S ∈ {[0, 1]d \ B, B ∈ UF (B∗, C dαn)} for B∗ ∈ O

(k)
`oc(β0) and k = 1, . . . , K. Then there exists

R∗λ = R
∗

λ(B
∗

(1), . . . , B
∗

(K)), B
∗

(k) ∈ O
(k)
`oc(β0), such that the rate of convergence asserted in Theorem 5.2 (for the dF -pseudo-metric)

also holds for dF (R∗λ, R̂λ).

Proof. The idea of the proof is as follows. Let B̂(1), B̂(2), . . . , B̂(K) denote the successive outcomes of empirical peeling +
jittering. We will show that there exist B∗(k) ∈ N

(k)
`oc (β0) \m

(k)
`oc(β0), k = 1, . . . , K such that

dF (̂B(k) ∩ Ŝ(k), B∗(k) ∩ S
(k)) = OP(dαn), k = 1, . . . , K , (5.28)

where S(1) = [0, 1]d and S(k) = S(k−1) \ B∗(k), and similarly Ŝ
(1)
= [0, 1]d and Ŝ(k) = Ŝ(k−1) \ B̂(k).

Before we prove (5.28), we indicate how the assertion of the theorem follows from (5.28). Observe that (5.28) implies
that F (̂B(k) ∩ Ŝ(k))− F(B∗(k) ∩ S

(k)) = oP(1), k = 1, . . . , K , and thus we have on An (defined in the proof of Theorem 5.2) that
Fn(̂B(k) ∩ Ŝ(k)) − F(B∗(k) ∩ S

(k)) = oP(1), k = 1, . . . , K . Similarly it follows that In(̂B(k) ∩ Ŝ(k)) − I(B∗(k) ∩ S
(k)) = oP(1), k =

1, . . . , K , and consequently,

aven
(̂
B(k) ∩ Ŝ(k)

)
− ave

(
B∗(k) ∩ S

(k))
= oP(1), k = 1, . . . , K .

It follows that aven
(̂
B(k) ∩ Ŝ(k)

)
> λwith probability tending to 1 if and only if for the same kwe have ave

(
B∗(k) ∩ S

(k)
)
> λ.

Therefore, we have K(λ) = K̂(λ)with probability tending to one. Thus

dF (̂Rλ, R∗λ) ≤
∑
k∈K(λ)

dF (̂B(k) ∩ Ŝ(k), B∗(k) ∩ S
(k)).

Since β0 > 0 was fixed, the number K (and thus the set K(λ)) is finite, and the assertion of the theorem thus follows from
(5.28).
We now indicate how to prove (5.28). The case K = 1 is Theorem 5.2. For K = 2 observe that from the case K = 1 we

know that dF (B(1), B̂(1)) = OP(dαn). In other words, with high probability, B̂(1) is in a small enough neighborhood around
B(1). Therefore, the assumptions of the theorem allows us to use the ideas of the proof of Theorem 5.2 with S replaced by
Ŝ(2) = S \ B̂(1).
Let B̃(2) denote the outcome of the population version of the PRIM algorithm applied with S = [0, 1]d \ B̂(1). By using the

same line of proof of Theorem 5.2 we obtain with O`oc(β0, [0, 1]d \ B̂(1)) = N`oc(β0, [0, 1]d \ B̂(1)) \m`oc(β0, [0, 1]d \ B̂(1))
that

inf
B̃B(2)
∈O`oc (β0,[0,1]d \̂B(1))

dF (̂B(2) ∩ Ŝ(2), B̃(2) ∩ Ŝ(2)) = OP(dαn). (5.29)

Nextweutilize assumption (A7)β0 . This gives us the existence of a set B
∗

(2) ∈ N
(2)
`oc (β0)\m

(2)
`oc(β0)with dF (B

∗

(2)∩S
(2), B̃∩̂S(2)) ≤

C dαn. This together with (5.29) gives the assertion of the theorem. The case of an arbitrary K follows analogously. This
completes the proof. �
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Appendix

Here we present two technical results which are important tools in the proofs presented above. The result essentially are
Theorem 2.14.1 and Theorem 2.14.2 from [12] which, however, had to be adapted to our situation.
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Let G be a class of functions with ‖ g ‖2 = Eg2(X, Y ) < ∞, and let NB(u,G) be defined as the smallest number of L2-
brackets of size u needed to cover G. An L2-bracket [g1, g2] in G of size u is defined as [g∗, g∗] = { g ∈ G : g∗ ≤ g ≤ g∗ },
with ‖g∗ − g∗‖ ≤ u. The quantity NB(u,G) is called the covering number (with bracketing) of G. The metric entropy with
bracketing of Gwith respect to the L2-norm is defined as

HB(u,G) := logNB(u,G).

Covering numbers for classes of sets are defined analogously by identifying sets with their indicator functions.

Lemma A.1. We have

HB(u,B) ≤ 2 d log
⌈
d
u2

⌉
. (A.1)

Proof. First partition each of the d coordinate axis into d 1u e intervals each with marginal probability measure ≤u. With Fi
denoting the ith marginal distribution function this can be done by using a(i,k) = F−1(i) (k u), k = 1, . . . , d

1
u e − 1 as well

as F−1(0) and F−1(1). Now consider the set of all rectangles determined by picking two of the partitioning points in each
coordinate as lower and upper boundary. Notice that there are d 1u e + 1 such points in each coordinate. This results in a

set Bu consisting of
(
d
1
u e+1
2

)d
rectangles. By construction, any rectangle B ∈ B has a lower and an upper approximation

B∗, B∗ ∈ Bu with F(B∗∆ B∗) ≤ d u. Hence we have shown that HB(
√
d u ,B) ≤ d log

(
d
1
u e+1
2

)
= d log

(
d
1
u e+1

)
d
1
u e

2 ≤

2 d logd 1ue. It follows that HB(u ,B) ≤ 2 d logd
d
u2
e. �

Proposition A.1. Suppose that { (Xi, Yi), i = 1, . . . , n } are iid and continuous random variables with E(Y 21 |X1) < M <∞ a.s.,
and E|Y1|γ <∞ for some γ ≥ 2. Then there exists a universal constant C0 > 0 and a δ0 > 0 such that for 0 < δ < δ0 we have

E
(

sup
F(B)≤δ;B∈B

| (In − I)(B)|
)
≤ C0

 M √
d
n
δ log

⌈
d
δ

⌉
+

(
M2

d
n δ
log

⌈
d
δ

⌉ ) γ−1
2

 .
Proof. Write

√
n (In − I)(B) = 1

√
n

∑n
i=1 gB(Xi, ηi) − EgB(Xi, Yi) with gB(x, y) = y 1(x ∈ B). In other words

√
n (In − I)(B)

is an empirical process indexed by G = { gB, B ∈ B }. Let further

g±B (x, y) = y
± 1(x ∈ B),

where b+ = b ∨ 0 and b− = − (b ∧ 0). By definition both g±B are positive functions. Since EgB(X1, Y1) = Eg
+

B (X1, Y1) −
Eg−B (X1, Y1)we have

√
n (In − I)(B) =

1
√
n

n∑
i=1

[
g+B (Xi, Yi)− Eg

+

B (Xi, Yi)
]
−
1
√
n

n∑
i=1

[
g−B (Xi, Yi)− Eg

−

B (Xi, Yi)
]

=: νn(g+B )− νn(g
−

B ).

Let G± = { g±, g ∈ G }. Notice that F(B) ≤ δ implies that ‖g±B ‖ ≤
√
M δ . Hence

E
(
sup
F(B)≤δ

√
n| (In − I)(B)|

)
≤ E

(
sup

‖g+B ‖≤
√
M δ
|νn(g+B )|

)
+ E

(
sup

‖g−B ‖≤
√
M δ
|νn(g−B )|

)
.

In order to bound the r.h.s. we will apply Theorem 2.14.2 of [12] to both processes { νn(g+B ), g
+
∈ G+ } and { νn(g−B ), g

−
∈

G− }. Notice that |g±B (x, y)| ≤ |y|. Hence the function G(y) = y is an envelope for both classes G
± and we have ‖G‖ ≤

√
M.

Also, let

a(u) :=

√
M u√

1+ HB(
√
M u,G±)

.

With this notation Theorem 2.14.2 of van der Vaart and Wellner says that

E

(
sup

‖g±B ‖≤
√
M δ
| νn(g±B )|

)
≤

∫ √M δ
0

√
1+ HB(u

√
M ,G±) du (A.2)

+
√
n E[ |Y1| 1{ |Y1| ≥ a(

√
M δ)
√
n } ]. (A.3)
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We will now estimate both of the quantities on the r.h.s. This will give the assertion of our theorem. First we estimate the
metric entropy of G± by using (A.1). For B∗ ⊂ B ⊂ B∗ we have

g±B∗ − E(g
±

B∗) ≤ g
±

B − E(g
±) ≤ g±B∗ − E(g

±

B∗),

and since E( [g±B∗ − E(g
±

B∗)] − [g
±

B∗ − E(g
±

B∗)] ) ≤ M F(B
∗∆ B∗) it follows that

HB(u
√
M ,G±) ≤ HB(u,B) ≤ 2 d log

⌈
d
u2

⌉
.

We now can estimate the r.h.s. of (A.2). For 0 < δ < δ0 :=
1√
e1/2−1

we have 1 < 2 d logd d
u2
e and hence we obtain for such

δ that ∫ √M δ
0

√
1+ HB(u

√
M ,G± ) du ≤

∫ √M δ
0

√
1+ 2 d log

⌈
d
u2

⌉
du

≤ 2

√
M δ d log

⌈
d
M δ

⌉
.

It remains to estimate (A.3). We have for γ > 1 and 0 < δ < δ0 that

E[ |Y1| 1{ |Y1| ≥ a(
√
M δ )

√
n } ] ≤

1(
a(
√
M δ)
√
n
)γ−1 E[ |Y1|γ 1{ |Y1| ≥ a(

√
M δ )

√
n } ]

≤

(
4M2

d
n δ
log

⌈
d
δ

⌉) γ−1
2

E[ |Y1|γ 1{ |Y1| ≥ a(
√
M δ )

√
n } ].

This completes the proof of the proposition, since the last expected value is bounded. �

Next we present a result for the standard empirical process using random entropy numbers. To this end let G be a class
of functions. Let further N(u,G,Q ) denote the smallest number of L2(Q )-balls needed to cover G. Using the fact thatB is a
VC-class with VC-index 2d+ 1, we have the well-known estimate (for a definition of VC-class and VC-index, as well as the
estimate see e.g. [12, Section 2.6.1]):

sup
Q
logN(u,B,Q ) ≤ K d log

4 e
u
, 0 < u < 1.

Here K > 0 is a universal constant.W.l.o.g. we assume K ≥ 1. Using this result the following proposition is a straightforward
corollary to Theorem 2.14.1 of [12].

Proposition A.2. There exists a universal constant C0 > 0 such that for 0 < δ < 1 we have

E
(

sup
Fn(B)≤δ;B∈B

| (Fn − F)(B)|
)
≤ C0

√
d
n
δ

(
1+ log

1
δ

)
.
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