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a b s t r a c t

Neoproterozoic ages of magmatic and metamorphic events were obtained from in situ SHRIMP analysis
of zircons from the Cerro Bori Orthogneisses, eastern domain of the Dom Feliciano Belt in Uruguay.
Detailed textural analysis of zircons and their ages revealed a much more complex evolutionary history
for these rocks than previously thought. Twelve samples were studied and revealed crystallization ages
between 802 and 767 Ma, determined from the typical magmatic oscillatory zoning domains from the
zircons. These magmatic domains are cut by recrystallization fronts and mantled by metamorphic rims.
eywords:
ircon U–Pb SHRIMP ages
erro Bori Orthogneisses
erro Olivo Complex
om Feliciano Belt in Uruguay
arly Brasiliano Orogenic Cycle

The recrystallization fronts and rims are interpreted to be related to a high grade metamorphic event
with a maximum age of ∼676 Ma, whereas the rims considered to be related to partial melting are
654 ± 3 Ma old. The new magmatic ages demand a reinterpretation of the evolutionary history of this
crustal segment, which is one of the few occurrences of the early Brasiliano Orogenic Cycle rocks in
South Brazil and Uruguay. The metamorphic/partial melting event is inferred to be related to crustal
thickening as a consequence of collision of the Rio de la Plata with the Congo and Kalahari cratons, during

t Gon
the amalgamation of Wes

. Introduction

The isotopic dating of rock forming events in the lower crust
s essential to understand the evolutionary history of continental
rustal segments to correlate events in time, and to underpin tec-
onic reconstruction of the continents at different geological times.
he preservation of ages of geological events in the lower crust of
rogenic belts is often poor due to high temperature conditions
ausing recrystallization and isotopic resetting or perturbation.
ew minerals, notably zircon, preserve precise information about
he timing of events. In magmatic rocks the growth of zircons is
elated mainly to the availability of sufficient Zr in the system. The
ame occurs in metamorphic rocks of all grades, although it is in
igh grade metamorphic rocks and migmatites that the growth

f new zircons is more effective, mainly due the increase of sol-
bility of Zr with temperature (Watson and Harrison, 1983). As
ircon crystals can form in response to several events (magmatic,
etamorphic and hydrothermal), specific growth textures result
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from different events and their ages can give important informa-
tion about the evolution of their host rock and crustal fragment.
Therefore, understanding zircon growth textures and the ability to
determine formation ages of specific growth zones provides a pow-
erful tool for the study of the orthogneissic protolith and high grade
metamorphic events in the lower crust. In this study, we utilise tex-
tural studies and in situ geochronology techniques to determine the
temporal evolution of the Cerro Bori Orthogneisses.

During the Neoproterozoic, the break-up of the Rodinia Super-
continent and subsequent amalgamation of West Gondwana are
registered by several events in Brazil and Africa and these events
are grouped in the Brasiliano Pan-African Orogenic Cycle. In south-
ern Brazil the Brasiliano Orogenic Cycle is divided into Brasiliano I,
II and III (cf. Silva et al., 2005). In this paper we present new U–Pb
SHRIMP ages to define the “Brasiliano I” or “Early Brasiliano” crys-
tallization ages of the Cerro Bori Orthogneisses (Figs. 1a and 2).
Furthermore we present new U–Pb SHRIMP ages for the peak meta-
morphism, reflecting the collision between the Rio de la Plata
(South America), Congo and Kalahari cratons (Africa), related to

Open access under the Elsevier OA license.
“Brasiliano II” of Silva et al. (2005). The convergence between the
aforementioned cratons produced the Dom Feliciano Belt in South
America (Porada, 1979, 1989; Fragoso-Cesar, 1980), an extensive
orogenic belt that crops out in Uruguay and southern Brazil (Fig. 1a
and b). This convergence culminated with the assembly of West
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Fig. 1. (a) Geological map of Dom Feliciano Belt and Rio de la Plata craton in southern Brazil and Uruguay (modified from Hallinan et al., 1993; Fernandes et al., 1995;
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asquelin, 2002; Oyhantçabal et al., 2009). (b) Location of the Dom Feliciano Bel
lta Terrane; NPT: Nico Pérez Terrane; COC: Cerro Olivo Complex; TQB: Taquarem
apivarita Metamorphic Suite; ARGC: Arroio dos Ratos Gneissic Complex; WD: wes
BSZ: Sierra Ballena shear zone; ACSZ: Alferez-Cordillera Shear Zone; DCSZ: Dorsal

ondwana and produced a large volume of granitic rocks (syn-
o post-orogenic), named Pelotas and Florianópolis Batholiths, in
outhern Brazil (e.g. Soliani, 1986; Philipp et al., 1998; Basei et al.,
008) and the Aiguá Batholith, in Uruguay (Masquelin and Gomez
ifas, 1998; Oyhantçabal, 2005).

The rocks from the Cerro Olivo Complex host these younger
ranitoids and are represented by paragneisses (Chafalote Parag-
eisses), intrusive orthogneisses (Cerro Bori Orthogneisses) and
ugen gneisses (Centinela and Punta del Este Augen Gneisses)
Masquelin and Gomez Rifas, 1998; Masquelin et al., 2001). These
ocks were affected by a high P-T metamorphic event accompa-

ied by several deformational events (Masquelin, 2002; Gross et al.,
009).

Previously, the orthogneisses were thought to derive from
esoproterozoic magmatic protoliths with crystallization ages of

a. 1000 Ma obtained by ID-TIMS U–Pb dating of zircon (Preciozzi
adjacent African Belts in the Gondwana configuration. Abbreviations: PAT: Piedra
ck; SMC: Santa Maria Chico; EMC: Encantadas Micro Continent, VCMS: Várzea do
omain; CD: central domain; ED: eastern domain; SYSZ: Sarandí del Yí Shear Zone;
nguçu Shear Zone; PMF: Passo do Marinheiro Fault.

et al., 1999). However, the zircon data are highly discordant and,
given the complex evolutionary history of the terrain, may not pro-
vide reliable estimates of the rock formation ages. The age of the
high grade metamorphic event was delimited, but with large ana-
lytical errors, by Sm–Nd garnet ages (in the Chafalote Paragneisses)
between 655 ± 72 and 596 ± 24 Ma (Gross, 2004).

In this paper we present new U–Pb ages from individual zir-
cons from 12 samples from the Cerro Bori Orthogneisses for their
magmatic formation and for the high grade metamorphic peak
and post peak partial melting. The isotopic ages are correlated
with zircon textures, from detailed cathodoluminescence imag-

ing of analysed grains, to construct a temporal framework for the
evolution of the Cerro Bori Orthogneisses. Our results intent to
clarify the sequence of tectonic events responsible for the final
stages of amalgamation of the West-Gondwana geodynamic sys-
tem.
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Fig. 2. Detailed geological map of the main outcrops of the Cerro Olivo Complex rocks with the location of the studied samples. Geological map modified from Masquelin
(2002).
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. Geological setting

In Uruguay, the eastern domain of the Dom Feliciano Belt (sensu
ernandes et al., 1995) (Fig. 1) is represented mainly by the Cerro
livo Complex (Chafalote Paragneisses, Cerro Bori Orthogneisses,
entinela and Punta del Este Augen Gneisses), a large volume
f syn- to post-orogenic granites (Aiguá Batholith), dacitic and
hyolitic rocks (Cerro Aguirre and Sierra de Rios Formation), ser-
entinites and amphibolites (Paso del Dragon Unit) and low grade
upracrustal rocks (Rocha Group) (Bossi et al., 1967; Ramos, 1988;
ampal and Gancio, 1993; Masquelin, 2002; Bossi and Gaucher,
004; Oyhantçabal et al., 2009; Sánchez Bettucci et al., 2010). Dif-
erent nomenclature has been used for the eastern domain of the
om Feliciano Belt in Uruguay. The Cerro Olivo Complex associ-
tion of rocks was named by some authors as the Punta del Este
errane (e.g. Masquelin, 2002; Preciozzi et al., 1999; Oyhantçabal
t al., 2009). The name “Punta del Este Terrane” was also used with
he same meaning of the here named eastern domain of the Dom
eliciano Belt in Uruguay (e.g. Basei et al., 2005; Silva et al., 2005). On
he other hand, the eastern domain of the Dom Feliciano Belt was
lso named Cuchilla Dionísio Terrane (Bossi and Gaucher, 2004;
aucher et al., 2004, 2008), which it has been interpreted as an
llochthonous block accreted to the Rio de la Plata craton during
ambrian times.

Beyond the eastern domain of the Dom Feliciano Belt, most of
he rocks in Uruguay belong to the Rio de la Plata craton (Almeida
t al., 1973; Fragoso-Cesar, 1980; Dalla Salda et al., 1988; Hartmann
t al., 2001), represented by the Paleoproterozoic rocks from the
iedra Alta Terrane and Paleoproterozoic to Archean rocks from the
ico Perez Terrane (Fig. 1). In the Nico Perez Terrane a sequence
f low to medium grade supracrustal rocks named the Lavalleja
omplex is correlated with the Porongos and Brusque Complex to
he north (Rio Grande do Sul and Santa Catarina States, southern
razil) (Basei et al., 2008). These two terranes are divided by the
NW-trending Sarandi del Yi-Piriápolis mega shear zone (Bossi
nd Campal, 1992) and the contact of these cratonic rocks with the
astern domain of the Dom Feliciano Belt is marked by the transcur-
ent NE-trending strike slip Sierra Ballena shear zone (Gómez-Rifas,
995; Oyhantçabal et al., 2009, 2010).

The differences between rocks from the Nico Perez Terrane and
he eastern domain of the Dom Feliciano Belt and the interpreted

esoproterozoic age for the orthogneisses from the Cerro Olivo
omplex led some authors to interpret the latter as an allochtonous
errane, related to “African” origins (Bossi and Gaucher, 2004;
aucher et al., 2008) which was accreted to the Rio de la Plata
uring the Cambrian.

The Cerro Olivo Complex occurs in the south-eastern part of
he eastern domain of the Dom Feliciano Belt and its rocks reg-
ster four metamorphic events (M1, M2, M3, M4) and two main
eformational events (D1, D2). The D1 generated a gneissic band-

ng with E-W orientation. During the D2 flat-lying and transcurrent
hear zones were developed, with a NE-SW trend (Masquelin,
002; Oyhantçabal, 2005; Gross et al., 2009). The metamorphic
-T path was determined in the Chafalote Paragneisses, by using
etrography (Masquelin, 2002) and thermobarometry (Gross et al.,
009). The peak metamorphism (M2) of the area was calculated
t 7–10 kbar and 830–950 ◦C, followed by a decompressional stage
M3) at 4.8–5.5 kbar and 788–830 ◦C and a later exhumation M4
vent (Gross et al., 2009).

The first age determinations in the Cerro Olivo Complex were
ased on ID-TIMS U–Pb dating of zircon (Preciozzi et al., 1999).

wo morphologic groups of zircon types were separated from three
rthogneiss samples: one was prismatic and the other rounded
ractured and with inclusions. The imprecise ages obtained for the
wo groups are similar, at ca. 1000 Ma. However the data are highly
iscordant and scattered (i.e. MSWD: 1687). Bossi et al. (2001) and
arch 185 (2011) 149–163

Hartmann et al. (2002) determined the magmatic age (SHRIMP) of
762 ± 8 Ma for the Rocha syenogranite, with an older zircon core
of 2058 ± 10 Ma in the same sample. These authors interpreted the
Rocha syenogranite as part of the Cerro Olivo Complex with Neo-
proterozoic ages and Paleoproterozoic inherited zircons. The high
grade metamorphic event which affected the rocks was dated with
the Sm–Nd method (garnet-whole rock isochrons) in samples of
the Chafalote Paragneisses (Gross, 2004). The ages obtained var-
ied from 656 to 596 Ma. Preciozzi et al. (2001) obtained K–Ar ages
between 656 and 515 Ma in biotites from gneissic rocks of the Cerro
Olivo Orthogneisses, and U–Pb ages in zircon between 510 ± 135
and 546 ± 69 Ma for the leucosomes of Cerro Olivo migmatites.
Available Sm–Nd TDM ages of the Cerro Olivo gneiss–migmatite
rocks range from 2.4 to 1.5 Ga and �Nd(0) range between −13 to
−14.3 (Preciozzi et al., 2001; Gross et al., 2009).

3. Local geology

The Cerro Olivo Complex (Fig. 2) contains orthogneisses as the
most conspicuous units. The orthogneisses are divided into two
main units: (i) the Cerro Bori Orthogneisses, and (ii) the Centinela
Augen Gneisses. The present study was focused in the Cerro Bori
Orthogneisses (see Table 1) mostly from the Cerro Bori Area (Fig. 2).
Smaller occurrences of the Cerro Bori Orthogneisses were studied
at the Chafalote and Cerro Aspero area. The Cerro Bori area is limited
by the Rocha granite (east) and the El Pintor Granite (west). The El
Pintor granite was emplaced in the Alférez-Cordillera shear zone,
a transcurrent NE-SW to N-S shear zone that crosscuts the Cerro
Olivo Complex rocks generating several filonites and mylonites in
the area (e.g. COR-42).

The Cerro Bori Orthogneisses are composed mostly by
tonalitic/granodioritic gneisses and minor mafic granulites and
mafic gneisses. The tonalitic/granodioritic gneisses (AC-137-B, CH-
174, AC-338) have an irregular, discontinuous and millimetric to
centrimetric layering, with alternating mafic and felsic layers. The
mineral assemblage is mostly plagioclase, quartz, biotite and minor
feldspar, garnet and orthopyroxene. Secondary and accessory min-
erals are mostly chlorite, epiodote and zircon. Leucossome areas
are commonly found in the tonalitic/granodioritic gneisses.

The mafic rocks occur mostly as tabular or lens-shaped boudins
in the tonalitic/granodioritic gneisses (e.g. AC-133-B) (see macro-
scopic picture in Fig. 2). They can occur as well as xenoliths in
the syn orogenic granites (e.g. CH-33-A) or in the Chafalote Parag-
neisses. Mafic granulites occur mainly as granofels with a small
grain size whereas the mafic gneiss shows a macroscopic mineral
orientation and layering. In some mafic granulites small leucosome
vein/pockets are recognized.

Three types of mafic granulites are observed: (1) the dark
colour, medium grain-size garnet–orthopyroxene–clinopyroxene
mafic granulites, (2) the dark colour and fine-grain
orthopyroxene–clinopyroxene mafic granulites and (3) a biotite
rich, fine grain mafic granulite.

The garnet–orthopyroxene–clinopyroxene mafic granulites dis-
play medium grained texture and porphyroblasts of orthopyroxene
and small porphyroblasts of clinopyroxene and garnet within a
matrix of plagioclase and quartz. The mineral assemblage is
garnet − orthopyroxene − clinopyroxene − plagioclase − quartz ±
biotite ± ilmenite.

The orthopyroxene–clinopyroxene mafic granulites display
a fine-grained granoblastic texture. The mineral assemblage

is orthopyroxene − clinopyroxene − plagioclase − quartz ± biotite.
Orthopyroxene is more abundant than clinopyroxene and biotite is
rare in these mafic rocks. Ilmenite is a common accessory mineral.

The biotite rich mafic granulites are rare and found only in
the Chafalote area (CH-33 and CH-43-D). The mafic granulites are
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Table 1
Rock classification, metamorphic assemblage and location of the studied samples.

Sample name Rock classification Metamorphic assemblage Location/coordinates

AC-133-B Mafic granulite Opx+Cpx+Hb+Bt+Pl+Qtz Cerro Bori
54◦25′39′′W/34◦20′14′′S

AC296-M Mafic granulite Opx+Bt+Pl+Qz Cerro Bori
54◦23′51′′W/34◦18′53′′S

AC-373-B Mafic granulite Opx+Cpx+Grt+Bt+Pl+Qtz Cerro Bori
54◦23′50′′W/34◦20′31′′S

PCH-0869 Mafic granulite Opx+Bt+Pl+Qz Cerro Bori
54◦24′17′′/34◦20′21′′S

CH-33-A Mafic granulite Bt+Opx+Cpx+Hb+Pl+Qtz Chafalote
54◦11′16′′/34◦17′00′′S

CH-43-D Mafic granulite Bt+Amp+Pl+Qz Chafalote
54◦12′20′′/34◦17′00′′S

UY-2-A Mafic gneiss Opx+Cpx+Bt+Pl+Qz Cerro Aspero
54◦32′08′′W/34◦17′44′′S

AC-137-B Felsic gneiss Pl+Bt+Qz (±Opx) Cerro Bori
54◦25′9′′W/34◦19′34′′S

AC-338-A Felsic gneiss Grt+Bt+Pl+Qz Cerro Bori
54◦23′55′′W/34◦18′59′′S

CH-174 Felsic gneiss Pl+Kfs+Qtz+Chl+Ep Chafalote
54◦17′4′′W/34◦14′35′′S

COR-42 Felsic mylonite Grt+Bt+Pl+Qz Cerro Bori/Cerro Aspero
54◦24′58′′W/34◦24′44′′S
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rims with a distinct oscillatory zoned texture and/or a sequence of
homogeneous rims.

The oscillatory zoning can occur with high (Fig. 4I and M) or low
frequency of zones (Fig. 4C—left grain). Some faded and blurred
areas (Fig. 4J-fa) and transgressive recrystallization fronts can be

Table 2
Calculated emplacement ages for the Cerro Olivo Complex orthogneisses.

Sample Emplacement age ± 1�
error (Ma)

MSWD N◦ analysis

AC-338-A 802 ± 12 0.61 3 of 13
AC-296-M 796 ± 8 1.50 7 of 18
COR-42 797 ± 8 0.57 5 of 31
AC-373-B 795 ± 8 1.40 6 of 30
AC-133-B 794 ± 8 1.12 5 of 25
AC-137-B 793 ± 4 1.15 9 of 20
PCH-0869 788 ± 6 0.82 6 of 37
AC-370-A Felsic migmatite

ranofelses and have fine grain size. Two mineral assemblages
ere found, but both are very rich in biotite, sample CH-43-D
as biotite + amphibole (probably a pargasite) + plagioclase + rare
uartz. Sample CH-33 has abundant biotite with orthopyroxene,
linopyroxene, plagioclase and quartz. Both have rutile and zircons
s accessories, although in sample CH-43-D the zircons are very
mall and only xenocrysts and secondary zircon could be analysed
see discussion later).

. U–Pb SHRIMP methodology

Fresh rocks were collected in the field. They were crushed in a
aw crusher and milled in a ring mill. Zircons were concentrated
rst by panning, then with heavy liquid (diiodomethane) and a
agnetic separator, followed by hand-picking under a binocular
icroscope. Zircon grains were mounted in epoxy resin together
ith standards, and then polished down to expose the central por-

ions of the grains. Cathodoluminescence and secondary electron
mages of all grains were taken with a Philips XL30, at Curtin Uni-
ersity of Technology. The epoxy mounts were then cleaned and
old coated for analysis using SHRIMP II, at Curtin University of
echnology.

The analytical procedures are based on Compston et al. (1992)
nd Smith et al. (1998). The zircon standard used was BR266 (U–Pb
ge of 559 Ma, 903 ppm U). The spot size used during all the sessions
as around 20 �m and the primary O2

− beam around 1.8 nA. Squid
nd Isoplot software (Ludwig, 2003), were used for data reduction
nd plotting. Results with more than 10% discordance or not within
� error of concordance, or more than 0.65% 206Pb as common lead
re presented but not used in the age calculations. The 206Pb/238U
ge is used for age calculations, unless otherwise stated. Data are
resented in Supplemental Tables 1–12 and summarized in Table 2
nd relevant Concordia plots are presented in Fig. 3.

. U–Pb zircon geochronology
Cathodoluminescence (CL) imaging of zircons was undertaken
o allow identification of potential xenocrystic cores and internal

orphologies such as growth related textures, zones of recrystal-
ization, overgrowth rims and other features. This not only guided
+Bt+Pl+Qz Cerro Bori
54◦24′33′′W/34◦24′05′′S

analysis of the different zircon growth events, but provided petro-
genetic information of the processes responsible for the formation
of the zircons and aided age data interpretation. Zircon textural
descriptions follow Hoskin and Black (2000) and Corfu et al. (2003).

5.1. Mafic granulites

5.1.1. Zircon textures
The zircons of the mafic granulites AC-133-B, AC-296-M, AC-

373-B and PCH-0869 show similar characteristics, whereas zircons
from samples CH-33 and CH-43-D show different characteristics.

The four mafic granulites main internal texture reveal by CL is an
oscillatory zoning, mostly mantled by rims and with some evidence
of distinctive cores.

The distinctive cores found in these samples have different
internal textures, the most common being regular oscillatory zoned
(Fig. 4A), faded and irregular oscillatory zoned (Fig. 4G) or a dark CL
homogeneous texture (Fig. 4H). These distinctive cores, interpreted
as xenocrysts, can be easily identified when they are mantled by
CH-174 786 ± 9 0.90 5 of 15
AC-370 780 ± 5 1.30 8 of 38
UY-2-A 771 ± 6 0.76 8 of 29
CH-33-A 767 ± 9 1.3 10 of 12
CH-43-D 772–765? – 2 of 16
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Fig. 3. Concordia diagram for the 12 orthogneisse samples. The age in each d

dentified overprinting oscillatory zoning (Fig. 4C-rf, I-rf, and M-
f). Recrystallization fronts are irregular and show mostly brighter
L illumination than the oscillatory zoned domains. Some zir-
ons affected by recrystallization show intense faded or blurred

omains, with the oscillatory zoning preserved only as ghost areas

n the crystal (e.g. Fig. 4L—grain 3). Most of the zircons showing
scillatory zoning are mantled by rims and overgrowths. Some zir-
ons show small rims (e.g. smaller zircons in Fig. 4J) while others
re almost completely replaced by these rims (e.g. larger zircon
is related to the crystallization age of the orthogneissic protolith: see text.

in Fig. 4J, grain 5 in Fig. 4N). The innermost rim is a small bright
CL illumination rim and mantled the oscillatory-zoned zircons and
in some areas occur cutting these domains (transgressive recrys-
tallization) (e.g. Fig. 4C, J, and K). The texture in these rims is

homogeneous and the bright CL illumination reflects an U-poor
area. Subsequent rim growth is characterized by dark CL illumina-
tion, reflecting a U-rich domain (e.g. Fig. 4H and J). This rim is mainly
homogeneous but in a few cases ghost areas are preserved in them.
The outermost rim has a medium CL illumination with variable
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F ses. (A
A rystal

t
h

e
t

ig. 4. Cathodoluminescence images of zircons from the mafic granulites and gneis
C-373-B; (M–O) sample PCH-0869. The scale bars are 50 �m. Abbreviations: rf: rec
exture: sector (Fig. 4B), planar, patchy (Fig. 4I—left white arrow),
omogeneous (Fig. 4N (grain 5) and O) and convolute zoning.

The zircons in sample CH-33-A (Fig. 5M) have a totally differ-
nt texture than the zircons from the other mafic granulites. All
he zircons from this sample have a dark CL illumination and are
–C) Sample AC-133-B; (D–F) sample UY-2-A; (G–I) sample AC-296-M; (J–L) sample
lization fronts; fa: faded areas; oz: oscillatory zoning.
intensely metamictized. Small rims with medium CL illumination
are observed mantling the dark CL cores.

Mafic granulite CH-43-D contains zircons with unequivocal
core-rim structure. The cores have oscillatory zoning and a brighter
CL illumination than the rims. The rims have generally a homoge-
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F ite, fe
A nd N)

n
d
s
w

ig. 5. Cathodoluminescence images of zircons for the felsic gneisses, felsic mylon
C-338; (E and F) sample COR-42; (G–I) sample CH-174; (J–L) sample AC-370; (M a
eous or patchy texture (Fig. 5N). A group of zircons occur without
istinctive cores and with a dark CL illumination (high U content),
imilar to the rims of the xenocrysts, and are homogeneous, patchy
ith some recrystallized domains identified (Fig. 5O).
lsic migmatite and mafic granulite. (A and B) Sample AC-137-B; (C and D) sample
sample CH-33. The scale bars are 50 �m. Abbreviation: rf: recrystallization fronts.
5.1.2. Geochronological data
Sample AC-133-B: Twenty five analyses are concordant to near

concordant and have low common Pb (Supplemental Table 1 and
Fig. 3A). Three ages concentrations are evident, the oldest one with
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137-B, AC-338-A, and CH-174) show few distinctive cores and a
C. Lenz et al. / Precambria

calculated 207Pb/206Pb age of 1270 ± 23 Ma and MSWD of 0.93
n = 4) is related to the xenocrystic zircon cores. Seventeen analyses
pread between 807 ± 8 and 722 ± 6 Ma. These ages were obtained
n the oscillatory zoned domains and Th/U ratios between 0.7 and
.2, which are consistent with a magmatic origin (e.g. Silva et al.,
000; Rubatto, 2002). The calculated emplacement age of this rock
f 794 ± 8 Ma (MSWD of 1.12; n = 5) derives from the five oldest
nalyses: the spread to younger ages was found in all the stud-
ed orthogneisses and is ascribed to a metamorphic overprint, as
iscussed below. The youngest concentration of ages forms a sta-
istical population with a calculated age of 652 ± 7 Ma and MSWD
f 0.8 (n = 4) (Supplemental Table 1 and Fig. 3A). These ages were
btained in the rims with dark and medium CL illumination. The
h/U ratio of these rims is as low as 0.01, which is indicative of
etamorphic growth (Rubatto, 2002).
Sample AC-296-M: Eighteen analyses are concordant to near

oncordant with low common Pb (Supplemental Table 2 and
ig. 3B). Two older ages (1428 ± 8 Ma and 818 ± 4 Ma) indicate
enocrysts, although the latter may be a mixed analysis partially
n a xenocryst. The main concentration of 15 ages is between
09 ± 8 and 672 ± 9 Ma and is related to zircons with oscillatory
oning. The youngest age of 649 ± 4 Ma was obtained on a homo-
eneous rim with dark CL illumination. The seven oldest analyses
rom this group were used to calculate the emplacement age, which
s 796 ± 8 Ma (MSWD of 1.5; n = 7). The Th/U ratio of most of the zir-
ons of this sample is higher that 0.3, with exception of the oldest
enocryst (1428 ± 8 Ma) and the youngest age (649 ± 4 Ma) which
ave Th/U ratio of 0.06 and 0.02 respectively. The age of 649 ± 4 Ma
btained in a dark CL rim is probably the best estimate of the age
f the high-grade metamorphic event registered in this sample, an
nterpretation which is supported by the homogeneous texture and
ow Th/U ratio (0.02) of this zircon rim.

Sample AC-373-B: Twenty nine concordant to near concordant
nalyses with low common Pb were plotted in the concordia dia-
ram (Supplemental Table 3 and Fig. 3C). One age of 886 ± 10 Ma
as obtained in a xenocryst zircon. Seventeen ages from oscilla-

ory zoned areas occur within 804 ± 7 and 724 ± 8 Ma. Th/U ratios
or this group varied between 0.2 and 0.6. The six oldest ages were
sed to calculate the emplacement age, which is 795 ± 8 Ma (MSWD
f 1.4): discussed below. Some data were obtained in areas with
vidence of oscillatory zoning, but were either intensely blurred or
ery close to the boundary of the oscillatory zoned domains and the
ims: these data are presented in Supplemental Table 3 as “mixture
extures” and all are younger than 795 Ma. The ages obtained from
he rims vary between 666 ± 11 and 631 ± 4 Ma. The two oldest ages
666 ± 11 and 651 ± 8 Ma) are related to rims with bright CL illumi-
ation and the youngest ages were obtained in rims with dark CL

llumination (between 646 ± 7 and 631 ± 4 Ma). The Th/U ratios of
hese rims are mostly ≤0.1 suggesting a metamorphic origin.

Sample PCH-0869: Thirty six concordant to near concordant
nalyses with low common Pb were plotted and presented in
upplemental Table 4 and Fig. 3D. Ages between 799 ± 8 and
85 ± 5 Ma were obtained from 30 analyses in zircons with oscil-

atory zoning. Their Th/U ratios are between 0.14 and 0.64. The six
ldest concordant to near concordant ages were used to calculate
he emplacement age of 788 ± 6, (MSWD of 0.82): discussed below.
wo analyses from grain 3 (Supplemental Table 4) were obtained in
n intensely metamictized zircon and gave ages within the range of
he largest group. The four ages from zircon rims gave ages between
64 ± 7 and 628 ± 6 Ma: these are related to rims with dark and
edium CL illumination and variable Th/U ratio (between 0.02 and

.5). These younger ages are interpreted as related to high grade

etamorphic event.
Sample CH-33-A: Twelve concordant to near concordant anal-

ses with low common Pb were presented and plotted in
upplemental Table 5 and Fig. 3E. The ages spread between
arch 185 (2011) 149–163 157

810 ± 12 and 724 ± 11 Ma and all are from dark CL illumina-
tion cores. The Th/U ratio of these zircons is highly variable,
between 1.18 and 0.15. The calculated age of emplacement
of this rock is 767 ± 9 Ma (MSWD of 1.3), calculated from
ten analyses. The oldest age and the youngest age were not
used in the calculation due intense metamictization in the
zircons.

Sample CH-43-D: Xenocrysts core ages reveal a group of ages at
ca. 1300 Ma (n = 4) and at ca. 1000 Ma (n = 3) (Supplemental Table
6 and Fig. 3F) with 232Th/238U ratios between 0.8 and 0.6. The
rims and zircons with homogeneous and patchy texture define
a population with an age of 658 ± 5 Ma, and MSWD of 0.7 (n = 7)
(Supplemental Table 6 and Fig. 3F). This age is considered to be the
age of the metamorphic event. Only two zircons yields ages similar
to the age of the magmatic event registered in the other samples of
this study (772 and 765 Ma). These two zircons have a complex tex-
ture, with convolute zoning and some areas with oscillatory zoning
preserved. The geochemical signature of this rock (Lenz, 2010), is
very similar to sample CH-33-A (potassic to ultrapotassic rocks)
and therefore the crystallization age of this rocks is interpreted to
be similar to sample CH-33-A.

5.2. Mafic gneisses

5.2.1. Zircon texture
Some subhedral prismatic zircons preserve cores with a homo-

geneous internal texture and dark CL illumination. These cores are
interpreted as xenocrysts and are mostly mantled by bright CL
illumination rims (Fig. 4F). The most typical texture found in the
prismatic zircons is a regular oscillatory zoning (Fig. 4E), mostly
mantled by a bright CL illumination rim. The bright CL illumination
rims have various thicknesses and the contacts with the oscilla-
tory zoned domain is mostly sharp (e.g. Fig. 4E). Some faded areas
are observed in some grains and some zircons without evidence of
core-rim structures show homogeneous or patchy textures (Fig. 4D)
with medium to bright CL illumination.

5.2.2. Geochronological data
Twenty five concordant to near concordant analyses with

low common Pb from 18 grains are presented and plotted in
Supplemental Table 7 and Fig. 3G. The ages vary between 833 and
1090 Ma, with the six oldest interpreted as xenocryst cores. The
Th/U ratio of these zircons is high, from 1.14 to 1.72. Two of these
ages came from bright CL illumination rims (spot 7-1 and 7-3) and
either reflects an earlier rim growth event on a xenocrystic core, or
loss of U/gain of Pb and perturbation of the U–Pb system. The main
group of ages ranges from 782 ± 8 to 695 ± 11 Ma and is related
to oscillatory zoned texture. This texture and the Th/U ratio (0.12
and 0.61) are typical of magmatic zircons. For the calculation of the
emplacement age we used a statistical population of eight data,
resulting in an age of 771 ± 6 Ma (MSWD of 0.76). The youngest
group of ages is related to zircon with patchy to convolute zon-
ing and minor rims. The age of these younger zircons varies from
669 ± 8 to 609 ± 6 Ma and low Th/U ratios (0.15–0.00) were found.
The younger zircons in this group are considered to be perturbed
by the metamorphism.

5.3. Felsic gneisses (tonalitic composition)

5.3.1. Zircon textures
The three analysed samples of tonalitic orthogneisses (AC-
dominant occurrence of zircons with oscillatory zoning mostly
mantled by rims.

The distinctive cores have a regular oscillatory zoning with
either darker or brighter CL illumination than the oscillatory zon-
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ng of the mantling rims (Fig. 5B and D) or with a distinctive dark
L illumination (Fig. 5H). The main texture in the zircons is a regu-

ar oscillatory zoning (e.g. Fig. 5B, C and G). Recrystallization fronts
Fig. 5C-rf) and blurred areas can be seen overprinting oscillatory
oned domains. The innermost rim has a bright CL illumination
Fig. 5A, C and H), is mostly thin and irregular and cuts across the
scillatory zoned domains (transgressive recrystallization). These
ims are mantled by rims with dark (Fig. 5H) to medium CL illumi-
ation (Fig. 5A and C) and homogeneous or planar zoning.

.3.2. Geochronological data
Sample AC-137-B: Twenty two analyses on 19 grains yielded

0 concordant to near concordant analyses with low common
b: these are presented and plotted in Supplemental Table 8 and
ig. 3H. The two oldest ages (2084 ± 28 and 1193 ± 12 Ma) are inter-
reted as from xenocryst domains. A group of sixteen ages are
etween 806 ± 6 and 690 ± 6 Ma. The calculated age of the emplace-
ent of this rock of 793 ± 4 Ma (MSWD of 1.15; n = 9) is from

he oldest nine analyses: this interpretation is considered further
elow. No data were obtained on the rims.

Sample AC-338-A: Sixteen analyses on 13 grains yielded 12 con-
ordant to near concordant analyses with low common Pb, which
re presented and plotted in Supplemental Table 9 and Fig. 3I.
ne older analysis (1075 ± 14 Ma) is interpreted as a xenocryst.
he remaining ages are between 810 ± 10 and 705 ± 10 Ma and is
elated to oscillatory zoned domains. The calculated emplacement
ge for this sample is 802 ± 12 Ma (MSWD of 0.61; n = 3), based on
he three oldest analyses. The Th/U ratio of the oscillatory zoned
ircons is 0.2–0.5.

Sample CH-174: Nineteen analyses on 18 grains yielded 15 con-
ordant to near concordant analyses with low common Pb: these
re presented and plotted in the Supplemental Table 10 and Fig. 3J.
wo older ages (1541 ± 25 and 897 ± 11 Ma) are interpreted as
enocrysts. Analyses from the oscillatory zoned areas produced
spread of ages from 799 ± 10 and 686 ± 9 Ma. The six oldest

nalyses were used to the calculation of the emplacement age,
hich is of 783 ± 8 Ma (MSWD of 1.09). One age was obtained on
dark CL illumination rim with low Th/U, at 629 ± 8 Ma. The low

h/U ratio and the texture suggest a metamorphic origin for this
im.

.4. Felsic mylonite

.4.1. Zircon texture
Sample COR-42 is a mylonitic orthogneiss collected in a sec-

ndary shear zone close to the N-S Alférez Cordillera shear zone
Fig. 2). Most of the zircons from this sample show oscillatory
oning, some are regular and others have an irregular disper-
ion of the bands. Blurred domains and recrystallization fronts
verprint oscillatory zoned domains (e.g. Fig. 5F-rf). A bright CL
llumination rim is the innermost rim and is mantled by a dark
L illumination rim with homogeneous texture (Fig. 5E), fol-

owed by rims with medium CL illumination and patchy texture
Fig. 5F).

.4.2. Geochronological data
Thirty five analyses on 16 grains yielded 27 concordant to near

oncordant analyses with low common Pb. The data are presented
n Supplemental Table 11 and plotted in Fig. 3L. For oscillatory
oned zircon areas, the ages are between 801 ± 8 and 681 ± 9
hereas the Th/U ratio varies from 0.13 to 0.69. Based on the four
ldest analyses, the calculated age of emplacement of this rock is
98 ± 8 Ma (MSWD of 0.23): the younger analyses in this group are
onsidered below. Oscillatory zoned domains with intense blurring
re grouped separately in Supplemental Table 11 as mixture tex-
ures: these have younger ages than the oscillatory zoned zircons.
arch 185 (2011) 149–163

The rims yield ages between 668 ± 7 and 596 ± 6 Ma. The two oldest
rims (10-1 and 10-3; Supplemental Table 11) have dark to medium
CL illumination and may provide the best estimate of the metamor-
phism age at around 665 Ma (discussed below). The three youngest
rim ages and the two youngest “mixed texture” analyses (collec-
tively 619–596 Ma) show a patchy and homogenous texture (e.g.
Fig. 5F—spot 13-1), highly variable Th/U ratio and are considerable
younger that any other analyses from this study. The significance
of this is discussed below.

5.5. Felsic migmatite

5.5.1. Zircon texture
In the zircons from the migmatitic orthogneiss AC-370 (Fig. 2),

several domains were identified with CL images. The more inter-
nal domain has an oscillatory zoned texture (Fig. 5L), which can
be regular or irregular. Recrystallization fronts are common in this
sample and are more abundant than in the other samples of this
study. The recrystallization fronts are irregular, enriched in U and
occur cutting across the oscillatory domains. Most of these zircons
show an innermost rim with bright CL illumination followed by a
dark CL illumination rim (Fig. 6B and C). The more external rims
have medium CL illumination and have planar zoning. Some zir-
cons preserve small cores oscillatory zoned and are dominated by
the dark and medium CL illumination rims (e.g. Fig. 5K—grain 18).

5.5.2. Geochronological data
Of the 48 analyses on 34 grains, 40 are concordant to near con-

cordant data with low common Pb: these are presented and plotted
in Supplemental Table 12 and Fig. 3M. Ages between 792 ± 6 and
686 ± 6 Ma and are from areas of oscillatory zoning. The textures
and the Th/U ratio of this group of analyses (between 0.19 and 0.65)
are typical of magmatic zircons. The calculated age of the emplace-
ment of this rock is 780 ± 5 Ma (MSWD of 1.3; n = 8) based on the
eight oldest analyses: interpretation of the remaining analyses is
discussed below. Data obtained in blurred areas of oscillatory zon-
ing and intensely metamict areas are presented as mixture texture
in Supplemental Table 12. Analyses from these areas are younger
than oscillatory zoned zircons. Two analyses obtained in recrys-
tallized areas, behind recrystallization fronts were of 676 ± 10 and
673 ± 10 Ma, indistinguishable from the age of a bright CL illumi-
nation rim (674 ± 10 Ma). The remaining data are related to the
black CL illumination rims, which yield ages between 672 ± 9 Ma
and 642 ± 9 Ma. Fourteen analyses of the dark rims were used to
the calculation of the age of this rim, which is of 653 ± 4 Ma, with
an MSWD of 0.92. The Th/U ratio of these zircon areas are mostly
under 0.08, which together with the textures is typical of meta-
morphic growth, although analyses with higher Th/U could be from
recrystallized 780 Ma zircons.

6. Discussion of the Cerro Bori U–Pb zircon ages

Three different zircon types were recognized in this study: (a)
typical inherited zircons; (b) typical magmatic zircons; (c) recrys-
tallization fronts and rims.

Inheritance is characterized by ages (207Pb/206Pb) between
2165 Ma and ca. 800 Ma, although an intense concentration of ages
between 1000 and 1300 Ma is evident (Fig. 8).

6.1. Typical magmatic zircons
All samples show a spread in ages for the oscillatory-zoned
areas which is in excess of that expected for a single-aged pop-
ulation. Given the intensity and grade of the post-emplacement
metamorphism, we interpret the spread in ages to be a conse-
quence of Pb-loss from the primary zircons due to metamorphism.
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ottom of the figure.

ence emplacement ages are calculated from the oldest analyses
n each sample, with the pooled data using as many analy-
es as possible without allowing the MSWD to be significantly
bove unity. The crystallization ages obtained in the 12 sam-
les vary from 802 ± 12 Ma (AC-338-A) to 767 ± 9 Ma (CH-33-A)
Table 2).

The ca. 30 m.y. age range between the oldest and the youngest
ample is considered to primarily reflect igneous activity over this
nterval. However, due caution should be expressed regarding this

nterpretation, given: (1) the method of calculation of the crystal-
ization age, particularly when only a small number of analyses are
sed to calculate the age in some cases (Table 2), and the compli-
ation caused by the presence of xenocrysts; (2) the complexity of
he zircon textures and the small width of some rims and zones,
terpretation of the domains and probable generation process are described in the

relative the 20 �m area of analysis by the SHRIMP method; and (3)
the abundant evidence for modification of the primary textures,
including: (a) blurred areas and recrystallizaton fronts: causing a
partial or total resetting in the U–Pb system and Pb loss; (b) metam-
ictization, and (c) fractures (mostly sealed fractures), which can aid
Pb diffusion and loss from areas of zircons.

Although resolution of some of these uncertainties will only be
resolved with additional, more detailed work, the independently
estimated emplacement ages for 10 of the 12 samples is in the

range of 802–780 Ma. This amount and consistency of data pro-
vides confidence that these ages are reliable. Two samples (UY-2-A
and CH-33-A) are slightly younger at 770 ± 6 Ma and 767 ± 9 Ma,
but both have a high number of analyses defining the emplacement
age being these ages consistent emplacement ages.
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.2. Recrystallization fronts and rims

Overprinting recrystallization fronts/zones and texturally dis-
inct rims are the main secondary textures observed in the
ircons of this study. These were developed during the high grade
etamorphic event, the retrograde cooling path and/or possible

ecompression melting that affected the Cerro Bori Orthogneisses.

. The recrystallization fronts are mostly concentrated close to
the boundaries of the magmatic zircons (Fig. 6), which is the
area with the greatest concentration of lattice strain, and where
recrystallization is more likely to start (Hoskin and Black, 2000).
The recrystallization fronts/zones were generated during the
prograde metamorphism and they may represent the maximum
age for the metamorphic peak. Only two ages were obtained
in recrystallization zones, resulting in similar ages of 676 ± 10
and 673 ± 10 (Supplemental Table 12—#1-1 and 14-2), which
is herein interpreted as the maximum age for the metamorphic
peak of the region.

. The most internal rims are characterized by a bright CL illumi-
nation and are depleted in U and Th (e.g. Supplemental Table
3—spot 2-1). These rims occur mantling or overgrowing the mag-
matic domains (Fig. 6A and B—domain 3). Only two analyses
were carried out on these rims due to their small size. These
yielded ages of 674 ± 11 Ma (Supplemental Table 12, spot 1-2)
and 666 ± 11 Ma (Supplemental Table 3, spot 2-1) which is in
within error of the ca. 675 Ma maximum age for the metamor-
phic peak, noted above.

. Dark CL rims (domain 4 in Fig. 6) occur mantling the bright
CL rims and are characterized by a high U-content (e.g. Fig. 4J;
Supplemental Table 3, spot 9-1). The Th/U ratio of these rims is
mostly ≤0.1; the ages obtained from the dark CL rims are vari-
able from ca. 660–630 Ma and are probably related to the partial
melting event registered in the Cerro Bori Orthogneisses.

. The outermost rim on some zircons has a light-grey to medium-

grey CL illumination, and planar or homogeneous texture, and
overgrows the dark CL rim (domain 5 in Fig. 6). The ages of the
outer rims are ca. 660–645 Ma (#3-1, 27-1 in sample AC-133-B,
Supplemental Table 1; #17-1 in sample PCH-0869, Supplemental
Table 4; #10-3 in sample COR-42, Supplemental Table 11), which
alculated age of the partial melting event presented in the box.

is compatible with the estimate of ca. 660 Ma for the partial
melting event.

The ages of the dark and the outer rims from all the samples were
plotted against U (ppm) (Fig. 7). A big variation in the U content
can be visualized, although there is not a direct relation between U
content and age. Assuming all samples record the partial melting
event, the ages of these rims were used for the calculation of the
age of this event. The four youngest ages of this group (Fig. 7, in
grey) were excluded from the calculation. Thirty four data result in
an age of 654 ± 3 Ma, with a MSWD of 1.5 and this is considered to
be the best estimate of the age of the partial melting.

The youngest zircon ages (three analyses around 600 Ma) of this
study are found in the felsic mylonite (COR-42). This sample shows
intense ductile reworking during the reactivation of the Alférez
Shear Zone, and it is inferred that the mechanical recrystallization
and intense fluid percolation associated with the reactivation of the
shear zone facilitated Pb-loss in some of the zircons of this sample.
As such, shearing is indirectly dated at ca. 600 Ma.

7. Tectonic implications

7.1. Early neoproterozoic magmatic event

The magmatic event dated in this study (ca. 802–767 Ma) was
previously thought to be of Mesoproterozoic age (ca. 1000 Ma; e.g.
Preciozzi et al., 1999). More recent studies determined ages around
760 Ma, similar to those obtained herein. However the interpreta-
tion of these ages varied widely (e.g. Bossi et al., 2001), including
very similar ages for intrusive rocks like the Rocha Granite, one
of a series of younger granites that intrudes the Cerro Olivo Com-
plex (Hartmann et al., 2002). More recently, however, Oyhantçabal
et al. (2009) published a crystallization age of ca. 776 Ma and a
metamorphic age of ca. 640 Ma for the Cerro Bori Orthogneisses.

The magmatic ages for the protoliths of the Cerro Bori

Orthogneisses at ca. 802–767 Ma are amongst the oldest magmatic
events recognized in the Early Brasiliano in southern Brazil and
Uruguay. The Early Brasiliano rocks are restricted to small areas in
the Dom Feliciano Belt. In the western domain or São Gabriel Block
(Fig. 1a) an outcropping rock association formed at ca. 750–700 Ma
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Fig. 8. Age probability density plot for all xeno

s interpreted to represent a juvenile magmatic arc (Cambaí Gneis-
ic Complex—Machado et al., 1990; Babinski et al., 1996; Chemale,
000). In the central and eastern domain of the Dom Feliciano
elt, the presence of Early Brasiliano ages is rare and restricted to
few metavolcanic rocks in the Porongos Metamorphic Complex

Porcher et al., 1999) dated at ca. 780 Ma, and mafic xenoliths (Pira-
ini Gneisses) in granitic rocks from the eastern domain, dated at
a. 780 Ma (Silva et al., 1999). These three domains (western, cen-
ral and eastern) are separated by sutures recognized on the basis
f geophysical anomalies (Fernandes et al., 1995), but the occur-
ence of the Early Brasiliano rocks in the three domains does not
ecessarily indicate a relationship between these domains.

The geodynamically related areas such as the Congo, Kalahari
nd São Francisco cratons contain rock association within the
arly Brasiliano age range. In the Coastal Terrane (Western Kaoko
elt) of the Congo craton, ages between 805 and 840 Ma were
btained from felsic orthogneisses from the Lower and the Upper
imodal Suite and were interpreted as magmatic ages of the gneis-
ic protolith (Konopásek et al., 2008). This magmatism has been
nterpreted by these authors as rift-related. Magmatism with a
imilar age can also be found in the Brasília Belt (northern and
outhern), an orogenic belt adjacent to the São Francisco craton.
ges between 790 and 760 Ma, obtained in syncollisional granites
nd metasedimentary rocks (Pimentel et al., 1999; Junges et al.,
002) were interpreted as resulting from accretion of an intrao-
eanic arc by collision with the São Francisco craton. The large
olume of mafic–ultramafic rocks from the Niquelândia and Barro
lto Complex, in Central Brazil, show as well crystallization ages of
a. 790 Ma (Ferreira-Filho et al., 2010). These rocks are interpreted
o be formed during a continental rifting event, coeval with the
orldwide rifting event of the Rodinia break-up (Pimentel et al.,
004).
In the case of Uruguay, preliminary geochemical discriminators

eveal a continental magmatic arc tectonic setting for the Cerro
ori Orthogneisses (Lenz, 2010). The presence of zircon xenocrysts
uggest the presence of an earlier sialic crust with Paleoprotero-
zircon data from the Cerro Bori Orthogneisses.

zoic ages (most probably from the Rio de La Plata association of
rocks), and Mesoproterozoic ages, although no exposures of such
rocks have been recognized so far in this area. The TDM model ages
between 2.4 and 1.2 Ga also reinforce this interpretation (Preciozzi
et al., 2001; Gross et al., 2009; Lenz, 2010).

7.2. High grade metamorphic event during the West Gondwana
amalgamation

The high grade metamorphic event registered in the Cerro Bori
Orthogneisses and the Chafalote Paragneisses (Cerro Olivo Com-
plex) is attributed to crustal thickening, related to the collision of
the margin of Rio de la Plata craton with the Congo and Kalahari
cratons (Gross et al., 2009).

The maximum age recorded for the high grade metamorphic
event in the Cerro Olivo Complex is between ca. 673 and 666 Ma,
and partial melting at 654 ± 3 Ma. The collisional age between
the Rio de La Plata and Congo cratons is therefore inferred to
be between 666 and 654 Ma. Previously published ages for the
Cerro Bori Orthogneisses reported ages of 641 ± 17 Ma (U–Pb zir-
con) for the high grade metamorphism (Oyhantçabal et al. (2009),
and between 650 and 600 Ma (Sm–Nd in garnet) reported for the
Chafalote Paragneisses (Gross, 2004). In the Brazilian segment of
the Dom Feliciano Belt, the high grade metamorphic rocks equiv-
alent to the Cerro Olivo Complex, named the Várzea do Capivarita
Metamorphic Suite, record ages between 652 ± 26 and 606 ± 2.4
(Sm–Nd in garnet) (Gross et al., 2006).

On the other hand, the Coastal Terrane of the Congo craton
(western segment of the Kaoko Belt), which is the African equiv-
alent of the Dom Feliciano Belt (Kröner et al., 2004; Goscombe
and Gray, 2007; Gross et al., 2009), record the oldest metamorphic

ages of the Kaoko Belt, between 655 and 645 Ma (Goscombe and
Gray, 2007; Konopásek et al., 2008). The age of 655 ± 5 Ma which
was obtained in a zircon rim from a felsic orthogneisses of the
Upper Bimodal Suite has cores with ages between 810 and 840 Ma
(Konopásek et al., 2008). These ages are very similar to the core-
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im zircon ages presented in this work, confirming the similarity
etween the Coastal Terrane and the Brazilian and Uruguayan seg-
ents of the Dom Feliciano Belt. A similar high grade metamorphic

vent is also recorded in the Brasilia Belt, where ages of 650–630 Ma
re interpreted as the age of the continental collision between the
ão Francisco and Congo cratons (Pimentel et al., 2000; Piuzana
t al., 2003).

The significantly younger ages obtained in the Damara belt
∼570–530 Ma) implies that this belt is formed by a later conver-
ence between Congo and Kalahari (e.g. De Waele et al., 2008). This
ould also provide an adequate explanation for the reactivation of

he left-lateral movement of the mega shear zones in South Amer-
ca (e.g. NE-trending strike slip Sierra Ballena shear zone) produced
uring the final amalgamation of the West Gondwana Geodynamic
ystem.

. Conclusion

The U/Pb zircon geochronological study of the Cerro Bori reveals
complex evolution history. Two major events have been identi-
ed: an older magmatic event and a younger metamorphic event.

1) The magmatic event is well preserved in eleven of the stud-
ied orthogneisses, in zircon domains with oscillatory zoning
and Th/U ratio between 0.2 and 0.6. One sample preserve only
xenocrysts and metamorphic rims, but geochemical similarities
relates it to the here studied group of rocks.

2) Evidence of modification of this oscillatory zoning in zircons
is observed in CL imaging, and includes: overprinting blurred
areas, metamicization and recrystallization fronts (transgres-
sive recrystallization). These modifications contributed to the
dispersion in ages found in the magmatic domains in all the
studied samples.

3) Calculated emplacement ages of the eleven orthogneisses
samples range from 802 ± 12 Ma (AC-338-A) to 767 ± 9 Ma (CH-
33-A).

4) Recrystallization fronts and bright CL illumination rims are
related to prograde metamorphism and yield the maximum age
of the peak of the high grade metamorphism, between 676 ± 10
and 666 ± 11 Ma.

5) The dark CL illumination rims show evidence of dissolution re-
precipitation, intense enrichment in U and low Th/U ratio, and
are interpreted as related to partial melting which formed leu-
cosomes. The age of these rims is 654 ± 3 Ma, and younger ages
to ca. 630 Ma from these rims reflect Pb-loss.

6) The magmatic event forming the precursors to the Cerro Bori
Orthogneisses at ca. 802–767 Ma is one of the few occurrences
of early Brasiliano Orogenic Cycle age in southern Brazil-
Uruguay.

7) The high grade metamorphic event occurs in response to crustal
thickening related to the collision between the Rio de la Plata
and Congo cratons with a maximum metamorphic peak age of
ca. 670 Ma and partial melting event at 654 Ma. Kalahari.

8) Xenocryst ages reveal the existence of an ancient crust in the
time of the magmatism with concentration of ages at ca. 1000
and 1300 Ma.
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yhantçabal, P., Siegesmund, S., Wemmer, K., Frei, R., Layer, P., 2009. Geochronolog-
ical constraints on the evolution of the southern Dom Feliciano Belt (Uruguay).
Journal of the Geological Society of London 166, 1–11.
arch 185 (2011) 149–163 163
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