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SUMMARY

Soluble dietary fibers promote metabolic benefits on
body weight and glucose control, but underlying
mechanisms are poorly understood. Recent evi-
dence indicates that intestinal gluconeogenesis
(IGN) has beneficial effects on glucose and energy
homeostasis. Here, we show that the short-chain
fatty acids (SCFAs) propionate and butyrate, which
are generated by fermentation of soluble fiber by
the gut microbiota, activate IGN via complementary
mechanisms. Butyrate activates IGN gene expres-
sion through a cAMP-dependent mechanism, while
propionate, itself a substrate of IGN, activates IGN
gene expression via a gut-brain neural circuit
involving the fatty acid receptor FFAR3. The meta-
bolic benefits on body weight and glucose control
induced by SCFAs or dietary fiber in normal mice
are absent in mice deficient for IGN, despite similar
modifications in gut microbiota composition. Thus,
the regulation of IGN is necessary for the metabolic
benefits associated with SCFAs and soluble fiber.

INTRODUCTION

Extrinsic factors such as a sedentary lifestyle and excessive

caloric intake contribute to the increasing incidence of obesity

and type 2 diabetes. It is well-established that diet quality can

be improved by reducing the intake of fat and simple sugars

while increasing the intake of dietary fiber. Dietary fiber is the

indigestible portion of plant foods and has two main compo-

nents: insoluble fiber (principally cellulose and lignin) and soluble

fiber such as galacto-oligosaccharides and fructo-oligosaccha-

rides (FOS), which are fermented by the gut microbiota into

short-chain fatty acids (SCFAs) acetate, propionate, and buty-

rate (Flint et al., 2012). Fiber-enriched diets improve insulin sensi-
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tivity and glucose tolerance in lean (Robertson et al., 2003, 2005)

and obese diabetic subjects (Mendeloff, 1977; Ray et al., 1983).

The beneficial effects of soluble fiber are often considered

to be mediated by SCFAs through regulation of whole-body

energy homeostasis (Layden et al., 2013). SCFAs are also

signaling molecules, acting not only as important modulators

of the epigenome through altering histone acetylation but also

as endogenous ligands for the G-protein-coupled receptors

FFAR3 and FFAR2 (Brown et al., 2003). Signaling through these

receptors mediates numerous effects such as synthesis of

glucagon-like peptide 1 in enteroendocrine cells (Tolhurst

et al., 2012), modulation of adiposity, and changes in gut transit

time (Samuel et al., 2008). In some aspects, the benefits of

soluble fiber on glucose and energy homeostasis appear

paradoxical. First, butyrate is a key energy substrate for both

colonocytes and enterocytes (Donohoe et al., 2011). How could

an increase in energy harvest be reconciled with a benefit on

energy homeostasis? Recent studies have described a role of

butyrate in enhancing energy expenditure (Gao et al., 2009; Lin

et al., 2012), but mechanistic insights into how this is achieved

are less understood. Second, propionate is classically described

as an efficient hepatic gluconeogenic substrate (Anderson and

Bridges, 1984). An increase in hepatic glucose production is

recognized as a causal factor of insulin resistance (Clore et al.,

2000; Magnusson et al., 1992), leading to type 2 diabetes, and

thus it is unclear how this could be reconciled with a metabolic

benefit of soluble fibers.

It is noteworthy that most studies featuring propionate as a

gluconeogenic substrate were carried out before the intestine

was described as a gluconeogenic organ (Croset et al., 2001;

Mithieux et al., 2004a; Rajas et al., 1999). Studies from our lab

suggest that intestinal gluconeogenesis (IGN) induces beneficial

effects on glucose and energy homeostasis.We have shown that

glucose released by IGN is detected by a portal vein glucose

sensor that transmits its signal to the brain by the peripheral

nervous system to promote beneficial effects on food intake

and glucose metabolism (Delaere et al., 2012). This chain of

events is of particular relevance with protein-enriched diets
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Figure 1. Effects of Dietary SCFAs and FOS on Body Weight and Glucose Homeostasis in Rats

(A–G) Food intake (A) and body weight gain (B) of rats fed standard or butyrate-, propionate- or FOS-enriched diet. Glucose (C) and insulin (F) tolerance tests were

performed respectively 11 and 13 days after switching to the indicated diets. Blood glucose levels and total glucose area under the curve (AUC) (D and G) are

shown. (E) Insulin plasma levels were determined in samples taken during the glucose tolerance test. $, p < 0.05 standard versus all groups; x, p < 0.05 standard

versus butyrate and FOS; *p < 0.05 versus standard; **p < 0.01 versus standard (ANOVA followed by Dunnett’s post hoc test). Data aremean ±SEM, n = 6 rats per

group. St, standard; Pr, propionate; Bu, butyrate; FOS, fructo-oligosaccharides. See also Figure S1.
(Duraffourd et al., 2012; Mithieux et al., 2005; Pillot et al., 2009)

and after gastric bypass surgery (Troy et al., 2008). We hypo-

thesized that propionate is a substrate of IGN because its

downstream metabolites enter the gluconeogenic pathway via

the citric acid cycle, which is the main route of glucose formation

in the small intestine (Croset et al., 2001; Mithieux et al., 2004b),

and because propionate is produced in the gut lumen.

Renewed interest in SCFAs has emerged because of the

recently identified association between gut microbiota composi-

tion and obesity and associated pathologies (Flint et al., 2012).

Microbiota from obese individuals might have a higher capacity

for energy harvest than those from lean individuals (Schwiertz

et al., 2010; Turnbaugh et al., 2009a), and several studies have

shown a major influence of high-fat diets on the composition of

gut microbiota in rodents (Hildebrandt et al., 2009; Parks et al.,

2013; Turnbaugh et al., 2008, 2009b). Furthermore, a recent

study in obese humans indicates that specific microbiota com-

positions may be associated with impaired glucose control

(Karlsson et al., 2013).

Here we combined gene expression and metabolic tracer

studies to evaluate whether soluble fiber and/or SCFAs could
induce intestinal glucose production, either by regulating gluco-

neogenic gene expression, or, for propionate, by serving as a

substrate. We also tested whether IGN might account for the

benefits of soluble fiber, and specifically whether it had a causal

role in the protection against diet-induced deregulation of

glucose homeostasis. Finally, using mice with an intestinal-spe-

cific knockout of the catalytic subunit (G6pc) of glucose-6-phos-

phatase (G6Pase, the essential enzyme of gluconeogenesis), we

evaluated the respective roles of the host IGN function and the

gut microbiota composition in the metabolic benefits conferred

by the presence of soluble fiber in the diet.

RESULTS

Dietary SCFAs and FOS Increase Glucose Tolerance and
Insulin Sensitivity in Rats
We first confirmed the beneficial effects of SCFAs (propionate

and butyrate) and FOS on body weight gain in rats. Body weight

of rats on a standard diet increased by 30 ± 2.5 g over 10 days;

despite a similar food intake, SCFA- and FOS-fed rats showed

significantly less weight gain over this time period (Figures 1A
Cell 156, 84–96, January 16, 2014 ª2014 Elsevier Inc. 85
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Figure 2. Effect of Dietary SCFAs and FOS on IGN in Rats

(A) Endogenous glucose production (EGP) and intestinal glucose fluxes were determined in rats fed a standard, butyrate-, propionate-, or FOS-enriched diet for

2 weeks.

(B) Determination of intestinal incorporation of 14C-labeled propionate into glucose in 24-hr-fasted rats. aDifferent from value in artery (p < 0.05, Student’s two-

tailed test for paired values). SA, specific activity.

(C–H) G6Pase activity and Pck1 andMut expression were evaluated in the jejunum (C to E) and colon (F to H) of rats fed the indicated diets. *p < 0.05; **p < 0.01;

***p < 0.001 versus standard (ANOVA followed by Dunnett’s post hoc test).

Data are mean ± SEM of n = 6 rats per group. St, standard; Pr, propionate; Bu, butyrate; FOS, fructo-oligosaccharides; N.D., not detected.
and 1B). Importantly, SCFAs and FOS did not influence fat

absorption by the gastrointestinal tract (data not shown). To

confirm that SCFAs and FOS also improve glucose homeostasis,

we performed intraperitoneal glucose (GTT) and insulin (ITT)

tolerance tests. The SCFA- and FOS-fed rats exhibited improved

glucose tolerance compared with rats fed a standard diet (Fig-

ures 1C and 1D), with no associated increase of insulin secretion

(Figure 1E). In addition, basal glucose levels after a 16 hr fast

were about 15% lower in butyrate- and FOS-fed rats compared

with rats fed a standard diet (Figure 1C, time 0). Similarly, insulin

tolerance was significantly enhanced in the SCFA- and FOS-fed

rats (Figures 1F and 1G). Furthermore, hepatic G6Pase activity

was lower in FOS-fed rats compared with rats on a standard

diet (Figure S1 available online), which was in line with the
86 Cell 156, 84–96, January 16, 2014 ª2014 Elsevier Inc.
improvement of glucose control, as previously observed after

IGN induction by gastric bypass surgery (Troy et al., 2008).

Dietary SCFAs and FOS Induce Intestinal Glucose
Production and IGN Gene Expression
We next quantified intestinal glucose production (IGP) in rats fed

propionate, butyrate or FOS for 2 weeks. In all three groups,

[3-3H] glucose specific activity was lower in the portal vein

than in the artery (Figure 2A). This indicated that newly synthe-

sized, unlabeled glucose had been released by the intestine.

Moreover, plasma glucose concentrations were slightly higher

in the portal vein than in the artery (Figure 2A), indicating that

IGP was able to counterbalance intestinal glucose utilization.

Of note, propionate had the strongest capacity to induce IGP,
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Figure 3. Butyrate Directly Activates IGN

Genes, Whereas Propionate Action Is

Dependent on the Integrity of Periportal

Afferents

(A and B) Caco-2 cells were cultured at confluence

for 3 weeks and mRNA levels of G6PC, PCK1 and

MUT were evaluated using quantitative RT-PCR

(A) and intracellular cAMP was measured (B). Kr,

Krebs-Ringer; Pr, propionate; Bu, butyrate; PT,

pertussis toxin; U, U73122; TA, tiglic acid; MA,

1-methylcyclopropanecarboxylic acid; For, for-

skolin. Values with different letters differ signifi-

cantly (p < 0.05, ANOVA followed by Tukey’s post

hoc test). n = 9 wells per experimental group.

(C) Rats were fed standard or butyrate-enriched

diet for two weeks and cAMP content was

measured in the jejunum.

(D and E) G6Pase activity and PCK1 protein

expression were analyzed in the jejunum (D) and

colon (E) of capsaicin-treated animals fed the

indicated diets. **p < 0.01; ***p < 0.001 versus

standard (ANOVA followed by Dunnett’s post hoc

test). Data are mean ± SEM, n = 6 rats per group.

St, standard; Pr, propionate; Bu, butyrate; FOS,

fructo-oligosaccharides; N.D., not detected. See

also Figure S2.
accounting for 23% of total endogenous glucose production

(Figure 2A). We therefore investigated whether [14C]-propionate

carbons could be incorporated into newly synthesized glucose.

[14C]-glucose specific activity after a 24 hr fast was significantly

higher in portal venous blood than in arterial blood (Figure 2B),

suggesting that the small intestine is able to efficiently convert

propionate into glucose.

We then studied the effect of SCFA- and FOS-enriched diets

on G6Pase activity and IGN gene expression. Rats fed SCFAs

or FOS for 2 weeks had about 2-fold higher G6Pase activity in

the jejunum compared with rats fed a standard diet (Figure 2C);

similar increases in both mRNA and protein levels of phospho-

enolpyruvate carboxykinase (cytosolic form, Pck1) in response

to SCFAs and FOSwere also observed (Figure 2D). Interestingly,

only propionate induced the expression of methylmalonyl-coA

mutase (Mut), the key enzyme for its incorporation into glucose

(Figure 2E). In rats fed SCFAs or FOS for 2 weeks, there was a

dramatic induction of G6Pase activity in the colon (where the mi-

crobiota produces SCFAs in greatest concentrations), resulting

in an activity similar to that observed in the jejunum of rats fed

a standard diet; G6Pase activity was not detected in the colon
Cell 156, 84–9
of rats fed a standard diet (Figure 2F).

The pattern of induction of Pck1 and

Mut expression in the colon in response

to SCFAs and FOS was similar to

that observed in the jejunum (Figures 2G

and H).

Butyrate but Not Propionate Is Able
to Directly Induce IGN Genes
We next investigated if SCFAs could

directly induce IGN genes using Caco-2
cells, which have a phenotype that resembles the enterocytes

of the small intestine (Hidalgo et al., 1989). Expression of

G6PC, PCK1, and MUT in Caco-2 cells was not affected by

24 hr incubation with propionate or specific agonists of FFAR2

(tiglic acid [TA]) or FFAR3 (1-methylcyclopropanecarboxylic

acid [MA]) (Schmidt et al., 2011) (Figure 3A). However, expres-

sion of G6PC and PCK1 was increased 2- to 3-fold in cells

incubated with butyrate (Figure 3A). Neither pertussis toxin nor

U73122 (inhibitors of Gi- and Gq-mediated signaling, respec-

tively) was able to counterbalance the effect of butyrate (Fig-

ure 3A, dashed bars), indicating that induction of G6PC and

PCK1 expression by butyrate was not dependent on any Gi-

or Gq-mediated mechanism. Intracellular cAMP content was

increased 3-fold in butyrate-treated cells compared with control

cells, while no cAMP increase was observed in cells treated with

propionate, TA, or MA (Figure 3B). Interestingly, a similar cAMP

increase was observed in the jejunum of rats fed a butyrate-

enriched diet (Figure 3C). These data suggest that butyrate-

mediated induction of G6PC and PCK1 gene expression could

be mediated by cAMP, a known activator of these genes (Gaut-

ier-Stein et al., 2006; Mutel et al., 2011).
6, January 16, 2014 ª2014 Elsevier Inc. 87



Propionate Induction of IGN Depends on Gut-Brain
Neural Communication
Since only butyrate can directly activate IGN genes in vitro, we

hypothesized that propionate-mediated induction of IGN could

depend upon a gut-brain communication axis. To question the

role of the portal neural afferents in the induction of IGN gene

expression by propionate, we performed periportal nervous

deafferentiation with capsaicin in rats before feeding with

SCFAs- and FOS-enriched diets for 2 weeks. G6Pase activity

and PCK1 protein expression were not increased in the intes-

tine of capsaicin-treated rats fed propionate compared with

the expression in rats fed a standard diet (Figures 3D and 3E).

By contrast, dietary butyrate and FOS could still increase

G6Pase activity and PCK1 expression in capsaicin-treated

rats (Figures 3D and 3E). However, these responses were

clearly not associated with improvements in glucose homeosta-

sis since the beneficial effects of dietary SCFAs and FOS on

body weight gain and improvement in glucose and insulin toler-

ance were abolished by denervation (Figures S2A–S2E). These

results are consistent with the crucial role of the periportal

nervous system in transducing the beneficial effects of IGN

and portal glucose sensing (Mithieux et al., 2005; Troy et al.,

2008). Moreover, no inhibition of G6Pase activity was observed

in the liver of capsaicin-treated rats fed SCFAs or FOS; in fact,

a slight increase was observed in propionate-fed animals

(Figure S2F).

Since the propionate receptor FFAR3 is expressed in the

peripheral nervous system (Kimura et al., 2011; Nøhr et al.,

2013), we used immunofluorescence studies to examine the

presence of FFAR3 in the nerve fibers of the portal vein. As

shown in Figure 4A, the neuronal marker PGP9.5 (left) and

FFAR3 (right) were expressed in the rat portal vein wall and found

in close proximity (bottom, in yellow).

Next, we tested whether propionate-induced IGN activation

depended on FFAR3 signaling in vivo. When propionate was

infused in the portal vein at a rate mimicking that of a FOS-

enriched meal, G6Pase activity showed a 2.5-fold increase in

the jejunum when compared to the activity level after a saline

infusion (Figure 4B). In contrast, the ketone body b-hydroxybuty-

rate (b-HB), an antagonist of FFAR3 (Kimura et al., 2011),

induced a slight decrease in G6Pase activity when infused alone

and reversed the propionate-mediated induction when infused

together with propionate (Figure 4B).

Lastly, we evaluated the impact of propionate feeding on

the regions of the central nervous system implicated in signaling

from the portal area: the dorsal vagal complex (DVC), which

receives inputs from the vagal pathway, the C1 segment of

the spinal cord and the parabrachial nucleus (PBN), which

receive inputs from the spinal pathway, and the hypothalamus,

which receives inputs from both the PBN and the DVC

(Berthoud, 2004). Dietary propionate caused a 2- to 3-fold induc-

tion of c-Fos (a well-recognized marker of neuronal activation;

Sagar et al., 1988) in all areas of the DVC (Figures 4C–4E), as

well as in the spinal C1 segment and the PBN (Figures S3A–

S3D). Interestingly, such activation was absent in capsaicin-

treated rats (Figures 4D and 4F). A similar pattern of c-Fos

activation (and of denervation effect) occurred in the main hypo-

thalamic regions, which receive inputs from both the PBN and
88 Cell 156, 84–96, January 16, 2014 ª2014 Elsevier Inc.
the DVC, namely the paraventricular nucleus (PVN), the lateral

hypothalamus (LH) and the arcuate nucleus (ARC) (Figures

S3E–S3H).

Taken together, these data suggest that FFAR3 is a major

actor in the gut-brain communication mechanism leading to

propionate-mediated induction of IGN.

IGN Plays a Causal Role in SCFA- and FOS-Induced
Metabolic Benefits under Both Normal and Insulin-
Resistant Conditions
To determine whether IGN has a causal role in SCFA- and FOS-

inducedmetabolic improvements, we usedmice deficient in IGN

(i.e., with specific disruption of the G6Pase catalytic subunit in

the intestine, I-G6pc�/� mice, Penhoat et al., 2011). When fed

SCFA- or FOS-enriched diets, wild-type (WT) mice exhibited

the same metabolic benefits as those observed in rats, i.e.,

enhanced glucose and insulin tolerance (Figure 5, left). In

contrast, these metabolic benefits were not observed in

I-G6pc�/� mice (Figure 5, right), and glucose tolerance was

even slightly impaired in I-G6pc�/� mice fed a propionate-

enriched diet (Figures 5B and 5D). We observed no differences

in body weight gain on standard diet (data not shown) or food

intake between I-G6pc�/� and WT mice (Figure S4A). Further-

more, when compared to WT mice, body weight gain in

I-G6pc�/� mice was significantly higher after switching to

SCFA- and FOS-enriched diets (Figure S4B).

To elucidate the role of IGN in the well-known FOS-mediated

resistance to diet-induced obesity and deregulation of glucose

control, we fedWT and I-G6pc�/�mice a high-fat/high-sucrose

(HF-HS) diet (composition available in Table S1) with or without

FOS. In WT mice, addition of FOS to a HF-HS diet abolished

the development of diet-induced obesity without an effect on

food intake (Figures 6A and 6B), dramatically improved glucose

and insulin tolerance (Figures 6C–6F), and significantly

decreased fat mass in the subcutaneous, epididymal and

visceral adipose tissues (Figures S5A–S5C). In contrast, in

I-G6pc�/� mice fed a HF-HS diet, FOS supplementation

resulted in increased body weight (Figure 6A), no change in

glucose tolerance (Figures 6C and 6D), decreased insulin toler-

ance (Figures 6E and 6F), and no change in fat mass in the

subcutaneous and visceral adipose tissues (Figures S5A–S5C).

Thus, the FOS-mediated resistance to diet-induced obesity

and improvement of glucose control was absent in I-G6pc�/�
mice. In fact, these mice experienced increased body weight

gain and worsened insulin tolerance in response to FOS

supplementation.

We used two-way ANOVA to evaluate the relative effects of

genotype and diet on the total observed variability between

WT and I-G6pc�/� mice on a HF-HS diet with or without

FOS. Regarding glucose tolerance and insulin sensitivity, there

was a strong interaction between diet and genotype (p =

0.0261 for GTT; p = 0.0004 for ITT), with genotype accounting

for almost 50% of the total variance. This strong effect of geno-

type was also found for adiposity (29.43% of variance, p =

0.0017 in visceral adipose tissue), suggesting that IGN ac-

counts for most of the metabolic improvements observed in

FOS feeding. Moreover, intestinal G6Pase activity was induced

in FOS-fed WT mice, whereas only residual nonspecific activity
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Figure 4. Propionate Initiates a Gut-Brain Circuit Dependent on FFAR3 in the Portal Nerves
(A) Neuronal marker PGP9.5 (red, left) colocalized with FFAR3 (green, right) in the walls of the portal vein of rats. Lower, merged image. Scale bar, 50 mm. L, vein

lumen.

(B) G6Pase activity in the jejunum of rats after a 6 hr-perfusion of saline (Sa), propionate (Pr) or b-hydroxybutyrate (b-HB). Values with different letters differ

significantly (p < 0.05, one-way ANOVA followed by Tukey’s post hoc test). Data are mean ± SEM, n = 5 rats per group.

(C, E and F) c-Fos immunoreactive cells in the DVC of rats fed standard (C) or propionate-enriched diet, after treatment of the portal area with vehicle (E) or

capsaicin (F).

(D) Quantification of c-Fos neurons in all areas of the DVC.

St, standard, Pr, propionate, Pr+C, propionate + capsaicin. AP, area postrema; NTS, nucleus of the solitary tract; dmnX, dorsal motor nucleus of the vagus. Scale

bar, 200 mm. Data are mean ± SEM per hemisphere, on 4 to 6 sections per area, n = 3 rats per group. *p < 0.05 versus all groups (Kruskal-Wallis test followed by

Dunn’s post hoc test). See also Figure S3.
was observed in I-G6pc�/� mice (Figure 6G). We also

observed a weak decrease in hepatic G6Pase activity (p =

0.07) accompanied by dramatic increases in liver glucose-6-

phosphate (G6P) and glycogen content in FOS-fed WT mice

(Figures S5D–S5F), suggesting a suppression of hepatic

glucose release. By contrast, FOS supplementation did not

induce a change in the parameters of hepatic glucose release

in I-G6pc�/� mice (Figures S5D–S5F). Again, there was a

strong interaction between diet and genotype accounting for

FOS feeding-induced changes in these parameters (e.g.,

26.94% of total variance, p < 0.0001 for liver G6P content).

Taken together, these data strongly suggest that IGN plays a
mandatory role in the beneficial metabolic effects of SCFA-

and FOS-enriched diets.

FOS Feeding Induces a Genotype-Independent Shift in
the Microbiota Composition
Diet is a major factor that drives gut microbiota composition

and its fermentative capacity. To investigate how FOS supple-

mentation of HF-HS diet affected the colonic microbial ecology

in WT and I-G6pc�/� mice, we performed 454-based pyrose-

quencing. By estimating b-diversity between samples with pair-

wise unweighted Unifrac distance (Lozupone and Knight, 2005)

and performing principal coordinates analysis, we found that
Cell 156, 84–96, January 16, 2014 ª2014 Elsevier Inc. 89
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Figure 5. SCFA- and FOS-Mediated Meta-

bolic Improvements Are Absent in

I-G6pc�/� Mice

(A–D) Glucose tolerance tests were performed in

16-hr-fasted wild-type (A) or I-G6pc�/� (B) mice

after 11 days on standard or butyrate-, propionate-

or FOS-enriched diet. Blood glucose levels and

total glucose area under the curve (AUC) (C and D)

are shown.

(E–H) Insulin tolerance tests were performed on

6-hr-fasted wild-type (E) or I-G6pc�/� (F) mice

after 13 days of indicated diet. Blood glucose

levels and total glucose AUC (G and H) are shown.

$, p < 0.05 standard versus all groups; *p < 0.05;

**p < 0.01 versus standard (ANOVA followed by

Dunnett’s post hoc test). Data are mean ± SEM,

n = 6 mice per group.

St, standard; Pr, propionate; Bu, butyrate; FOS,

fructo-oligosaccharides. See also Figure S4.
diet had a profound effect on the ecology in both genotypes (Fig-

ure 7A). The changes associated with diet (PC1, 41%) were pre-

ponderant compared to those associated with genotype (PC2,

11%). Firmicutes and Bacteroidetes were the most abundant

phyla, representing more than 80% of the reads (Figure 7B).

Diet had a major effect on the relative abundance of the main

phyla in the colonic microbiota and FOS feeding was associated

with a significant decrease in Firmicutes and increase in Bacter-

oidetes in both WT and I-G6pc�/� mice (Figures 7C and 7D).

Actinobacteria abundance was significantly increased by FOS
90 Cell 156, 84–96, January 16, 2014 ª2014 Elsevier Inc.
only in I-G6pc�/� mice (Figure 7E), with

a significant interaction between diet

and genotype (two-way ANOVA, p =

0.0155).

To assess the metabolic conse-

quences of FOS incorporation in the

diet, we measured total SCFA content in

portal and peripheral blood from WT and

I-G6pc�/� mice. As expected, total

SCFA content was higher in portal blood

after FOS supplementation, with diet

accounting for almost 60% of the vari-

ance (p = 0.001, two-way ANOVA) and

no influence of the mouse genotype (p =

0.66, two-way ANOVA) (Figure 7F). Buty-

rate proportions did not vary in any of the

groups (Figure 7G). However, the contri-

bution of propionate to the total content

of SCFAs in portal blood increased with

FOS supplementation in I-G6pc�/�
mice but not in WT mice (Figure 7G); this

result is consistent with the assumption

that propionate is used as a substrate of

gluconeogenesis in the gut of WT but

not I-G6pc�/� mice. Notably, the abun-

dance of Bacteroidetes positively corre-

lated with the changes in portal blood

propionate (Figure 7H, R2 = 0.53, p =
0.0002). No significant variation of SCFA content was observed

in peripheral blood (Figure S6), which is consistent with the fact

that most SCFAs are metabolized by the liver (Cummings et al.,

1987).

DISCUSSION

Here we examined the metabolic activities of SCFAs and FOS,

focusing particularly on IGN, a regulator of glucose and energy

homeostasis (Mithieux et al., 2005; Troy et al., 2008). We found
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Figure 6. Effect of FOS Enrichment on Body

Weight and Glucose Homeostasis in WT

and I-G6pc�/� Mice Fed a HF-HS Diet

(A) Evolution of body weight gain in mice fed high-

fat/high-sucrose (HF-HS) or FOS-supplemented

(HF-HS + FOS) diet.

(B) Mean food intake over 2 weeks.

(C–F) Glucose (C) and insulin (E) tolerance tests

were performed 16 and 18 days after switching to

indicated diets, respectively. Total glucose areas

under the curve (AUC) (D and F) were calculated.

(G) Effect of FOS enrichment on intestinal G6Pase

activity in wild-type and I-G6pc�/� mice fed a

high-fat/high-sucrose diet. Immunoblotting was

performed to confirm the deletion.

*p < 0.05 (when not indicated versus HF-HS);

***p < 0.001, two-way ANOVA followed by Bon-

ferroni’s post hoc test. Data are mean ± SEM of

n = 5 to 6mice per group. WT, wild-typemice. See

also Figure S5.
that SCFAs produced from microbial fermentation of polysac-

charides improve various features of energy metabolism both

in insulin-sensitive and insensitive states through stimulation of

IGN. A major finding is that propionate can directly initiate a

gut-brain neural circuit that has beneficial effects on host

physiology.

SCFAs have been described as key signaling molecules, with

activation of both FFAR2 and FFAR3 (preferentially activated by

propionate) leading to modulation of host adiposity (Samuel

et al., 2008) or GLP-1 secretion (Tolhurst et al., 2012). Here, we

show that propionate and butyrate activate IGN genes using

different and complementary processes. Our data suggest that

butyrate directly activates IGN gene expression in enterocytes
Cell 156, 84–96
via an increase in cAMP and not via

FFAR2 (Figures 3A–3C). An FFAR2-inde-

pendent butyrate-initiated intracellular

increase of cAMP has been described

earlier in enterocytes and shown to be

driven by the increase in ATP that accom-

panies utilization of butyrate as a key

energy substrate (Wang et al., 2012). In

contrast, we show that propionate acts

as an agonist of FFAR3 in the periportal

afferent neural system to induce IGN via

a gut-brain neural circuit. The brain

targets of the portal propionate signal

include the DVC, which receive inputs

from the ventral vagus nerve, and the

C1 segment of the spinal cord and

the PBN, which transmit inputs from the

dorsal sympathetic ganglions and the

spinal pathway. Such a double neural

transmission has been observed for

portal signals initiated by protein-digests

via the m-opioid receptors (Duraffourd

et al., 2012). Thus, our data highlight the

key role of the spinal pathway in nutrient
signaling to the brain in addition to the vagal pathway, which is

often considered as preponderant (Mithieux, 2013).

Beneficial effects of dietary fiber and SCFAs have been

described in several studies, all showing resistance to diet-

induced obesity and increased energy expenditure (Cani et al.,

2007; Gao et al., 2009; Lin et al., 2012; Neyrinck et al., 2012). Pro-

pionate has long been described as a hepatic gluconeogenic

substrate (Anderson and Bridges, 1984). However, here we

show that propionate is converted into glucose by IGN (i.e., in

the intestine before it reaches the liver). This promotes metabolic

benefits in energy homeostasis, illustrated here through

decreased adiposity and body weight despite comparable

food intake, and better glucose control, including a decrease
, January 16, 2014 ª2014 Elsevier Inc. 91



A B

C D E

F G

H

Figure 7. Effect of FOS-Enrichment on Colonic Microbiota Composition and Portal SCFAs in WT and I-G6pc�/� Mice Fed a HF-HS Diet

(A) Principal coordinates analysis (PCoA) plot of unweighted UniFrac distances. Each dot represents a colonic community. The percentage of variation explained

by each principal coordinate is shown in parentheses.

(B) Abundance plot of the most important phyla in each mouse.

(C–E) Relative abundance of phyla in the colonic microbiota.

(F and G). Total SCFA content in portal blood of mice fed regular high-fat/high-sucrose (HF-HS) or FOS-supplemented (HF-HS + FOS) diet (F) and SCFA

proportions (G) in the portal blood of aforementioned mice.

(H) Bacteroidetes abundance positively correlates with the plasma propionate measured in the portal blood circulation.

*p < 0.05; **p < 0.01; # indicates statistical significance in the interaction between diet and mouse genotype; values with different letters differ significantly, two-

way ANOVA followed by Bonferroni’s post hoc test. Data are mean ± SEM of n = 5 to 6 mice per group. WT: Wild-type mice. See also Figure S6.
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of hepatic glucose production, as described earlier (Mithieux

et al., 2005, Troy et al., 2008). We directly confirmed the role of

IGN in promoting the metabolic benefits of propionate by using

I-G6pc�/� mice (i.e., mice that cannot convert propionate into

glucose in the intestine), and show that metabolism is even

slightly impaired by FOS feeding in these mice. We also show

that FOS addition to a HF-HS diet increases the proportion of

propionate in the total SCFA content in the portal blood of

I-G6pc�/� mice. We thus propose that increased conversion

of propionate into glucose by the liver contributes to the wors-

ening of glucose tolerance in I-G6pc�/� mice.

Dietary fibers have been linked to marked alterations in the gut

microbiota composition (Neyrinck et al., 2012). In addition,

recent studies have shown a strong interaction between gut

microbiota and host metabolism (El Aidy et al., 2013a, 2013b),

including modulation of intestinal G6pc expression (Larsson

et al., 2012, data available at http://microbiota.wall.gu.se).

Here we show that the abundance of the two major phyla in

the colonic microbiota is dramatically altered by FOS supple-

mentation, regardless of the genetic background. FOS feeding

increases the abundance of Bacteroidetes while decreasing

the abundance of Firmicutes. Interestingly, the elevated levels

of Bacteroidetes observed after FOS feeding strongly correlate

with the increased levels of propionate in the plasma, confirming

previous observations (Bindels et al., 2012). Although compara-

ble changes in microbiota composition have been previously

associated with beneficial effects for the host (Bindels et al.,

2012; Roberfroid et al., 2010; Schwiertz et al., 2010; Turnbaugh

et al., 2006), our data show that these changes are not sufficient

to induce improvements in glucose and energy homeostasis in

the absence of IGN. We also show that FOS feeding strongly in-

creases the abundance of Actinobacteria, but only in I-G6pc�/�
mice in which the beneficial effects of SCFAs or FOS are not

observed. To date, we have no explanation for the link between

FOS feeding and Actinobacteria levels, but as this association

was not observed in WT mice, it is unlikely to have a role in the

benefits linked to FOS feeding.

In conclusion, we report a mechanism linking microbial degra-

dation of dietary fiber into SCFAs and host nutrient sensing

through induction of IGN. We show that IGN has a causal role

in the metabolic benefits that have long been ascribed to fiber-

enriched diets. This reveals a key mechanistic rationale by which

SCFAs, and especially propionate, may positively influence host

metabolism. Since both the beneficial effects of dietary fiber on

glucose control (Mendeloff, 1977; Ray et al., 1983; Robertson

et al., 2003, 2005) and IGN (Battezzati et al., 2004; Hayes

et al., 2011; Mithieux, 2012) are known to be present in humans,

these findings may open novel perspectives in the treatment as

well as prevention of metabolic diseases.

EXPERIMENTAL PROCEDURES

Animals

Adult male Sprague-Dawley rats (Charles River), aged 6 to 8weeks and weigh-

ing 275–300 g at the time of their arrival, were housed in a climate-controlled

room (22 ± 2�C) subjected to a 12 hr light/dark cycle (7:00 AM–7:00 PM),

with free access to water and food. Mice were housed under similar condi-

tions. I-G6pc�/� mice were generated as described previously (Penhoat

et al., 2011), and experiments were performed 5 weeks after gene deletion.
Sodium propionate, sodium butyrate (Sigma) or FOS (Orafti P95, kindly

donated by Beneo) was incorporated into the diet at 5% wt/wt (SCFAs) or

10% wt/wt (FOS). Standard diet was SAFE A04 (Augis, France) and HF-HS

diet was prepared at Unité de Préparation des Aliments Expérimentaux

(INRA Jouy-en-Josas, France; see also Table S1). Prior to diet change, animals

were fed standard diet and groups were designed to match food intake and

body weight.

Glucose and Insulin Tolerance Tests

After 10 to 14 days of special or standard diet, animals were fasted for 16 (GTT)

or 6 hr (ITT) and then received an injection of glucose (1 g/kg b.w., i.p.) or insulin

(0.5 U/kg b.w., Insulatard, Novo Nordisk). Blood glucose was monitored for

90 min using a glucometer (Accu-Check, Roche) on samples collected from

the tip of the tail vein. Insulin was quantified using an ELISA kit (Mercodia).

Tissue Sampling

Rats were fasted for 6 hr and were then euthanized by pentobarbital injection

(100 mg/kg b.w., i.p.). The intestine and liver were sampled as described pre-

viously (Mithieux et al., 2004a). G6Pase activity was assayed under maximal

velocity conditions. Western blot was performed using antibodies described

in Table S2, using b-actin as a housekeeping gene. All procedures were

described in detail previously (Mithieux et al., 2004a; Rajas et al., 1999).

Surgical Procedures

Rats were anesthetized with 2% isoflurane. Portal catheter implantation was

performed as described earlier (Duraffourd et al., 2012). For portal denerva-

tion, a gauze compress moistened with either a capsaicin (10 mg/ml in saline,

DMSO and Tween at a ratio of 8:1:1) or a vehicle solution was applied around

the portal vein for denervation. Sodium propionate and b-hydroxybutyrate

(Sigma) were dissolved in saline and perfused at a rate of 2.5 mmol/min for

6 hr in fasted rats. Rats were allowed to recover for 1 week, with free access

to food and water. A marbocyl/ketofen solution was injected each day to pre-

vent coagulation, infection, and pain.

Determination of Intestinal Glucose Fluxes

After a 6 hr fast, rats were anesthetized with 2% isoflurane and fitted with poly-

ethylene catheters inserted into the right jugular vein for [3-3H] glucose (Perkin-

Elmer) infusion and the left carotid artery for blood sampling. For propionate

incorporation studies, rats were fasted for 24 hr to enhance IGN (Mithieux

et al., 2004b) and fitted with catheters as described above. [1-14C] Propionic

acid sodium salt (Hartmann Analytic) was infused for 90min. Sampling and cal-

culations are described in detail by Croset et al. (2001).

Immunofluorescence

Immunofluorescence was performed as described by Duraffourd et al. (2012),

with prior incubation of slides in citrate buffer at 95�C for 40 min for antigen

retrieval.

See also Table S1.

c-Fos Labeling

Brain sampling, labeling, and counting are described in detail by Duraffourd

et al. (2012).

Sample Collection for Microbial and SCFA Analysis

Mice were fasted for 6 hr and euthanized by cervical dislocation. Blood

samples were collected from the portal vein and via intracardiac puncture.

The intestine (including the colon) and liver were sampled and immediately

put in liquid nitrogen. For plasma analysis, blood samples were centrifuged

and plasma collected and stored at �80�C before the assay.

SCFA Assay

SCFAs were measured in 50 ml of plasma samples after acidification and

extraction into diethyl ether by gas chromatograph coupled with mass spec-

trometer detector (7890A and 5975C, Agilent Technologies). A mix of 1 M

[1-13C] acetate, 0.2M [6-2H] propionate, and 0.2M [4-13C] butyrate was added

as internal standard. Prior to injection, the samples were derivatized with

N-tert-butyldimethylsilyl-N-methyltrifluoracetamide (MTBSTFA; Sigma) at
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room temperature. Quantitation of the measured metabolites was completed

in selected ion monitoring acquisition mode by comparison to labeled internal

standards. Them/z ratios of monitored ions were as follows: 117 (acetic acid),

131 (propionic acid), 145 (butyric acid), 121 ([1-13C]-acetate), 136 ([6-2H] pro-

pionate), and 149 ([4-13C] butyrate).

Genomic DNA Purification, 16S rRNA Gene Amplification, and

Sequence Analyses

After isolation of genomic DNA from colon segments (repeated bead-beating

method, Salonen et al., 2010), the V1-V2 region of bacterial 16S rRNA

gene was amplified using the 27F and 338R primers fused with 454 Titanium

sequencing adapters. Three independent 25 ml PCR reactions were performed

for each sample using 1.5 U of FastStart Taq DNA Polymerase (Roche)

and PCR was performed at conditions: one cycle of 3 min at 95�C, 25 cycles:

20 s at 95�C, 30 s at 52�C, and 60 s at 72�C, and 10 min at 72�C. The resulting

product was checked for size and purity on 0.8% Agarose-GelRed gel, further

purified (NucleoSpin 740609, Macherey-Nagel, Germany), and quantified

with the Quant-iT PicoGreen dsDNA kit (Invitrogen, Carlsbad, CA). All samples

were pooled in equal amounts (20 ng/ml) and purified again with magnetic

beads (AMPure XP, Beckman, Danvers, MA) to remove short amplification

products. The purified pooled products were sequenced (Roche 454 GS-

FLX system, Titanium chemistry, by GATC, Konstanz, Germany). 454 reads

were denoised using the denoiser_preprocess.py and denoiser.py, tools avail-

able in QIIME and sequences were further analyzed as described in detail by

Larsson et al. (2012). We retained 111,693 sequences for 21 mouse colon

samples with an average of 5,320 sequences per sample (2,892 to 8,810

sequences). One of the colonic samples from a WT mouse on FOS diet con-

tained a very low number of sequences (1,982 before denoising and 930 after);

this sample was not included in the b-diversity analysis, but was included in all

other analyses.

Cell Culture

Caco-2 cells were purchased from ECACC and cultured as suggested by

the supplier. The cells were seeded into 6-well plates at 106 cells/well and

cultured at confluence at 37�C for 3 weeks. After that time, the culture medium

was changed to Krebs-Ringer buffer with 1mMsodiumpropionate, 1mM tiglic

acid, 1 mM 1-methylcyclopropanecarboxylic acid, or 1 mM sodium butyrate

(Sigma) alone or in conjunction with 0.2 mg/ml pertussis toxin or 10 mM

U73122 (Tocris). 24 hr later, cells were lysed for molecular analysis.

cAMP Assay

cAMP in the lysates was quantified by a direct cAMP enzyme immunoassay

kit according to the manufacturer’s instructions (ENZO Life Sciences ADI-

900-163). Protein concentrations of the lysates were determined using tradi-

tional Bradford assay. The concentration of cAMP was normalized to that of

protein in the same lysates. A medium containing 10 mM forskolin was used

as a positive control.

Quantitative RT-PCR

Total RNA was extracted from frozen tissues and cells using Trizol reagent

(Invitrogen), according to the manufacturer’s instructions. Fast-Start SYBR

Green PCR reagents (Roche) were used to determine mRNA levels. Ribosomal

protein L19 (RPL19) was used as a housekeeping gene. Calculations were

made based on the comparative cycle threshold method (2-DDCt). Primer se-

quences are given in Table S3.

Statistical Analyzes

All data are presented as mean ± SEM. Two-group comparisons

were analyzed using paired or unpaired t test. Groups were compared

using one-way ANOVA followed by Tukey’s (against all groups) and Dunnett’s

post hoc tests (against a control group). Two-way ANOVA followed by Bonfer-

roni’s post hoc test was used in experiments using I-G6pc�/� mice. The

nonparametric Kruskal-Wallis test followed by Dunn’s post hoc test was

used for c-Fos neuron counting. p < 0.05 was considered as statistically

significant.
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