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This paper presents a nonlinear analysis model of fatigue delamination growth for piezo-
electric laminated cylindrical shells with asymmetric laminations. Considering the geo-
metric nonlinearity and the nonlinear contact effect, the nonlinear governing equations
and corresponding matching conditions for the delaminated shells are established by using
the movable-boundary variational principle. According to the Griffith criterion and Paris
law, the energy release rate and delamination growth rate along the delamination front
are determined. Then, using cyclic skip method, the delamination growth lengths are
derived. In numerical examples, the effects of the voltages, stiffness factor of contact
region, asymmetry of delamination and delamination length on energy rate and delamina-
tion growth length are discussed.
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1. Introduction

Composite laminates have been widely used in engineering on account of their excellent properties, such as high
strength-to-weight ratio, high stiffness-to-weight ratio and designability. However, the delamination damage will easily
emerge in composite laminates during the manufactures and in-service life. What’s more, the great stress concentration
along the delamination front may cause the delamination growth in delaminated composite structure under the action of
cyclic load and finally result in the failure of structure. Since the composite laminated cylindrical shells are the significant
structures utilized in the aerospace and military engineering, the research on the fatigue delamination growth of piezoelec-
tric delaminated laminated cylindrical shells receives more and more attention.

Up to now, many researchers paid concentrations on the discussion of the thin-film delamination and the analysis of
delamination growth for beam-plates. But few investigations have been reported on the fatigue delamination growth for pie-
zoelectric laminated cylindrical shells. The evolution of the crack growth speed in a buckled one-dimensional delamination
model was studied and two approximate solutions were presented by Yin (1993). Applying Mindlin nonlinear plate theory,
the dynamic problems of the plates with irregular delamination were analyzed and the energy release rate of dynamic
delamination was derived by Giannakopoulos and Nillsson (1993). The present state of studies on interfacial wave and inter-
facial dynamic fracture was summarized by Wang (1993) and they indicated that the new solution method was asked espe-
cially for planar transient growth. The advances of studies on the dynamic growth initiation of cracks were represented and
the vital experiments and the results of them corresponding to dynamic growth initiation of cracks under impact load were
introduced by Zhao (1996).The energy release rate of cylindrical shells with symmetric delamination were investigated by
Yang and Fu (2006), Yang et al. (2007). It must be noted that the contact effect was not considered or only the linear spring
. All rights reserved.
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contact model was utilized in the above studies. A nonlinear anti-interpenetration constrained model to study the vibration
mode of isotropic delaminated beam was established by Wang (2002). Based on hump resonance principle, the effect of non-
linear contact upon natural frequency of the stiffened composite plate with pre-damages, such as delamination of skin panel
and debonding interfaces between skin panel and stiffeners, is studied by utilizing the finite element method by Chen and
Wang (2006).

In present study, a nonlinear analysis model of fatigue delamination growth for piezoelectric laminated cylindrical shells
with asymmetric laminations is presented. Considering the geometric nonlinearity and the nonlinear contact effect, the non-
linear governing equations and corresponding matching conditions for the delaminated shells are established by using the
movable-boundary variational principle (Chen, 2003; Qian, 1980; Shi, 2003). According to the Griffith criterion and Paris law,
the energy release rate and delamination growth rate along the delamination front are determined. Then, using cyclic skip
method, the delamination growth lengths are derived. In numerical examples, the effects of the voltages, stiffness factor of
contact region, asymmetry of delamination and delamination length on energy rate and delamination growth length are
discussed.

2. Basic equations

Consider a fibre-reinforced laminated cylindrical shell with two piezoelectric layers mounted on the internal and external
surface as shown in Fig. 1. The shell, with throughout circumference delamination, has length L, thickness he, midsurface
radius R, mass density qe and delamination length L(2). In order to investigate delamination growth, the delaminated
laminated cylindrical shells are divided into four regions which are respectively denoted as X(i)e(i = 1–4). Here, signs 2, 3
represent delaminated segments, and 1, 4 represent intact segments. The lengths of regions are respectively L(i), and the
coordinate x for each region is measured from the left end. The thickness of regions 2 is h(2)e and that of regions 3 is h(3)e,
obviously, h(2)e + h(3) e = he. In addition, there are two boundaries in the regions of delamination growth of the laminated
cylindrical shells and they are written as Cj (j = 1, 2), n represents the exterior normal direction of the delamination growth
boundary, and dn represents the virtual delamination growth along the x direction. The piezoelectric layers with thickness hp

and mass density qp are perfectly bonded on the internal and external surfaces of laminated cylindrical shells. The piezoelec-
tric layers are denoted by X(i)p (i = 1–4). Then the whole piezoelectric laminated cylindrical shell is divided into four regions,
they are denoted by X(i)(i = 1–4), and X(i) = X(i) e + X(i)p.

2.1. Analysis of internal force

Supposing that �uðiÞ; �vðiÞ; �wðiÞ denote the displacements throughout the x, y, z direction of any points in region X(i), and the
corresponding displacement components of middle surface are u(i),v(i), w(i) respectively, the displacement components are
given as
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Fig. 1. (a) Geometric configuration of piezoelectric laminated cylindrical shell and (b) section of cylindrical shell.
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�uðiÞðx; y; z; tÞ ¼ uðiÞðx; y; tÞ � zwðiÞ;x ðx; y; tÞ
�vðiÞðx; y; z; tÞ ¼ vðiÞðx; y; tÞ � zwðiÞ;y ðx; y; tÞ
�wðiÞðx; y; z; tÞ ¼ wðiÞðx; y; tÞ

ð1Þ
where a comma denotes the partial derivative with respect to the corresponding coordinate.
Assuming �eðiÞx ;�e

ðiÞ
y and �eðiÞxy denote strains of any point in region X(i), the nonlinear strain–displacement relations may be

written as
�eðiÞx ¼ eðiÞx þ zjðiÞx ; �eðiÞy ¼ eðiÞy þ zjðiÞy ; �eðiÞxy ¼ eðiÞxy þ zjðiÞxy ð2Þ
where eðiÞx ; e
ðiÞ
y ; e

ðiÞ
xy are the strains on the middle surface, jðiÞx ;j

ðiÞ
y ;j

ðiÞ
xy are the change values of curvatures on the middle surface,

and
eðiÞx ¼ uðiÞ;x þ
1
2

wðiÞ2;x ; eðiÞy ¼ vðiÞ;y �
wðiÞ

RðiÞ
þ 1

2
wðiÞ2;y ; eðiÞxy ¼ uðiÞ;y þ vðiÞ;x þwðiÞ;x wðiÞ;y

kðiÞx ¼ �wðiÞ;xx; k
ðiÞ
y ¼ �wðiÞ;yy; k

ðiÞ
xy ¼ �2wðiÞ;xy

ð3Þ
According to the classical theory of laminated shells, the membrane stress resultants N(i)e and stress couples M(i)e of the
delaminated laminated cylindrical shells can be written as
½NðiÞe�
½MðiÞe�

" #
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" #
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ð4Þ
in which
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>; ð5Þ

ðAðiÞejl ;BðiÞejl ;DðiÞejl Þ ¼
Z hi=2

�hi=2
Q ðkÞejl ð1; z; z

2Þdz ðj; l ¼ 1;2;6Þ
where AðiÞejl ;BðiÞejl and DðiÞejl are the extension, coupling and bending rigidity of laminated cylindrical shells, respectively and
Q ðkÞejl is elastic constant of the kth layer.

The constitutive relations of orthotropic piezoelectric layers can be described as
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where rðiÞpx ;rðiÞpy ; sðiÞpxy are the stress components of piezoelectric layer, D�ðiÞx ;D�ðiÞy ;D�ðiÞz are electric displacement components,
EðiÞx ; E

ðiÞ
y ; E

ðiÞ
z are electric-field intensity components, Qp

ij is elastic constant, eij is piezoelectric stress constant, and e�11; e
�
22; e

�
33

are dielectric constants. The piezoelectric strain constant dij is commonly appointed, and the relations between eij and dij are
e31 ¼ d31Q p
11 þ d32Q p

12

e32 ¼ d31Q p
12 þ d32Q p

22

ð8Þ
Supposing only the electric-field component EðiÞz is applied on the piezoelectric layers throughout the thickness direction.
Denoting V ðiÞT ,V ðiÞB and EðiÞT ,EðiÞB as the electric voltages and the electric-field intensity on the external and internal surface,
respectively, then the following relations are obtained:
EðiÞT ¼ V ðiÞT =hp
; EðiÞB ¼ V ðiÞB =hp ð9Þ
According to Eqs. (2) and (6), the membrane stress resultants N(i)p and stress couples M(i)p of piezoelectric layers can be
written as
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where the last item is the change of stress resultants and stress couples after voltages are applied on piezoelectric layer, and
½NðiÞp� ¼
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where AðiÞpjl ;BðiÞpjl ;DðiÞpjl are the extension, coupling and bending rigidity of region X(i)p respectively.
From Eqs. (4) and (10), the membrane stress resultants N(i) and stress couples M(i) of piezoelectric laminated cylindrical

shell can be written as
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2.2. Analysis of contact force

The contact will emerge in the delamination regions when the piezoelectric laminated cylindrical shell is subjected to
transverse periodic load, thereby the contact effect should be taken into account. Supposing q* is the contact force per unit
length perpendicular to x-axis and it acts on the delamination surface, the contact force q* should satisfy the following
condition:
q� ¼ 0 if wð2Þ �wð3Þ 6 0
f ðwð2Þ �wð3ÞÞ if wð2Þ �wð3Þ > 0

(
ð13Þ
According to Hertz contact law, the function f (w(2) � w(3)) can be chosen as a nonlinear spring function (Chen and Wang,
2006; Schwarts, 2007a,b; Wang, 2002), that is
f ðwð2Þ �wð3ÞÞ ¼ khðwð2Þ �wð3ÞÞ3=2 ð14Þ
where kh is the stiffness factor of contact region and need to be derived by experiment.
It is noted that for any w(2) � w(3), q* in Eq. (13) can be expressed as
q� ¼max½f1ðwð2Þ �wð3ÞÞ; f2ðwð2Þ �wð3ÞÞ� ð15Þ
where
f1ðwð2Þ �wð3ÞÞ ¼ 0

f2ðwð2Þ �wð3ÞÞ ¼ kh½signðwð2Þ �wð3ÞÞ�ðjwð2Þ �wð3ÞjÞ3=2

signðxÞ ¼
1 x P 0
�1 x < 0

� ð16Þ
The q* in Eq. (13) can be approximated by the following expression:
q� ¼ aðf1; f2Þf1 þ bðf1; f2Þf2 ð17Þ
where a(f1, f2) and b(f1, f2) are functions of f1 and f2, and they should satisfy the following conditions:
if f 1 > f2;a! 1; b! 0
if f 1 6 f2;a! 0; b! 1

ð18Þ
a(f1, f2) and b(f1, f2) can be chosen as
aðf1; f2Þ ¼
1
2
½1þ tanh Aðf1 � f2Þ�

bðf1; f2Þ ¼
1
2
½1� tanh Aðf1 � f2Þ�

ð19Þ
where the parameters A is an artificially chosen large number depending upon the desired accuracy of approximation. (The A
is taken as 1015 in present study.)

From Eqs. (16), (17) and (19), the contact force q* can be approximated by
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q� ¼ 1
2
½1þ tanhðAf2Þ�f2 ð20Þ
Substituting f2 in Eq. (16) into the above equation, then we have
q� ¼ 1
2
½1þ tanhðAkhðsignðwð2Þ �wð3ÞÞÞðjwð2Þ �wð3ÞjÞ3=2Þ�khðsignðwð2Þ �wð3ÞÞÞðjwð2Þ �wð3ÞjÞ3=2 ð21Þ
Eq. (21) is the formula of nonlinear calculating contact force between delamination regions.

2.3. Analysis of energy

The total potential energy of the delaminated piezoelectric laminated cylindrical shell can be written as
P¼
X4

i¼1

Z Z Z
XðiÞe

UðiÞedxdydz�1
2

X4
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Z Z
Ai
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;t dxdy�
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Z Z Z
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HðiÞpdxdydz ð22Þ
where U(i)e is the strain energy density relative to region X(i)e. {d}(i) is the displacement vector, that is, {d}(i) = {u(i), v(i), w(i)}.
q(i) is the external load of each region. T ðiÞc is the coefficient of contact effect and Tð1Þc ¼ Tð4Þc ¼ 0; Tð2Þc ¼ �1, Tð3Þc ¼ 1, Rd is the
curvature radius of delamination interface. H(i)p is the enthalpy density (Shi, 2003; Xu, 2000; Chen, 2003) relative to region
X(i)p of piezoelectric layer, h(i) p is the thickness of region X(i) p, and applying Eq. (7), we have
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R R R
XðiÞp HðiÞpdxdydz¼
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ð23Þ
where U(i)p is the strain energy density relative to region X(i)p, and we define

1
2

Z
Xi

f½EðiÞ�T½e��½EðiÞ�gdz ¼ 1
2

Z
Xi

e�33EðiÞ2z dz ¼ 1
2

e�33

Z
Xi

EðiÞ2z dz, ¼ CðiÞE ð24Þ
Using Eqs. (23) and (24) and noticing that the problem of delamination growth is the variation of moving boundary, then
from Eq. (22), the variation of the total potential energy of delaminated piezoelectric laminated cylindrical shell is
dP¼
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ð25Þ
where the first item of Eq. (25) is the strain energy in region X(i) of piezoelectric laminated cylindrical shell after the growth
of delamination. Assuming the laminated cylindrical shells are symmetrically laminated, then [B(i)] = 0. After calculating the
integration by parts to time variable, the Eq. (25) can be written as
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The last five items of Eq. (26) can be written as
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As the variation of u(i), v(i), w(i) is carried out on variable boundary Cj, the following conditions should be satisfied:
duðiÞjCj
¼ dðuðiÞjCj
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����
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Using Eqs. (4)–(12) and Eqs. (27) and (28), according to Eq. (26), we have
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The Eq. (29) is written as the following two parts, that is
dP ¼ dP1 þ dP2 ð30Þ
where
dP1 ¼
X4
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dP2 ¼
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T½jðiÞ� þ 2CðiÞE �gdnidCj
Here, dP1 is the variation of potential energy due to the virtual displacement of piezoelectric laminated cylindrical shell
while virtual growth does not occur (i.e. the delamination boundary is immovable). According to the principle of virtual dis-
placement, when the shell is in state of equilibrium, we have
dP1 ¼ 0 ð33Þ
The displacement of laminated cylindrical shell must change after virtual growth dn occurs along delamination front. At
the same time, the changed area in the region of integration is that dAi ¼

R
Cj

dnidCj. Thus, dP2 is the variation of potential
energy due to the area variation of each region.

As for piezoelectric laminated cylindrical shell, the normal direction n of delamination growth boundary is consistent
with the axial direction x. Therefore, Eq. (32) can also be written as follows:
dP2 ¼
X4

i¼1

I
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2.4. Analysis of energy release rate along delamination front

From Eq. (30) and (33), (34), the variation of potential energy of piezoelectric laminated cylindrical shell can be
given as
dP ¼ dP2 ¼
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Let h
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then
dP ¼
X4

i¼1

I
Cj

GidnidCj ð37Þ
According to Griffith criterion, the energy release rate of piezoelectric laminated cylindrical shell along delamination front
can be expressed as
G ¼ � lim
dA!0

dP
dA

ð38Þ
From Eqs. (37) and (38), the average energy release rate of delamination growth is
Ga ¼ �
dP
dA
¼ �

P4
i¼1

H
Cj

GidnidCjR
Cj

dndCj
ð39Þ
If delamination growth occurs only on partial boundary, that is, dn is greater than zero on certain boundary D Cj belonged
to Cj and it is equal to zero on residual boundary Cj � D Cj, then the average energy release rate of delamination growth is
Ga ¼ �

P4
i¼1

R
DCj

GidnidCjR
DCj

dndCj
ð40Þ
Obviously, the average energy release rate relates to the mode of the delamination growth, but it is generally difficult to
anticipate the actual mode of delamination growth because that dn is an unknown continuous function. So it is not able to
calculate directly the average energy release rate. Now, supposing D Cj is a small segment including a given point and letting
DCj infinitely finish to approach the point, then from Eq. (40) the energy release rate of any point can be given as
G ¼ � lim
DCj!0

P4
i¼1

R
DCj

GidnidCjR
DCj

dndCj
ð41Þ
From Eq. (41), it can be seen that the G represents the distribution of energy release rate of any point on delaminated
boundary.

For boundary C1, we have
dn1 ¼ �dn2 ¼ �dn3 ¼ �dn ð42Þ
From Eqs. (41) and (42), the energy release rate of any point on the boundary C1 is
GC1 ¼ lim
DC1!0

R
DC1
ðG1 � G2 � G3ÞdndC1R

DC1
dndC1

¼ G1 � G2 � G3 ð43Þ
For boundary C2, we have
dn4 ¼ �dn2 ¼ �dn3 ¼ �dn ð44Þ
From Eqs. (41) and (44), the energy release rate of any point on the boundary C2 is
GC2 ¼ lim
DC2!0

R
DC2
ðG4 � G2 � G3ÞdndC2R

DC2
dndC2

¼ G4 � G2 � G3 ð45Þ
According to the Paris fatigue delamination growth law (Schön, 2000; Blanco et al., 2004; Takeda, 1999), the relation be-
tween delamination growth rate and amplitude of energy release rate can be written as
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da
dN
¼ DðDG

Gc
Þr ð46Þ
where a is the length of delamination and a = L(2) in present analysis, N is cycle numbers of dynamic load, DG is amplitude of
energy release rate, the constants D and r are determined by experiment. The experiment results of literature (Blanco et al.,
2004) are applied in present analysis, that is, D = 1.68 � 10�1, r = 6.28,Gc = 447 J/m2.

2.5. The nonlinear governing equations and corresponding boundary conditions and matching conditions of the axisymmetrical
piezoelectric laminated cylindrical shell

As for axisymmetrical piezoelectric laminated cylindrical shell, the circumferential displacement of shell v(i) = 0. Introduc-
ing the following dimensionless parameters:
ni ¼
xðiÞ

LðiÞ
;Wi ¼

wðiÞ

he ;Ui ¼
uðiÞ

L
;Q ðiÞ ¼ qðiÞL4
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;ai ¼

hðiÞ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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A22
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A22
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RðiÞhe ;KH ¼
khðheÞ3=2

2pRd

ð47Þ
Substituting Eqs. (31) and (47) into Eq. (33), the dimensionless nonlinear dynamic governing equations of axisymmetrical
piezoelectric laminated cylindrical shell with delamination may be expressed as follows:
S11A
1
b2

i

Ui;nn � S12A
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biH
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b3

i H2 Wi;nWi;nn ¼ 0

� 1
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i
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Wi;nnnn þ ð
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2b4
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W2
i;n �

S12AKi

b2
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b2
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Np
iExÞWi;nn þ

S12AKiH
2
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Ui;n ð48Þ

þ S12AKi

2b2
i
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i Wi � S22AH2KiN
p
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2
ð1þ tanhðAKHðsignðW2 �W3ÞÞðjW2 �W3jÞ3=2ÞÞ

� H4
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KHðsignðW2 �W3ÞÞðjW2 �W3jÞ3=2 þ S22A

ai
Q ðiÞ ¼ S22Að1þ piÞWi;ss
where SijA ¼ AðiÞij =hðiÞe; SðiÞ11D ¼ DðiÞ11=½ðh
ðiÞeÞ3=12�.

Assuming the both ends of axisymmetrical piezoelectric laminated cylindrical shell are movably clamped, the dimension-
less boundary conditions are
W1ð0Þ ¼ 0;N1nð0Þ ¼ 0;W1;nð0Þ ¼ 0
W4ð1Þ ¼ 0;N4nð1Þ ¼ 0;W4;nð1Þ ¼ 0

ð49Þ
The dimensionless continuity conditions of displacements are
U2ð0Þ ¼ U1ð1Þ þ
1� a2

2b1H2 W1;nð1Þ;U3ð0Þ ¼ U1ð1Þ �
1� a3

2b1H2 W1;nð1Þ

U2ð1Þ ¼ U1ð0Þ þ
1� a2

2b4H2 W4;nð0Þ;U3ð1Þ ¼ U4ð0Þ �
1� a3

2b4H2 W1;nð0Þ

W1ð1Þ ¼W2ð0Þ ¼W3ð0Þ;W1;nð1Þ ¼W2;nð0Þ ¼W3;nð0Þ
W4ð0Þ ¼W2ð1Þ ¼W3ð1Þ;W1;nð0Þ ¼W2;nð1Þ ¼W3;nð1Þ

ð50Þ
The dimensionless equilibrium conditions of moments and forces are
N1nð1Þ ¼ N2nð0Þ þ N3nð0Þ;M1nð1Þ ¼ M2nð0Þ þM3nð0Þ �
1� a2

2
N2nð0Þ þ

1� a3

2
N3nð0Þ

N4nð0Þ ¼ N2nð1Þ þ N3nð1Þ;M4nð0Þ ¼ M2nð1Þ þM3nð1Þ �
1� a2

2
N2nð1Þ þ

1� a3

2
N3nð1Þ

ð51Þ
The expressions of Nin and Min in Eqs. (49) and (51) are
Nin ¼ S11Aai
1
bi

Ui;n þ
1

2H2b2
i

W2
i;n

 !
he � S12Aai

Ki

H2 Wi;Min ¼ SðiÞ11D � a3
i

12b2
i

Wi;nn

 !
ðheÞ3

L2 ð52Þ
The dimensionless initial conditions are
s ¼ 0;Wi ¼Wi;s ¼ 0 ð53Þ
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3. Solution methodology

In present study, we take q(1) = q(4) = q(3) = 0,q(2) = q and the transverse loadqis taken as
qðx; tÞ ¼ Q cos x sinxt ð54Þ
where Q and x are the amplitude value and frequency of external load, respectively.
The considered domain of each region is 0 6 n1,n2, n3,n4 6 1 and each region is divided into M sections as shown in Fig. 2.

The points on dotted line are imaginary points.
Firstly, all partial derivative items related to the space coordinate variable are replaced by difference scheme in disposing

of nonlinear governing Eq. (48), boundary conditions (49), continuity conditions (50) and equilibrium conditions of moments
and forces (51). The difference schemes of all partial derivative items in these equations as Uj, n, Uj, nn, Wj, n, Wj, nn, Wj, nnnn can
be easily obtained. Then the nonlinear items of governing equations and corresponding conditions are linearized and can be
written as follows:
ðX � YÞJ ¼ ðXÞJðYÞJp
ð55Þ
in which ðYÞJp
is the value of the former iterative. For the primary iteration, secondary extrapolation method is introduced to

obtain the value of ðYÞJp
, that is
ðYÞJp
¼ AðYÞJ�1 þ BðYÞJ�2 þ CðYÞJ�3 ð56Þ
As for different iterations, the coefficients A, B and C are decided as follows:
j ¼ 1 : A ¼ 1;B ¼ 0; C ¼ 0
j ¼ 2 : A ¼ 2;B ¼ �1;C ¼ 0
j P 3 : A ¼ 3;B ¼ �3;C ¼ 1

ð57Þ
At the same time, the partial derivative items relative to the time are replaced by Newmark �b scheme. The actuation
duration s is divided into n sections, each section is Ds = s /n, then Wj,ss at point i can be expressed as
ðWj;ssÞðnÞi ¼
4½ðWjÞðnÞi � ðWjÞðn�1Þ

i �
ðDsÞ2

� 4ðWj;sÞðn�1Þ
i

Ds
� ðWj;ssÞðn�1Þ

i ð58Þ
where
ðWj;sÞðnÞi ¼ ðWj;sÞðn�1Þ
i þ 1

2
½ðWj;ssÞðn�1Þ

i þ ðWj;ssÞðnÞi �Ds

ðWjÞðnÞi ¼ ðWjÞðn�1Þ
i þ ðWj;sÞðn�1Þ

i ðDsÞ þ 1
4
½ðWj;ssÞðn�1Þ

i þ ðWj;ssÞðnÞi �ðDsÞ2 ð59Þ
After the equations and conditions are linearized and disposed by using the finite difference method and Newmark meth-
od, the nonlinear partial differential equations are transformed into linear algebraical equations expressed by difference
schemes. These algebraic equations are solved by using the iteration method. For every step, the iterative lasts until the dif-
ference of the present value and the former is smaller than 0.01%, then continue the calculation of the next step.

Suppose the initial delamination growth rate is equal to zero in the first period of external load. After obtaining Ui, Wi by
solving the algebraic equations, the amplitude of energy release rate along the delamination front can be determined by Eqs.
1O

Mi1−i2−i 1+i 2+i0

1ξ

1− 1+M

4O

Mi1−i2−i 1+i 2+i0

4ξ

1− 1+M

2O

Mi1−i2−i 1+i 2+i0

2ξ

1− 1+M

3O

Mi1−i2−i 1+i 2+i0

3ξ

1− 1+M

h

Fig. 2. The dimensionless regions and the finite difference points.
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(36), (43) and (45). Then according to Eq. (46), the delamination growth rate of this period can be obtained and the delam-
ination growth length can be calculated. The length of each region is recalculated after delamination growth, then continues
the calculation of the next period.

It is impossible to analyze fatigue delamination growth under huge numbers of cyclic loads. In order to save the time, the
cyclic skip method is employed, that is, when the calculation process is in the quasi-stable state, the delamination growth
rate (da/dN)k is considered to be constant under a certain segmentation of cyclic loads (the corresponding cyclic number D
Nk). Then we have
DNk ¼
ðDaÞk
ðda=dNÞk

ð60Þ
where (Da)k is the average delamination growth length under cyclic loads (the corresponding cyclic number DNk). From Eq.
(60), the total delamination growth length is
akþ1 ¼ ak þ
da
dN

� �
k

DNk ð61Þ
where ak is the total delamination growth length without applying the cyclic loads (the corresponding cyclic number DNk).

4. Numerical results and discussion

In numerical examples, consider a symmetrically cross-ply [00/900/00]10 laminated cylindrical shell. All layers have same
thickness and are composed of carbon/epoxy composite, and the material constants are EL = 150.0 GPa, ET = 9.0 GPa,
GLT = 7.1 GPa, lLT = 0.3,qe = 2.7 � 103 kg/m3. The piezoelectric layers are composed of piezoelectric ceramic PZT-5, and the
material constants are EL = 62 GPa, ET = 62 GPa, GLT = 23.6 GPa, lLT = 0.3, qp = 7.75 � 103 kg/m3, d31 = d32 = �220 � 10�12m/
V. Let the voltage of the upper piezoelectric layer equal to the down layer, that is, VT = VB. The dimensionless geometric
parameters and physical parameters are given as follows:
a1 ¼ 1;a2 ¼ 0:2;a3 ¼ 0:8;a4 ¼ 1; p1 ¼ 0:574; p2 ¼ 0:287;p3 ¼ 0:287;p4 ¼ 0:574;l ¼ 0:3
Q ¼ 1000;x ¼ 1;Np

1Ex ¼ Np
4Ex ¼ Np

1Ey ¼ Np
4Ey ¼ �0:002;Np

2Ex ¼ Np
3Ex ¼ Np

2Ey ¼ Np
3Ey ¼ �0:001

L=R ¼ 5=3;R=he ¼ 30;H ¼ 50;K1 ¼ K4 ¼ 83:33;K2 ¼ 83:612;K3 ¼ 82:237
For comparison of present results with the literature (Yang et al., 2006), the nonlinear center deflection–time response
curves of isotropic cylindrical shells with symmetrical delamination are presented in Fig. 3. Here, W0

i ði ¼ 2;3Þ denotes the
dimensionless center deflection of regions 2 and 3, respectively. A good agreement is observed between the corresponding
two sets of values. Thereby it is validated that the present analytical method and calculating procedure are reliable.

Figs. 4–11 show the effects of voltages, stiffness factor of contact region, asymmetry of delamination and delamination
length on the nonlinear dynamic responses, the energy release rate and the delamination growth length of delaminated pie-
zoelectric laminated cylindrical shell. In all figures, Np

1Ex is the dimensionless additional inner force of piezoelectric layer after
applying voltage on it, Np

1Ex is equal to zero when the voltages are not applied, b1 is the dimensionless distance between the
left edge of delamination and the left end of cylindrical shells, b2 is the dimensionless length of delamination, KH is the stiff-
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Fig. 3. Comparison of nonlinear deflection–time response curves of regions 2 and 3 for delaminated isotropic cylindrical shell.



5392 Z. Fuhui et al. / International Journal of Solids and Structures 45 (2008) 5381–5396
ness factor of contact region, and Da is the fatigue delamination growth length along the delamination front, Nis the cyclic
number.

The effect of contact region stiffness on the nonlinear dynamic response of regions 2 and 3 are shown in Fig. 4. It can be
observed that with the decrease of contact region stiffness, the center response amplitude of region 2 increases and the pen-
etration will emerge in the delamination contact region. According to the contact law, large penetration is un-logical. There-
fore, proper stiffness factor of contact region needs to be derived by experiments for different material.

The effect of voltages on the nonlinear dynamic response of regions 2 and 3 is shown in Fig. 5. It can be seen that the
center response amplitudes of the two regions decrease when positive voltages are applied on piezoelectric layers. It is be-
cause that applying positive voltages is equal to applying an additional planar tension on the cylindrical shells.

The effect of contact region stiffness on the energy release rate G on the left edge of delamination is shown in Fig. 6. It can
be observed that the maximum energy release rates and the delamination growth rate along the delamination fronts de-
crease with the increase of contact region stiffness. The reason is that the nonlinear dynamic response amplitude of delam-
ination dramatically decreases in the anterior half-period.

The effect of delamination asymmetry on the energy release rates G on the both edges of delamination is shown in Fig. 7.
It can be seen that the maximum energy release rate on the left edge of delamination is larger than the maximum energy
release rate on the right edge.
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Fig. 4. Effect of contact region stiffness on nonlinear deflection–time response curves of regions 2 and 3 for delaminated piezoelectric laminated cylindrical
shell.
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Fig. 5. Effect of voltages on nonlinear deflection–time response curves of regions 2 and 3.
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The effect of voltages on the energy release rate G on the both edges of delamination is shown in Fig. 8. It can be observed
that the energy release rates on the both edges of delamination decrease after applying positive voltages.

The effect of the delamination length b2 on the maximum energy release rate G for piezoelectric laminated cylindrical
shell with asymmetric delamination is shown in Fig. 9. It can be seen that the energy release rate reaches the maximum va-
lue when b2 = 0.19 and it will decrease with the further increase of delamination length. It indicates that the delamination
growth of piezoelectric laminated cylindrical shell may be stable.

The effect of the delamination length on the delamination growth rates da/dN for piezoelectric laminated cylindrical shell
with asymmetric delamination is shown in Fig. 10. It can be seen that the delamination growth rate on the left edge of
delamination is slightly larger than that on the right edge. It is because that the maximum energy release rate is larger
on the left edge of delamination.

Taking the length of delamination b2 = 0.05, the effect of voltages on the delamination growth length Da on the both
edges are shown in Fig. 11. Comparing Fig. 11(a) with (b), it can be observed that the delamination growth length on the
right edge of delamination is 1.5 mm after 2 � 1010 cycle loads when positive voltages are not applied, and that is
0.123 mm after applying voltages. It can be known that the velocity of delamination growth decreases after applying volt-
ages. The reason is that the delamination growth rate decreases after applying positive voltages.
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5. Conclusions

A nonlinear analysis model of fatigue delamination growth for piezoelectric laminated cylindrical shells with asymmetric
laminations is presented. Considering the geometric nonlinearity and the nonlinear contact effect, the nonlinear governing
equations and corresponding matching conditions for the delaminated shells are established by using the movable-boundary
variational principle. According to the Griffith criterion and Paris law, the energy release rate and delamination growth rate
along the delamination front are determined. Then, using cyclic skip method, the delamination growth lengths are derived.
Based on the present analysis, some conclusions may be drawn.

After increasing the stiffness of contact region, the emergence of delamination penetration is avoided and the maximum
energy release rate dramatically decreases in the anterior half-period. When positive voltages are applied on the piezoelec-
tric layers, the nonlinear dynamic response amplitude and the maximum energy release rates decrease, the growth of delam-
ination slows down. With the increase of delamination length, the delamination growth rate increases in the beginning,
however it will decrease rapidly after reaches the maximum value. The energy release rate of the piezoelectric laminated
cylindrical shell with asymmetric delamination is larger than that with symmetric delamination.

References

Blanco, N., Gamstedt, E.K., Asp, L.E., et al, 2004. Mixed-mode delamination growth in carbon-fibre composite laminates under cycle loading. International
Journal of Solids and Structures 41, 4219–4235.



5396 Z. Fuhui et al. / International Journal of Solids and Structures 45 (2008) 5381–5396
Chen, H., Wang, M., 2006. The effect of nonlinear contact upon natural frequency of delaminated stiffened composite plate. Composite Structure 76, 28–33.
Chen, Y., 2003. Nonlinear vibration of transversely isotropic piezoelectric rectangular plate. Journal of Nanjing University of Aeronautics & Astronautics 35

(1), 18–24.
Giannakopoulos, A.E., Nillsson, K.F., 1993. Dynamic energy release rate of delaminations based on Mindlin-type nonlinear theory. Journal of Applied

Mechanics 60 (4), 1046–1047.
Qian, W.C., 1980. Variational Calculus and Finite Element. Science Press, Beijing. in Chinese.
Schön, J., 2000. A model of fatigue delamination in composites. Composites Science and Technology 60, 553–558.
Shi, G.Y., 2003. Electric enthalpy of piezoelectric materials and coupling analysis of mechanical and electric field. Acta Materiae Composite Sinica 20 (6),

115–120.
Schwarts, H., 2007a. High-order nonlinear contact effects in the dynamic behavior of delaminated sandwich panels with a flexible core. International

Journal of Solids and Structures 44, 77–99.
Schwarts, H., 2007b. High-order nonlinear contact effects in cyclic loading of delaminated sandwich panels. Composite: Part B 38, 86–101.
Takeda, N., 1999. Effects of toughened interlaminar layer on fatigue damage progress in quasi-isotropic CFRP laminates. International Journal of Fatigue 21,

235–242.
Wang, J.X., 2002. A study of the vibration of delaminated beams using a nonlinear anti-interpenetration constraint model. Composite Structure 57, 483–488.
Wang, Z., 1993. The present state of studies on interfacial dynamics. Shanghai Mechanics 14 (2), 1–10.
Xu, P., 2000. The numerical analysis of piezoelectric laminated plates and shells. Journal of North China Institute of Technology 21 (3), 243–245.
Yang, J.H., Fu, Y.M., Wang, X.Q., 2007. Variational analysis of delamination growth for composite laminated cylindrical shells under circumferential

concentrated load. Composite Science and Technology 67 (3), 541–550.
Yang, J.H., Fu, Y.M., 2006. Delamination growth of laminated composite cylindrical shells. Theoretical and Applied Fracture Mechanics 45 (3), 192–203.
Yang, J.H., Fu, Y.M., Wang, Y., 2006. Analysis of nonlinear dynamic response for axisymmetrical delaminated laminated cylindrical shell under considering

the effect of contact. Engineering Mechanics 23 (3), 69–75.
Yin, W.L., 1993. Energy balance and the speed of crack growth in a compressed plate with delamination. International Journal of Solids and Structures 30

(15), 2041–2055.
Zhao, Y.P., 1996. The advances of studies on the dynamic initiation of cracks. Advances in Mechanics 26 (3), 362–378.


	Analysis of fatigue delamination growth for piezoelectric laminated cylindrical shell considering nonlinear contact effect
	Introduction
	Basic equations
	Analysis of internal force
	Analysis of contact force
	Analysis of energy
	Analysis of energy release rate along delamination front
	The nonlinear governing equations and corresponding boundary conditions and matching conditions of the axisymmetrical piezoelectric laminated cylindrical shell

	Solution methodology
	Numerical results and discussion
	Conclusions
	References


