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1. Introduction

Composite laminates have been widely used in engineering on account of their excellent properties, such as high
strength-to-weight ratio, high stiffness-to-weight ratio and designability. However, the delamination damage will easily
emerge in composite laminates during the manufactures and in-service life. What’s more, the great stress concentration
along the delamination front may cause the delamination growth in delaminated composite structure under the action of
cyclic load and finally result in the failure of structure. Since the composite laminated cylindrical shells are the significant
structures utilized in the aerospace and military engineering, the research on the fatigue delamination growth of piezoelec-
tric delaminated laminated cylindrical shells receives more and more attention.

Up to now, many researchers paid concentrations on the discussion of the thin-film delamination and the analysis of
delamination growth for beam-plates. But few investigations have been reported on the fatigue delamination growth for pie-
zoelectric laminated cylindrical shells. The evolution of the crack growth speed in a buckled one-dimensional delamination
model was studied and two approximate solutions were presented by Yin (1993). Applying Mindlin nonlinear plate theory,
the dynamic problems of the plates with irregular delamination were analyzed and the energy release rate of dynamic
delamination was derived by Giannakopoulos and Nillsson (1993). The present state of studies on interfacial wave and inter-
facial dynamic fracture was summarized by Wang (1993) and they indicated that the new solution method was asked espe-
cially for planar transient growth. The advances of studies on the dynamic growth initiation of cracks were represented and
the vital experiments and the results of them corresponding to dynamic growth initiation of cracks under impact load were
introduced by Zhao (1996).The energy release rate of cylindrical shells with symmetric delamination were investigated by
Yang and Fu (2006), Yang et al. (2007). It must be noted that the contact effect was not considered or only the linear spring
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contact model was utilized in the above studies. A nonlinear anti-interpenetration constrained model to study the vibration
mode of isotropic delaminated beam was established by Wang (2002). Based on hump resonance principle, the effect of non-
linear contact upon natural frequency of the stiffened composite plate with pre-damages, such as delamination of skin panel
and debonding interfaces between skin panel and stiffeners, is studied by utilizing the finite element method by Chen and
Wang (2006).

In present study, a nonlinear analysis model of fatigue delamination growth for piezoelectric laminated cylindrical shells
with asymmetric laminations is presented. Considering the geometric nonlinearity and the nonlinear contact effect, the non-
linear governing equations and corresponding matching conditions for the delaminated shells are established by using the
movable-boundary variational principle (Chen, 2003; Qian, 1980; Shi, 2003). According to the Griffith criterion and Paris law,
the energy release rate and delamination growth rate along the delamination front are determined. Then, using cyclic skip
method, the delamination growth lengths are derived. In numerical examples, the effects of the voltages, stiffness factor of
contact region, asymmetry of delamination and delamination length on energy rate and delamination growth length are
discussed.

2. Basic equations

Consider a fibre-reinforced laminated cylindrical shell with two piezoelectric layers mounted on the internal and external
surface as shown in Fig. 1. The shell, with throughout circumference delamination, has length L, thickness h®, midsurface
radius R, mass density p¢ and delamination length L‘®. In order to investigate delamination growth, the delaminated
laminated cylindrical shells are divided into four regions which are respectively denoted as V(i = 1-4). Here, signs 2, 3
represent delaminated segments, and 1, 4 represent intact segments. The lengths of regions are respectively [V, and the
coordinate x for each region is measured from the left end. The thickness of regions 2 is h®* and that of regions 3 is h®*,
obviously, h®¢ + h® €= k¢, In addition, there are two boundaries in the regions of delamination growth of the laminated
cylindrical shells and they are written as G (j = 1, 2), n represents the exterior normal direction of the delamination growth
boundary, and én represents the virtual delamination growth along the x direction. The piezoelectric layers with thickness hP
and mass density pP are perfectly bonded on the internal and external surfaces of laminated cylindrical shells. The piezoelec-
tric layers are denoted by QP (i = 1-4). Then the whole piezoelectric laminated cylindrical shell is divided into four regions,
they are denoted by Q(i = 1-4), and Q¥ = Q) ¢+ QP

2.1. Analysis of internal force
Supposing that 1@, v®, w( denote the displacements throughout the x, y, z direction of any points in region ), and the

corresponding displacement components of middle surface are u®v®d, w() respectively, the displacement components are
given as
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Fig. 1. (a) Geometric configuration of piezoelectric laminated cylindrical shell and (b) section of cylindrical shell.
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u(x,y,z,t) =u(x,y,t) — 2w (x,y,t)
(Xy,Z t)*v (Xy7 )—ZW(;,(X,y,f) (1)
w(x,y,z,t) = wh(x,y,1)

where a comma denotes the partial derivative with respect to the corresponding coordinate.

Assuming &,z and rxy denote strains of any point in region Q, the nonlinear strain-displacement relations may be
written as
&) =el) 4z, &) =) + 2z, 7l =) +zKf) (2)

where &, & &8) are the strains on the middle surface, x{, k", i) are the change values of curvatures on the middle surface,

and

. . 1 .. . . wd 1 . . . PR
g =) - Tl i 5
k) = -wi kY = —wi kD) = 2wl

According to the classical theory of laminated shells, the membrane stress resultants N’ and stress couples M€ of the
delaminated laminated cylindrical shells can be written as

|:[N(,')e]:| _ |:[A(i)e] [B(i)e}:| { [S(i-)] } _ [A]('li)e} [B;li)e] { [e(i‘)] } (4)
[M(’)e] [B(')e} [D(Ue} k0] [B}l”e] [D}?e} K]
in which
Ny ue 0 o
Oe =3 e e = e U oy o U ey = )0 (5)
N Mee & s
(A](li)ev jl D / le ‘(1.z,2)dz (j,1=1,2,6)

where Ay (e B ]’ and D ¢ are the extension, coupling and bending rigidity of laminated cylindrical shells, respectively and
Q“‘)e is elastlc constant of the kth layer.
The constitutive relations of orthotropic piezoelectric layers can be described as

o® Q0 @ 0 0 ey Efj)
oy 3 =1Q% Q5 0 [¢& s—10 0 ex|EY (6)
TP 0 0 Q&5 00 O0J|g»
D, 0 0 0](& &, 0 07(E
D =D =10 0 0[{a s+[0 & 0|JE =1l +[E (7)
D*“) es1 e 0 7;9 0 0 &, E(”

where adp a< P ri)p are the stress components of piezoelectric layer, D} D*“ ,D:9 are electric displacement components,
EY JE) ,EY are electric-field intensity components, QJ is elastic constant, e; 1s plezoelectrlc stress constant, and &j;, &5,, &3
are dielectric constants. The piezoelectric strain constant d;j is commonly appointed, and the relations between e;; and d;; are

€31 = d31Q$1 + d32Q'1)2

€3 = d31Q§J2 + d32Q52

Supposing only the electric-field component E{" is applied on the piezoelectric layers throughout the thickness direction.
Denoting V&, v

8)

vy and E{,E)’ as the electric voltages and the electric-field intensity on the external and internal surface,
respectively, then the following relations are obtained:

ViP5 = Vi kP ©)

According to Egs. (2) and (6), the membrane stress resultants NP and stress couples M{? of piezoelectric layers can be
written as

|:[N(i)p]:| |:[A(i)p] [Bu)pq{ [e0)] } {[Ng)p]} [A;f>p} [Bj('zi)p] { ¢ } {fg ]dz}
"I (A B LS L I R . (10)
] LB D U v ] 8P D) | LIKOT S fgenle)'[EV)2dz
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where the last item is the change of stress resultants and stress couples after voltages are applied on piezoelectric layer, and

e g N ur
[N(i)p] _ NJ(;) : [M(i)P] _ MJ(;) . [Ng)lﬂ] _ Ng})’D 7 [M](‘:i)D} _ M](EI))’D (11)
N}(‘l)p M(l)p N%’ MS’))QI’)

il gl

(AP P, plipy _ / Q(1,2,2)dz(j,1 = 1,2,6)
%

where A hp By (hp D] P are the extension, coupling and bending rigidity of region QP respectively.
From Eqs (4) and (10), the membrane stress resultants N and stress couples M” of piezoelectric laminated cylindrical
shell can be written as

{[N“‘)] } _ { N"] } +{ NP } _ {[A“)] [B“’HH ] } . { [N;”p]}
DN D A N DA N AR N UL DA (12)
[A(i)e _‘_A(")P} [B(i>e +B(i)13] [a(i)} [N(Ei)P]
- {[Bme + B (D 4 D(f)p]} { K] } - { M) }

2.2. Analysis of contact force

The contact will emerge in the delamination regions when the piezoelectric laminated cylindrical shell is subjected to
transverse periodic load, thereby the contact effect should be taken into account. Supposing ¢ is the contact force per unit
length perpendicular to x-axis and it acts on the delamination surface, the contact force q" should satisfy the following
condition:

0 if w@ —w® <0
q = . (13)
f(W(Z) _ W(3)) if w@ —w® >0

According to Hertz contact law, the function f (W'’ — w®®)) can be chosen as a nonlinear spring function (Chen and Wang,

2006; Schwarts, 2007a,b; Wang, 2002), that is

FW® — W) = ky (W@ — w2 (14)

where kj, is the stiffness factor of contact region and need to be derived by experiment.
It is noted that for any w® — w®, q" in Eq. (13) can be expressed as

g" = max[fy(w? — w), fo(w® — w)] (15)
where
f] (W(Z) _ W(3)) =0
LW —w®) = ky[sign(w? — w®)](w® — w|)*? 16
1 x>0 (16)
sign(x) = {—1 x<0

The q" in Eq. (13) can be approximated by the following expression:

q = alfi.L)fi + Blfi.o)f> (17)

where o(f1, f>) and B(fy, f2) are functions of f; and f5, and they should satisfy the following conditions:
iffi>fH,a—1,-0

if fi <f,0—0,f—1 (18)
a(fy, f>) and B(fi, f>) can be chosen as
a(fi,f2) = 1[l +tanhA(f1 — f2)] o)

Bifi.fo) = [1 —tanhA(f; - f)]

where the parameters A is an artificially chosen large number depending upon the desired accuracy of approximation. (The A
is taken as 10'° in present study.)
From Egs. (16), (17) and (19), the contact force q° can be approximated by
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_ %[1 + tanh(Af)f 20)

Substituting f> in Eq. (16) into the above equation, then we have

%[1 + tanh(Aky, (sign(W® — w))([w® — w|)*?)]k, (sign(W® — w))(jw? — w|)*/? (21)
Eq. (21) is the formula of nonlinear calculating contact force between delamination regions.
2.3. Analysis of energy

The total potential energy of the delaminated piezoelectric laminated cylindrical shell can be written as
; - i i i i 4 . .
n=> / / / . U“*dxdydz—%z / / (ph™ + pPh™){dy ¥ {d} " dxdy — > / / qOwidxdy
- - =1 - U
4
— w) (i)p
; / / T whdxdy +3 / / [ HOPdxdyaz 22

where U™ is the strain energy density relative to region Q¢. {d}”) is the displacement vector, that is, {d}® = {u®, v, w(},
q® is the external load of each region. T is the coefficient of contact effect and T" = T® = 0,T® = —1, T® = 1, Ry is the
curvature radius of delamination interface. H"® is the enthalpy density (Shi, 2003; Xu, 2000; Chen, 2003) relative to region
QP of piezoelectric layer, h” P is the thickness of region Q) P, and applying Eq. (7), we have

i .f‘./‘fgamH“’“’dxdydz:é.f‘./‘fg«m{ — [EY"[e] (] + 2)) ~ L EV]" (o) ¥ }dxdydz

4 0 45601 ) [1a0P] [giP (i) 1 5el0) NOPY [ 0
=X JInyz [8<i>+ 8(:‘1 | (f)p] | (i)p] [£<i)+ 8(1‘1 =t Ei)p] [8@] 23)
2 @ o] [ | B (DP] | | [ + 51c)] MPP1 ) (Y]

=3 Joon A [EV]" "] [EY)] }dZ}dxdy

where U'P is the strain energy density relative to region Q’?, and we define

1 i * i 1 * i 1 * i i
3 [AETWIE N de =5 [ o550z =55, [ Eaze — (24)

Using Eqgs. (23) and (24) and noticing that the problem of delamination growth is the variation of moving boundary, then
from Eq. (22), the variation of the total potential energy of delaminated piezoelectric laminated cylindrical shell is

(e 4- 8¢ A7) BY] [ [eD + 860]
=1 //A+DA 2{[K(1 +5K’}} |:[ ] [D(i)}:| {[K(i)+5K(i)]}dXdy
—gZ / / (P + pPRP) ({d} +o{d} ) ({d} +o{d})"dxdy
i=1 Aj+0A;
4 ( T . .
(e 4 8¢ ;
;/ /A+oA O+ ow)dxdy - Z/ /AW {{ E( } {[K<i>+5,<<i>}}+c(e)}d’<dy

—Z//MA TEi)ZgR D 4 5w)dxdy —
i=1 i +0A;

where the first item of Eq. (25) is the strain energy in region Q' of piezoelectric laminated cylindrical shell after the growth
of delamination. Assuming the laminated cylindrical shells are symmetrically laminated, then [B®] = 0. After calculating the
integration by parts to time variable, the Eq. (25) can be written as

o= Z/ T T e }dxdy+2 | [ P o) Taxay
o o [ o
+§; /1 {[e<">JT[A“>Me<">1+[K“WD“)J[K<">]}dxdy+§Z [ [ o o ay iy sy
_i// qwidxdy - Z// l)q—R Vdxdy - Z// {INGP )+ [MYP]T 1] 4 € }dxdly

(26)



5386 Z. Fuhui et al./International Journal of Solids and Structures 45 (2008) 5381-5396

The last five items of Eq. (26) can be written as

! z J Joa {2 IAD) 0] + [ ) (D] [P} dxdy + & i I Joa (0™ + pPhP) {d} ) {d} " dxdy

J Jia, @Pwdxdy — zm TY yde-widxdy — ZILA{[N PTTe®] 4+ [MYP] T[] + CF pdxdy 27

I, {3 (DT AY][e0] + kO] D)) + 1 (0™ + pPhP){d} G {d} T — gOw

i

—TE") i W — (INYPT [0] + MEPT 0] + CF) yomid G = 1, 2)

As the variation of u®”, v\), w? is carried out on variable boundary C;, the following conditions should be satisfied:

. . ou v . . owd
@) — (i) _ 5ns swd L — s(wd _ . 5n:
oulc = o(u |c]) on n | on;, ow |c] =d(w |cj) n | n;

)

-om, v = 5(v?|g) —
C] 7 )
o 28)
- on

: 5”175W_(;)‘cj = 5(W$)ch) - W

G

Using Eqs. (4)-(12) and Egs. (27) and (28), according to Eq. (26), we have
4
- _ 0 iy 0 Py 0 | sy o | QN
=37 [ [~ 0 R g+ |- )

0 i e (e 0Py (0) | sui i i i
% (ND) + (peh®® + pPh' “’)v&i} v 4 [— — (M) — = (M) — —(M3),)

(i) DPy 0 i q i
+ (p*h" + pPh PPyl — ¢ — TO 2nRJ"w dxdﬁz / (N5

+ Ngd(V0lg) + (M + Mgy + NWE + Ngwy)o(wlg) = Ma(wi)

y
4 »
_ M’(‘%(Wg)\cj)}dq + Z 7{_“%”( )
i=1 74

,% No [
on |, Ny on
aw

(i) aW
MO
C,) MRl v on
]

Xy.y

P N ow'
g s g (-

] - omdG;
G

S L N0 s Lyiozy | N _ W2 1 wii? VO 4wl
+Z.Cv j[Nx (u,x +§W,x )+Ny (VAy R 2 )+N ( x+W,xW,y)

+ MY (—wil) + MY (—wld)) + M) (— 2wxy>1+ (peh™ + pPh™P){d} 0 {d} " (29)

= qw 0 ST~ SONOPTTO + M)+ 267 fondG

The Eq. (29) is written as the following two parts, that is
oIl = oT1; + OIT, (30)

where

0 0Py, (i 0 i
oty =3 [ [ {500 - S0+ o e our+ [ Sov
i=1 y X

0

g (N 0 P v [ ) = ) — M

0
0 O Ny O (B O iy O iy Ny
6x (M y‘y) - &(le fo)) - @(Nyl W(y)) - &(leyw(y)) @(Ni fo)) - R(i)

* 4
ene | pp@py () o) 0 4 (i) (i) 5 (1,0
+ (p=h"® 4 pPh Py — g — T¢ Zan}éw }dxdy+;/cj{Nx Su|.)

J

Xy.y X

~ MYswlg) }dG (31)
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SINO ) + wa;ﬂ)
)
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Q) w 2 (i) (i)
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Here, 6I1; is the variation of potential energy due to the virtual displacement of piezoelectric laminated cylindrical shell
while virtual growth does not occur (i.e. the delamination boundary is immovable). According to the principle of virtual dis-
placement, when the shell is in state of equilibrium, we have

I =0 (33)

The displacement of laminated cylindrical shell must change after virtual growth én occurs along delamination front. At

the same time, the changed area in the region of integration is that 5A; = fc om;dC;. Thus, oI5 is the variation of potential
energy due to the area variation of each region.

As for piezoelectric laminated cylindrical shell, the normal direction n of delamination growth boundary is consistent
with the axial direction x. Therefore, Eq. (32) can also be written as follows:

4
ol = f (N0 (-u) o+ NGV + (ML, + MY, + N NGwi)) (i)
i=1

G

(0 Dy 4 L2 iyt _ W

+ MPW, + MYw) ] - onydC; +Z?{ N +Wi?) + N (V) -
+5wi?) + Nl + v + wid fy‘>)+M§l>(—wfil)+M<f>(-w§;'}v)+M§"y>(—2wf;>y)] (34)

(ph" + pPh ™) {d}{{d} T — W — T (q" /2mRy )W —

+

XX

02) + Ng) < —R—+% >+Nm( u® + v+ whwd) + MOP(—wlh)

= N\'—‘ M_. N\'—‘

g

+

P(—wid)) + MEP(—2w)) + zcﬂ }5nidcj
2.4. Analysis of energy release rate along delamination front

From Eq. (30) and (33), (34), the variation of potential energy of piezoelectric laminated cylindrical shell can be
given as

Otk = N ) NG+ M M, N NG )

i () 1 bom WO
+ MWD+ MYWD ] - onidC; +Z]§{ { +2w<>)+N;>(v§;>__,

+

NI—‘ N\'—‘

W) + N ) + v + wiw) + My (—w) + My (-w _yy)+Miiy)(*2Wfi)y)} (35)

(p°h"® + pPh™"){d} 3 {d} " — q"w — TO(q" /2R )W —
w1 i i NG (@p i
=0 iw() )+ NER D + v + widwd) + MEP(—wl,)

P(—wi)) + MIP(—2w()) + 2C¢ ]}mdcj

+5wi?) + NOP (D) —

+
z N\ -
oz
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Let
= [N(X”(—u_(?) + NO(v D) + (MO, + MY, + NOWD + NOw) (~wid)

+MPwW, + MYw ]+%{N’ (u<'>+%wf§>2)+N§i>(vf}> —W—((ii;Jr%waZ)

+N>( + i +w9w9)+nu(—wg)+wﬁn—w%y+mgpaw%ﬂ

. % (P 4 pPROP)(d} O {d} T — gOwl) — TO (g /27R) Wl (36)

= [Ngzw uf + w) 4 NP () =4 S )+ NEDG v

+wWOWD) + MEP(~w) + MEP(~wi)) + MEP(~2wh) + 2¢]
then

4 .
=3y fc GionidC; (37)

According to Griffith criterion, the energy release rate of piezoelectric laminated cylindrical shell along delamination front
can be expressed as
oIl

=~ im A G8)

From Egs. (37) and (38), the average energy release rate of delamination growth is

4

Z fcj G,»o‘n,-de

- _ =

G =% Je, ondG; (39)

If delamination growth occurs only on partial boundary, that is, on is greater than zero on certain boundary A C; belonged
to G and it is equal to zero on residual boundary C; — A G, then the average energy release rate of delamination growth is

4
; fACj G,—énide

Go= =

Jsc, ondG; 0

Obviously, the average energy release rate relates to the mode of the delamination growth, but it is generally difficult to
anticipate the actual mode of delamination growth because that én is an unknown continuous function. So it is not able to
calculate directly the average energy release rate. Now, supposing A Cj is a small segment including a given point and letting
AG infinitely finish to approach the point, then from Eq. (40) the energy release rate of any point can be given as

Ejﬁccéde

6= gm, T a

From Eq. (41), it can be seen that the G represents the distribution of energy release rate of any point on delaminated
boundary.
For boundary C;, we have

My = —0ny = —dn3 = —on (42)
From Egs. (41) and (42), the energy release rate of any point on the boundary C; is
fAC‘ (G] — Gz — G3)5ndC1

= li . =G -G, — 4
Gey = Jim, =t G -GG (43)
For boundary C,, we have

oy = —0ny, = —on3 = —on (44)

From Egs. (41) and (44), the energy release rate of any point on the boundary G, is
jACz Gg)&ﬂdCz
=G4 -G, -G 45
Aczﬂo fAc 5ndC2 T (45)

According to the Paris fatigue delamination growth law (Schén, 2000; Blanco et al., 2004; Takeda, 1999), the relation be-
tween delamination growth rate and amplitude of energy release rate can be written as
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da AG
aN= D(?c)
where a is the length of delamination and a = L'®) in present analysis, N is cycle numbers of dynamic load, AG is amplitude of

energy release rate, the constants D and r are determined by experiment. The experiment results of literature (Blanco et al.,
2004) are applied in present analysis, that is, D =1.68 x 107!, r = 6.28,G. = 447 J/m>.

(46)

2.5. The nonlinear governing equations and corresponding boundary conditions and matching conditions of the axisymmetrical
piezoelectric laminated cylindrical shell

As for axisymmetrical piezoelectric laminated cylindrical shell, the circumferential displacement of shell v{? = 0. Introduc-
ing the following dimensionless parameters:

B x® w) u® ) q('L4 h(i) L(i) L .
€i7W7W17F7U17T7Q *Azz(h) No/ he7ﬁ17 7H7F 7L \/Azzh/p

(p NP ppOP (i) 2 e\3/2
_Ned ne P e G L g, Ka(l)
T An’ ROKe 27Ry

(47)

Substituting Egs. (31) and (47) into Eq. (33), the dimensionless nonlinear dynamic governing equations of axisymmetrical
piezoelectric laminated cylindrical shell with delamination may be expressed as follows:

1 K 1
Stin—5Uiee =S Wi +S Wi Wi =0
11A ﬁlz 12A— 5 [f,H i 1A 37 ﬂ3H2 i 14
0o 72
1 Lo % o Wi,::jgng(SnAH Ui + S11a 2 S]ZAK;W 7522A2H N2 Wi: + MUL& 48)
127 B 2 B [ B
+51222K’ WE, = SpaKi Wi — SaH KNG, + TJ) 5 (14 tanh(AKy(sign(Ws — W) (W2 — W3))%)
1

H* . S ;
x - Kn(sign(Wa — W) (W2 = Wa)? +222Q0 = Sy, (14 p)Wic:
1

1

where Sj4 = A /h" s, = D} /[(h"%)? /12].
Assuming the both ends of axisymmetrical piezoelectric laminated cylindrical shell are movably clamped, the dimension-
less boundary conditions are

W;(0) = 0,N;:(0) = 0,W;.(0) = 0

49
W4(1) =0,Ng:(1) =0,Wy4:(1)=0 (49)
The dimensionless continuity conditions of displacements are
1-0 1- 03
Uy (0) = Ui (1) + ——5W1.:(1),U3(0) = U1 (1) - —— W (1
2(0) = Uy(1) 2[31H2 16(1),Us(0) = Uy (1) TG 1(1)
1-— 1—os
U,(1) =U,(0) + WCO.Ul:UO——WvO
2(1) = U1(0) + 2/5’4H2 4:(0),Us(1) = U4(0) YT 1(0) (50)
Wi (1) = W3(0) = W5(0), Wy (1) = W(0) = W5.(0)
Wa(0) = Wa(1) = W3(1), W1 £(0) = W5(1) = Ws(1)
The dimensionless equilibrium conditions of moments and forces are
1-o0p 1-—o03
N1:(1) = Na¢(0) + N3:(0), Mi¢(1) = M2 (0) + M3 (0) — —5—N2:(0) + —5—N3¢(0) 51)
— 0 —o
Nag(0) = Nag(1) + N3¢ (1), Mae(0) = M (1) + M3 (1) —— “Na (1) 3 >N (1)
The expressions of N;: and M;; in Egs. (49) and (51) are
1 1 e K; 0 o3 (h°)?
Ni: = S1140 (EU 2H2ﬁ2 )h SIZAOCiH_;WisMi;’ = Siip (‘ 124 i.§§> e (52)

The dimensionless initial conditions are
T=0,Wi=W;; =0 (53)
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3. Solution methodology

In present study, we take ¢(*) = ¢ = ¢® = 0,q'® = q and the transverse loadgis taken as
q(x,t) = Q cosxsin wt (54)

where Q and w are the amplitude value and frequency of external load, respectively.

The considered domain of each region is 0 < &1,&, €3,64 < 1 and each region is divided into M sections as shown in Fig. 2.
The points on dotted line are imaginary points.

Firstly, all partial derivative items related to the space coordinate variable are replaced by difference scheme in disposing
of nonlinear governing Eq. (48), boundary conditions (49), continuity conditions (50) and equilibrium conditions of moments
and forces (51). The difference schemes of all partial derivative items in these equations as Uj, ¢, Uj, ¢e, W, &, W, ¢e, W, eee can
be easily obtained. Then the nonlinear items of governing equations and corresponding conditions are linearized and can be
written as follows:

(X-Y); = (X),(Y), (55)

P

in which (Y)]p is the value of the former iterative. For the primary iteration, secondary extrapolation method is introduced to
obtain the value of (Y),» that is

(Y)jp = A(Y)]—] + B(Y)]—Z + C(Y)]—S (56)
As for different iterations, the coefficients A, B and C are decided as follows:

j=1: A=1,B=0,C=0

j=2: A=2,B=-1,C=0 (57)

j=3: A=3B=-3,C=1

At the same time, the partial derivative items relative to the time are replaced by Newmark —p scheme. The actuation
duration t is divided into n sections, each section is At =t [n, then W7 at point i can be expressed as

4Wy)" — Wl 4w (n-1)

acf? ar—~ Wisdl (58)

(Wj.,n),(") =
where

i i

oy, 1 -
Wie” = W™ +5 (W)™ + (W) "]AT

Wi = (W™ (W)Y (A7) + (Wil + (Wi (A2 (59)
After the equations and conditions are linearized and disposed by using the finite difference method and Newmark meth-
od, the nonlinear partial differential equations are transformed into linear algebraical equations expressed by difference
schemes. These algebraic equations are solved by using the iteration method. For every step, the iterative lasts until the dif-
ference of the present value and the former is smaller than 0.01%, then continue the calculation of the next step.
Suppose the initial delamination growth rate is equal to zero in the first period of external load. After obtaining U;, W; by
solving the algebraic equations, the amplitude of energy release rate along the delamination front can be determined by Eqs.

Fig. 2. The dimensionless regions and the finite difference points.
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(36), (43) and (45). Then according to Eq. (46), the delamination growth rate of this period can be obtained and the delam-
ination growth length can be calculated. The length of each region is recalculated after delamination growth, then continues
the calculation of the next period.

It is impossible to analyze fatigue delamination growth under huge numbers of cyclic loads. In order to save the time, the
cyclic skip method is employed, that is, when the calculation process is in the quasi-stable state, the delamination growth
rate (da/dN), is considered to be constant under a certain segmentation of cyclic loads (the corresponding cyclic number A
Ni). Then we have

(Ag),
ANy = 7(da/dN)k (60)
where (Aa)y is the average delamination growth length under cyclic loads (the corresponding cyclic number ANy). From Eq.
(60), the total delamination growth length is

da
Q1 = G + <m) ANk (6])
k

where qy is the total delamination growth length without applying the cyclic loads (the corresponding cyclic number ANy).

4. Numerical results and discussion

In numerical examples, consider a symmetrically cross-ply [0°/90°/0°],o laminated cylindrical shell. All layers have same
thickness and are composed of carbon/epoxy composite, and the material constants are E; =150.0 GPa, Er=9.0 GPa,
Gur=7.1GPa, pr=0.3,p° = 2.7 x 10° kg/m>. The piezoelectric layers are composed of piezoelectric ceramic PZT-5, and the
material constants are E; = 62 GPa, Er = 62 GPa, G =23.6 GPa, uir=0.3, pP =7.75 x 10> kg/m?>, ds; = d3, = =220 x 10~ %m/
V. Let the voltage of the upper piezoelectric layer equal to the down layer, that is, V1= V. The dimensionless geometric
parameters and physical parameters are given as follows:

o1 = 1,05 = 02,05 = 0.8,04 = 1,p, = 0.574,p, = 0.287, p; = 0.287,p, = 0.574, = 0.3
Q = 1000, = 1,NB;, = Nb, = B = N& = —0.002, N5, = N3, = N3, = Nj, = —0.001
L/R=5/3,R/h® = 30,H = 50,K; = K4 = 83.33,K, = 83.612,K3 = 82.237

For comparison of present results with the literature (Yang et al., 2006), the nonlinear center deflection-time response
curves of isotropic cylindrical shells with symmetrical delamination are presented in Fig. 3. Here, W?(i = 2,3) denotes the
dimensionless center deflection of regions 2 and 3, respectively. A good agreement is observed between the corresponding
two sets of values. Thereby it is validated that the present analytical method and calculating procedure are reliable.

Figs. 4-11 show the effects of voltages, stiffness factor of contact region, asymmetry of delamination and delamination
length on the nonlinear dynamic responses, the energy release rate and the delamination growth length of delaminated pie-
zoelectric laminated cylindrical shell. In all figures, N, is the dimensionless additional inner force of piezoelectric layer after
applying voltage on it, N¥;, is equal to zero when the voltages are not applied, $; is the dimensionless distance between the
left edge of delamination and the left end of cylindrical shells, j, is the dimensionless length of delamination, Ky is the stiff-

0.25
B, =0.4, B,=0.4, 0,,=0.4, 0,3=0.6 —— Present result

0.20 4 .
Q=1000 0=5 T Literature

0.15 -
0.10 Vs "

0.05 \
0.00 4
-0.05 4
i .0.104
-0.15 4
-0.20 4
-0.25
-0.30 4

-0.35 4

-0.40 T T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Fig. 3. Comparison of nonlinear deflection-time response curves of regions 2 and 3 for delaminated isotropic cylindrical shell.
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ness factor of contact region, and Aa is the fatigue delamination growth length along the delamination front, Nis the cyclic
number.

The effect of contact region stiffness on the nonlinear dynamic response of regions 2 and 3 are shown in Fig. 4. It can be
observed that with the decrease of contact region stiffness, the center response amplitude of region 2 increases and the pen-
etration will emerge in the delamination contact region. According to the contact law, large penetration is un-logical. There-
fore, proper stiffness factor of contact region needs to be derived by experiments for different material.

The effect of voltages on the nonlinear dynamic response of regions 2 and 3 is shown in Fig. 5. It can be seen that the
center response amplitudes of the two regions decrease when positive voltages are applied on piezoelectric layers. It is be-
cause that applying positive voltages is equal to applying an additional planar tension on the cylindrical shells.

The effect of contact region stiffness on the energy release rate G on the left edge of delamination is shown in Fig. 6. It can
be observed that the maximum energy release rates and the delamination growth rate along the delamination fronts de-
crease with the increase of contact region stiffness. The reason is that the nonlinear dynamic response amplitude of delam-
ination dramatically decreases in the anterior half-period.

The effect of delamination asymmetry on the energy release rates G on the both edges of delamination is shown in Fig. 7.
It can be seen that the maximum energy release rate on the left edge of delamination is larger than the maximum energy
release rate on the right edge.

Fig. 4. Effect of contact region stiffness on nonlinear deflection-time response curves of regions 2 and 3 for delaminated piezoelectric laminated cylindrical
shell.

0.7 T T T T T T T T T T T T T T

Fig. 5. Effect of voltages on nonlinear deflection-time response curves of regions 2 and 3.



Z. Fuhui et al./ International Journal of Solids and Structures 45 (2008) 5381-5396

250

150

(/md)

G
8
1

50

p
B,=04,B,=02, N° _ =0

Fig. 6. Effect of contact region stiffness on energy release rates along the delamination front.
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Fig. 7. Effect of delamination asymmetry on response curves of energy release rates with time on the both edges of delamination.
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Fig. 8. Effect of voltages on response curves of energy release rates with time on the both edges of asymmetric delamination.
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Fig. 9. Effect of delamination length on the maximum energy release rate along the delamination front.

— _10% P _
00005 | Bi=0-2, K,=10", N, =0 the left edge
--o--the right edge
. i ) ) \
0.0004 \
A 0.000450-
A 0.000425.
% 0.0003 ”
s 0.000400"5+5 578 020 0.22
o©
0.0002
0.0001
0.0000 ' T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 10. Effect of delamination length on delamination growth rate.

The effect of voltages on the energy release rate G on the both edges of delamination is shown in Fig. 8. It can be observed
that the energy release rates on the both edges of delamination decrease after applying positive voltages.

The effect of the delamination length f, on the maximum energy release rate G for piezoelectric laminated cylindrical
shell with asymmetric delamination is shown in Fig. 9. It can be seen that the energy release rate reaches the maximum va-
lue when B, =0.19 and it will decrease with the further increase of delamination length. It indicates that the delamination
growth of piezoelectric laminated cylindrical shell may be stable.

The effect of the delamination length on the delamination growth rates da/dN for piezoelectric laminated cylindrical shell
with asymmetric delamination is shown in Fig. 10. It can be seen that the delamination growth rate on the left edge of
delamination is slightly larger than that on the right edge. It is because that the maximum energy release rate is larger
on the left edge of delamination.

Taking the length of delamination j, = 0.05, the effect of voltages on the delamination growth length Aa on the both
edges are shown in Fig. 11. Comparing Fig. 11(a) with (b), it can be observed that the delamination growth length on the
right edge of delamination is 1.5 mm after 2 x 10'° cycle loads when positive voltages are not applied, and that is
0.123 mm after applying voltages. It can be known that the velocity of delamination growth decreases after applying volt-
ages. The reason is that the delamination growth rate decreases after applying positive voltages.
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Fig. 11. Effect of voltages on delamination growth length along the delamination front.

5. Conclusions

A nonlinear analysis model of fatigue delamination growth for piezoelectric laminated cylindrical shells with asymmetric
laminations is presented. Considering the geometric nonlinearity and the nonlinear contact effect, the nonlinear governing
equations and corresponding matching conditions for the delaminated shells are established by using the movable-boundary
variational principle. According to the Griffith criterion and Paris law, the energy release rate and delamination growth rate
along the delamination front are determined. Then, using cyclic skip method, the delamination growth lengths are derived.
Based on the present analysis, some conclusions may be drawn.

After increasing the stiffness of contact region, the emergence of delamination penetration is avoided and the maximum
energy release rate dramatically decreases in the anterior half-period. When positive voltages are applied on the piezoelec-
tric layers, the nonlinear dynamic response amplitude and the maximum energy release rates decrease, the growth of delam-
ination slows down. With the increase of delamination length, the delamination growth rate increases in the beginning,
however it will decrease rapidly after reaches the maximum value. The energy release rate of the piezoelectric laminated
cylindrical shell with asymmetric delamination is larger than that with symmetric delamination.
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