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1. Introduction

Given a closed convex pointed cone K ⊂ R
m with a nonempty interior, one defines a partial order �K in R

m as follows

y �K y′ ⇔ y′ − y ∈ K . (1.1)

Let f : R
n → R

m be a continuous K -quasiconvex function, i.e., f is continuous on R
n and for y ∈ R

m , x1, x2 ∈ R
n , λ ∈ [0,1],

f (x1), f (x2) ∈ y − K implies f
(
λx1 + (1 − λ)x2

) ∈ y − K .

We consider the perturbed quasiconvex semi-infinite vector optimization problem in R
n,

(QCSVO)( f ,g): min
K

f (x) s.t. g(x, t) � 0, ∀t ∈ T , (1.2)

where the “minimization” is understood with respect to the ordering relation �K defined by (1.1), T is an arbitrary (possibly
infinite) index set, and g(·, t) : R

n → R is a continuous quasiconvex function for every t ∈ T .
In this way, the pair ( f , g) := p ∈ P := QCK [Rn,R

m] × QC[Rn × T ,R] is regarded as the parameter to be perturbed. Here,
QCK [Rn,R

m] stands for the set of all continuous K -quasiconvex functions of the form f : R
n → R

m , and QC[Rn × T ,R]
denotes the set of all functions of the form g : R

n × T → R such that for each t ∈ T , g(·, t) : R
n → R is continuous and

quasiconvex.
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Let p = ( f , g) ∈ P . We denote by

C(p) = {
x ∈ R

n | g(x, t) � 0, ∀t ∈ T
}

(1.3)

the set of all feasible points of (1.2), and write x̄ ∈ S(p) to indicate that x̄ is an efficient (or Pareto) solution of (1.2) if x̄ ∈ C(p)

and there is no x ∈ C(p) satisfying

f (x) �K f (x̄), f (x) 	= f (x̄).

The multifunction S : P ⇒ R
n assigns to p ∈ P the set of all efficient solutions S(p), is called the efficient (or Pareto) solution

map of (QCSVO).
Stability analysis in semi-infinite optimization problems has been investigated intensively by many researchers; see e.g.

[1–10,12,14] and the references therein. One of the main problems here is to find sufficient conditions for the efficient (or
Pareto) solution map of a semi-infinite vector optimization problem to have a certain stability property, such as the lower
(upper) semi-continuity, the continuous property, the calmness, the Aubin property (also known as the pseudo-Lipschitz
property), and the Lipschitz property. Observe that most of the publications devoted to stability analysis of semi-infinite
vector optimization problems of type (1.2) deal with T is a compact set and/or f , g are linear functions or convex functions
with respect to a convex cone. Let us briefly discuss some of them.

Starting with T being a compact Hausdorff space, Todorov [14] studied the upper and lower semi-continuous properties
of the efficient and/or weakly efficient solution map in the Berge sense and in the Kuratowski sense for the parametric
linear semi-infinite vector optimization problem undergone the continuous perturbation of the constraints and the linear
perturbation of the objective function. Under functional perturbations of both the objective function and the constraint set,
the authors in [4] established necessary and/or sufficient conditions for the lower and upper semi-continuous properties of
the generalized parametric semi-infinite vector optimization problem with compact constraints. Some of these results have
been extended by Fan, Cheng, and Wang in a very recent paper [9] for the convex semi-infinite vector optimization problem
without compact constraints. Paper [5] gave a sufficient condition for the pseudo-Lipschitz property (a strict property of
the lower semi-continuity!) of the Pareto solution map of the linear semi-infinite vector optimization problem under the
continuous perturbation of the right-hand side of the constraints and the linear perturbation of the objective function. This
result was developed in [6] for the convex semi-infinite vector optimization problem.

Unlike with aforementioned frameworks, here we consider a semi-infinite vector optimization problem in a more general
case, with T being an arbitrary index set, g(·, t), t ∈ T being quasiconvex functions and f being a quasiconvex vector
function with respect to a convex cone.

The main goal of the present paper is to provide sufficient conditions for the lower semi-continuous property of the
efficient solution map of (1.2) under functional perturbations of both the objective function and the constraints. In addition,
examples are given to analyze the obtained results.

The rest of the paper is organized as follows. In Section 2, we first recall some basic definitions and preliminaries from
set-valued analysis. Then we give some auxiliary results which will be used in this work. The main result of the paper is
presented in Section 3. Furthermore, examples are designed to analyze the assumptions of the main theorem.

2. Preliminaries and auxiliary results

In this section we provide further the basic definitions and notation widely used in what follows and also present some
auxiliary results that play a significant role in establishing our main results in the next section. Let us first recall some
standard notions from set-valued analysis. Let X be a metric space. In particular, when X = R

k with k ∈ N := {1,2, . . .}, the
metric on R

k is generated by the Euclidean norm ‖ · ‖k . Meanwhile, 0k stands for the zero vector of R
k . Given Ω ⊂ X , the

topological closure and the topological interior of Ω will be denoted by clΩ and intΩ , respectively. We will use N (x) to
denote the set of all neighborhoods of x ∈ X . The positive polar cone to the cone K ⊂ R

m is defined by

K ∗ := {
h̄ ∈ R

m | 〈h̄, y〉 � 0 for all y ∈ K
}
,

where 〈·,·〉 indicates the scalar product in R
m .

Let F : X ⇒ Y be a multifunction between metric spaces. The effective domain and the graph of F are given, respectively,
by

dom F := {
x ∈ X | F (x) 	= ∅}

, gph F := {
(x, y) ∈ X × Y | y ∈ F (x)

}
.

Definition 2.1. (i) F is said to be a closed multifunction iff gph F is a closed set.
(ii) F is said to be lower semi-continuous (lsc for brevity) at x0 ∈ dom F iff for any open set V ⊂ Y satisfying V ∩ F (x0) 	= ∅

there exists U0 ∈ N (x0) such that V ∩ F (x) 	= ∅ for all x ∈ U0.

For each r ∈ N we set Kr := rB, where B is the closed unit ball in R
n . Then {Kr}∞r=1 is the sequence of compact sets in

R
n satisfying Kr ⊂ int Kr+1 and R

n = ⋃∞
r=1 Kr . For any f1, f2 ∈ QCK [Rn,R

m], the distance between f1 and f2 is defined by
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ρ( f1, f2) :=
∞∑

r=1

1

2r

ρr( f1, f2)

1 + ρr( f1, f2)
,

where ρr( f1, f2) := maxx∈Kr ‖ f1(x) − f2(x)‖m for all r ∈ N. Then

δ(g1, g2) := sup
t∈T

ρ
(

g1(·, t), g2(·, t)
)

is a metric on QC[Rn × T ,R].
The parameter space P is endowed with the metric

d(p1, p2) := max
{
ρ( f1, f2), δ(g1, g2)

}
,

for p1 = ( f1, g1), p2 = ( f2, g2) ∈ P .
Suppose Ω is a set. One says that a sequence of functions hk : Ω → R

m,k ∈ N, converges uniformly to h : Ω → R
m on a

set Ω0 ⊂ Ω if for each ε > 0 there exists k0 ∈ N such that∥∥hk(x) − h(x)
∥∥

m < ε ∀x ∈ Ω0, ∀k � k0.

Remark 2.2. Let p := ( f , g) ∈ P , and let pk := ( fk, gk) ∈ P for all k ∈ N. Then limk→∞ d(pk, p) = 0 if and only if for each
r ∈ N the sequence { fk}k∈N converges uniformly to f on Kr , and the sequence {gk}k∈N converges uniformly to g on Kr × T .

We say that C(p) satisfies the strong Slater condition if there exist x̂ ∈ R
n and � > 0 such that g(x̂, t) � −� for all t ∈ T .

The following lemma gives some properties, and a sufficient condition for the lower semi-continuity of the constraint
set mapping C : P ⇒ R

n defined by (1.3).

Lemma 2.3. The following statements hold:

(a) C is a closed multifunction with convex values.
(b) If C(p), p := ( f , g) ∈ P , satisfies the strong Slater condition and if the local minima of G(·) := supt∈T g(·, t) are global, then C is

lsc at p.

Proof. (a) Consider arbitrarily p := ( f , g) ∈ P . Since g(·, t) are quasiconvex for all t ∈ T , C(p) is a convex set. Let {pk :=
( fk, gk)}∞k=1 ⊂ P and {xk}∞k=1 ⊂ R

n be sequences satisfying

pk → p, xk → x, and xk ∈ C(pk) ∀k ∈ N.

It is sufficient to show that x ∈ C(p). As {xk}∞k=1 is a convergent sequence, there is no loss of generality in assuming that
{xk}∞k=1 ⊂ int Kr for r ∈ N large enough. Since limk→∞ d(pk, p) = 0, we get by Remark 2.2 that {gk}k∈N converges uniformly
to g on Kr × T for such r ∈ N. In addition, xk → x and g(·, t) is continuous for every t ∈ T , one has

lim
k→∞

gk(xk, t) = g(x, t) ∀t ∈ T . (2.1)

Besides, it follows by xk ∈ C(pk) for all k ∈ N that gk(xk, t) � 0 for all t ∈ T . Thus, we receive from (2.1) that g(x, t) � 0 for
all t ∈ T . The last assertion shows that x ∈ C(p), which concludes the proof of (a).

(b) Suppose that V ⊂ R
n is an open set such that V ∩ C(p) 	= ∅. Let x̃ ∈ V ∩ C(p) and let x̂ ∈ R

n and � > 0 such that
g(x̂, t) � −� for all t ∈ T . Then g(x̃, t) � 0 for all t ∈ T and so, G(x̃) � 0.

If G(x̃) = 0, then x̃ is not a global minimizer of G(·) because G(x̂) � −� < 0. By our assumption, x̃ is not a local minimizer
of G(·). This means that there exists x̄ ∈ V such that G(x̄) < 0.

If G(x̃) < 0, then we put x̄ := x̃.
Set λ := −G(x̄) > 0 and fix r ∈ N such that x̄ ∈ Kr . Now we show that x̄ ∈ C(p′) for all p′ := ( f ′, g′) ∈ P satisfying

d(p′, p) < ε, where ε ∈ (0, λ
2r(1+λ)

). Indeed, it is easy to verify that d(p′, p) < ε implies ρr(g′(·, t), g(·, t)) < λ for all t ∈ T .
So, it holds that∣∣g′(x̄, t) − g(x̄, t)

∣∣ � max
x∈Kr

∣∣g′(x, t) − g(x, t)
∣∣ = ρr

(
g′(·, t), g(·, t)

)
< λ ∀t ∈ T .

This yields

g′(x̄, t) < g(x̄, t) + λ � G(x̄) + λ = 0 ∀t ∈ T .

The proof is complete. �
Next we recall from [13] the smallest strictly monotonic function he,a : R

m → R defined by
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he,a(y) = min {t ∈ R | y ∈ a + te − K }, (2.2)

where e ∈ int K and a ∈ R
m are fixed points. Many general properties of this function and its applications in vector opti-

mization can be found in [11,13]. In our setting, he,a can be exhibited as a simpler form by the following proposition.

Proposition 2.4. Consider he,a defined by (2.2) and set Θ := {h̄ ∈ K ∗ | 〈h̄, e〉 = 1}. We have for y ∈ R
m,

he,a(y) = max
{〈h̄, y − a〉 | h̄ ∈ ext Θ

}
,

where extΘ denotes the set of extreme points of Θ .

Proof. According to [11, Lemma 2.2.17] Θ is a compact base of K ∗ . So, for each y ∈ R
m, it holds that

he,a(y) = min{t ∈ R | −y + a + te ∈ K }
= min

{
t ∈ R | 〈h̄,−y + a + te〉 � 0, ∀h̄ ∈ K ∗}

= min
{

t ∈ R | 〈h̄,−y + a + te〉 � 0, ∀h̄ ∈ Θ
}

= min
{

t ∈ R | t � 〈h̄, y − a〉, ∀h̄ ∈ Θ
}

= min
{

t ∈ R | t � max
{〈h̄, y − a〉, ∀h̄ ∈ Θ

}}
= max

{〈h̄, y − a〉 | h̄ ∈ Θ
}

= max
{〈h̄, y − a〉 | h̄ ∈ ext Θ

}
.

The proof is complete. �
Remark 2.5. In a more special case, where K := R

m+, e := (1,1, . . . ,1) ∈ int R
m+ , and a := (a1,a2, . . . ,am) ∈ R

m , we get by
Proposition 2.4 a very simple formula as follows

he,a(y) = max{yi − ai | i = 1,2, . . . ,m}, y := (y1, y2, . . . , ym) ∈ R
m.

Let p := ( f , g) ∈ P and x̄ ∈ S(p), where S(p) is the set of all efficient solutions of problem (1.2). If there exists he,a

defined by (2.2) such that

x̄ ∈ argmin
{

he,a ◦ f (x) | x ∈ C(p)
}
,

then x̄ is called a scalarized solution by he,a .
It is worth mentioning here that in our framework each x̄ ∈ S(p) is a scalarized solution by he, f (x̄) .

Lemma 2.6. Let p := ( f , g) ∈ P and x̄ ∈ S(p). Then, x̄ is a scalarized solution by he, f (x̄) .

Proof. Since any efficient solution is weakly efficient, the proof is derived from [13, Theorem 4.2.15]. �
3. Lower semi-continuity of the Pareto solution map

We are now ready to state and prove the main result of the paper.

Theorem 3.1. Let p := ( f , g) ∈ P . Suppose that the following conditions hold:

(i) C is lsc at p.
(ii) For each x̄ ∈ S(p) one has

argmin
{

he, f (x̄) ◦ f (x) | x ∈ C(p)
} = {x̄}.

Then S is lsc at p.

Proof. Suppose contrary to the conclusion of the theorem that S is not lsc at p. Then there exist an element x̄ ∈ S(p), an
open set U ∈ N (x̄), and a sequence {pk := ( fk, gk)}∞k=1 ⊂ P such that {pk} converges to p = ( f , g) and

S(pk) ∩ U = ∅ ∀k ∈ N. (3.1)
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Pick an open ball with center x̄ and radius λ > 0, say B(x̄, λ), such that cl B(x̄, λ) ⊂ U . Since C is lsc at p, there is a sequence
{vk} such that vk ∈ C(pk) for all k ∈ N and vk → x̄ as k → ∞. Without loss of generality one may assume that vk ∈ B(x̄, λ)

for all k ∈ N. For each k ∈ N, we set

Wk(x̄) :=
{

x ∈ C(pk) ∩ B(x̄, λ)

∣∣∣ ‖x − x̄‖n <
∥∥vk − x̄

∥∥
n + 1

k

}
.

It is obvious that Wk(x̄) 	= ∅, due to vk ∈ Wk(x̄), for all k ∈ N.
Next, let us justify that there exist k0 ∈ N, xk ∈ Wk(x̄), and zk ∈ C(pk)\B(x̄, λ) such that

fk
(
zk) − fk

(
xk) ∈ −K\{0m} ∀k � k0. (3.2)

Indeed, argue by contradiction that the claim in (3.2) is false. Then there exists a subsequence {kl} of {k}, for convenience
we shall denote this subsequence by {k} again, such that for each k ∈ N, it holds that

fk(z) − fk(x) /∈ −K\{0m} ∀x ∈ Wk(x̄), ∀z ∈ C(pk)\B(x̄, λ). (3.3)

Denote by S(Ω, fk),k ∈ N, the set of Pareto solutions of the problem

min
K

{
fk(x) | x ∈ Ω

}
,

where Ω is some subset of C(pk). In view of Lemma 2.3(a), we have C(pk) is closed for every k ∈ N. Hence S(C(pk) ∩
cl B(x̄, λ), fk) 	= ∅ for every k ∈ N by virtue of the compactness of C(pk) ∩ cl B(x̄, λ) and the continuity of fk . Consider the
following two possibilities:

If S(C(pk) ∩ cl B(x̄, λ), fk) ∩ Wk(x̄) 	= ∅, then there exists

z̄ ∈ S
(
C(pk) ∩ cl B(x̄, λ), fk

) ∩ Wk(x̄).

We have z̄ ∈ S(pk). Indeed, if z̄ /∈ S(pk), then by z̄ ∈ S(C(pk) ∩ cl B(x̄, λ), fk), there exists z ∈ C(pk)\B(x̄, λ) such that

fk(z) − fk(z̄) ∈ −K\{0m},
contrary to (3.3). So z̄ ∈ S(pk) and thus,

z̄ ∈ S(pk) ∩ Wk(x̄) ⊂ S(pk) ∩ B(x̄, λ) ⊂ S(pk) ∩ U ,

which contradicts (3.1).
If S(C(pk) ∩ cl B(x̄, λ), fk) ∩ Wk(x̄) = ∅, then we select an element

ȳ ∈ Wk(x̄)\S
(
C(pk) ∩ cl B(x̄, λ), fk

)
.

Then there exists zȳ ∈ C(pk) ∩ cl B(x̄, λ) such that

fk(zȳ) − fk( ȳ) ∈ −K\{0m}. (3.4)

Put D := {x ∈ C(pk) ∩ cl B(x̄, λ) | fk(x) − fk(zȳ) ∈ −K }. It is easy to verify that S(D, fk) 	= ∅ and

S(D, fk) ⊂ S
(
C(pk) ∩ cl B(x̄, λ), fk

)
.

Taking arbitrarily z̄ ∈ S(D, fk), we have z̄ ∈ S(pk). Indeed, if z̄ /∈ S(pk), then by z̄ ∈ S(C(pk) ∩ cl B(x̄, λ), fk), there exists
y ∈ C(pk)\B(x̄, λ) such that

fk(y) − fk(z̄) ∈ −K\{0m}. (3.5)

By z̄ ∈ D , fk(z̄) − fk(zȳ) ∈ −K . This together with (3.4) and (3.5) yields

fk(y) − fk( ȳ) ∈ −K\{0m},
contrary to (3.3). Hence z̄ ∈ S(pk). It follows from z̄ ∈ D that

z̄ ∈ S(pk) ∩ cl B(x̄, λ) ⊂ S(pk) ∩ U ,

which contradicts (3.1). Combining now the previous arguments gives the assertion in (3.2).
To proceed, we consider the following two possible cases:
If {zk}k�k0 is bounded, then by taking a subsequence if necessary, we may assume that zk → z0 ∈ R

n\B(x̄, λ). According
to Lemma 2.3(a), C is a closed multifunction. Hence, z0 ∈ C(p). As {zk}k�k0 is a bounded sequence, there is no loss of
generality in assuming that {zk}k�k ⊂ int Kr for r ∈ N large enough. Since limk→∞ d(pk, p) = 0, we get from Remark 2.2
0
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that the sequence { fk}k∈N converges uniformly to f on Kr for such r ∈ N. In addition, since zk → z0 and f is continuous,
one has

lim
k→∞

fk
(
zk) = f

(
z0).

Similarly, we have limk→∞ fk(xk) = f (x̄). So, by letting k → ∞ in (3.2), we get

f
(
z0) − f (x̄) ∈ −K . (3.6)

Hence, f (z0) = f (x̄) due to x̄ ∈ S(p). In addition, since x̄ ∈ S(p), it follows from Lemma 2.6 that x̄ is a scalarized solution
by he, f (x̄) . Therefore,

z0 ∈ argmin
{

he, f (x̄) ◦ f (x) | x ∈ C(p)
}
. (3.7)

Combining (3.7) with assumption (ii) of the theorem gives z0 = x̄, which contradicts the fact that z0 ∈ R
n\B(x̄, λ).

If {zk}k�k0 is unbounded, then we may assume that

∥∥zk
∥∥

n → ∞ and
zk

‖zk‖n
→ ẑ ∈ R

n with ‖ẑ‖n = 1.

Note that zk, xk ∈ C(pk) for all k � k0. It follows from Lemma 2.3(a) that

1

‖zk‖n
zk +

(
1 − 1

‖zk‖n

)
xk ∈ C(pk) (3.8)

for all k large enough. Moreover, since C is a closed multifunction by Lemma 2.3(a), (3.8) entails that ẑ + x̄ ∈ C(p). Obviously,
fk(xk) ∈ fk(xk) − K for all k ∈ N and from (3.2) one has fk(zk) ∈ fk(xk) − K for all k � k0. So, using the K -quasiconvex
property of fk for each k, we obtain for k large enough,

fk

(
1

‖zk‖n
zk +

(
1 − 1

‖zk‖n

)
xk

)
− fk

(
xk) ∈ −K . (3.9)

By the same argument as above, we can show that

lim
k→∞

fk

(
1

‖zk‖n
zk +

(
1 − 1

‖zk‖n

)
xk

)
= f (ẑ + x̄) and lim

k→∞
fk

(
xk) = f (x̄).

Now, letting k → ∞ in (3.9), one gets f (ẑ + x̄)− f (x̄) ∈ −K . Therefore, f (ẑ + x̄) = f (x̄) because x̄ ∈ S(p). Following the same
manner as above we arrive at ẑ + x̄ = x̄, which is absurd. The proof is complete. �

As a consequence of Theorem 3.1 and Lemma 2.3, we have the following result.

Corollary 3.2. Let p = ( f , g) ∈ P . Suppose that the following conditions hold:

(i) C(p) satisfies the strong Slater condition and the local minima of G(·) := supt∈T g(·, t) are global.
(ii) For each x̄ ∈ S(p) one has

argmin
{

he, f (x̄) ◦ f (x) | x ∈ C(p)
} = {x̄}.

Then S is lsc at p.

Remark 3.3. Assumption (ii) in Theorem 3.1 is fulfilled by [13, Theorem 2.15] when f is strictly K -quasiconvex, i.e., for
y ∈ R

m , x1, x2 ∈ R
n , x1 	= x2, λ ∈ (0,1),

f (x1), f (x2) ∈ y − K implies f
(
λx1 + (1 − λ)x2

) ∈ y − int K .

We close this section by two examples that show the importance of the hypotheses imposed in Theorem 3.1. Namely, if
we omit one of conditions (i) and (ii), then the conclusion of the theorem may be false.

Example 3.4. Let T = [0,1] and K := R
2+ . Consider f ∈ QCK [R,R

2] and g, gk ∈ QC[R × T ,R], k � 1, which are given as
follows
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f (x) = (x,2x) ∀x ∈ R, g(x, t) = −tx − t ∀x ∈ R, ∀t ∈ [0,1],

gk(x, t) =
{−tx if t ∈ [0, 1

k+1 ],
−tx − k+1

k t + 1
k if t ∈ [ 1

k+1 ,1], ∀x ∈ R.

Put p := ( f , g), pk := ( f , gk) ∈ P := QCK [R,R
2] × QC[R × T ,R] for all k � 1. It is easy to see that pk → p. We have

C(p) = [−1,+∞), S(p) = {−1}, C(pk) = [0,+∞), S(pk) = {0} ∀k � 1.

For a fixed point e ∈ int K and for x̄ := −1 ∈ S(p), we can verify that

argmin
{

he, f (x̄) ◦ f (x) | x ∈ C(p)
} = {x̄}.

This means that assumption (ii) of Theorem 3.1 is fulfilled. Meantime, C is not lsc at p. In other words, assumption (i) of
Theorem 3.1 fails to hold. Observe that S is not lsc at p.

Example 3.5. Let T = [0,1] ∪ {2} and K := [0,+∞). Consider f ∈ QCK [R2,R] and g, gk ∈ QC[R2 × T ,R], k � 2, which are
given as follows

f (x) = x1 ∀x = (x1, x2) ∈ R
2,

g(x, t) =
{

(t − 1)x1 + tx2 − t if t ∈ [0,1],
(t − 1)x1 + (1 − t)x2 if t = 2,

∀x = (x1, x2) ∈ R
2,

gk(x, t) =

⎧⎪⎨
⎪⎩

(t − 1)x1 + tx2 if t ∈ [0, 1
k+1 ],

(t − 1)x1 + tx2 − k+1
k t + 1

k if t ∈ [ 1
k+1 ,1],

(t − 1)x1 + (1 − t)x2 if t = 2,

∀x = (x1, x2) ∈ R
2.

Put p := ( f , g), pk := ( f , gk) ∈ P := QCK [R2,R] × QC[R2 × T ,R] for all k � 2. It is easy to see that pk → p. We have

C(p) = {
(x1, x2) ∈ R

2 | 0 � x1 � 1, x1 � x2 � 1
}
,

C(pk) =
{
(x1, x2) ∈ R

2
∣∣∣ 0 � x1 � 1

k
, x1 � x2 � kx1

}
∪

{
1

k
� x1 � 1, x1 � x2 � 1

}
,

S(p) = {
(0, x2) | 0 � x2 � 1

}
, S(pk) = {

(0,0)
} ∀k � 2.

Taking x̂ = ( 1
2 , 3

4 ) ∈ R
2, we have

g(x̂, t) � −1

4
∀t ∈ T .

This means that C(p) satisfies the strong Slater condition. In addition, G(·) := supt∈T g(·, t) is convex. So, C is lsc at p by
Lemma 2.3(b). In other words, assumption (i) of Theorem 3.1 is satisfied. Choosing e := 1 ∈ int K , we get by Remark 2.5 that
for each x̄ ∈ S(p), he, f (x̄)(y) = y for every y ∈ R. Hence,

argmin
{

he, f (x̄) ◦ f (x) | x ∈ C(p)
} = S(p) 	= {x̄} ∀x̄ ∈ S(p),

which shows that assumption (ii) of Theorem 3.1 is violated. Actually, S is not lsc at p.
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