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1. Introduction

In this work we investigate the image set of integer-valued polynomials over Z. The set of these
polynomials is a ring usually denoted by:

Int(Z) �
{

f ∈Q[X] ∣∣ f (Z) ⊂ Z
}
.

Since an integer-valued polynomial f (X) maps the integers in a subset of the integers, it is natural
to consider the subset of the integers formed by the values of f (X) over the integers and the ideal
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generated by this subset. This ideal is usually called the fixed divisor of f (X). Here is the classical
definition.

Definition 1.1. Let f ∈ Int(Z). The fixed divisor of f (X) is the ideal of Z generated by the values of
f (n), as n ranges in Z:

d( f ) = d( f ,Z) = (
f (n)

∣∣ n ∈ Z
)
.

We say that a polynomial f ∈ Int(Z) is image primitive if d( f ) = Z.

It is well-known that for every integer n � 1 we have

d
(

X(X − 1) · · · (X − (n − 1)
)) = n!

so that the so-called binomial polynomials Bn(X) � X(X − 1) · · · (X − (n − 1))/n! are integer-valued
(indeed, they form a free basis of Int(Z) as a Z-module; see [4]).

Notice that, given two integer-valued polynomials f and g , we have d( f g) ⊂ d( f )d(g) and we
may not have an equality. For instance, consider f (X) = X and g(X) = X − 1; then we have d( f ) =
d(g) = Z and d( f g) = 2Z. If f ∈ Int(Z) and n ∈ Z, then directly from the definition we have d(nf ) =
nd( f ). If cont(F ) denotes the content of a polynomial F ∈ Z[X], that is, the greatest common divisor
of the coefficients of F , we have F (X) = cont(F )G(X), where G ∈ Z[X] is a primitive polynomial (that
is, cont(G) = 1). We have the relation:

d(F ) = cont(F )d(G).

In particular, the fixed divisor is contained in the ideal generated by the content. Hence, given a
polynomial with integer coefficients, we can assume it to be primitive. In the same way, if we
have an integer-valued polynomial f (X) = F (X)/N , with f ∈ Z[X] and N ∈ N, we can assume that
(cont(F ), N) = 1 and F (X) to be primitive.

The next lemma gives a well-known characterization of a generator of the above ideal (see [1,
Lemma 2.7]).

Lemma 1.1. Let f ∈ Int(Z) be of degree d and set

1) d1 = sup{n ∈ Z | f (X)
n ∈ Int(Z)},

2) d2 = GCD{ f (n) | n ∈ Z},
3) d3 = GCD{ f (0), . . . , f (d)},

then d1 = d2 = d3 .

Let f ∈ Int(Z). We remark that the value d1 of Lemma 1.1 is plainly equal to:

d1 = sup
{
n ∈ Z

∣∣ f ∈ n Int(Z)
}
.

Moreover, given an integer n, we have this equivalence that we will use throughout the paper, a sort
of ideal-theoretic characterization of the arithmetical property that all the values attained by f (X)

are divisible by n:

f (Z) ⊂ nZ ⇐⇒ f ∈ n Int(Z)

(n Int(Z) is the principal ideal of Int(Z) generated by n). From 1) of Lemma 1.1 we see immediately
that if f (X) = F (X)/N is an integer-valued polynomial, where F ∈ Z[X] and N ∈ N coprime with the
content of F (X), then d( f ) = d(F )/N , so we can just focus our attention on the fixed divisor of a
primitive polynomial in Z[X].
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We want to give another interpretation of the fixed divisor of a polynomial f ∈ Z[X] by consider-
ing the maximal ideals of Int(Z) containing f (X) and looking at their contraction to Z[X]. We recall
first the definition of unitary ideal given in [12].

Definition 1.2. An ideal I ⊆ Int(Z) is unitary if I ∩Z �= 0.

That is, an ideal I of Int(Z) is unitary if it contains a non-zero integer, or, equivalently, IQ[X] =
Q[X] (where IQ[X] denotes the extension ideal in Q[X]). The whole ring Int(Z) is clearly a principal
unitary ideal generated by 1.

The next results are probably well-known, but for the ease of the reader we report them. The first
lemma says that a principal unitary ideal I is generated by a non-zero integer, which generates the
contraction of I to Z. In particular, this lemma establishes a bijective correspondence between the
nonzero ideals of Z and the set of principal unitary ideals of Int(Z).

Lemma 1.2. Let I ⊆ Int(Z) be a principal unitary ideal. If I ∩Z = nZ with n �= 0 then I = n Int(Z). In partic-
ular, n Int(Z) ∩Z = nZ. Moreover, n1 Int(Z) = n2 Int(Z) with n1,n2 ∈ Z if and only if n1 = ±n2 .

Proof. If I = ( f ) for some f ∈ Int(Z) then deg( f ) = 0 since a non-zero integer n is in I . Since f (X)

is integer-valued it must be equal to an integer and so it is contained in I ∩ Z = nZ. Hence we get
the first statement of the lemma. If n1 Int(Z) = n2 Int(Z) then n1 = n2 f with f ∈ Int(Z); this forces f
to be a non-zero integer, so that n1 divides n2. Similarly, we get that n2 divides n1. �
Lemma 1.3. Let I1, I2 ⊆ Int(Z) be principal unitary ideals. Then I1 ∩ I2 is a principal unitary ideal too.

Proof. Suppose Ii = ni Int(Z), where ni ∈ Z, niZ = Ii ∩Z, for i = 1,2. We have n1Z∩ n2Z = nZ, where
n = lcm{n1,n2}. The ideal I1 ∩ I2 is unitary since n ∈ I1 ∩ I2. In particular, we have I1 ∩ I2 ⊇ n Int(Z).
We have to prove that I1 ∩ I2 ⊆ n Int(Z). Let f ∈ I1 ∩ I2. Then f (Z) ⊂ n1Z∩ n2Z = nZ, so that f (X)

n ∈
Int(Z). �

The previous lemma implies the following decomposition for a principal unitary ideal generated
by an integer n, with prime factorization n = ∏

i pai
i . We have

n Int(Z) =
⋂

i

pai
i Int(Z) =

∏
i

pai
i Int(Z)

where the last equality holds because the ideals pai
i Z are coprime in Z, hence they are coprime in

Int(Z).
We are now ready to give the following definition.

Definition 1.3. Let f ∈ Int(Z). The extended fixed divisor of f (X) is the minimal ideal of the set
{n Int(Z) | n ∈ Z, f ∈ n Int(Z)}. We denote this ideal by D( f ).

Equivalently, in the above definition, we require that n Int(Z) contains the principal ideal in Int(Z)

generated by the polynomial f (X). Lemmas 1.2 and 1.3 show that the minimal ideal in the above
definition does exist: it is equal to the intersection of all the principal unitary ideals containing f (X).
Notice that the extended fixed divisor is an ideal of Int(Z), while the fixed divisor is an ideal of Z.
The polynomial f (X) is image primitive if and only if its extended fixed divisor is the whole ring
Int(Z). In the next sections we will study the extended fixed divisor by considering the p-part of it,
namely the principal unitary ideals of the form pn Int(Z), p ∈ Z being prime and n a positive integer.

The following proposition gives a link between the fixed divisor and the extended fixed divisor:
the latter is the extension of the former and conversely. So each of them gives information about the
other one.
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Proposition 1.1. Let f ∈ Int(Z). Then we have:

a) D( f ) ∩Z = d( f ),
b) d( f ) Int(Z) = D( f ).

Proof. Let d, D ∈ Z be such that d( f ) = dZ and D( f ) = D Int(Z). Since d( f ) Int(Z) = d Int(Z) is a
principal unitary ideal containing f (X), from the definition of extended fixed divisor, we have D( f ) ⊆
d Int(Z). In particular, D � d. We also have f (X)/D ∈ Int(Z) and so d � D , by characterization 1) of
Lemma 1.1. Hence we get a). From that we deduce that d( f ) ⊆ D( f ), so statement b) follows. �

As already remarked in [5], the rings Z and Int(Z) share the same units, namely {±1}. Then [5,
Proposition 2.1] can be restated as follows.

Proposition 1.2 (Cahen–Chabert). Let f ∈ Int(Z) be irreducible in Q[X]. Then f (X) is irreducible in Int(Z) if
and only if f (X) is not contained in any proper principal unitary ideal of Int(Z).

The next lemma has been given in [6] and is analogous to the Gauss Lemma for polynomials in
Z[X] which are irreducible in Int(Z).

Lemma 1.4 (Chapman–McClain). Let f ∈ Z[X] be a primitive polynomial. Then f (X) is irreducible in Int(Z)

if and only if it is irreducible in Z[X] and image primitive.

For example, the polynomial f (X) = X2 + X + 2 is irreducible in Q[X] and also in Z[X] since it
is primitive (because of Gauss Lemma). But it is reducible in Int(Z) since its extended fixed divisor is
not trivial, namely it is the ideal 2 Int(Z). So in Int(Z) we have the following factorization:

f (X) = 2 · X2 + X + 2

2

and indeed this is a factorization into irreducibles in Int(Z), since the latter polynomial is image prim-
itive and irreducible in Q[X], and by [5, Lemma 1.1], the irreducible elements in Z remain irreducible
in Int(Z). So the study of the extended fixed divisor of the elements in Int(Z) is a first step toward
studying the factorization of the elements in this ring (which is not a unique factorization domain).

Here is an overview of the content of the paper. At the beginning of the next section we recall the
structure of the prime spectrum of Int(Z). Then, for a fixed prime p, we describe the contractions to
Z[X] of the maximal unitary ideals of Int(Z) containing p (Lemma 2.1). In Theorem 2.1 we describe
the ideal I p of Z[X] of those polynomials whose fixed divisor is divisible by p, namely the contraction
to Z[X] of the principal unitary ideal p Int(Z), which is the ideal of integer-valued polynomials whose
extended fixed divisor is contained in p Int(Z). It turns out that I p is the intersection of the afore-
mentioned contractions. In the third section we generalize the result of the second section to prime
powers, by means of a structure theorem of Loper regarding unitary ideals of Int(Z). We consider the
contractions to Z[X] of the powers of the prime unitary ideals of Int(Z) (Lemma 3.1). In Remark 2 we
give a description of the structure of the set of these contractions; that allows us to give the primary
decomposition of the ideal I pn = pn Int(Z) ∩Z[X], made up of those polynomials whose fixed divisor
is divisible by a prime power pn . We shall see that we have to distinguish two cases: p � n and
p > n (see also the examples in Remark 3). In Theorem 3.1 we describe I pn in the case p � n. This
result was already known in a slightly different context by Dickson (see [7, p. 22, Theorem 27]), but
our different proof uses the primary decomposition of I pn and that gives an insight to generalize the
result to the second case. In Proposition 3.2 we give a set of generators for the primary components
of I pn , in the case p > n. Finally in the last section, as an application, we explicitly compute the ideal
I pp+1 .
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2. Fixed divisor via Spec(Int(ZZZ))

The study of the prime spectrum of the ring Int(Z) began in [3]. We recall that the prime ideals
of Int(Z) are divided into two different categories, unitary and non-unitary. Let P be a prime ideal of
Int(Z). If it is unitary then its intersection with the ring of integers is a principal ideal generated by
a prime p.

Non-unitary prime ideals: P ∩Z = {0}.
In this case P is a prime (non-maximal) ideal and it is of the form

Bq = qQ[X] ∩ Int(Z)

for some q ∈ Q[X] irreducible. By Gauss Lemma we may suppose that q ∈ Z[X] is irreducible and
primitive.

Unitary prime ideals: P ∩Z = pZ.
In this case P is maximal and is of the form

Mp,α = {
f ∈ Int(Z)

∣∣ f (α) ∈ pZp
}

for some p prime in Z and some α ∈ Zp , the ring of p-adic integers. We have Mp,α = Mq,β if
and only if (p,α) = (q, β). So if we fix the prime p, the elements of Zp are in bijection with the
unitary prime ideals of Int(Z) above the prime p. Moreover, Mp,α is height 1 if and only if α is
transcendental over Q. If α is algebraic over Q and q(X) is its minimal polynomial then Mp,α ⊃ Bq .
We have Bq ⊂ Mp,α if and only if q(α) = 0. Every prime ideal of Int(Z) is not finitely generated.

For a detailed study of Spec(Int(Z)) see [4].

If we denote by d( f ,Zp) the fixed divisor of f ∈ Int(Z) viewed as a polynomial over the ring of
p-adic integers Zp (that is, d( f ,Zp) is the ideal ( f (α) | α ∈ Zp)), Gunji and McQuillan in [8] observed
that

d( f ) =
⋂

p

d( f ,Zp)

where the intersection is taken over the set of primes in Z. Moreover, d( f ,Zp) = d( f )Zp ⊂ Zp . Re-
member that given an ideal I ⊂ Z and a prime p we have IZp = Zp if and only if I �⊂ (p), so that
in the previous equation we have a finite intersection. Since Zp is a DVR we have d( f ,Zp) = pnZp ,
for some integer n (which of course depends on p), so that the exact power of p which divides
f (Z) is the same as the power of p dividing f (Zp). Without loss of generality, we can restrict our
attention to the p-part of the fixed divisor of a polynomial f ∈ Z[X]. We begin our research by find-
ing those polynomials in Z[X] whose fixed divisor is divisible by a fixed prime p, namely the ideal
p Int(Z) ∩Z[X].

Lemma 2.1. Let p be a prime and α ∈ Zp . Then Mp,α ∩ Z[X] = (p, X − a), where a ∈ Z is such that α ≡
a (mod p). Moreover, if β ∈ Zp is another p-adic integer, we have Mp,α ∩Z[X] = Mp,β ∩Z[X] if and only if
α ≡ β (mod p).

Proof. Let a be an integer as in the statement of the lemma; it exists since Z is dense in Zp for
the p-adic topology. We immediately see that p and X − a are in Mp,α . Then the conclusion follows
since (p, X −a) is a maximal ideal of Z[X] and Mp,α ∩Z[X] is not equal to the whole ring Z[X]. The
second statement follows from the fact that (p, X − a) = (p, X − b) if and only if a ≡ b (mod p). �

We have just seen that the contraction of Mp,α to Z[X] depends only on the residue class modulo
p of α. So, if p is a fixed prime, the contractions of Mp,α to Z[X] as α ranges through Zp are made
up of p distinct maximal ideals, namely
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{
Mp,α ∩Z[X] ∣∣ α ∈ Zp

} = {
(p, X − j)

∣∣ j ∈ {0, . . . , p − 1}}.
Conversely, the set of prime ideals of Int(Z) above a fixed maximal ideal of the form (p, X − j) is
{Mp,α | α ∈ Zp, α ≡ j (mod p)}, since Bq are non-unitary ideals and p is the only prime integer in
Mp,α .

For a prime p and an integer j ∈ {0, . . . , p − 1}, we set:

Mp, j = M j � (p, X − j).

Whenever the notation Mp, j is used, it will be implicit that j ∈ {0, . . . , p − 1}.
The next lemma computes the intersection of the ideals Mp, j , for a fixed prime p, by finding

an ideal whose primary decomposition is given by this intersection (and its primary components are
precisely the p ideals Mp, j). From now on we will omit the index p.

Lemma 2.2. Let p ∈ Z be a prime. Then we have

⋂
j=0,...,p−1

M j =
(

p,
∏

j=0,...,p−1

(X − j)

)
.

Proof. Let J be the ideal on the right-hand side. If P is a prime minimal over J , then we see imme-
diately that P =M j for some j ∈ {0, . . . , p − 1}, since M j is a maximal ideal. Conversely, every such
a maximal ideal contains J and is minimal over it. Then the minimal primary decomposition of J is
of the form

J =
⋂

j=0,...,p−1

Q j

where Q j is an M j -primary ideal. Since X − i �∈M j for all i ∈ {0, . . . , p − 1} \ { j}, we have (X − j) ∈
Q j , so indeed Q j = (p, X − j) for each j = 0, . . . , p − 1. �

The next proposition characterizes the principal unitary ideals in Int(Z) generated by a prime p.

Proposition 2.1. Let p ∈ Z be a prime. Then the principal unitary ideal p Int(Z) is equal to

p Int(Z) =
⋂

α∈Zp

Mp,α.

Proof. We trivially have that p Int(Z) is contained in the above intersection, since p is in every ideal
of the form Mp,α . On the other hand, this intersection is equal to { f ∈ Int(Z) | f (Zp) ⊂ pZp}. If f (X)

is in this intersection, since f (X) is integer-valued and pZp ∩ Z = pZ, we have f (Z) ⊂ pZ. This is
equivalent to saying that f (X)/p ∈ Int(Z), that is, f ∈ p Int(Z). �

In particular, the previous proposition implies that Int(Z) does not have the finite character prop-
erty (we recall that a ring has this property if every non-zero element is contained in a finite number
of maximal ideals).

From the above results we get the following theorem, which characterizes the ideal of polynomials
with integer coefficients whose fixed divisor is divisible by a prime p, that is, the ideal p Int(Z)∩Z[X].

Theorem 2.1. Let p be a prime. Then

p Int(Z) ∩Z[X] =
(

p,
∏

j=0,...,p−1

(X − j)

)
.
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Notice that Lemma 2.2 gives the primary decomposition of p Int(Z) ∩ Z[X], so M j for j =
0, . . . , p − 1 are exactly the prime ideals belonging to it. As a consequence of this theorem we get
the following well-known result: if f ∈ Z[X] is primitive and p is a prime such that d( f ) ⊆ p then
p � deg( f ). This immediately follows from the theorem, since the degree of

∏
j=0,...,p−1(X − j) is p.

We remark that by Fermat’s little theorem the ideal on the right-hand side of the statement of
Theorem 2.1 is equal to (p, X p − X). This amounts to saying that the two polynomials X · · · · · (X −
(p − 1)) and X p − X induce the same polynomial function on Z/pZ.

3. Contraction of primary ideals

We remark that Proposition 2.1 also follows from a general result contained in [11]: every unitary
ideal in Int(Z) is an intersection of powers of unitary prime ideals (namely the maximal ideals Mp,α).
In particular, every Mp,α-primary ideal is a power of Mp,α itself, since Mp,α is maximal. From the
same result we also have the following characterization of the powers of Mp,α , for any positive
integer n:

Mn
p,α = {

f ∈ Int(Z)
∣∣ f (α) ∈ pnZp

}
.

This fact implies the following expression for the principal unitary ideal generated by pn:

pn Int(Z) =
⋂

α∈Zp

Mn
p,α. (1)

We remark again that the previous ideal is made up of those integer-valued polynomials whose ex-
tended fixed divisor is contained in pn Int(Z). Similarly to the previous case n = 1 (see Theorem 2.1)
we want to find the contraction of this ideal to Z[X], in order to find the polynomials in Z[X] whose
fixed divisor is divisible by pn . We set:

I pn � pn Int(Z) ∩Z[X]. (2)

Notice that by (1) we have I pn = ⋂
α∈Zp

(Mn
p,α ∩Z[X]).

Like before, we begin by finding the contraction to Z[X] of Mn
p,α , for each α ∈ Zp . The next lemma

is a generalization of Lemma 2.1.

Lemma 3.1. Let p be a prime, n a positive integer and α ∈ Zp . Then Mn
p,α ∩Z[X] = (pn, X − a), where a ∈ Z

is such that α ≡ a (mod pn). The ideal Mn
p,α ∩ Z[X] is Mp, j -primary, where j ≡ α (mod p). Moreover, if

β ∈ Zp is another p-adic integer, we have Mn
p,α ∩Z[X] =Mn

p,β ∩Z[X] if and only if α ≡ β (mod pn).

Proof. The case n = 1 has been done in Lemma 2.1. For the general case, let a ∈ Z be such that
a ≡ α (mod pn) (again, such an integer exists since Z is dense in Zp for the p-adic topology). We
have (pn, X − a) ⊂ Mn

p,α ∩ Z[X] (notice that if n > 1 then (pn, X − a) is not a prime ideal). To prove
the other inclusion let f ∈ Mn

p,α ∩ Z[X]. By the Euclidean algorithm in Z[X] (the leading coefficient
of X − a is a unit) we have

f (X) = q(X)(X − a) + f (a).

Since f (α) ∈ pnZp and pn|a − α we have pn| f (a). Hence, f ∈ (pn, X − a) as we wanted. Since Mn
p,α

is an Mp,α-primary ideal in Int(Z) and the contraction of a primary ideal is a primary ideal, by
Lemma 2.1 we get the second statement. Finally, like in the proof of Lemma 2.1, we immediately see
that (pn, X − a) = (pn, X − b) if and only if a ≡ b (mod pn), which gives the last statement of the
lemma. �
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Remark 1. It is worth to write down the fact that we used in the above proof: given a polynomial
f ∈ Z[X], we have

f ∈ (
pn, X − a

) ⇐⇒ f (a) ≡ 0
(
mod pn). (3)

Remark 2. If p is a fixed prime and n is a positive integer, Lemma 3.1 implies

Ip,n �
{
Mn

p,α ∩Z[X] ∣∣ α ∈ Zp
} = {(

pn, X − i
) ∣∣ i = 0, . . . , pn − 1

}
.

Let us consider an ideal I = Mn
p,α ∩ Z[X] = (pn, X − i) in Ip,n , with i ∈ Z, i ≡ α (mod pn). It is

quite easy to see that I contains (Mp,α ∩ Z[X])n = Mn
p, j = (p, X − j)n , where j ∈ {0, . . . , p − 1},

j ≡ α (mod p) (notice that j ≡ i (mod p)). If n > 1 this containment is strict, since X − i �∈ (p, X − j)n .
We can group the ideals of Ip,n according to their radical: there are p radicals of these pn ideals,
namely the maximal ideals Mp, j , j = 0, . . . , p − 1. This amounts to making a partition of the residue
classes modulo pn into p different sets of elements congruent to j modulo p, for j = 0, . . . , p − 1;
each of these sets has cardinality pn−1. Correspondingly we have:

Ip,n =
⋃

j=0,...,p−1

Ip,n, j

where Ip,n, j � {(pn, X − i) | i = 0, . . . , pn − 1, i ≡ j (mod p)}, for j = 0, . . . , p − 1. Every ideal in Ip,n, j
is Mp, j -primary and it contains the n-th power of its radical, namely Mn

p, j .
Now we want to compute the intersection of the ideals in Ip,n , which is equal to the ideal I pn in

Z[X] (see (1) and (2)). We can express this intersection as an intersection of Mp, j-primary ideals as
we have said above, in the following way (in the first equality we make use of Eq. (1) and Lemma 3.1):

I pn =
⋂

i=0,...,pn−1

(
pn, X − i

) =
⋂

j=0,...,p−1

Qp,n, j (4)

where

Qp,n, j �
⋂

i≡ j (mod p)

(
pn, X − i

)

(notice that the intersection is taken over the set {i ∈ {0, . . . , pn − 1} | i ≡ j (mod p)}). The ideal
Qp,n, j is an Mp, j-primary ideal, for j = 0, . . . , p − 1, since the intersection of M-primary ideals is
an M-primary ideal. We will omit the index p in Qp,n, j and in Mp, j if that will be clear from
the context. The Mp, j-primary ideal Qn, j is just the intersection of the ideals in Ip,n, j , according
to the partition we made. It is equal to the set of polynomials in Z[X] which modulo pn are zero
at the residue classes congruent to j modulo p (see (3) of Remark 1). We remark that (4) is the
minimal primary decomposition of I pn . Notice that there are no embedded components in this pri-
mary decomposition, since the prime ideals belonging to it (the minimal primes containing I pn ) are
{M j | j = 0, . . . , p − 1}, which are maximal ideals.

We recall that if I and J are two coprime ideals in a ring R , that is I + J = R , then I J = I ∩ J
(in general only the inclusion I J ⊂ I ∩ J holds). The condition for two ideals I and J to be coprime
amounts to saying that I and J are not contained in a same maximal ideal M , that is, I + J is
not contained in any maximal ideal M . If M1 and M2 are two distinct maximal ideals then they
are coprime, and the same holds for any of their respective powers. If R is Noetherian, then every
primary ideal Q contains a power of its radical and moreover if the radical of Q is maximal then
also the converse holds (see [14]). So if Q i is an Mi -primary ideal for i = 1,2 and M1, M2 are distinct
maximal ideals, then Q 1 and Q 2 are coprime.
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Since {M j} j=0,...,p−1 are p distinct maximal ideals, for what we have just said above we have

⋂
j=0,...,p−1

Qn, j =
∏

j=0,...,p−1

Qn, j.

Now we want to describe the M j-primary ideals Qn, j , for j = 0, . . . , p − 1. The next lemma gives
a relation of containment between these ideals and the n-th powers of their radicals.

Lemma 3.2. Let p be a fixed prime and n a positive integer. For each j = 0, . . . , p − 1, we have

Qn, j ⊇ Mn
j .

Proof. The statement follows from Remark 2. �
As a consequence of this lemma, we get the following result:

Corollary 3.1. Let p be a fixed prime and n a positive integer. Then we have:

I pn ⊇
(

p,
∏

j=0,...,p−1

(X − j)

)n

.

Proof. By (4) and Lemma 3.2 we have

I pn =
∏

j=0,...,p−1

Qn, j ⊇
∏

j=0,...,p−1

Mn
j

where the last containment follows from Lemma 3.2. Finally, by Lemma 2.2, the product of the ideals
Mn

j is equal to

∏
j=0,...,p−1

Mn
j =

(
p,

∏
j=0,...,p−1

(X − j)

)n

.

Notice that the product of the M j ’s is actually equal to their intersection, since they are maximal
coprime ideals. �

The last formula of the previous proof gives the primary decomposition of the ideal
(p,

∏
j=0,...,p−1(X − j))n .

Remark 3. In general, for a fixed j ∈ {0, . . . , p − 1}, the reverse containment of Lemma 3.2 does not
hold, that is, the n-th power of M j can be strictly contained in the M j -primary ideal Qn, j . For
example (again, we use (3) to prove the containment):

X(X − 2) ∈
( ⋂

k=0,...,3

(
23, X − 2k

)) \ (2, X)3.

Because of that, in general we do not have an equality in Corollary 3.1. For example, let p = 2 and
n = 3. We have

X(X − 1)(X − 2)(X − 3) ∈ I23 \ (
2, X(X − 1)

)3
.
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It is also false that

⋂
i=0,...,pn−1

(
pn, X − i

) =
(

pn,
∏

i=0,...,pn−1

(X − i)

)
.

See for example: p = 2, n = 2: 2X(X − 1) ∈ ⋂
i=0,...,3(4, X − i) \ (4,

∏
i=0,...,3(X − i)).

We want to study under which conditions the ideal Qn, j is equal to Mn
j . Our aim is to find a set

of generators for Qn, j . For f ∈Qn, j , we have f ∈ (pn, X − i) for each i ≡ j (mod p), i ∈ {0, . . . , pn −1}.
By (3) that means pn| f (i) for each such an i. Equivalently, such a polynomial has the property that
modulo pn it is zero at the pn−1 residue classes of Z/pnZ which are congruent to j modulo p.

Without loss of generality, we proceed by considering the case j = 0. We set M = M0 = (p, X)

and Qn =Qn,0 = ⋂
i≡0 (mod p)(pn, X − i). Let f ∈Qn , of degree m. We have

f (X) = q1(X)X + f (0) (5)

where q1 ∈ Z[X] has degree equal to m − 1. Since f ∈ (pn, X) we have pn| f (0).
Since f ∈ (pn, X − p), we have pn| f (p) = q1(p)p + f (0), so pn−1|q1(p). By the Euclidean algorithm,

q1(X) = q2(X)(X − p) + q1(p) (6)

for some polynomial q2 ∈ Z[X] of degree m − 2. So

f (X) = q2(X)(X − p)X + q1(p)X + f (0).

We set R1(X) = q1(p)X + f (0). Then R1 ∈Mn , since pn−1|q1(p) and pn| f (0). Since f ∈ (pn, X − 2p),
we have pn| f (2p) = q2(2p)2p2 + q1(p)2p + f (0). If p > 2 then pn−2|q2(2p), because pn|q1(p)2p +
f (0). If p = 2 then we can just say pn−3|q2(2p). By the Euclidean algorithm again, we have

q2(X) = q3(X)(X − 2p) + q2(2p)

for some q3 ∈ Z[X]. So we have

f (X) = q3(X)(X − 2p)(X − p)X + q2(2p)(X − p)X + q1(p)X + f (0).

Like before, if we set R2(X) = q2(2p)(X − p)X +q1(p)X + f (0), we have R2 ∈Mn if p > 2, or R2 ∈Qn

if p = 2.
We define now the following family of polynomials:

Definition 3.1. For each k ∈ N, k � 1, we set

G p,0,k(X) = Gk(X) �
∏

h=0,...,k−1

(X − hp).

We also set G0(X)� 1.

From now on, we will omit the index p in the above notation.
Notice that the polynomials Gk(X), whose degree for each k is k, enjoy these properties:

i) For every t ∈ Z, Gk(tp) = pkt(t − 1) · · · (t − (k − 1)). Hence, the highest power of p which divides
all the integers in the set {Gk(tp) | t ∈ Z} is pk+v p(k!) . It is easy to see that k + v p(k!) = v p((pk)!).

ii) Gk(X) = (X − kp)Gk−1(X).
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iii) since for every integer h, X − hp ∈ M, we have Gk(X) ∈ Mk . We remark that k is the maximal
integer with this property, since deg(Gk) = k and Gk(X) is primitive (since monic).

Recall that, by Lemma 3.2, for every integer n we have Qn ⊇ Mn . By property iii) above Gk ∈Mn

if and only if n � k. By property i) we have Gk ∈Qn if and only if k + v p(k!) � n. From these remarks,
it is very easy to deduce that, in the case p � n, if Gk ∈ Qn then Gk ∈ Mn . In fact, if that is not the
case, it follows from above that k < n. Since n � p we get k + v p(k!) = k. Since Gk ∈ Qn , we have
n � k, contradiction.

The next lemma gives a sort of division algorithm between an element of Qn and the polynomials
{Gk(X)}k∈N . In particular, we will deduce that Qn =Mn , if p � n.

Lemma 3.3. Let p be a prime and n a positive integer. Let f ∈ Qp,n,0 = Qn be of degree m. Then for each
1 � k � m there exists qk ∈ Z[X] of degree m − k such that

f (X) = qk(X)Gk(X) + Rk−1(X)

where Rk−1(X) �
∑

h=1,...,k−1 qh(hp)Gh(X) for k � 2 and R0(X)� f (0).
We also have qk(X) = qk+1(X)(X −kp)+qk(kp) for k = 1, . . . ,m−1. Moreover, for each such a k the following
hold:

i) pn−v p((pk)!)|qk(kp), if v p((pk)!) < n.
ii) qk(kp)Gk(X) ∈Qn and if k < p then qk(kp)Gk(X) ∈Mn.

iii) If m � p then Rk−1 ∈Mn for k = 1, . . . ,m.
If m > p then Rk−1 ∈Mn for k = 1, . . . , p and Rk−1 ∈Qn for k = p + 1, . . . ,m.

Proof. We proceed by induction on k. The case k = 1 follows from (5), and by (6) we have the last
statement regarding the relation between q1(X) and q2(X). Suppose now the statement is true for
k − 1, so that

f (X) = qk−1(X)Gk−1(X) + Rk−2(X)

with Rk−2(X)�
∑

h=1,...,k−2 qh(hp)Gh(X) and

– pn−v p((p(k−1))!)|qk−1((k − 1)p), if v p((p(k − 1)!)) < n,
– qk−1((k − 1)p)Gk−1(X) belongs to Qn and if k − 1 < p it belongs to Mn ,
– Rk−2 ∈Qn and if k − 2 < p then Rk−2 ∈Mn .

We divide qk−1(X) by (X − (k − 1)p) and we get

qk−1(X) = qk(X)
(

X − (k − 1)p
) + qk−1

(
(k − 1)p

)
for some polynomial qk ∈ Z[X] of degree m − k. We substitute this expression of qk−1(X) in the
equation of f (X) at the step k − 1 and we get:

f (X) = qk(X)
(

X − (k − 1)p
)
Gk−1(X) + Rk−1(X), (7)

where Rk−1(X) � qk−1((k − 1)p)Gk−1(X) + Rk−2(X). This is the expression of f (X) at step k, since
(X − (k − 1)p)Gk−1(X) is equal to Gk(X). By the inductive assumption, Rk−1 ∈Qn and if k − 1 < p we
also have Rk−1 ∈Mn . We still have to verify i) and ii).

We evaluate the expression (7) in X = kp and we get

f (kp) = qk(kp)Gk(kp) + Rk−1(kp) = qk(kp)pkk! + Rk−1(kp).
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Since pn divides both f (kp) and Rk−1(kp) (by definition of Qn), if v p((pk)!) < n we get that qk(kp)

is divisible by pn−v p((pk)!) , which is statement i) at the step k. Notice that qk(kp)Gk(X) is zero mod-
ulo pn on every integer congruent to zero modulo p; hence, qk(kp)Gk(X) ∈ Qn . Moreover, k < p ⇔
v p(k!) = 0, so in that case qk(kp)Gk(X) ∈Mn . So ii) follows. �

Notice that by formula (3) of Remark 1, under the assumptions of Lemma 3.3 we have for each
k ∈ {1, . . . , p − 1} that

qk ∈ (
pn−k, X − kp

)
(see i) of Lemma 3.3: in this case v p((pk)!) = k). If k = m = deg( f ) then qk ∈ Z. Hence, we get the
following expression for a polynomial f ∈Qn in the case p � n > m (this assumption is not restrictive,
since Xn ∈Qn):

f (X) = qmGm(X) + Rm−1(X) = qmGm(X) +
∑

k=1,...,m−1

qk(kp)Gk(X) (8)

where qm ∈ Z is divisible by pn−m and Rm−1(X) is in Mn .
The next proposition determines the primary components Qn, j of I pn of (4) in the case p � n. It

shows that in this case the containment of Lemma 3.2 is indeed an equality.

Proposition 3.1. Let p ∈ Z be a prime and n a positive integer such that p � n. Then for each j = 0, . . . , p − 1
we have

Qn, j = Mn
j .

Proof. It is sufficient to prove the statement for j = 0: for the other cases we consider the
Z[X]-automorphisms π j(X) = X − j, for j = 1, . . . , p − 1, which permute the ideals Qn, j and M j .
Let Qn =Qn,0 and M=M0.

The inclusion (⊇) follows from Lemma 3.2. For the other inclusion (⊆), let f (X) be in Qn . We can
assume that the degree m of f (X) is less than n, since Xn is the smallest monic monomial in Qn .
By Eq. (8) above, f (X) is in Mn , since pn−m divides qm , Gm ∈ Mm and Rm−1 ∈ Mn by Lemma 3.3
(notice that m − 1 < p). �
Remark 4. In the case p � n, Lemma 3.3 implies that Qn is generated by {pn−mGm(X)}0�m�n: it is
easy to verify that these polynomials are in Qn (using (3) again) and (8) implies that every polynomial
f ∈ Qn is a Z-linear combination of {pn−mGm(X)}0�m�n , since qm(mp) is divisible by pn−m , for each
of the relevant m.

The following theorem gives a description of the ideal I pn in the case p � n. In this case the
containment of Corollary 3.1 becomes an equality.

Theorem 3.1. Let p ∈ Z be a prime and n a positive integer such that p � n. Then the ideal in Z[X] of those
polynomials whose fixed divisor is divisible by pn is equal to

I pn =
(

p,
∏

i=0,...,p−1

(X − i)

)n

.

Proof. By Proposition 3.1, for each j = 0, . . . , p − 1 the ideal Qn, j is equal to Mn
j . So, by the last

formula of the proof of Corollary 3.1, we get the statement. �
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As a consequence, we have the following remark. Let p be a prime and n a positive integer less
than or equal to p. Let f ∈ I pn such that the content of f (X) is not divisible by p. Then deg( f ) � np,
since np = deg(

∏
i=0,...,p−1(X − i)n). Another well-known result in this context is the following: if

we fix the degree d of such a polynomial f , then the maximum n such that f ∈ I pn is bounded by
n �

∑
k�1[d/pk] = v p(d!).

If we drop the assumption p � n, the ideal Qn, j may strictly contain Mn
j , as we observed in

Remark 3. The next proposition shows that this is always the case, if p < n. This result follows from
Lemma 3.3 as Proposition 3.1 does, and it covers the remaining case p < n. It is stated for the case
j = 0. Remember that M= (p, X) and Qn = ⋂

i≡0 (mod p)(pn, X − i).

Proposition 3.2. Let p ∈ Z be a prime and n a positive integer such that p < n. Then we have

Qn = Mn + (
qn,p G p(X), . . . ,qn,n−1Gn−1(X)

)
where, for each k = p, . . . ,n − 1, qn,k is an integer defined as follows:

qn,k �
{

pn−v p((pk)!), if v p((pk)!) < n,

1, otherwise.

In particular, Mn is strictly contained in Qn.

Proof. We begin by proving the containment (⊇). Lemma 3.2 gives Mn ⊆ Qn . We have to show
that the polynomials qn,kGk(X), for k ∈ {p, . . . ,n − 1}, lie in Qn . This follows from property i) of the
polynomials Gk(X) and the definition of qn,m .

Now we prove the other containment (⊆). Let f ∈Qn be of degree m. If m < p then f ∈Mn (see
Lemma 3.3 and in particular (8)). So we suppose p � m. By Lemma 3.3 we have

f (X) =
∑

k=p,...,m

qh(hp)Gh(X) + R p−1(X) (9)

where R p−1(X) = ∑
k=1,...,p−1 qk(hp)Gh(X) ∈ Mn and qm ∈ Z, so that qm(mp) = qn,m . Then, since

qn,k = pn−v p((pk)!)|qk(kp) if v p((pk)!) < n, it follows that the first sum on the right-hand side of the
previous equation belongs to the ideal (qn,p G p(X), . . . ,qn,n−1Gn−1(X)). For the last sentence of the
proposition, we remark that the polynomials {qn,kGk(X)}k=p,...,n−1 are not contained in Mn: in fact,
for each k ∈ {p, . . . ,n−1}, by property iii) of the polynomials Gk(X) we have that the minimal integer
N such that qn,kGk(X) is contained in MN is n − v p(k!) if v p((pk)!) = k + v p(k!) < n and it is k
otherwise. In both cases it is strictly less than n (since v p(k!) � 1, if k � p). �
Remark 5. The following remark allows us to obtain another set of generators for Qn . We set

m = m(n, p) � min
{
m ∈N

∣∣ v p
(
(pm)!) � n

}
. (10)

Remember that v p((pm)!) = m + v p(m!). If p � n then m = n and if p < n then p � m < n.
Suppose p < n. Then for each m ∈ {m, . . . ,n} we have v p((pm)!) � n, since the function e(m) =

m + v p(m!) is increasing. So for each such m we have qn,m = 1, hence Gm ∈ (Gm(X)). So we have the
equalities:

Qn = Mn + (
qn,mGm(X)

∣∣ m = p, . . . ,m
)

= (
qn,mGm(X)

∣∣ m = 0, . . . ,m
)

(11)
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where qn,m = pn−m , for m = 0, . . . , p −1, and for m = p, . . . ,m is defined as in the statement of Propo-
sition 3.2. The containment (⊇) is just an easy verification using the properties of the polynomials
Gm(X); the other containment follows by (9).

We can now group together Proposition 3.1 and 3.2 into the following one:

Proposition 3.3. Let p ∈ Z be a prime and n a positive integer. Then we have

Qn = (
qn,0G0(X), . . . ,qn,mGm(X)

)
where m = min{m ∈ N | v p((pm)!) � n} and for each m = 0, . . . ,m, qn,m is an integer defined as follows:

qn,m �
{

pn−v p((pm)!), m < m,

1, m = m.

It is clear what the primary ideals Q j , for j = 1, . . . , p − 1, look like:

Qn, j =
⋂

i≡ j (mod p)

(
pn, X − i

) = Mn
j + (

qn,p G p(X − j), . . . ,qn,mGm(X − j)
)

= (
qn,0G0(X − j), . . . ,qn,mGm(X − j)

)
.

In fact, for each j = 1, . . . , p − 1, it is sufficient to consider the automorphisms of Z[X] given by
π j(X) = X − j. It is straightforward to check that π j(I pn ) = I pn . Moreover, π(Qn,0) = Qn, j and
π(M0) =M j for each such a j, so that π j permutes the primary components of the ideal I pn .

The ideal I pn = pn Int(Z) ∩ Z[X] was studied in [2] in a slightly different context, as the kernel
of the natural map ϕn : Z[X] → Φn , where the latter is the set of functions from Z/pnZ to itself. In
that article a recursive formula is given for a set of generators of this ideal. Our approach gives a new
point of view to describe this ideal.

For other works about the ideal I pn in a slightly different context, see [9,10,13]. This ideal is
important in the study of the problem of the polynomial representation of a function from Z/pnZ to
itself.

4. Case I p p+1

As a corollary we give an explicit expression for the ideal I pn in the case n = p + 1. By Proposi-
tion 3.2 the primary components of I pp+1 are

Qp+1, j = Mp+1
j + (

G p(X − j)
)

(12)

for j = 0, . . . , p − 1.

Corollary 4.1.

I pp+1 =
(

p,
∏

i=0,...,p−1

(X − i)

)p+1

+ (
H(X)

)

where H(X) = ∏
i=0,...,p2−1(X − i).
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We want to stress that the polynomial H(X) is not contained in the first ideal of the right-hand
side of the statement. In [2] a similar result is stated with another polynomial H2(X) instead of
our H(X). Indeed the two polynomials, as already remarked in [2], are congruent modulo the ideal
(p,

∏
i=0,...,p−1(X − i))p+1.

Proof of Corollary 4.1. Like before, we set Qp,p+1, j = Qp+1, j . The containment (⊇) follows from
Corollary 3.1 and because the polynomial H(X) is equal to

∏
j=0,...,p−1 G p(X − j) and for each

j = 0, . . . , p − 1 the polynomial G p(X − j) is in Qp+1, j by Proposition 3.2. Since Qp+1, j , for
j = 0, . . . , p − 1, are exactly the primary components of I pp+1 (see (4)), we get the claim.

Now we prove the other containment (⊆). Let f ∈ I pp+1 = ⋂
j=0,...,p−1 Qp+1, j . By (12) we have:

f (X) ≡ C p, j(X)G p(X − j)
(
mod Mp+1

j

)
for some C p, j ∈ Z[X], for j = 0, . . . , p − 1.

Since the ideals {Mp+1
j = (p, X − j)p+1 | j = 0, . . . , p − 1} are pairwise coprime (because they

are powers of distinct maximal ideals, respectively), by the Chinese Remainder Theorem we have the
following isomorphism:

Z[X]
/( p−1∏

j=0

Mp+1
j

)
∼= Z[X]/Mp+1

0 × · · · ×Z[X]/Mp+1
p−1. (13)

We need now the following lemma, which tells us what is the residue of the polynomial H(X)

modulo each ideal Mp+1
j :

Lemma 4.1. Let p be a prime and let H(X) = ∏
j=0,...,p−1 G p(X − j). Then for each k = 0, . . . , p − 1 we have

H(X) ≡ −G p(X − k)
(
mod Mp+1

k

)
.

Proof. Let k ∈ {0, . . . , p − 1} and set Ik = {0, . . . , p − 1} \ {k}. For each j ∈ Ik we have G p(k − j) ≡
(k − j)p (mod p). We have

H(X) + G p(X − k) = G p(X − k)

[
1 +

∏
j∈Ik

G p(X − j)

]
.

Since G p(X − k) ∈Mp
k we have just to prove that Tk(X) = 1 + ∏

j∈Ik
G p(X − j) ∈Mk . By formula (3)

in Remark 1 it is sufficient to prove that Tk(k) is divisible by p. We have

Tk(k) ≡ 1 +
∏
j∈Ik

(k − j)p (mod p)

≡ 1 +
( ∏

s=1,...,p−1

s

)p

(mod p)

≡ 1 + (p − 1)!p (mod p)

≡ (
1 + (p − 1)!)p

(mod p)

which is congruent to zero by Wilson’s theorem. �
We finish now the proof of the corollary.
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By the Chinese Remainder Theorem, there exists a polynomial P ∈ Z[X] such that P (X) ≡
−C p, j(X) (mod Mp+1

j ), for each j = 0, . . . , p − 1. Then by the previous lemma P (X)H(X) ≡
C p, j(X)G p(X − j) (mod Mp+1

j ) and so again by the isomorphism (13) above we have

f (X) ≡ P (X)H(X)

(
mod

∏
j=0,...,p−1

Mp+1
j

)

so we are done since
∏

j=0,...,p−1 M
p+1
j = (p,

∏
i=0,...,p−1(X − i))p+1 (see the proof of Corol-

lary 3.1). �
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