[Journal of Algebra 398 \(2014\) 227–242](http://dx.doi.org/10.1016/j.jalgebra.2013.09.016)

Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power

Giulio Peruginelli

Institut für Analysis und Comput. Number Theory, Technische Universität, Steyrergasse 30, A-8010 Graz, Austria

article info abstract

Article history: Received 10 May 2012 Available online 17 October 2013 Communicated by Bernd Ulrich

MSC: 13B25 13F20

Keywords: Integer-valued polynomial Image of a polynomial Fixed divisor Factorization of integer-valued polynomials Primary components Primary decomposition

We characterize the fixed divisor of a polynomial $f(X)$ in $\mathbb{Z}[X]$ by looking at the contraction of the powers of the maximal ideals of the overring $Int(\mathbb{Z})$ containing $f(X)$. Given a prime p and a positive integer *n*, we also obtain a complete description of the ideal of polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by p^n in terms of its primary components.

> © 2013 The Authors. Published by Elsevier Inc. Open access under [CC BY license.](http://creativecommons.org/licenses/by/3.0/)

To Sergio Paolini, whose teachings and memory I deeply preserve.

1. Introduction

In this work we investigate the image set of integer-valued polynomials over \mathbb{Z} . The set of these polynomials is a ring usually denoted by:

$$
Int(\mathbb{Z}) \doteqdot \{f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subset \mathbb{Z} \}.
$$

Since an integer-valued polynomial $f(X)$ maps the integers in a subset of the integers, it is natural to consider the subset of the integers formed by the values of $f(X)$ over the integers and the ideal

E-mail address: [peruginelli@math.tugraz.at.](mailto:peruginelli@math.tugraz.at)

^{0021-8693 © 2013} The Authors. Published by Elsevier Inc. Open access under [CC BY license.](http://creativecommons.org/licenses/by/3.0/) <http://dx.doi.org/10.1016/j.jalgebra.2013.09.016>

generated by this subset. This ideal is usually called the fixed divisor of $f(X)$. Here is the classical definition.

Definition 1.1. Let *f* ∈ Int(\mathbb{Z}). The *fixed divisor* of *f*(*X*) is the ideal of \mathbb{Z} generated by the values of $f(n)$, as *n* ranges in \mathbb{Z} :

$$
d(f) = d(f, \mathbb{Z}) = (f(n) | n \in \mathbb{Z}).
$$

We say that a polynomial $f \in \text{Int}(\mathbb{Z})$ is *image primitive* if $d(f) = \mathbb{Z}$.

It is well-known that for every integer $n \geq 1$ we have

$$
d(X(X-1)\cdots(X-(n-1))) = n!
$$

so that the so-called binomial polynomials $B_n(X) \doteq X(X-1)\cdots(X-(n-1))/n!$ are integer-valued (indeed, they form a free basis of $Int(\mathbb{Z})$ as a \mathbb{Z} -module; see [\[4\]\)](#page-15-0).

Notice that, given two integer-valued polynomials *f* and *g*, we have $d(fg) \subset d(f)d(g)$ and we may not have an equality. For instance, consider $f(X) = X$ and $g(X) = X - 1$; then we have $d(f) =$ *d*(*g*) = $\mathbb Z$ and *d*(*fg*) = 2 $\mathbb Z$. If *f* ∈ Int($\mathbb Z$) and *n* ∈ $\mathbb Z$, then directly from the definition we have *d*(*nf*) = *nd*(*f*). If cont(*F*) denotes the content of a polynomial $F \in \mathbb{Z}[X]$, that is, the greatest common divisor of the coefficients of *F*, we have $F(X) = \text{cont}(F)G(X)$, where $G \in \mathbb{Z}[X]$ is a primitive polynomial (that is, $cont(G) = 1$). We have the relation:

$$
d(F) = \text{cont}(F)d(G).
$$

In particular, the fixed divisor is contained in the ideal generated by the content. Hence, given a polynomial with integer coefficients, we can assume it to be primitive. In the same way, if we have an integer-valued polynomial $f(X) = F(X)/N$, with $f \in \mathbb{Z}[X]$ and $N \in \mathbb{N}$, we can assume that $(cont(F), N) = 1$ and $F(X)$ to be primitive.

The next lemma gives a well-known characterization of a generator of the above ideal (see [\[1,](#page-15-0) [Lemma](#page-15-0) 2.7]).

Lemma 1.1. *Let* f ∈ Int (\mathbb{Z}) *be of degree d and set*

1) $d_1 = \sup\{n \in \mathbb{Z} \mid \frac{f(X)}{n} \in \text{Int}(\mathbb{Z})\},\$ 2) $d_2 = GCD{f(n) | n \in \mathbb{Z}}$ 3) $d_3 = GCD{f(0), \ldots, f(d)}$

then $d_1 = d_2 = d_3$.

Let *f* ∈ Int(\mathbb{Z}). We remark that the value *d*₁ of Lemma 1.1 is plainly equal to:

$$
d_1 = \sup\big\{n \in \mathbb{Z} \mid f \in n \operatorname{Int}(\mathbb{Z})\big\}.
$$

Moreover, given an integer *n*, we have this equivalence that we will use throughout the paper, a sort of ideal-theoretic characterization of the arithmetical property that all the values attained by $f(X)$ are divisible by *n*:

$$
f(\mathbb{Z}) \subset n\mathbb{Z} \iff f \in n \operatorname{Int}(\mathbb{Z})
$$

 $(nInt(\mathbb{Z})$ is the principal ideal of $Int(\mathbb{Z})$ generated by *n*). From 1) of Lemma 1.1 we see immediately that if $f(X) = F(X)/N$ is an integer-valued polynomial, where $F \in \mathbb{Z}[X]$ and $N \in \mathbb{N}$ coprime with the content of $F(X)$, then $d(f) = d(F)/N$, so we can just focus our attention on the fixed divisor of a primitive polynomial in Z[*X*].

We want to give another interpretation of the fixed divisor of a polynomial $f \in \mathbb{Z}[X]$ by considering the maximal ideals of Int (\mathbb{Z}) containing $f(X)$ and looking at their contraction to $\mathbb{Z}[X]$. We recall first the definition of unitary ideal given in [\[12\].](#page-15-0)

Definition 1.2. An ideal *I* ⊆ Int(\mathbb{Z}) is *unitary* if *I* ∩ $\mathbb{Z} \neq 0$.

That is, an ideal *I* of Int(\mathbb{Z}) is unitary if it contains a non-zero integer, or, equivalently, $I \mathbb{Q}[X] =$ $\mathbb{Q}[X]$ (where *I* $\mathbb{Q}[X]$ denotes the extension ideal in $\mathbb{Q}[X]$). The whole ring Int (\mathbb{Z}) is clearly a principal unitary ideal generated by 1.

The next results are probably well-known, but for the ease of the reader we report them. The first lemma says that a principal unitary ideal *I* is generated by a non-zero integer, which generates the contraction of I to \mathbb{Z} . In particular, this lemma establishes a bijective correspondence between the nonzero ideals of $\mathbb Z$ and the set of principal unitary ideals of Int $(\mathbb Z)$.

Lemma 1.2. Let $I \subseteq \text{Int}(\mathbb{Z})$ be a principal unitary ideal. If $I \cap \mathbb{Z} = n\mathbb{Z}$ with $n \neq 0$ then $I = n \text{ Int}(\mathbb{Z})$ *.* In partic*ular, n* Int $(\mathbb{Z}) \cap \mathbb{Z} = n\mathbb{Z}$ *. Moreover, n*₁ Int $(\mathbb{Z}) = n_2$ Int (\mathbb{Z}) *with* $n_1, n_2 \in \mathbb{Z}$ *if and only if* $n_1 = \pm n_2$ *.*

Proof. If $I = (f)$ for some $f \in \text{Int}(\mathbb{Z})$ then deg $(f) = 0$ since a non-zero integer *n* is in *I*. Since $f(X)$ is integer-valued it must be equal to an integer and so it is contained in $I \cap \mathbb{Z} = n\mathbb{Z}$. Hence we get the first statement of the lemma. If $n_1 \text{ Int}(\mathbb{Z}) = n_2 \text{ Int}(\mathbb{Z})$ then $n_1 = n_2 f$ with $f \in \text{Int}(\mathbb{Z})$; this forces f to be a non-zero integer, so that n_1 divides n_2 . Similarly, we get that n_2 divides n_1 . \Box

Lemma 1.3. Let $I_1, I_2 \subseteq \text{Int}(\mathbb{Z})$ be principal unitary ideals. Then $I_1 \cap I_2$ is a principal unitary ideal too.

Proof. Suppose $I_i = n_i \text{Int}(\mathbb{Z})$, where $n_i \in \mathbb{Z}$, $n_i \mathbb{Z} = I_i \cap \mathbb{Z}$, for $i = 1, 2$. We have $n_1 \mathbb{Z} \cap n_2 \mathbb{Z} = n \mathbb{Z}$, where *n* = lcm{*n*₁, *n*₂}. The ideal *I*₁ ∩ *I*₂ is unitary since *n* ∈ *I*₁ ∩ *I*₂. In particular, we have *I*₁ ∩ *I*₂ ⊇ *n* Int(\mathbb{Z}). We have to prove that $I_1 \cap I_2 \subseteq n$ Int(Z). Let $f \in I_1 \cap I_2$. Then $f(\mathbb{Z}) \subset n_1 \mathbb{Z} \cap n_2 \mathbb{Z} = n \mathbb{Z}$, so that $\frac{f(X)}{n} \in$ Int (\mathbb{Z}) . \Box

The previous lemma implies the following decomposition for a principal unitary ideal generated by an integer *n*, with prime factorization $n = \prod_i p_i^{a_i}$. We have

$$
n \operatorname{Int}(\mathbb{Z}) = \bigcap_{i} p_i^{a_i} \operatorname{Int}(\mathbb{Z}) = \prod_{i} p_i^{a_i} \operatorname{Int}(\mathbb{Z})
$$

where the last equality holds because the ideals $p_i^{a_i} \mathbb{Z}$ are coprime in \mathbb{Z} , hence they are coprime in $Int(\mathbb{Z})$.

We are now ready to give the following definition.

Definition 1.3. Let $f \in \text{Int}(\mathbb{Z})$. The *extended fixed divisor* of $f(X)$ is the minimal ideal of the set ${n \ln(\mathbb{Z}) | n \in \mathbb{Z}, \ f \in n \ln(\mathbb{Z})}.$ We denote this ideal by $D(f)$.

Equivalently, in the above definition, we require that $n \ln(r/\mathbb{Z})$ contains the principal ideal in $\ln(r/\mathbb{Z})$ generated by the polynomial $f(X)$. Lemmas 1.2 and 1.3 show that the minimal ideal in the above definition does exist: it is equal to the intersection of all the principal unitary ideals containing $f(X)$. Notice that the extended fixed divisor is an ideal of $Int(\mathbb{Z})$, while the fixed divisor is an ideal of \mathbb{Z} . The polynomial $f(X)$ is image primitive if and only if its extended fixed divisor is the whole ring Int (\mathbb{Z}) . In the next sections we will study the extended fixed divisor by considering the *p*-part of it, namely the principal unitary ideals of the form p^n Int (\mathbb{Z}) , $p \in \mathbb{Z}$ being prime and *n* a positive integer.

The following proposition gives a link between the fixed divisor and the extended fixed divisor: the latter is the extension of the former and conversely. So each of them gives information about the other one.

Proposition 1.1. *Let* $f \in \text{Int}(\mathbb{Z})$ *. Then we have:*

a) $D(f) \cap \mathbb{Z} = d(f)$, *b*) $d(f)$ $Int(\mathbb{Z}) = D(f)$ *.*

Proof. Let $d, D \in \mathbb{Z}$ be such that $d(f) = d\mathbb{Z}$ and $D(f) = D \text{ Int}(\mathbb{Z})$. Since $d(f) \text{ Int}(\mathbb{Z}) = d \text{ Int}(\mathbb{Z})$ is a principal unitary ideal containing $f(X)$, from the definition of extended fixed divisor, we have $D(f) \subset$ *d* Int(\mathbb{Z}). In particular, *D* ≥ *d*. We also have $f(X)/D \in \text{Int}(\mathbb{Z})$ and so *d* ≥ *D*, by characterization 1) of [Lemma 1.1.](#page-1-0) Hence we get a). From that we deduce that $d(f) \subseteq D(f)$, so statement b) follows. \Box

As already remarked in [\[5\],](#page-15-0) the rings $\mathbb Z$ and Int $(\mathbb Z)$ share the same units, namely $\{\pm 1\}$. Then [\[5,](#page-15-0) [Proposition 2.1\]](#page-15-0) can be restated as follows.

Proposition 1.2 *(Cahen–Chabert).* Let $f \in \text{Int}(\mathbb{Z})$ *be irreducible in* $\mathbb{O}[X]$ *. Then* $f(X)$ *is irreducible in* $\text{Int}(\mathbb{Z})$ *if and only if* $f(X)$ *is not contained in any proper principal unitary ideal of Int* (\mathbb{Z}) *.*

The next lemma has been given in $[6]$ and is analogous to the Gauss Lemma for polynomials in $\mathbb{Z}[X]$ which are irreducible in $Int(\mathbb{Z})$.

Lemma 1.4 *(Chapman–McClain).* Let $f \in \mathbb{Z}[X]$ be a primitive polynomial. Then $f(X)$ is irreducible in $Int(\mathbb{Z})$ *if and only if it is irreducible in* Z[*X*] *and image primitive.*

For example, the polynomial $f(X) = X^2 + X + 2$ is irreducible in $\mathbb{Q}[X]$ and also in $\mathbb{Z}[X]$ since it is primitive (because of Gauss Lemma). But it is reducible in Int*(*Z*)* since its extended fixed divisor is not trivial, namely it is the ideal $2 \text{Int}(\mathbb{Z})$. So in $\text{Int}(\mathbb{Z})$ we have the following factorization:

$$
f(X) = 2 \cdot \frac{X^2 + X + 2}{2}
$$

and indeed this is a factorization into irreducibles in Int*(*Z*)*, since the latter polynomial is image primitive and irreducible in $\mathbb{O}[X]$, and by [\[5, Lemma 1.1\],](#page-15-0) the irreducible elements in \mathbb{Z} remain irreducible in Int (\mathbb{Z}) . So the study of the extended fixed divisor of the elements in Int (\mathbb{Z}) is a first step toward studying the factorization of the elements in this ring (which is not a unique factorization domain).

Here is an overview of the content of the paper. At the beginning of the next section we recall the structure of the prime spectrum of $Int(\mathbb{Z})$. Then, for a fixed prime p, we describe the contractions to $\mathbb{Z}[X]$ of the maximal unitary ideals of Int (\mathbb{Z}) containing p [\(Lemma 2.1\)](#page-4-0). In [Theorem 2.1](#page-5-0) we describe the ideal I_p of $\mathbb{Z}[X]$ of those polynomials whose fixed divisor is divisible by p, namely the contraction to $\mathbb{Z}[X]$ of the principal unitary ideal $p \text{ Int}(\mathbb{Z})$, which is the ideal of integer-valued polynomials whose extended fixed divisor is contained in $p \text{ Int}(\mathbb{Z})$. It turns out that I_p is the intersection of the aforementioned contractions. In the third section we generalize the result of the second section to prime powers, by means of a structure theorem of Loper regarding unitary ideals of Int*(*Z*)*. We consider the contractions to $\mathbb{Z}[X]$ of the powers of the prime unitary ideals of $Int(\mathbb{Z})$ [\(Lemma 3.1\)](#page-6-0). In [Remark 2](#page-7-0) we give a description of the structure of the set of these contractions; that allows us to give the primary decomposition of the ideal $I_{p^n} = p^n \text{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$, made up of those polynomials whose fixed divisor is divisible by a prime power p^n . We shall see that we have to distinguish two cases: $p \le n$ and $p > n$ (see also the examples in [Remark 3\)](#page-8-0). In [Theorem 3.1](#page-11-0) we describe I_{p^n} in the case $p \le n$. This result was already known in a slightly different context by Dickson (see $[7, p. 22,$ Theorem 27]), but our different proof uses the primary decomposition of I_{p^n} and that gives an insight to generalize the result to the second case. In [Proposition 3.2](#page-12-0) we give a set of generators for the primary components of I_{p^n} , in the case $p > n$. Finally in the last section, as an application, we explicitly compute the ideal I_{np+1} .

2. Fixed divisor via Spec*(***Int***(*Z*))*

The study of the prime spectrum of the ring $Int(\mathbb{Z})$ began in [\[3\].](#page-15-0) We recall that the prime ideals of $Int(\mathbb{Z})$ are divided into two different categories, unitary and non-unitary. Let P be a prime ideal of Int*(*Z*)*. If it is unitary then its intersection with the ring of integers is a principal ideal generated by a prime *p*.

Non-unitary prime ideals: $P \cap \mathbb{Z} = \{0\}.$

In this case *P* is a prime (non-maximal) ideal and it is of the form

$$
\mathfrak{B}_q = q \mathbb{Q}[X] \cap \text{Int}(\mathbb{Z})
$$

for some $q \in \mathbb{Q}[X]$ irreducible. By Gauss Lemma we may suppose that $q \in \mathbb{Z}[X]$ is irreducible and primitive.

Unitary prime ideals: $P \cap \mathbb{Z} = p\mathbb{Z}$.

In this case *P* is maximal and is of the form

$$
\mathfrak{M}_{p,\alpha} = \left\{ f \in \text{Int}(\mathbb{Z}) \mid f(\alpha) \in p\mathbb{Z}_p \right\}
$$

for some *p* prime in Z and some $\alpha \in \mathbb{Z}_p$, the ring of *p*-adic integers. We have $\mathfrak{M}_{p,\alpha} = \mathfrak{M}_{q,\beta}$ if and only if $(p, \alpha) = (q, \beta)$. So if we fix the prime p, the elements of \mathbb{Z}_p are in bijection with the unitary prime ideals of Int(\mathbb{Z}) above the prime *p*. Moreover, $\mathfrak{M}_{p,\alpha}$ is height 1 if and only if α is transcendental over $\mathbb Q$. If α is algebraic over $\mathbb Q$ and $q(X)$ is its minimal polynomial then $\mathfrak{M}_{p,\alpha} \supset \mathfrak{B}_{q}$. We have $\mathfrak{B}_q \subset \mathfrak{M}_{p,\alpha}$ if and only if $q(\alpha) = 0$. Every prime ideal of Int (\mathbb{Z}) is not finitely generated.

For a detailed study of $Spec(int(\mathbb{Z}))$ see [\[4\].](#page-15-0)

If we denote by $d(f, \mathbb{Z}_p)$ the fixed divisor of $f \in Int(\mathbb{Z})$ viewed as a polynomial over the ring of *p*-adic integers \mathbb{Z}_p (that is, $d(f, \mathbb{Z}_p)$ is the ideal $(f(\alpha) | \alpha \in \mathbb{Z}_p)$), Gunji and McQuillan in [\[8\]](#page-15-0) observed that

$$
d(f) = \bigcap_p d(f, \mathbb{Z}_p)
$$

where the intersection is taken over the set of primes in \mathbb{Z} . Moreover, $d(f, \mathbb{Z}_p) = d(f)\mathbb{Z}_p \subset \mathbb{Z}_p$. Remember that given an ideal *I* ⊂ \mathbb{Z} and a prime *p* we have *I* $\mathbb{Z}_p = \mathbb{Z}_p$ if and only if *I* $\subset \mathbb{Z}$ (*p*), so that in the previous equation we have a finite intersection. Since \mathbb{Z}_p is a DVR we have $d(f, \mathbb{Z}_p) = p^n \mathbb{Z}_p$, for some integer *n* (which of course depends on *p*), so that the exact power of *p* which divides $f(\mathbb{Z})$ is the same as the power of *p* dividing $f(\mathbb{Z}_p)$. Without loss of generality, we can restrict our attention to the *p*-part of the fixed divisor of a polynomial $f \in \mathbb{Z}[X]$. We begin our research by finding those polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by a fixed prime p, namely the ideal *p* Int (\mathbb{Z}) ∩ $\mathbb{Z}[X]$.

Lemma 2.1. Let p be a prime and $\alpha \in \mathbb{Z}_p$. Then $\mathfrak{M}_{n,\alpha} \cap \mathbb{Z}[X] = (p, X - a)$, where $a \in \mathbb{Z}$ is such that $\alpha \equiv$ *a* (mod *p*)*. Moreover, if* $\beta \in \mathbb{Z}_p$ *is another p-adic integer, we have* $\mathfrak{M}_{p,q} \cap \mathbb{Z}[X] = \mathfrak{M}_{p,\beta} \cap \mathbb{Z}[X]$ *if and only if* $\alpha \equiv \beta \pmod{p}$ *.*

Proof. Let *a* be an integer as in the statement of the lemma; it exists since \mathbb{Z} is dense in \mathbb{Z}_p for the *p*-adic topology. We immediately see that *p* and *X* − *a* are in $\mathfrak{M}_{p,\alpha}$. Then the conclusion follows since $(p, X - a)$ is a maximal ideal of $\mathbb{Z}[X]$ and $\mathfrak{M}_{p,\alpha} \cap \mathbb{Z}[X]$ is not equal to the whole ring $\mathbb{Z}[X]$. The second statement follows from the fact that $(p, X - a) = (p, X - b)$ if and only if $a \equiv b \pmod{p}$. \Box

We have just seen that the contraction of $\mathfrak{M}_{p,\alpha}$ to $\mathbb{Z}[X]$ depends only on the residue class modulo *p* of α . So, if *p* is a fixed prime, the contractions of $\mathfrak{M}_{p,\alpha}$ to $\mathbb{Z}[X]$ as α ranges through \mathbb{Z}_p are made up of *p* distinct maximal ideals, namely

$$
\left\{\mathfrak{M}_{p,\alpha}\cap\mathbb{Z}[X]\,\big|\,\alpha\in\mathbb{Z}_p\right\}=\left\{(p,X-j)\,\big|\,j\in\{0,\ldots,p-1\}\right\}.
$$

Conversely, the set of prime ideals of Int (\mathbb{Z}) above a fixed maximal ideal of the form $(p, X - j)$ is $\{ \mathfrak{M}_{p,q} \mid \alpha \in \mathbb{Z}_p, \alpha \equiv j \pmod{p} \}$, since \mathfrak{B}_q are non-unitary ideals and p is the only prime integer in $\mathfrak{M}_{p,\alpha}$.

For a prime *p* and an integer $j \in \{0, \ldots, p-1\}$, we set:

$$
\mathcal{M}_{p,j}=\mathcal{M}_j\doteqdot (p,X-j).
$$

Whenever the notation $\mathcal{M}_{p,j}$ is used, it will be implicit that $j \in \{0, \ldots, p-1\}$.

The next lemma computes the intersection of the ideals $\mathcal{M}_{p,i}$, for a fixed prime p, by finding an ideal whose primary decomposition is given by this intersection (and its primary components are precisely the *p* ideals $M_{p,i}$). From now on we will omit the index *p*.

Lemma 2.2. *Let* $p \in \mathbb{Z}$ *be a prime. Then we have*

$$
\bigcap_{j=0,...,p-1} M_j = \bigg(p, \prod_{j=0,...,p-1} (X - j)\bigg).
$$

Proof. Let *J* be the ideal on the right-hand side. If *P* is a prime minimal over *J*, then we see immediately that $P = M_j$ for some $j \in \{0, ..., p-1\}$, since M_j is a maximal ideal. Conversely, every such a maximal ideal contains *J* and is minimal over it. Then the minimal primary decomposition of *J* is of the form

$$
J = \bigcap_{j=0,\dots,p-1} Q_j
$$

where Q_j is an M_j -primary ideal. Since $X - i \notin M_j$ for all $i \in \{0, \ldots, p-1\} \setminus \{j\}$, we have $(X - j) \in$ *Q*_{*j*}, so indeed Q _{*j*} = $(p, X – j)$ for each *j* = 0*,..., p* − 1. □

The next proposition characterizes the principal unitary ideals in $Int(\mathbb{Z})$ generated by a prime *p*.

Proposition 2.1. Let $p \in \mathbb{Z}$ be a prime. Then the principal unitary ideal p $Int(\mathbb{Z})$ is equal to

$$
p \operatorname{Int}(\mathbb{Z}) = \bigcap_{\alpha \in \mathbb{Z}_p} \mathfrak{M}_{p,\alpha}.
$$

Proof. We trivially have that $p \text{ Int}(\mathbb{Z})$ is contained in the above intersection, since p is in every ideal of the form $\mathfrak{M}_{p,q}$. On the other hand, this intersection is equal to $\{f \in \text{Int}(\mathbb{Z}) \mid f(\mathbb{Z}_p) \subset p\mathbb{Z}_p\}$. If $f(X)$ is in this intersection, since $f(X)$ is integer-valued and $p\mathbb{Z}_p \cap \mathbb{Z} = p\mathbb{Z}$, we have $f(\mathbb{Z}) \subset p\mathbb{Z}$. This is equivalent to saying that $f(X)/p \in \text{Int}(\mathbb{Z})$, that is, $f \in p \text{ Int}(\mathbb{Z})$. \Box

In particular, the previous proposition implies that $Int(\mathbb{Z})$ does not have the finite character property (we recall that a ring has this property if every non-zero element is contained in a finite number of maximal ideals).

From the above results we get the following theorem, which characterizes the ideal of polynomials with integer coefficients whose fixed divisor is divisible by a prime *p*, that is, the ideal *p* Int(ℤ)∩ℤ[*X*].

Theorem 2.1. *Let p be a prime. Then*

$$
p \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X] = \left(p, \prod_{j=0,\dots,p-1} (X - j)\right).
$$

Notice that [Lemma 2.2](#page-5-0) gives the primary decomposition of *p* Int $(\mathbb{Z}) \cap \mathbb{Z}[X]$, so \mathcal{M}_i for $j =$ 0*,..., p* − 1 are exactly the prime ideals belonging to it. As a consequence of this theorem we get the following well-known result: if $f \in \mathbb{Z}[X]$ is primitive and *p* is a prime such that $d(f) \subseteq p$ then *p* ≤ deg(*f*). This immediately follows from the theorem, since the degree of $\prod_{j=0,...,p-1}(X-j)$ is *p*. We remark that by Fermat's little theorem the ideal on the right-hand side of the statement of [Theorem](#page-5-0) 2.1 is equal to $(p, X^p - X)$. This amounts to saying that the two polynomials $X \cdots (X - Y^p)$ $(p-1)$) and $X^p - X$ induce the same polynomial function on $\mathbb{Z}/p\mathbb{Z}$.

3. Contraction of primary ideals

We remark that [Proposition 2.1](#page-5-0) also follows from a general result contained in [\[11\]:](#page-15-0) every unitary ideal in Int*(*Z*)* is an intersection of powers of unitary prime ideals (namely the maximal ideals M*p,α*). In particular, every $\mathfrak{M}_{p,\alpha}$ -primary ideal is a power of $\mathfrak{M}_{p,\alpha}$ itself, since $\mathfrak{M}_{p,\alpha}$ is maximal. From the same result we also have the following characterization of the powers of $\mathfrak{M}_{p,q}$, for any positive integer *n*:

$$
\mathfrak{M}_{p,\alpha}^{n} = \left\{ f \in \text{Int}(\mathbb{Z}) \mid f(\alpha) \in p^{n} \mathbb{Z}_{p} \right\}.
$$

This fact implies the following expression for the principal unitary ideal generated by *pn*:

$$
p^{n}\operatorname{Int}(\mathbb{Z}) = \bigcap_{\alpha \in \mathbb{Z}_{p}} \mathfrak{M}_{p,\alpha}^{n}.
$$
 (1)

We remark again that the previous ideal is made up of those integer-valued polynomials whose extended fixed divisor is contained in p^n Int (\mathbb{Z}) . Similarly to the previous case $n = 1$ (see [Theorem 2.1\)](#page-5-0) we want to find the contraction of this ideal to $\mathbb{Z}[X]$, in order to find the polynomials in $\mathbb{Z}[X]$ whose fixed divisor is divisible by p^n . We set:

$$
I_{p^n} \doteqdot p^n \operatorname{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]. \tag{2}
$$

Notice that by (1) we have $I_{p^n} = \bigcap_{\alpha \in \mathbb{Z}_p} (\mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X]).$

Like before, we begin by finding the contraction to $\Z[X]$ of $\mathfrak{M}_{p,\alpha}^n$, for each $\alpha\in\Z_p.$ The next lemma is a generalization of [Lemma 2.1.](#page-4-0)

Lemma 3.1. Let p be a prime, n a positive integer and $\alpha\in\mathbb{Z}_p$. Then $\mathfrak{M}_{p,\alpha}^n\cap\mathbb{Z}[X]=(p^n,X-a)$, where $a\in\mathbb{Z}$ is such that $\alpha \equiv a \pmod{p^n}$. The ideal $\mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X]$ is $\mathcal{M}_{p,j}$ -primary, where $j \equiv \alpha \pmod{p}$. Moreover, if $\beta\in\Z_p$ is another p-adic integer, we have $\mathfrak{M}_{p,\alpha}^n\cap\Z[X]=\mathfrak{M}_{p,\beta}^n\cap\Z[X]$ if and only if $\alpha\equiv\beta$ (mod p^n).

Proof. The case $n = 1$ has been done in [Lemma 2.1.](#page-4-0) For the general case, let $a \in \mathbb{Z}$ be such that $a \equiv \alpha$ (mod p^n) (again, such an integer exists since Z is dense in \mathbb{Z}_p for the *p*-adic topology). We have $(p^n, X - a) \subset \mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X]$ (notice that if $n > 1$ then $(p^n, X - a)$ is not a prime ideal). To prove the other inclusion let $f \in \mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X]$. By the Euclidean algorithm in $\mathbb{Z}[X]$ (the leading coefficient of $X - a$ is a unit) we have

$$
f(X) = q(X)(X - a) + f(a).
$$

Since $f(\alpha) \in p^n \mathbb{Z}_p$ and $p^n | a - \alpha$ we have $p^n | f(a)$. Hence, $f \in (p^n, X - a)$ as we wanted. Since $\mathfrak{M}_{p,\alpha}^n$ is an $\mathfrak{M}_{p,\alpha}$ -primary ideal in Int(\mathbb{Z}) and the contraction of a primary ideal is a primary ideal, by [Lemma 2.1](#page-4-0) we get the second statement. Finally, like in the proof of [Lemma 2.1,](#page-4-0) we immediately see that $(p^n, X - a) = (p^n, X - b)$ if and only if $a \equiv b \pmod{p^n}$, which gives the last statement of the lemma. \square

Remark 1. It is worth to write down the fact that we used in the above proof: given a polynomial $f \in \mathbb{Z}[X]$, we have

$$
f \in (p^n, X - a) \iff f(a) \equiv 0 \pmod{p^n}.
$$
 (3)

Remark 2. If *p* is a fixed prime and *n* is a positive integer, [Lemma 3.1](#page-6-0) implies

$$
\mathcal{I}_{p,n} \doteq \{ \mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X] \mid \alpha \in \mathbb{Z}_p \} = \{ (p^n, X - i) \mid i = 0, \ldots, p^n - 1 \}.
$$

Let us consider an ideal $I = \mathfrak{M}_{p,\alpha}^n \cap \mathbb{Z}[X] = (p^n, X - i)$ in $\mathcal{I}_{p,n}$, with $i \in \mathbb{Z}$, $i \equiv \alpha \pmod{p^n}$. It is quite easy to see that I contains $(\mathfrak{M}_{p,\alpha}\cap \mathbb{Z}[X])^n=\mathcal{M}_{p,j}^n=(p,X-j)^n$, where $j\in \{0,\ldots,p-1\}$, $j \equiv \alpha \pmod{p}$ (notice that $j \equiv i \pmod{p}$). If $n > 1$ this containment is strict, since $X - i \not\in (p, X - j)^n$. We can group the ideals of $\mathcal{I}_{p,n}$ according to their radical: there are *p* radicals of these p^n ideals, namely the maximal ideals $M_{p,j}$, $j = 0, \ldots, p-1$. This amounts to making a partition of the residue classes modulo p^n into p different sets of elements congruent to *j* modulo p , for $j = 0, \ldots, p - 1$; each of these sets has cardinality p^{n-1} . Correspondingly we have:

$$
\mathcal{I}_{p,n} = \bigcup_{j=0,\dots,p-1} \mathcal{I}_{p,n,j}
$$

where $\mathcal{I}_{p,n,j} = \{(p^n, X - i) | i = 0, ..., p^n - 1, i \equiv j \pmod{p}\}$, for $j = 0, ..., p - 1$. Every ideal in $\mathcal{I}_{p,n,j}$ is $\mathcal{M}_{p,j}$ -primary and it contains the *n*-th power of its radical, namely $\mathcal{M}_{p,j}^n$.

Now we want to compute the intersection of the ideals in $\mathcal{I}_{p,n}$, which is equal to the ideal I_{p^n} in $\mathbb{Z}[X]$ (see [\(1\)](#page-6-0) and [\(2\)\)](#page-6-0). We can express this intersection as an intersection of $\mathcal{M}_{p,i}$ -primary ideals as we have said above, in the following way (in the first equality we make use of Eq. [\(1\)](#page-6-0) and [Lemma 3.1\)](#page-6-0):

$$
I_{p^n} = \bigcap_{i=0,\dots,p^n-1} (p^n, X - i) = \bigcap_{j=0,\dots,p-1} \mathcal{Q}_{p,n,j}
$$
(4)

where

$$
Q_{p,n,j} \doteqdot \bigcap_{i \equiv j \, (\text{mod } p)} \left(p^n, X - i\right)
$$

(notice that the intersection is taken over the set $\{i \in \{0, \ldots, p^n-1\} \mid i \equiv j \pmod{p}\}$). The ideal $Q_{p,n,j}$ is an $\mathcal{M}_{p,j}$ -primary ideal, for $j = 0, \ldots, p-1$, since the intersection of *M*-primary ideals is an *M*-primary ideal. We will omit the index *p* in $\mathcal{Q}_{p,n,j}$ and in $\mathcal{M}_{p,j}$ if that will be clear from the context. The $\mathcal{M}_{p,j}$ -primary ideal $\mathcal{Q}_{n,j}$ is just the intersection of the ideals in $\mathcal{I}_{p,n,j}$, according to the partition we made. It is equal to the set of polynomials in $\mathbb{Z}[X]$ which modulo p^n are zero at the residue classes congruent to *j* modulo p (see (3) of Remark 1). We remark that (4) is the minimal primary decomposition of I_{p^n} . Notice that there are no embedded components in this primary decomposition, since the prime ideals belonging to it (the minimal primes containing I_{p^n}) are $\{\mathcal{M}_j \mid j = 0, \ldots, p-1\}$, which are maximal ideals.

We recall that if *I* and *J* are two coprime ideals in a ring *R*, that is $I + J = R$, then $I J = I \cap J$ (in general only the inclusion *I J* ⊂ *I* ∩ *J* holds). The condition for two ideals *I* and *J* to be coprime amounts to saying that *I* and *J* are not contained in a same maximal ideal *M*, that is, $I + J$ is not contained in any maximal ideal *M*. If *M*¹ and *M*² are two distinct maximal ideals then they are coprime, and the same holds for any of their respective powers. If *R* is Noetherian, then every primary ideal *Q* contains a power of its radical and moreover if the radical of *Q* is maximal then also the converse holds (see [\[14\]\)](#page-15-0). So if Q_i is an M_i -primary ideal for $i = 1, 2$ and M_1, M_2 are distinct maximal ideals, then *Q*¹ and *Q*² are coprime.

Since $\{\mathcal{M}_j\}_{j=0,\dots,p-1}$ are p distinct maximal ideals, for what we have just said above we have

$$
\bigcap_{j=0,\ldots,p-1}\mathcal{Q}_{n,j}=\prod_{j=0,\ldots,p-1}\mathcal{Q}_{n,j}.
$$

Now we want to describe the M_j -primary ideals $Q_{n,j}$, for $j = 0, \ldots, p-1$. The next lemma gives a relation of containment between these ideals and the *n*-th powers of their radicals.

Lemma 3.2. Let p be a fixed prime and n a positive integer. For each $j = 0, \ldots, p - 1$, we have

$$
Q_{n,j}\supseteq{\cal M}_j^n.
$$

Proof. The statement follows from Remark $2 \square$

As a consequence of this lemma, we get the following result:

Corollary 3.1. *Let p be a fixed prime and n a positive integer. Then we have*:

$$
I_{p^n} \supseteq \left(p, \prod_{j=0,\ldots,p-1} (X-j)\right)^n.
$$

Proof. By [\(4\)](#page-7-0) and Lemma 3.2 we have

$$
I_{p^n} = \prod_{j=0,\ldots,p-1} \mathcal{Q}_{n,j} \supseteq \prod_{j=0,\ldots,p-1} \mathcal{M}_j^n
$$

where the last containment follows from Lemma 3.2. Finally, by [Lemma 2.2,](#page-5-0) the product of the ideals \mathcal{M}^n_j is equal to

$$
\prod_{j=0,\dots,p-1} \mathcal{M}_j^n = \left(p, \prod_{j=0,\dots,p-1} (X-j)\right)^n.
$$

Notice that the product of the M_j 's is actually equal to their intersection, since they are maximal coprime ideals. \Box

The last formula of the previous proof gives the primary decomposition of the ideal $(p, \prod_{j=0,\dots,p-1} (X-j))^n$.

Remark 3. In general, for a fixed $j \in \{0, \ldots, p-1\}$, the reverse containment of Lemma 3.2 does not hold, that is, the *n*-th power of \mathcal{M}_i can be strictly contained in the \mathcal{M}_i -primary ideal $\mathcal{Q}_{n,i}$. For example (again, we use (3) to prove the containment):

$$
X(X-2) \in \bigg(\bigcap_{k=0,\dots,3} (2^3, X-2k)\bigg) \setminus (2, X)^3.
$$

Because of that, in general we do not have an equality in Corollary 3.1. For example, let $p = 2$ and $n = 3$. We have

$$
X(X-1)(X-2)(X-3) \in I_{2^3} \setminus (2, X(X-1))^3.
$$

It is also false that

$$
\bigcap_{i=0,\dots,p^n-1} (p^n, X-i) = \bigg(p^n, \prod_{i=0,\dots,p^n-1} (X-i)\bigg).
$$

See for example: $p = 2$, $n = 2$: $2X(X - 1) \in \bigcap_{i=0,\dots,3} (4, X - i) \setminus (4, \prod_{i=0,\dots,3} (X - i)).$

We want to study under which conditions the ideal $\mathcal{Q}_{n,j}$ is equal to \mathcal{M}_j^n . Our aim is to find a set of generators for $Q_{n,i}$. For $f \in Q_{n,i}$, we have $f \in (p^n, X - i)$ for each $i \equiv j \pmod{p}$, $i \in \{0, ..., p^n - 1\}$. By [\(3\)](#page-7-0) that means p^{n} $|f(i)$ for each such an *i*. Equivalently, such a polynomial has the property that modulo p^n it is zero at the p^{n-1} residue classes of $\mathbb{Z}/p^n\mathbb{Z}$ which are congruent to *j* modulo *p*.

Without loss of generality, we proceed by considering the case $j = 0$. We set $\mathcal{M} = \mathcal{M}_0 = (p, X)$ and $\mathcal{Q}_n = \mathcal{Q}_{n,0} = \bigcap_{i \equiv 0 \pmod{p}} (p^n, X - i)$. Let $f \in \mathcal{Q}_n$, of degree *m*. We have

$$
f(X) = q_1(X)X + f(0)
$$
 (5)

where $q_1 \in \mathbb{Z}[X]$ has degree equal to $m-1$. Since $f \in (p^n, X)$ we have $p^n | f(0)$.

Since $f \in (p^n, X - p)$, we have $p^n | f(p) = q_1(p)p + f(0)$, so $p^{n-1} | q_1(p)$. By the Euclidean algorithm,

$$
q_1(X) = q_2(X)(X - p) + q_1(p)
$$
\n(6)

for some polynomial $q_2 \in \mathbb{Z}[X]$ of degree $m - 2$. So

$$
f(X) = q_2(X)(X - p)X + q_1(p)X + f(0).
$$

We set $R_1(X) = q_1(p)X + f(0)$. Then $R_1 \in \mathcal{M}^n$, since $p^{n-1}|q_1(p)$ and $p^n|f(0)$. Since $f \in (p^n, X - 2p)$, we have $p^{n}|f(2p) = q_2(2p)2p^2 + q_1(p)2p + f(0)$. If $p > 2$ then $p^{n-2}|q_2(2p)$, because $p^{n}|q_1(p)2p +$ *f* (0). If *p* = 2 then we can just say p^{n-3} | $q_2(2p)$. By the Euclidean algorithm again, we have

$$
q_2(X) = q_3(X)(X - 2p) + q_2(2p)
$$

for some $q_3 \in \mathbb{Z}[X]$. So we have

$$
f(X) = q_3(X)(X - 2p)(X - p)X + q_2(2p)(X - p)X + q_1(p)X + f(0).
$$

Like before, if we set $R_2(X) = q_2(2p)(X - p)X + q_1(p)X + f(0)$, we have $R_2 \in \mathcal{M}^n$ if $p > 2$, or $R_2 \in \mathcal{Q}_n$ if $p = 2$.

We define now the following family of polynomials:

Definition 3.1. For each $k \in \mathbb{N}$, $k \ge 1$, we set

$$
G_{p,0,k}(X) = G_k(X) \doteq \prod_{h=0,...,k-1} (X - hp).
$$

We also set $G_0(X) \doteq 1$.

From now on, we will omit the index *p* in the above notation. Notice that the polynomials $G_k(X)$, whose degree for each k is k , enjoy these properties:

- *i*) For every *t* ∈ \mathbb{Z} , $G_k(tp) = p^k t(t-1) \cdots (t-(k-1))$. Hence, the highest power of *p* which divides all the integers in the set $\{G_k(tp) | t \in \mathbb{Z}\}$ is $p^{k+v_p(k!)}$. It is easy to see that $k+v_p(k!) = v_p((pk)!)$.
- *ii*) $G_k(X) = (X kp)G_{k-1}(X)$.

iii) since for every integer *h*, $X - hp \in \mathcal{M}$, we have $G_k(X) \in \mathcal{M}^k$. We remark that *k* is the maximal integer with this property, since $deg(G_k) = k$ and $G_k(X)$ is primitive (since monic).

Recall that, by [Lemma](#page-8-0) 3.2, for every integer *n* we have $\mathcal{Q}_n \supseteq \mathcal{M}^n$. By property iii) above $G_k \in \mathcal{M}^n$ if and only if $n \le k$. By property i) we have $G_k \in \mathcal{Q}_n$ if and only if $k + v_n(k!) \ge n$. From these remarks, it is very easy to deduce that, in the case $p \ge n$, if $G_k \in \mathcal{Q}_n$ then $G_k \in \mathcal{M}^n$. In fact, if that is not the case, it follows from above that $k < n$. Since $n \leq p$ we get $k + v_p(k!) = k$. Since $G_k \in \mathcal{Q}_n$, we have $n \leq k$, contradiction.

The next lemma gives a sort of division algorithm between an element of \mathcal{Q}_n and the polynomials ${G_k(X)}_{k \in \mathbb{N}}$. In particular, we will deduce that $Q_n = \mathcal{M}^n$, if $p \ge n$.

Lemma 3.3. Let p be a prime and n a positive integer. Let $f \in \mathcal{Q}_{p,n,0} = \mathcal{Q}_n$ be of degree m. Then for each 1 \le *k* \le *m* there exists q_k ∈ $\mathbb{Z}[X]$ of degree m $-$ *k* such that

$$
f(X) = q_k(X)G_k(X) + R_{k-1}(X)
$$

where $R_{k-1}(X) \doteq \sum_{h=1,\dots,k-1} q_h(hp) G_h(X)$ for $k \geqslant 2$ and $R_0(X) \doteq f(0)$. We also have $q_k(X) = q_{k+1}(X)(X - kp) + q_k(kp)$ for $k = 1, ..., m-1$. Moreover, for each such a k the following *hold*:

- *i*) $p^{n-v_p((pk)!)} |q_k(kp), \text{ if } v_p((pk)!) < n.$
- ii) $q_k(kp)G_k(X) \in \mathcal{Q}_n$ and if $k < p$ then $q_k(kp)G_k(X) \in \mathcal{M}^n$.
- iii) *If* $m \leq p$ then $R_{k-1} \in \mathcal{M}^n$ for $k = 1, \ldots, m$. *If* $m > p$ then $R_{k-1} \in \mathcal{M}^n$ for $k = 1, \ldots, p$ and $R_{k-1} \in \mathcal{Q}_n$ for $k = p + 1, \ldots, m$.

Proof. We proceed by induction on *k*. The case $k = 1$ follows from [\(5\),](#page-9-0) and by [\(6\)](#page-9-0) we have the last statement regarding the relation between $q_1(X)$ and $q_2(X)$. Suppose now the statement is true for $k - 1$, so that

$$
f(X) = q_{k-1}(X)G_{k-1}(X) + R_{k-2}(X)
$$

 $\text{with} \ R_{k-2}(X) \doteq \sum_{h=1,\dots,k-2} q_h(hp) G_h(X)$ and

- $p^{n-v_p((p(k-1))!)} |q_{k-1}((k-1)p), \text{ if } v_p((p(k-1))') < n,$
- − q_{k-1} (($k-1$) p) G_{k-1} (X) belongs to Q_n and if $k-1 < p$ it belongs to \mathcal{M}^n ,
- *Rk*−² [∈] ^Q*ⁿ* and if *^k* [−] ² *< ^p* then *Rk*−² [∈]M*ⁿ*.

We divide $q_{k-1}(X)$ by $(X - (k-1)p)$ and we get

$$
q_{k-1}(X) = q_k(X)(X - (k-1)p) + q_{k-1}((k-1)p)
$$

for some polynomial $q_k \in \mathbb{Z}[X]$ of degree $m - k$. We substitute this expression of $q_{k-1}(X)$ in the equation of $f(X)$ at the step $k-1$ and we get:

$$
f(X) = q_k(X)\left(X - (k-1)p\right)G_{k-1}(X) + R_{k-1}(X),\tag{7}
$$

where $R_{k-1}(X) \doteq q_{k-1}((k-1)p)G_{k-1}(X) + R_{k-2}(X)$. This is the expression of $f(X)$ at step k, since $(X - (k-1)p)G_{k-1}(X)$ is equal to $G_k(X)$. By the inductive assumption, $R_{k-1} \in \mathcal{Q}_n$ and if $k-1 < p$ we also have R_{k-1} ∈ \mathcal{M}^n . We still have to verify i) and ii).

We evaluate the expression (7) in $X = kp$ and we get

$$
f(kp) = q_k(kp)G_k(kp) + R_{k-1}(kp) = q_k(kp)p^k k! + R_{k-1}(kp).
$$

Since p^n divides both $f(kp)$ and $R_{k-1}(kp)$ (by definition of Q_n), if $v_n((pk)!) < n$ we get that $q_k(kp)$ is divisible by $p^{n-\nu_p((pk)!)}$, which is statement i) at the step k. Notice that $q_k(kp)G_k(X)$ is zero modulo p^n on every integer congruent to zero modulo p; hence, $q_k(kp)G_k(X) \in \mathcal{Q}_n$. Moreover, $k < p \Leftrightarrow$ *v*_{*p*}(*k*!) = 0, so in that case $q_k(kp)G_k(X)$ ∈ \mathcal{M}^n . So ii) follows. $□$

Notice that by formula [\(3\)](#page-7-0) of [Remark 1,](#page-7-0) under the assumptions of [Lemma 3.3](#page-10-0) we have for each *k* ∈ {1*,..., p* − 1} that

$$
q_k \in (p^{n-k}, X - kp)
$$

(see i) of [Lemma 3.3:](#page-10-0) in this case $v_p((pk)!)=k$). If $k=m=\deg(f)$ then $q_k \in \mathbb{Z}$. Hence, we get the following expression for a polynomial $f \in \mathcal{Q}_n$ in the case $p \geq n > m$ (this assumption is not restrictive, since $X^n \in \mathcal{Q}_n$:

$$
f(X) = q_m G_m(X) + R_{m-1}(X) = q_m G_m(X) + \sum_{k=1,\dots,m-1} q_k(kp) G_k(X)
$$
 (8)

where $q_m \in \mathbb{Z}$ is divisible by p^{n-m} and $R_{m-1}(X)$ is in \mathcal{M}^n .

The next proposition determines the primary components $Q_{n,i}$ of I_{n^n} of [\(4\)](#page-7-0) in the case $p \ge n$. It shows that in this case the containment of [Lemma 3.2](#page-8-0) is indeed an equality.

Proposition 3.1. Let $p \in \mathbb{Z}$ be a prime and n a positive integer such that $p \ge n$. Then for each $j = 0, \ldots, p - 1$ *we have*

$$
\mathcal{Q}_{n,j}=\mathcal{M}_j^n.
$$

Proof. It is sufficient to prove the statement for $j = 0$: for the other cases we consider the $\mathbb{Z}[X]$ -automorphisms $\pi_j(X) = X - j$, for $j = 1, \ldots, p - 1$, which permute the ideals $\mathcal{Q}_{n,j}$ and \mathcal{M}_j . Let $\mathcal{Q}_n = \mathcal{Q}_{n,0}$ and $\mathcal{M} = \mathcal{M}_0$.

The inclusion $(≥)$ follows from [Lemma 3.2.](#page-8-0) For the other inclusion $(⊆)$, let $f(X)$ be in Q_n . We can assume that the degree *m* of $f(X)$ is less than *n*, since X^n is the smallest monic monomial in Q_n . By Eq. (8) above, $f(X)$ is in \mathcal{M}^n , since p^n divides q_m , $G_m \in \mathcal{M}^m$ and $R_{m-1} \in \mathcal{M}^n$ by [Lemma 3.3](#page-10-0) (notice that $m - 1 < p$). \Box

Remark 4. In the case $p \ge n$, [Lemma 3.3](#page-10-0) implies that Q_n is generated by $\{p^{n-m}G_m(X)\}_{0 \le m \le n}$: it is easy to verify that these polynomials are in Q*ⁿ* (using [\(3\)](#page-7-0) again) and (8) implies that every polynomial *f* ∈ \mathcal{Q}_n is a \mathbb{Z} -linear combination of $\{p^{n-m}G_m(X)\}_{0 \leq m \leq n}$, since $q_m(mp)$ is divisible by p^{n-m} , for each of the relevant *m*.

The following theorem gives a description of the ideal I_{p^n} in the case $p \ge n$. In this case the containment of [Corollary 3.1](#page-8-0) becomes an equality.

Theorem 3.1. *Let* $p \in \mathbb{Z}$ *be a prime and n a positive integer such that* $p \ge n$ *. Then the ideal in* $\mathbb{Z}[X]$ *of those polynomials whose fixed divisor is divisible by pⁿ is equal to*

$$
I_{p^n} = \left(p, \prod_{i=0,\dots,p-1} (X - i)\right)^n.
$$

Proof. By Proposition 3.1, for each $j = 0, \ldots, p - 1$ the ideal $\mathcal{Q}_{n,j}$ is equal to \mathcal{M}_{j}^{n} . So, by the last formula of the proof of [Corollary 3.1,](#page-8-0) we get the statement. \Box

As a consequence, we have the following remark. Let *p* be a prime and *n* a positive integer less than or equal to p. Let $f \in I_{n^n}$ such that the content of $f(X)$ is not divisible by p. Then deg(f) $\geq n$ p, since $np = \deg(\prod_{i=0,\dots,p-1}(X - i)^n)$. Another well-known result in this context is the following: if we fix the degree *d* of such a polynomial *f*, then the maximum *n* such that $f \in I_{p^n}$ is bounded by $n \le \sum_{k \ge 1} [d/p^k] = v_p(d!)$.

If we drop the assumption $p \geqslant n$, the ideal $\mathcal{Q}_{n,j}$ may strictly contain \mathcal{M}_{j}^{n} , as we observed in [Remark 3.](#page-8-0) The next proposition shows that this is always the case, if *p < n*. This result follows from [Lemma 3.3](#page-10-0) as [Proposition 3.1](#page-11-0) does, and it covers the remaining case $p < n$. It is stated for the case $j = 0$. Remember that $\mathcal{M} = (p, X)$ and $\mathcal{Q}_n = \bigcap_{i \equiv 0 \pmod{p}} (p^n, X - i)$.

Proposition 3.2. Let $p \in \mathbb{Z}$ be a prime and n a positive integer such that $p < n$. Then we have

$$
Q_n = \mathcal{M}^n + (q_{n,p}G_p(X), \ldots, q_{n,n-1}G_{n-1}(X))
$$

where, for each $k = p, \ldots, n - 1, q_{n,k}$ *is an integer defined as follows:*

$$
q_{n,k} \doteq \begin{cases} p^{n-v_p((pk)!)}, & \text{if } v_p((pk)!) < n, \\ 1, & \text{otherwise.} \end{cases}
$$

In particular, \mathcal{M}^n *is strictly contained in* \mathcal{Q}_n *.*

Proof. We begin by proving the containment (\supseteq). [Lemma 3.2](#page-8-0) gives $\mathcal{M}^n \subseteq \mathcal{Q}_n$. We have to show that the polynomials $q_{n,k}G_k(X)$, for $k \in \{p, \ldots, n-1\}$, lie in \mathcal{Q}_n . This follows from property i) of the polynomials $G_k(X)$ and the definition of $q_{n,m}$.

Now we prove the other containment (\subseteq) . Let $f \in \mathcal{Q}_n$ be of degree *m*. If $m < p$ then $f \in \mathcal{M}^n$ (see [Lemma 3.3](#page-10-0) and in particular [\(8\)\)](#page-11-0). So we suppose $p \le m$. By Lemma 3.3 we have

$$
f(X) = \sum_{k=p,...,m} q_h(hp) G_h(X) + R_{p-1}(X)
$$
\n(9)

where $R_{p-1}(X) = \sum_{k=1,\dots,p-1} q_k(hp)G_h(X) \in \mathcal{M}^n$ and $q_m \in \mathbb{Z}$, so that $q_m(mp) = q_{n,m}$. Then, since $q_{n,k} = p^{n-v_p((pk)!)} |q_k(kp)$ if $v_p((pk)!) < n$, it follows that the first sum on the right-hand side of the previous equation belongs to the ideal $(q_n, pG_p(X), \ldots, q_{n,n-1}G_{n-1}(X))$. For the last sentence of the proposition, we remark that the polynomials $\{q_{n,k}G_k(X)\}_{k=p,\dots,n-1}$ are not contained in \mathcal{M}^n : in fact, for each $k \in \{p, \ldots, n-1\}$, by property iii) of the polynomials $G_k(X)$ we have that the minimal integer N such that $q_{n,k}G_k(X)$ is contained in \mathcal{M}^N is $n - v_p(k!)$ if $v_p((pk)!)=k + v_p(k!) < n$ and it is k otherwise. In both cases it is strictly less than *n* (since $v_p(k!) \geq 1$, if $k \geq p$). \Box

Remark 5. The following remark allows us to obtain another set of generators for Q_n . We set

$$
\overline{m} = \overline{m}(n, p) \doteq \min\{m \in \mathbb{N} \mid \nu_p((pm)!) \geq n\}.
$$
 (10)

Remember that $v_p((pm)!)=m+v_p(m!)$. If $p \ge n$ then $\overline{m}=n$ and if $p < n$ then $p \le \overline{m} < n$.

Suppose $p < n$. Then for each $m \in {\overline{m}, ..., n}$ we have $v_p((pm)!) \geq n$, since the function $e(m) =$ $m + v_p(m!)$ is increasing. So for each such *m* we have $q_{n,m} = 1$, hence $G_m \in (G_{\overline{m}}(X))$. So we have the equalities:

$$
\mathcal{Q}_n = \mathcal{M}^n + (q_{n,m} G_m(X) \mid m = p, \dots, \overline{m})
$$

$$
= (q_{n,m} G_m(X) \mid m = 0, \dots, \overline{m})
$$
(11)

where $q_{n,m} = p^{n-m}$, for $m = 0, \ldots, p-1$, and for $m = p, \ldots, \overline{m}$ is defined as in the statement of [Propo](#page-12-0)[sition 3.2.](#page-12-0) The containment *(*⊇*)* is just an easy verification using the properties of the polynomials $G_m(X)$; the other containment follows by [\(9\).](#page-12-0)

We can now group together [Proposition 3.1 and 3.2](#page-11-0) into the following one:

Proposition 3.3. Let $p \in \mathbb{Z}$ be a prime and n a positive integer. Then we have

$$
Q_n = (q_{n,0}G_0(X),\ldots,q_{n,\overline{m}}G_{\overline{m}}(X))
$$

where $\overline{m} = \min\{m \in \mathbb{N} \mid v_p((pm)!) \geq n\}$ *and for each* $m = 0, \ldots, \overline{m}$, $q_{n,m}$ *is an integer defined as follows:*

$$
q_{n,m} \doteq \begin{cases} p^{n-v_p((pm)!)}, & m < \overline{m}, \\ 1, & m = \overline{m}. \end{cases}
$$

It is clear what the primary ideals Q_i , for $j = 1, \ldots, p - 1$, look like:

$$
Q_{n,j} = \bigcap_{i \equiv j \pmod{p}} \left(p^n, X - i \right) = \mathcal{M}_j^n + \left(q_{n,p} G_p(X - j), \dots, q_{n,\overline{m}} G_{\overline{m}}(X - j) \right)
$$

$$
= \left(q_{n,0} G_0(X - j), \dots, q_{n,\overline{m}} G_{\overline{m}}(X - j) \right).
$$

In fact, for each $j = 1, \ldots, p - 1$, it is sufficient to consider the automorphisms of $\mathbb{Z}[X]$ given by $\pi_i(X) = X - j$. It is straightforward to check that $\pi_i(I_{p^n}) = I_{p^n}$. Moreover, $\pi(Q_{n,0}) = Q_{n,i}$ and $\pi(\mathcal{M}_0) = \mathcal{M}_i$ for each such a *j*, so that π_i permutes the primary components of the ideal I_{p^n} .

The ideal $I_{p^n} = p^n \text{Int}(\mathbb{Z}) \cap \mathbb{Z}[X]$ was studied in [\[2\]](#page-15-0) in a slightly different context, as the kernel of the natural map $\varphi_n : \mathbb{Z}[X] \to \Phi_n$, where the latter is the set of functions from $\mathbb{Z}/p^n\mathbb{Z}$ to itself. In that article a recursive formula is given for a set of generators of this ideal. Our approach gives a new point of view to describe this ideal.

For other works about the ideal I_{p^n} in a slightly different context, see [\[9,10,13\].](#page-15-0) This ideal is important in the study of the problem of the polynomial representation of a function from $\mathbb{Z}/p^n\mathbb{Z}$ to itself.

4. Case *I ^pp***+¹**

As a corollary we give an explicit expression for the ideal I_{p^n} in the case $n = p + 1$. By [Proposi](#page-12-0)[tion 3.2](#page-12-0) the primary components of I_{np+1} are

$$
Q_{p+1,j} = \mathcal{M}_j^{p+1} + (G_p(X-j))
$$
 (12)

for $j = 0, \ldots, p - 1$.

Corollary 4.1.

$$
I_{p^{p+1}} = \left(p, \prod_{i=0,\dots,p-1} (X - i)\right)^{p+1} + \left(H(X)\right)
$$

 $where H(X) = \prod_{i=0,...,p^2-1} (X - i).$

We want to stress that the polynomial $H(X)$ is not contained in the first ideal of the right-hand side of the statement. In [\[2\]](#page-15-0) a similar result is stated with another polynomial $H_2(X)$ instead of our $H(X)$. Indeed the two polynomials, as already remarked in [\[2\],](#page-15-0) are congruent modulo the ideal $(p, \prod_{i=0,\dots,p-1} (X - i))^{p+1}$.

Proof of Corollary 4.1. Like before, we set $\mathcal{Q}_{p,p+1,j} = \mathcal{Q}_{p+1,j}$. The containment *(* \supseteq *)* follows from [Corollary 3.1](#page-8-0) and because the polynomial $H(X)$ is equal to $\prod_{j=0,\dots,p-1} G_p(X-j)$ and for each *j* = 0*,..., p* − 1 the polynomial $G_p(X - j)$ is in $Q_{p+1,j}$ by [Proposition 3.2.](#page-12-0) Since $Q_{p+1,j}$, for $j = 0, \ldots, p - 1$, are exactly the primary components of $I_{p^{p+1}}$ (see [\(4\)\)](#page-7-0), we get the claim.

Now we prove the other containment (\subseteq). Let $f \in I_{p^{p+1}} = \bigcap_{j=0,\dots,p-1} Q_{p+1,j}$. By [\(12\)](#page-13-0) we have:

$$
f(X) \equiv C_{p,j}(X)G_p(X-j) \pmod{\mathcal{M}_j^{p+1}}
$$

for some $C_{p,j} \in \mathbb{Z}[X]$, for $j = 0, \ldots, p - 1$.

Since the ideals $\{M_j^{p+1} = (p, X - j)^{p+1} \mid j = 0, \ldots, p - 1\}$ are pairwise coprime (because they are powers of distinct maximal ideals, respectively), by the Chinese Remainder Theorem we have the following isomorphism:

$$
\mathbb{Z}[X] \Big/ \Bigg(\prod_{j=0}^{p-1} \mathcal{M}_j^{p+1} \Bigg) \cong \mathbb{Z}[X] / \mathcal{M}_0^{p+1} \times \dots \times \mathbb{Z}[X] / \mathcal{M}_{p-1}^{p+1}.
$$
 (13)

We need now the following lemma, which tells us what is the residue of the polynomial $H(X)$ modulo each ideal $\boldsymbol{\mathcal{M}}^{p+1}_j$:

Lemma 4.1. Let p be a prime and let $H(X) = \prod_{j=0,...,p-1} G_p(X-j).$ Then for each $k=0,\ldots,p-1$ we have

$$
H(X) \equiv -G_p(X - k) \pmod{\mathcal{M}_k^{p+1}}.
$$

Proof. Let $k \in \{0, \ldots, p-1\}$ and set $I_k = \{0, \ldots, p-1\} \setminus \{k\}$. For each $j \in I_k$ we have $G_p(k-j) \equiv$ $(k - j)^p$ (mod *p*). We have

$$
H(X) + G_p(X - k) = G_p(X - k) \bigg[1 + \prod_{j \in I_k} G_p(X - j) \bigg].
$$

Since $G_p(X - k) \in M_k^p$ we have just to prove that $T_k(X) = 1 + \prod_{j \in I_k} G_p(X - j) \in M_k$. By formula [\(3\)](#page-7-0) in [Remark 1](#page-7-0) it is sufficient to prove that $T_k(k)$ is divisible by p. We have

$$
T_k(k) \equiv 1 + \prod_{j \in I_k} (k - j)^p \pmod{p}
$$

$$
\equiv 1 + \left(\prod_{s=1,\dots,p-1} s\right)^p \pmod{p}
$$

$$
\equiv 1 + (p - 1)!^p \pmod{p}
$$

$$
\equiv \left(1 + (p - 1)!\right)^p \pmod{p}
$$

which is congruent to zero by Wilson's theorem. \Box

We finish now the proof of the corollary.

By the Chinese Remainder Theorem, there exists a polynomial $P \in \mathbb{Z}[X]$ such that $P(X) \equiv$ $-C_{p,j}(X)$ (mod \mathcal{M}_j^{p+1}), for each $j=0,\ldots,p-1$. Then by the previous lemma $P(X)H(X) \equiv$ $C_{p,j}(X)G_p(X-j)$ (mod \mathcal{M}_j^{p+1}) and so again by the isomorphism [\(13\)](#page-14-0) above we have

$$
f(X) \equiv P(X)H(X) \quad \left(\text{mod} \prod_{j=0,\dots,p-1} \mathcal{M}_j^{p+1}\right)
$$

so we are done since $\prod_{j=0,...,p-1} M_j^{p+1} = (p, \prod_{i=0,...,p-1} (X - i))^{p+1}$ (see the proof of [Corol](#page-8-0)lary 3.1). \Box

Acknowledgments

I want to thank the referee for his/her suggestions. I wish also to thank Sophie Frisch for the useful references. I deeply thank Elvira Carlotti for her continuous and strenuous help. The author was supported by the Austrian Science Foundation (FWF), Project Number P23245-N18.

References

- [1] [D.F. Anderson, P.-J. Cahen, S.T. Chapman, W. Smith, Some factorization properties of the ring of integer-valued polynomials,](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib414361436853s1) [in: Zero-Dimensional Commutative Rings, Knoxville, TN, 1994, in: Lect. Notes Pure Appl. Math., vol. 171, Dekker, New York,](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib414361436853s1) [1995, pp. 125–142.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib414361436853s1)
- [2] A. Bandini, Functions $f: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ induced by polynomials of $\mathbb{Z}{X}$ [, Ann. Mat. Pura Appl. \(4\) 181 \(1\) \(2002\) 95–104.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib42616E64s1)
- [3] J.-L. [Chabert, Anneaux de polynômes à valeurs entières et anneaux de Fatou, Bull. Soc. Math. France 99 \(1971\) 273–283.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib43686162s1)
- [4] [P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, Math. Surv. Monogr., vol. 48, Amer. Math. Soc., Providence, 1997.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4361436830s1)
- [5] [P.-J. Cahen, J.-L. Chabert, Elasticity for integral-valued polynomials, J. Pure Appl. Algebra 103 \(3\) \(1995\) 303–311.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib43614368s1)
- [6] [S.T. Chapman, B. McClain, Irreducible polynomials and full elasticity in rings of integer-valued polynomials, J. Algebra](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib43684D63436Cs1) 293 [\(2\) \(2005\) 595–610.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib43684D63436Cs1)
- [7] L.E. [Dickson, Introduction to the Theory of Numbers, Univ. Chicago Press, Chicago, 1929.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4469636B736F6Es1)
- [8] H. [Gunji, D.L. McQuillan, On a class of ideals in an algebraic number field, J. Number Theory 2 \(1970\) 207–222.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib474D6351s1)
- [9] G. [Keller, F.R. Olson, Counting polynomial functions \(mod](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4B656C6C4F6C73s1) *pn*), Duke Math. J. 35 (1968) 835–838.
- [10] D.J. Lewis, Ideals and polynomial functions, Amer. J. Math. 78 (1956) 71-77.
- [11] [K.A. Loper, Ideals of integer-valued polynomial rings, Comm. Algebra 25 \(3\) \(1997\) 833–845.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4C6F706572s1)
- [12] D.L. [McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 \(1985\) 162–178.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4D6351s1)
- [13] I. [Niven, L.J. Warren, A generalization of Fermat's theorem, Proc. Amer. Math. Soc. 8 \(1957\) 306–313.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4E6976576172s1)
- [14] D.G. [Northcott, Ideal Theory, Cambridge University Press, 1953.](http://refhub.elsevier.com/S0021-8693(13)00522-X/bib4E6F727468s1)