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ABSTRACT

In matrix theory, majorization plays a significant role. For instance, majorization
relations among eigenvalues and singular values of matrices produce a lot of norm
inequalities and even matrix inequalities. This survey article is intended as a review of
recent results in matrix theory related to majorization.

INTRODUCTION

My aim is to give a brief survey of results related to majorization in matrix
theory since the appearance in 1979 of the monumental book Inequalities:
Theory of Majorization and its Applications by W, Marshall and 1. Olkin,
which will be cited as [MO].

In 1981 T delivered a lecture of similar nature with the title “Majorization,
doubly stochastic matrices and comparison of eigenvalues of matrices,” which
was published later as Ando (1989), and will e cited as [A].

As the area to be covered is vast, I have to confine myself to the field of
my own interest, Therefore main emphasis is placed on majorization related
to eigenvalues and singular values, matrix inequalities, and norm inequalities.
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15 T. ANDO

The survey consists of eight sections:

Majorization for sequences
Majorization for matrices
Matrix means

. Matrix inequalities

e

Log majorization

6. Spectral perturbation

Hadamard products

8. Majorizations in von Neumann algebras

=1

1. MAJORIZATION FOR SEQUENCES

Recall that for a pair of real vectors « = [4,], b =[h,] € R" the ma-
Jerization relation a > b means that

Za[,] Eb[, (k=1,2,....n) (1.1)

=1

a ll(]

Zn,; = Zb;, {(1.2)

f=1 i=]

where ap) > a4 2 2 ap, is the decreasing rearrangement of the compo-
nents of the vector 2. When the last eqnahh condition (1.2} is not leqmrc‘d a
is said to weakly majorize or submajorize b, and this weak relation is denoted
by a =, b. Note that in [A] weak majorization > is denoted by > .
Both > and >“_. introduce pseudo-orders in R*. Remark that ¢ = b
means ¢; 2 b, (i = .»n). Then obviously ¢ > b implies a >, b.
The ban( qudnllty E a; for a € R" can be written in the furm

i~ 1

@y = max },a, (1.3
[i]

i=1 IJI=4 ie]

where | is a subset of {1, 2,..., n} and U} denotes its cardinality.
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For a complex vector a = [¢;] € C", denote by |a| the vector [lall.
Besides the formulas

k
Y laly = max ¥ la,l, (1.4)
i=1 1=k j=g
one has
k n
Y lalyy = min{ Yy b,| + le_a;( la, = b,l:beC"). (1.5)
i=1 _]=l SISsHN
Remark that when lay| 2 la,l 2 -+ > le, |, the minimum in (1.5) is attained

at b defined hy

b = {sgn(a.)-(la.-l~ o) (i=12....k), 6

0 (i=k+1,....n).

Alberti and Uhlmann (1982) pointed out that if there is a such that ¢ > b
for all b in a bounded subset % of R", then among all those a’s there is a
minimum & in the sense of > . With the additional requirement that
4, 2 d, » ++ > 4, this minimum is uniquely determined.

In this connection Ando and Nakamura (1991), analyzing the approach of
Li and Tsing (1989) in the proof of (2.21), showed that given a, b € R" thtg
set {a — ¢:b > ¢} has a minimum element in the sense of > : there is b
such that b =5 and 2 — ¢ > a — b for all ¢ for which b > c.

A corresponding result for weak majorization was pointed out by Bapat
(1991): given a hounded subset .% of R’ , there is a unique a € R} with
a4, »d, » - »d, such that @ =, b forall h €% and a =, 4 whenever
a € R}, and a =, b forall b €5, In fact, this @ is determined successively
by the following formulas:

a, = min{a[,] ca>, b (b E{S‘”)}

and

>~

k-1
ayia>=, b(b ey)} - Y4 (k=23,...,0).

a, = min{
i i=1

1

(1.7)

This ¢ will be denoted by LI, 5~
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A decisive role in majorization theory is plaved by the theorem of Hardy,
Littlewood, and Pélya that @ = {a,] > b = [b,] if and only if b = Da for
some doubly stochastic matrix D. Recall here that a matrix is called doubly
stochastic if all its entries are nonnegative and all its row sums and column
sums are equal to 1. If the requirements in the last part are only for row sums
(column sums), then the matrix is called row-stochastic (column-stochastic).
Correspondingly « >, b is characterized by the existence of a doubly
stochastic matrix D for which Da > b (see [MO, p. 27] and [A, p. 198]D.

When a continuous function f{(z) is defined on a region containing all
components of a vector a = [a,] € T, let us write f(a) = [ fla;)]. Then for
avector 2 € R" and a row-stochastic matrix ) one has

Df(a) » f(Da) for continuous convex f. {1.8)
Therefore it follows from the Hardy-Littlewood-Palya theorem that
a =~ b implies f(a) >, f(b) for continucus convex f, (1.9)
and

a >, b implies

{1.10)
fla) =, f(b) for continuous convex, nondecreasing f.
When § is an n X n matrix, denote by %($) the vector
n(S) = U, {ISal, 5Dl e > |dl, |BI}. (1.11)

where ¢ is the vector with all components equal to 1. It is clear that it all
entries of S are nonnegative then

U, {LSG!\ e = |d|} = Se;
hence

n(D) =¢ for doubly stochastic D. (1.12)
Bapat (1991) showed that, with 7 = 7(8),

[y lalyy] =, [Sal  (a & C"). (1.13)
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In particular,
lal =, |Dal far doubly stochastic D. (1.14)

Anorm ||-|[on C" is called permutation-invariant if for every permuta-
tion 7 of {1, 2,.... n}

Iladll=1{em, ]l (a = [a] € ). (1.15)
1t is called absolute if
lall = lilalll  (a € C"). (1.16)
Such a norm is always monotone on R} in the sense
lall = Il whenever a > b = 0. (1.17)

An absolute, permutation-invariant norm is often called a symmetric gauge
function.
Among familiar examples of absolute, permutation-invariant norms are

n Ly
lall, = { )} |a,-|P} {(1<p <), llall. = max la,l. (1.18)
i=1 sisn
Less well known are
k
”lln(k] = Zl(ﬂll] (If = 1,2,...,"). (1.]9)
i=1
With this notation (1.5) can be written in the following form

lallg, = min{llBll, + Klle — bll.: & & C}. (1.20)

It follows from Birkhoff’s theorem that every doubly stochastic matrix is a
convex combination of permutation matrices, so that for every permutation
invariant norm || -||

ilall = |l Dall for doubly stochastic D and a € C*. (1.21)

Further, by the characterization of weak majorization mentioned above, one
has for every absolute, permutation-invariant norm || - {|

llall = Bl whenever llallz), = 1Bllxy, (k=1,2,....n). (1.22)
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Considering a matrix § as a linear map on C”, one can define its mapping
norm (= Lipschitz bound) with respect to a norm |||l on C". When its
mapping norm is not greater than 1, S is called a || - [[contraction. Since

IS e = L1, {I5al: e > lal)

and IS, & = [i5*[lx ... (where, for instance, |S]l. o is the mapping norn
of § with respect to norm [ lle), it follows from (1.13) that

lal >, |8zl whenever § is || - |j;-contractive and || - |l.-contractive. (1.23)

There are two directions of generalization of the notion of majorization to
a pair of finite sequences of real vectors {¢"}", (B}, The first direction is
along the line of the Hardy-Littlewood-Polya theorem and requires for
simultaneous majorization of {¢)7" over {b') the existence of a doubly
stochastic matrix D such that »' = D' (i =1, 2,..., m). There is an
extensive study of simultaneous majorization of this t\pe mutwclted princi-
pally from [)thle in the monograph of Alberti und Uhlmann (1982).
Simultaneous majorization of {4} by {&'"} is characterized in terms of a
[amily of inequalities of the form

DD, a) = BN HY,

where ®( -+ ) are convex functions of m vector variables.
In the other direction requirement for majorization is that

in

iy — (i) P = .
htiy — Zdija] (i=1,2,...,m)

=1 for some m X m doubly stochastic matrix D = [d”] .

This has a close connection with the Choquet theory of simplexes as seen in
the m(mogr'lph of Alfsen (1971). In Fischer and Holbrook (1977, 1980)
majorization in this sense is characterized by the condition that

m n

Ye(ad?) = X (b))

i=1 i=1

for all nonncgative convex continuous functions ¢(-) on R". Along similar
lines is Komiya (1983).
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The case of m = 2 is in a special situation, Recall first (see [MO, p. 109]
and [A, p. 168]) that « > b is characterized by

lla + tell, = b + tell, (t € R). (1.24)

This was generalized by Ruch, Schranner, and Seligman (1950): for
stochastic vectors, that is, ||+ |l; unit vectors with nonnegative components
a® b9 (i = 1, 2), there is u column-stochastic matrix S such that b = Sz
(i = 1, 2) if and only if

la + 8@l > 1B® + D) (t € R). (1.25)

Hasselbarth and Ruch (1993) observed that for gencral vectors a b
(i =1, 2) there is a |- |, contraction € such that 5 = G2 (G = 1, 2) if
and only if

lsa™ + ta®||, = fsbV + th®)|; (s.t € R). (1.26)

The || - il case is valid in a more general setting.

2. MAJORIZATION FOR MATRICES

We take the view that a noncommutative analogue of a complex number
is a matrix, say n X n, while an analogue of a real number is a Hermitian
matrix and that of a nennegative nummber is a positive semidefinite matrix, In
this context the conjugate transpose corresponds to the complex conjugate of
a number. For a matrix A its real (or Hermitian) part Re A is defined as
(A + A*), while its imaginary part Im A is (1/2iX A — A*). The modulus
[Al of 2 matrix A is defined as the positive semidefinite square root of A*A.
Let us denote by M, the algebra of all n X n complex matrices.

The order relation A z B for two Hermitian matrices A, B always means
that A — B is positive semidefinite. In particular, A > 0 means that A is
positive semidefinite. Let us write A > 0 to mean that A is positive definite.

All difficulties with respect to this order relation come from the fact that
the space of Hermitian matrices does not become a lattice: given twa
Hermitian matrices A, B, the set {X: X » A and X > B} has no minimnum
point except when Az B or A < B. Ando (1993) gave a complete
parametrization of all minimal points of this set.

Alberti and Uhlmann (1982) is a useful monograph on the subjects of this
scction.
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To cach matrix A two kind of numerical vectors, ane in C" and the other
in R", are associated: the onc consists of the eigenvalues [A,(A)] of A, and
the other of its singular calues [o,( A)], where a,( A) = A, (| A by definition.

When A is Hermitian, all its eigenvalues are real, so let us always arrange
them in decreasing order:

LAY 2 A(A)Y > - = A (A). (2.1
For two Hermitian matrices A, B, let us write A > B or A >_ B according
as [A,(A)] > [A(B) or [A,CAQ)] >, [A(B)]

An eigenvalue analogue of the extremal characterization (1.3) for a
Hermitian matrix A is the following formula of Ky Fan:

k
3 A (A) = max{Tr( PA) : P a Hermitian projection of rank k}

i=1

k
= max{ Y. (U*AU),; : U unitary (k=1.2,...,n), (2.2)

i=1

where (U*AU); is the (i, i) entry of U*AU. Immediate consequences of
(2.2} are the Schur thecrem

A > diag( A) for Hermitian A, (2.3)
and the Ky Fan theorem
[A(Be A)] = [Re A(A)]  (AeM,). (2.4)

The inverse problems for (2.3) and (2.4) have affirmative answers (see
[MO, p. 220]. If [A] > [e,], there is a Hermitian matrix A = [aij] such that

A(A)Y = A and ¢ = @, (i=1,2,....n).
Similarly if [a;] > [ B;], there is a matrix A for which
A(Re A) = @, and Re A, { A) = §3, (i=1,2,....n)

(sce [MO, p. 238]).
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A practical condition for a non-Hermitian matrix to have real {or even
positive) eigenvalues only is total positivity. Recall that a real matrix A = [a;;]
is called totally positive if all its square submatrices have positive determi-
nants. Ando (1987a) is a comprehensive survey on totally positive matrices.

Lt had been conjectured that (2.3) is valid also for a totally pasitive matrix.
Garloff (1982, 1985) settled the conjectare affirmatively, and further showed
that the inverse problem for this majorization relation is not always true even
when a,, = const Gi=12..., n).

Let A, B be Hermitian matrices. Among vectors of [A,( A}, [/\wm(B)],
and [A;;(A + B)], @, & being permutations of {1, 2. ...,n), there are
varions type of majorization relations. Among the easiest examples is a
consequence of Ky Fan’s formula (2.2):

[A(A) + A(B)] = [A(A + B)]. (2.5)

A deeper result is the celebrated theorem of V. B. Lidskii {the elder) and
Wielandt (see [MO, p. 242] and [A, p. 223]):

[A(A +B)] > [A(A) + A, (B} (2.6)

Hersch and Zwahlen (1962) gave an extremal characterization of TF_ | A (A)
for 1 <j, <j, < -+ <j; < n, for which Riddle (1984) presented a topclog-
ical minimax characterization. In Smiley (1966) one can find simple proofs for
some of inequalities of the Lidskii-Wiclandt type.

Amir-Moéz (1968) and Markus (1964) are excellent surveys of this area,
containing original contributions.

Bhatia and Iolbrook (1989) showed that if A. B, and A + B are normal,
there is a permutation 7 of {1, 2,..., n} and a doubly stochastic matrix D
such that

[’\E(A) + A?T(B,)] - D[’\i( A+ B)]
The inverse eigenvalues problem for a sum of Hermitian matrices is to
find conditions on three vectors [¢,], [b,], and [¢,] € R" which guarantee the
existence of two Hermitian matrices A, B such that

g, =A(A), b, =A(B). and ¢, = A,(A+B) (i=1.2....n).

Various inequalities of the Lidskii-Wielandt type give necessary conditions for
the solvability of the inverse problem. A serious combinatorial search for
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sufficient conditions began with A. Ilorn (1962). Extending this idea, B. V.
Lidskii the younger (1982) proposed a complete set of conditions for the
inverse problem. But no full proof has been published.

A related problem is the exponential function problem. Remark that a
matrix W is unitary if and only if it is of the form W = ¢'" for a Tlermitian
matrix H. Therefore, since a product of unitary matrices is again unitary, for
any Hermitian matrices A, B there must be a Hermitian matrix C such that

The problem is whether C is found in the form C = U*AU + V*BV for
suitable unitary matrices U, V. A close connection with the inverse eigenvalue
problem is seen from the relations

A{U*AU) = A(A) and A(V*BV) = A(B) (i=1.2... n).

This problem is not fully settled either. R. C. Thompson (1986) proposed a
program of reducing the inverse eigenvalue problem to this problem. He
showed that the Lidskii conditions can be checked on the basis of Nudelman
and Shvartzman (1959), in which the eigenvalues of the product of unitary
matrices are investigated,

In accordance with (2.1) let us always arrange the singular values of a
matrix A in decreasing order:

o(A) 2 0y(A) 2 - = a,(4). (2.7)

There are singular value versions of (2.5) and (2.6) for general matrices
A, B (see [MO, p. 243] and [A. p. 229])

[o:(A) + oi(B)] >, [o(A + B)] (2.5)
and
[a:(A = B)] =, [lei( 4) = o B)I]. (2.9)
In this connection Gil {1993) proved the following inequalities:
k k

2L {oi(Re A)° — [Re 3,(A)*) 2 L {on_iai(4)° = [A(A)F}

i=1 i=1

(k=1,2,....n). (2.10)
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Recall that a norm |||l on M, is called unitarily invariant if
[FAll = lUAVl  for all unitary U. V. (2.11)

It is known that a unitarily invariant norm |||l on M,, stands in one to one
correspondence with an absolute, permutation-invariant norm |-lon C" via

TAl =1[o (]I (A eM,). (2.12)

Now familiar unitarily invariant norms are produced from (1.18) and (1.19):

n 1/p
lall, = { = cn(fﬂ”} = (tr(laM}? (L p <),

- (2.13)

NAll. = o (A).
The norms || - |l;, | ll, and || + |l are called the trace norm. Frobenius norm,
and spectral norm, respectively. |l - |l is generally called the Schatten p-norm.

The unitarily invariant norm corresponding to | - [k, is called the Ky Fan
norm:

k
Al = 2 o(A)  (k=1,2,....8). (2.14)

i=1

Then the singular valuc versions of {2.2) and (1.20} hold in the following
form:

| Allky = max{[Tr( B*A)|: B*B a projection of rank k}

k
{ Y (u*av)y, .U, v umtary} (2.15)

and
| Allxy = min{|Bll, + k-|A — Bll.: B € M, }. (2.16)

In (2.15) for k = n the maximization can be restricted to U = V. See Li
(1987).
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Now it follows from (1.22) and (2.12) that for every unitarily invariant
norm || - |

A= 1Bl whenever [lAllgy = I1Bllg, (k=1,2,....0). (2.17)
A weaker restriction on a norm || - || is unitary stmilarity invariance:
[UAU*| = 1Al for all unitary U.
The numerical radius (norm) w(-) is a typical example:
w( A) = sup{iz*Ax|:|Ix] < 1}. (2.18)

For a linear map () from M, to M
to M, is defined by

its adjoint map P*(-) from M

m? m

Tr(B* - ®(A)) =Tr(@*(B) -A) (AeM,, BeM,). (2.19)
A lincar map ®(-) is called positive if it preserves positive semidefiniteness:
$(X) =20 whenever X > 0.

It is called unitel if (1) =1
called trace-preserving if

where I, is the n X n identity matrix, and is

m?

Trd(X)=TrX foral X.

It is obvious that a linear map is positive if and only if its adjoint is positive,
and that it is unital (is trace-preserving) if and only if its adjoint is trace-pre-
serving (is unital).

A positive, unital, and trace-preserving linear map ®(-) is called doubly
stochastic. Then a natural extension of the Hardy-Littlewood-Pélya theorem
holds: majorization A > B for a pair of Hermitian A, B is equivalent to the
existence of a doubly stochastic map ®(-) such that B = $(A). Also, for a
Hermitian matrix B, its image set under all doubly stochastic maps {®(B): @
doubly stochastic} coincides with the convex hull of its unitary orbit {U*BU : U
unitary}. See [A, p. 235].
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Li and Tsing (1989) showed that given Hermitian A, B there are doubly
stochastic maps ®,(-), @,(-} such that for all unitary similarity invariant norm
-1l
IA —®,(B)I=1A—-@(B)l=lA-®,(B)
for all doubly stochastic ®. (2.20)

Here @(-) is easy to construct on the basis of (2.6); the difficulty in
constructing @,(-} is overcome by the minimum theorem of Ando and
Nakamura (1891}, mentioned in Section 1.

As an extension of (1.11) to a linear map ®(-) on M, let us define n(d)
by

(®) = U, {[e:(®(A)], [e.(D*(B))] : Il All, | Bl < 1}. (2.21)
Iff () is positive, then
U, ([ @(AN] Al < 1} = [A(2(1))]. (2.22)
As a consequence one has
7(®) =e for doubly stochastic &. (2.23)

From (2.16) one can derive, as in Bapat (1991) (see also Bapat (1987, 1989)),
an extension of (1.13): for a linear map @ with 5 = n(P(A)),

[m0° o)) = [o(®(A)]  (AemM).  (229)
As a consequence one has
[Al =, 1B A) for doubly stochastic ®. (2.25)

The majorization (2.25) is valid even when ®(-) is |- |.-contractive and
Il - ll;-contractive.
Finally let us mention that

w( 4) > w(P(A)) for doubly stochastic ® and A € M,,. (2.26)
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The notions and results mentioned abave can be extended to the case of a
compact linear operator on a Hilbert space, because such an operator has
discrete eigenvalues and is approximated by finite rank operators.

Gohberg and Krein (1965) and Simon (1979) are excellent surveys on
unitarily invariant norms as well as majorization relations for Hilbert space
operators.

3. MATRIX MEANS

Let A, B be n X n Hermitian matrices. 1f A > B, then A(A) > A (B)
(i =1 2,....n) Il a real valued continuous function f(¢) is defined and
nondecreasing on an open or closed, finite vr infinite interval containing all
cigenvalues of A and B, then obviously

A(f(A)Y) = f(A(A)) = f(A(B)) = A(f(B)) (i=1.2...n).

Therefore U*f( AU > f{B) for some unitary U. But the order relation
fCA) » f(B) does not hold in general.
If

f(A) =f(B) whenever A, BE M, and A = B, (3.1)

then the function f(¢) is called matrix-monotone of order n on the interval.
Correspondingly matrix convexity of order n is defined by the requirement

af(A) + (1 —a)f(B) = f(aA+ (1 —a)B) (0<a<l). (3.2)

Further, f(t}is called matriz-concave of order n il —f(¢) is matrix-convex of
order n.

A function which is matrix-monotone of all orders is called operator-
monotone. Correspondingly operator convexity and operator concavity are
defined.

Remark that for an operator-monotone function f(¢) the inequality (3.1)
can be extended to Hermitian operators A, B on Hilbert space. The same is
true for (3.2) with an operator-convex function.

According to the celebrated theorem of Loewner (see [MO, p. 464]), a
function f(¢) on an open interval A is vperator-monotone if and only if it
admits an analytic continuation to the open upper half plane and it transforms
the half plane into itself. Based on the Nevanlinna integral representation of



MAJORIZATIONS AND INEQUALITIES 31
an analytic function which is defined on the open upper half plane and

transforms it into itself, an operator-monotone function on an interval 4 is
characterized as the one that admits an integral representation

i 8

4::5::9)\A(5"t 1+s®

f(t)=a +bt+f( )d,u(s) (teA), (3.3)

where a € R, b 2 0, and (-} is a positive measure on (—, ©) A such
that f(1 + s*) ' duls) < . Here a, b, and u(-) are determined uniquely.

Let us mention some important examples. The fractional power t¢ is
operator-monotone on [0, ®) for 0 < o < 1 butnot for @ > 1. For 1 <p <2
the function #? is operator-convex, but not for other positive exponents. The
logarithm log f is operator-monotone on {0, «), but ' is not operator-mono-
tone on any interval of R.

Nonnegative operator-monotone functions on [0, ©) have heen especially
studied in connection with unitarily invariant norms. In this case, after
suitable substitution, the integral representation (3.3) is converted to the
following form:

t
s+t

1) =a+Bt+j: dv(s)  (r3>0), (3.4)

where @, B2 0 and »(-) is a positive measure on (0, =) such that
f(1 + 5)7" dv(s) < . Furthermore, a, b and v(-) are determined uniquely
from f(t).

This formula shows that in the cone of nonnegative aperator-monotone
functions an [0, ®), the constant functions, the scalar multiples of the
function t. and the functions of the form at/(a + t) constitute extremal
rays, and cvery operator monotone function is a continuous weighted average
of those extremal functions. Therefore various matrix inequalitics related to
operator-monotone functions on [0, =) are reduced to the case of such
extremal functions.

Donoghue (1974) is a monograph devoted to operator-monotone func-
tions from the standpoint of analytic extensions. Davis (1963) and Ando
(197%a) give compact surveys of the basic facts on aperator-monotone func-
tions and related matrix inequalities from the standpoint of operator theory.
Various operations in the class of operator-monotone functions have been
studied by Nakamura (1989).

As is shown in Andoe {1979a), an operator-monotone function on [0, %) is
nccessarily operator-concave. But this can be proved without appeal to the
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integral representation. In fact, Davis (1963) proved the pinching inequality
for operator-monotone f{¢),

f(PAFP) = Pf(A)P for a Hermitian projection P. (3.5)

Hansen (1980} showed thal the pinching inequality can be generalized to the
form

F(X*AX) 2 X*f(A)X  whenever [ > X*X (3.6)

and that this is indeed equivalent to operator concavity. His method shows in
essence that 4 matrix-monotone function of order n on ((), ) is matrix-con-
cave of order [n /2], as observed by Mathias (1990).

In a similar line Hansen and Pedersen (1981 /82) showed equivalences of
the following conditions for a continuous real valued function (¢} on [0, 1)

() f (1) is operator-comvex and 0 2 f(O);

(2) X*f( A)X Ef(X*AX) for all A with 0 <A< and X with
X*X < 1,

(3} X*f(AX + Y*(B)Y = fIX*AX + Y*BY) for A, B with 0 < A,
B<Tand X, Y with X*X+Y*Y < I,

(4) Pf( AP zf( PAP) for A with 0 <A <TJ and Hermitian projection P.

An observation of this type is also in Friedland and Katz (1987).
Using integral representation (3.3), Ando (1979a. 1) showed that if ®(-)is
a unital positive linear map from M, to M,, then

fO(A)) = P(f(A)) for operator-monotone fand A > 0. (3.7)

Since f(t) is concave, this can be considered as a matrix version of (1.8). In
particular, with f(¢) = log ¢, one has

log ®( A) > P(log A) (A > 0). (3.5)

Based on the integra] representation (3.4), Kubo and Ando (1979/80)
developed a theory of matrix (or operator) means; a map (A, B) » A¢ B in
the cone of positive semidefinite matrices is called a matrix mean or operator
mean if the following conditions are satisfied:

(i) Positive homogeneity: a-A g B = (aA) o (aB) for a > §;
(ii) Normalization:. Aoc A = A,
(iii) Monotonicity: Ac B > A' o B whenever A > A" and B > B';
(iv) Continuity from above: A, | A, B; | B implies A, 0 B, | Ac B;
(v) Transformer inequality: (T*AT) o (T*BT) > T*(A o B)T for ev-
erv matrix T.
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A key for the theory is that there is a one-to-one correspondence between
a matrix mean ¢ and a nonnegative operator-monotone function f{(t) = f, ()
on [0, ) with f(1) = 1 through the formula

Ao B=AYf(AT2BATVH) A2 for A>0, Bx=0. (39)

If the mean o corresponds to f(#) with integral representation (3.4), then
AcB=aA+ BB+ [ A(sA +B) 'Bdv(s) (3.10)
0

The arithmetic mean corresponds to the function f(t} = (¢ + 1)/2,
while the mean corresponding to f(t) = 2t/(¢ + 1) will be called the
harmonic mean. Half of the harmonic mean of A, B > 0 was introduced
earlier, under the name of parellel sum, and denoted by A: B by Anderson
and Duffin (1969). With this notation (3.10) has the form

x dv(s)
AoB=aA+ﬁB+f(sA);B . (3.11)
0

Then the map (A, B) = A o B turns out to be jointly concave in (A, B).
Ando (1979b) and Kubo and Ando (1979/80) derived from the integral
representation (3.11) that if ®(-} is a positive linear map from M, to M,
then for any matrix mean o

O(A)o P(B) > P(AoB) (A, Bz=0). (3.12)
In particular, with C > 0 and ®(X) = Tr{XC), onc has
Tr(CA) o Tr(CB) > Tr[C- (A o B)].
from which it follows that for every unitarily invariant norm || - ||
IlAll o il Bll = Il A o BIl. (3.13)

The definitions of arithmetic and harmonic means for matrices suggest
that the geometric mean should be understood as the mean corresponding to
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the operator-monotone function 72, This geometric mean is denoted by
A#B.

A#B=AVH(A2BA VYR A2 (As 0, B20). (3.14)

The geometric mean A # B is characterized as the maximum of all positive
semidefinite matrices X for which

(AX

% B)>()'

\

Further, for A, B > 0 there is a unitary matrix U such that A# B =
A'7?UBY/?. A similar idea appeared in Pusz and Woronowicz (1975) in order
to define a functional calculus for sesquilinear forms on a C *-algebra.

The parallel sum A: B is characterized as the maximnm of all positive
semidefinite matrices X for which

[0 5= %)

In this connection Anderson, Morley, and Trapp (1990) investigated the
following problem: what condition for an m X m Ilermitian matrix K
guarantees the existence of maximum in the set of positive semidefinite
matrices X such that A + K ® X > 0 for each positive semidefinite block
matrix A¥ They found that a necessary and sufficient condition is that K has
only one negative eigenvalue.

Inequalities between matrix means are reduced to those between the
correspouding functions. For instance, the arithmetic-geon1etric-]1armunic
mean inequalities hold:

A+ B
o

> A#B 2 2(A:B). (3.15)

The geometric mean A # B can be obtained as the limit of successive
iteration of an operation defined by arithmetic means and harmonic means:

lim A, = lim B, ,
k-

k- x

where A, = A, B, =8B, A;,,=(A, + B;)/2 and B,_, = 2(A,: B,).
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For 0 < a < 1, besides the weighted arithimetic mean (1 — a)A + aB,
one can define the matrix mean A#, B corresponding to the operator
monotone function f,(¢) =t

A#, B =AVYI(A VIBA /)" 4Lz (3.16)
When o = 5 this is just the geometric mean. It is seen that
A# B=B# ,A (0<a<l). (3.17)

When A commutes with B, then A#_ B = A'"*B°,
The traditional averaging opcration

(A, B) =M/ (A B)={(3(A"+B9))"" with a>0

is not a matrix mean in the above sense except for a = 1. In fact, this
operation is not monotone in A or B except for & = 1. However, from the
operator monotonicity of the function ¢ for 0 < a < 1 it follows that

Ma,(A: B) = Alﬂz( A, B) whenever a, > a, = 1,

as observed in Bhagwat and Subramanian {1978). The limit of M_(A, B) as
a — 0 exists and equals exp{(log A + log B}/ 2}. Contrary to the scalar case
or the case of commuting A, B, this limit does not coincide with the
geometric mean A # B in general. Moreover, the map (A, B) — exp{(log A
+ log B)/2} is not monotone in A, B.

The theory of matrix means is essentially for pairs of matrices and cannot
be extended to larger sets of matrices. Ilow to define matrix means—in
particular, the geometric mean—for a larger number of positive definite
matrices is still a challenging problem. One way is to use the integral
representation in the definition. In this direction, Kosaki (1953) proposed a
definition of the geometric mean G(A,, A,,..., Ay) for an (N + D-tuple
{Ay., AL..., Ay} of positive definite matrices by the integral representation

(N+D
G(Ag, Ao, A =T((N+ 1) )

XfM{Ao:anli"'=tNAN}

N

X [T ™27 Dy dyy oo ey, (3.18)
j=1
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where 1'(+) is the gamma function. For N = 1 (3.18) rcdnces to the definition
(3.14). When all A (] 0, 1,..., N) commute with each other. G(A,,
AL Ay) = (A”A] Ay)/D

An axiomatic approach to a definition of the geometric mean seems more
difficult. With such a definition in mind, Anderson, Morley, and Trapp (1984)
introduced the notion of symmetric function means for an N-tuple
{AL.... Ay} of positive definite matrices, based on the ingenious represen-
tation of the symmetric function means of Marcus and Lopes for scalars
(1957). They defined two series of matrices

P,,=PF (A, ... Ayyand T, =T, (A, ..., Ay)
{(k=1,2,....N),
starting from P, , = the arithmetic mean of A, ... Ay and T, , = the
harmonic mean of A, ..., Ay, by the successive formulas
b i A _P,(_],,\,_k(f\,],...,‘j_l,AJ+l ..... Ay)
TSN kL k—1
(k=2,..., N)
and
N
T, v = 1—[1 kA + (N = )T (A A LA AY))
i
(k=1...,N-1),
where TTY ;- denotes the parallel sum of N objects. P 5 coincides with T,
ifall A, i = ... N) commute with each other.
Trapp (1984) observed that starting with X" =4, (i =1,..., N} and
deflnlng 5ucujbswe]} X”"H) =P, (X(“ . X(")) (z =1, JN k=1,
2,....) the limits lim, _, . X® e‘nst and commde with each other for all

i= 1, , N. This limit is a candldate for the geometric mean of A,....A,.
Replacing P by T in the above definition, one can get another candidate for
the geometric mean of A ..., A,. The relation among those candidates and
Kosaki’s geometric mean (3.18) is not clear.
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To establish an order relation between those two candidates of the
geometric mean, Trapp (1984) conjectured the following inequalities:

Pov=2T (k=1.....N) (3.19)
and

P,yz=P ., yand T, y > T, 5 (k=1,....,N—1). (3.20)

He proved Py, > Ty _ | .

Ando (1983) discovered a new, powerful method for dealing with the
conjectures. Using this method, Ando and Kuba (1989, 1990) could affirm
the inequalities (3.19) and (3.20} for 2 < N < 4. But the conjectures remain
open for most &k and N.

The notions and results in this section can be extended to bounded linear
operators on Ililbert space.

4. MATRIX INEQUALITIES

As already mentioned, for 0 < « < 1 the function {* is vperator-mono-
tone on [0, %)

A>B8>0 implies A" >2B® (0<a<]l). (4.1}

Chan and Kwong (1985) surmised that even for p > 1 the functions 7 has
an operator-monatone-like property and conjectured, in particular, that A »
B = 0implies A% 2 (AB?A)V2

In this connection Furuta (1987) established the following matrix inequal-
ities:

A>B >0 implies AP*2/4 > (A'BrAT)?
whenever v, p 20, g 21 and (1 + Qr)q =2p+2r. (4.2)

With r=1 and p =g =2 this reduces to the conjectured inequality.
Subsequently Furuta together with his collaborators has been refining the
inequality (4.2) and applying it to various situations to produce new inequali-
ties.
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As an application of (4.2), Ando (1987b) showed that even though the
function e’ is not operator-monotone on the real line, for Hermitian matrices
H = K the map f — e K g ot g increasing. This was gnncraﬁzed hy Fujii,
Furuta, and Kamei (1993) to the effcet that the map (p. r) =
e K #opin el is increasing for p =t and r = 0, where alp, r. t) =
(t+r)/(p+r)

To see another operator-monotone-like property of t# for p > 1, define
forA >0

Apt?
(p~ )"+ A¥

F, ) = (> 0). (4.3)

Then obviously t 2fp,).(t) > 0, and further SUP, s Ofpyf\(rf) =i (i > 0. Ando
and Hiai (1994) show that for any p > 1l and A > O and for A, B » 0

f,a(A) = B implies AF > BP. (4.4)

If f(¢) is a nonnegative operator-monotone function on [0, =), it admits an
analytic continuation to the upper half plane and maps the half plane into
itself. Then for p > 1 the function f(z"")? is well defined, is analytic oun
the upper half plane, and transforms it into itself. Then f(z'/7)" is again
operator-monotone. This shows that for p > Land A, B > 0

A = B implies  f{ A)p Zf(B)V‘ (4.5)

Lieb (1973) established that if @, 8 > 0 and a + 8 < 1, then for any
matrix K the functional A — Tr{ AP *K*A"KA®"?) is concave on the cone
of positive semidefinite matrices. This can be extended to the assertion that
the function (A, B) - Tr{ AP/2K*B*KA#/?) is jaintly concave in (A, B).

Using the integral representation of an operator-monotone function (3.4)
Ando (1979b) formulated Lieb’s results as concavity of some maps in the
cone of positive definite matrices and generalized it in the following way: it
f(#) is a nonnegative operator-monotone function on {0, =), and ®,(-) (i =
1, 2) are concave maps in the cone of positive definite matrices, then the map

(A, B) = f(®,(A) @ @,(B)) [®)(4) ® ] (4.6)

is jointly concave in (A, B). And if ®,(-) is affine, without the assumption of
nonnegativity of f(¢), the map

(A. B) '_’f(q’l(A)®¢2(B)7l)'[d)}(/‘)®11 (4.7)
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is convex. For instance, the first assertion implies joint concavity of the map
(A,B) =A% @B (o, w20, a +a,<1), (48)

while the second implies joint convexity of the map
(A,B) » (A-logA) ®1— A @ log B. (4.9)

Theorems of this type can form a basis for convexity or concavity of
certain numerical functionals on the cone of positive definite matrices, say of
order n. For instance, the classical Minkowski theorem on concavity of the
map A = (det A" on M, is an immediate consequence of (4.8), because
the map A = AY" @ --- @ A" is concave and (det A)/" is just the
restriction of AY" ® - @ A" to the subspace of antisymmetric tensors,
Such connections are also pointed out in Bhatia and Davis (1985} and Merris
(1982).

Thompson (1978, 1979) cstablished a matrix-valued triangular incquality:
for matrices A, B there are wnitary matrices U, V, W such that

U*|AlU + V¥|BIV > |A + Bl and W*[AW > [Re Al. (4.10)

He investigated the case of equality.
Thompson (1976) also proved the following matrix inequality:

VRvE(r 4+ B V(I + AN PU S T+ A + B

U*(I+ | Al
for some unitary U, V,  (4.11)

from which one can derive the determinantal inequality of Seiler and Simon
(1975),

det(I + |Al)det(I + |Bl) = det(I + |A + BJ).

When A, \B are strictly contractive, thatis, I — A*A, I — B*B > 0, Hua
(1955) proved the inequality

(I — B*A)(I — A*A) (I — A*B) = I — B*B, (4.12)
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which is equivalent to
(1 —4*Ay ' (1 B*a)"!
(I ~A*BYy ' (I-B*B)"'
(4.12) implies the determinantal inequality
ldet( 1 — A*B)|” = det(1 — A*A) det(] — B*B).

Ando (1979¢) pointed out that (4.12) is a consequence of an obvious
inequality

Re(I — A*B) » 27'{(I — A*A) + (I — B*B))

and generalized (4.12) to the effect that for every operator-monotone func-
tion f(¢) on (0, =)

Re f(I — A*B) > 2 '{f(I — A*A) + f(I — B*B)}.  (4.13)

where f(I — A*B) is defined by the analytic continuation of f(t).
It is obvious that for A, B = 0

(l-—a)A+aB>A#

. B (0 < o< 1). (4.14)
Bhatia and Kittaneh (1990) established a matrix arithmetic—geometric mean
inequality in the following form: for matrices A, B

lAl® |BF ,
— + —|U = | AB*| for some unitary U. (4.15)

*

2 2

Ando (1994a) generalizes (4.13) to a matrix Young inequality: for p, g > 1
with p7 '+ g ' =1

A" Bl \
U*| — + — |U = | AB*| for some unitary U. (4.16)
P q

Olson (1971) pointed out thal the space of Hermitian matrices becomes a
conditionally complete laitice under a more restrictive order 3 ; here X 2 Y
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is defined as f{X) > f(Y) for all real valued increasing functions f(¢) on the
real line. This new order relation is characterized by that the Hermitian
projection to the eigenspace of X corresponding to the & largest eigenvalues
is greater than that of Y for k=1, 2,...,n. For A, B > 0 the relation
A 3 B is scen to be equivalent to A™ > B” (m = 1.2,...).

In this connection, Kato (1979} showed that the supremum of positive
semidefinite A,,..., A, with respect to this new order is obtained as
lim, , (AY + - A% HE

Most of the results of this section can be extended to bounded linear
operators on a Hilbert space. But the assertions on existence of unitaries
requires separate considerations. For instance, Akemann, Anderson, and
Pedersen (1982) got an inequality corresponding to (4.10) in a C*-algebra
setting with isometries in place of unitaries. And with unitaries only, an
approximate version was proved with the left hand side of (4.10) increased by
€l with arbitrarily small € > 0.

Generalizations of (4.13) or (4.16) to the C*-algebra case are not known.

5. LOG MAJORTZATION

An important notion in majorization theory is log majorization for a pair of
positive vectors. For 0 < a, b € R", log majorization, in symbols

a > b,
Uog}

means that log a > log b. This is cquivalent to requiring that

k

k
I;[la[i] > I:Ilbm (k=1,2,..., n) (5.1)

and
n n

a, = [Tb. (5.2)

i i

i=1 i=1

Weak log majorization, or log submajorization, for a pair of a, b > 0, in
symbals

a=,b,
(log)

is defined by (5.1). This can be extended to a pair of nonnegative vectors.
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Remark that, as in (1.3), for a > 0
k
na[i]: max [ ] a, (k=12.....n). (5.3)

i=1 JI=k ig}

It follows from (1.10) that it f(t) is defined on (0, ®) and f(e')} is convex
and increasing,

a >, b implies f(a) >, f(b). (5.4)
(og)

Since the function f (t) =e¢* for o> 0 is convex and increasing on

(=, =),

- E. (43 o
a>. b implics a®>_ b“.
(log)

In particular,

a >, b implies a >, b (5.5)
(log)

Further it follows, with f{t) = —log ¢, from (1.9) that

a>0and a b implies a ! = b ' (5.6)
{log)

which means

k k
Hb[”,“ 1= _Ijllal” i1 (k=1.2....n) il a,b>0and 2>5b.
(3.7)
The eigenvalue analogue of (5.3} for a positive definite matrix A is
k
JTA(A) = max{det[ PAP + (I — P)]:
i=1

P a Hermitian projection of rank k}. (5.8)
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A fundamental relation between eigenvalues and singular values for a
general matrix A was discovered by Weyl:

[ ()] = [IA(4)]. (59)

g)

Here the eigenvalues A (A) arc arranged as [A(A) = [A(A) = - >
[A,(A)l. This is a consequence of the rather trivial inequality

T 4) = |4 A),

which means that spectral radius is not greater than the spectral norm. To
extend this to (5.9) is based on the use of compounds C(A) (k= 1,
2,..., n) with the help of the basic identities

k k
o (Ci(A)) = EUE(A) and - A (C(A)) = E)‘f(A)- (5.10)

The inverse problem for the majorization relation (5.9) has an affirmative
solution. In fact, if

[(J’,] - [|Ai\] for [G'i] e R", [Ai] e C",
(og)

there is a matrix A for which
g (A) =0 and A(A) = A\, {(i=12,...,n).

See [MO, p. 233].
For A, B > 0 let us write

A >~ B (A >-wB]
(og) (log)

t0 mean

()] = ] ([ )] = [a(8)])

g) (log)
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C. J. Thompson (1971) established that

lAl >~ 1B
(10&)

if and only if for some unitary U7 two matrices /| Al and | B| have the same set

of eigenvalues.
A matrix version of (3.6) is

A GO(A- L)71 tor doubly stochastic ® and A > 0. (5.11}
(|ug)

Considering the map ®(X) = diag( X), (5.11) gives the [Tadamard determi-
nantal inequality:

[la, = det A (A>0).

i=1

The other fundamental fuct about this subject is log majorization between
singular values for the product of matrices, due to A. Horn (see [MO, p. 246}
and [A, p. 229]): for any matrices A, B

iU—J(A)O—f(B)](l:’)[UE( AB)]- (5.12)

This is a generalization of the trivial inequality
o(A)oy(B) = IAILIBI. = | ABIl. = &y( AB).

A Lidskii-Wielandt type relation for singular values was established by
Gelfand and Naimark (sce [MO, p. 248] and [A, p. 228]):

[O}(AB)](I:{)[G}(A)OL,”I(B)]. (513)

Use of the compound matrices makes it possible o formulate some
assertions on matrix inequalities in lerms of ing majorization. For instance, as
observed in Araki (1990), the Loewner inequality (4.1),

Az2B =0 implies A%z B for 0 <a <1,
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can be restated in the form

(X¥X)" » X"Y*X® for0<a<l (X, Y>0). (5.14)
(log)

See also Furuta (1989} and Wang and Gong, (1993) for this relation.

We now show that many known trace inequalities can be extended to
inequalities with respect to all unitarily invariant norms by establishing log
majorization in a relatively easy way.

A typical example is the Golden-Thompson inequality (see [MO, p. 252]):
Tr(¢%e*) » Tre®*®  for Hermitian H, K.
This is generalized to the form
llee®| = lle2ete 2] = lle"* &l
for every unitarily invariant norm | - |l. (5.15)

This fact itself was already pointed vut by C. J. Thompson (1971). The reason
behind such generalization is better understood as follows. According to the
Lic-Trotter formula (see Simon (1979, p. 97).)

lim (eaKfzeuHenK/Z)]/a = o H*K
o0

(5.9) and (5.14) imply

le!ek] = glt XK (5.16)
(log)

In a similar way, Bemnstein’s trace inequality (1988)
Trett4 » Tr(eAe"*)
was extended by Cohen (1988} to the form

e 27| = [lede ™) for every unitarily invariant norm || - |l. (5.17)
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The line of such generalizations is fully developed in Hiai and Petz (1993)

and Ando and Hiai (1993), in which also an estimate for ¢ ** from below is
established in the log majorization sense:

XE# Y8 = (X#,Y)" for0<B<1  (D<a<l), (5.18)
{log)

and

—a oK . VB
el =Mtk = i (e F¥ #, ¢PX) ST (5.19)
B L0 {log)

As the Loewner inequality (4.1} is rewritten in terms of log majorization,
the Furuta inequality (4.2} can also be expressed in the log majorization form

A(lfa)/.‘ZBaA(l-a)/'?. - {At p.#a(A(l*a),u./QGBtA(J*a)p,/‘l’a)}l/t
(log)

whenever 1 > o> 0, ¢ > 0, and min(e, at) > @ > 0. In the converse
direction, {5.18) is equivalent to the matrix inequality:

Az2B=>0 implies
3 1/
AP 3 [Ar2(A BA Y)Y Ar ) (pies ). (5.20)

See Ando and Hiai (1993) for details. We should mention that Furuta (1994)
presents a parametric formula interpolating (4.2) and (5.20).

There are several known log majorization relations among products of
fractional powers; see, for instance, Marshall and Olkin (1985). Those are
unified in Ando and Hiai (1993) in the following way:

AT e BBt B s JAMBA . AenBBe] (A, B >0) (5.21)
{log)

whenever e, B, > 0(i =1,2,... m), and

k k-1

YB2YazYp (k=12....m and L B=12 a.
i i=1

i=1 i=1 i= i=1 f=1
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In particular, for any @; > 0(i = 1, 2,...,m)

|Aa]+ 1amBoq+ ~--+am| - |AalBal AamBam" (522)
(log)
and
|A**fBY| > |A"B"A#|  forany a, B, y= 0. (5.23)
{log)

Further, for natural powers the following helds: for A, B = 0

AGtD2pRatr/z o (aBY A (k=1,2...). (5.24)
(iog)

6. SPECTRAL PERTURBATION

Given an n X n matrix X, denote by A(X) an arbitrarily arranged
sequence of its eigenvalues, considered as a vector in C". The spectral
distance [(ACA), A(BD)| of a pair of normal matrices A, B with respect to a
norm {|- |l on M, is defined as

ICACA). A(B))I
= inf {||diag( A( A)) — P7 diag( A( B)) P|l: P a permutation matrix}.

(6.1)

The matching problem is to obtain the optimal value « ., of x for which
k-IlA = Bll = I(ACA), A(B))I  forallnormal A, B.  (6.2)

Hoffman and Wielandt proved that « ., = 1 for the Frobenius norm || - |l
(see [MO, p. 274]). Using a Clifford algebra method, Bhatia and Bhat-
tacharyya (1993) generalized this result to the case of commuting tuples of
normal matrices: if {AY, ..., A“)} is an m-tuple of commuting normal
matrices with joint eigenvalues {aj‘“] (j=1,2,...,n), and (B, ..., B(™)
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is another m-tuple of commuting normal matrices with joint eigenvalues
[ Bfm] (j=1,2,.... n), then there is a permutation 7 of {1, ..., n} such that

m m i

LZ [A® — BRIz ¥ lah — g, (6.3)
e =1

k=1j=1

See Elsner (1993) for a simple praaf.
For Hermitian A, B one has by Lidskii-Wielandt majorization (2.6)

[)li(A - B)] - [,\l(A) - )Li(B)],
which implies that for every unitary-similarity-invariant norm || - |
lA — Bll = | diag(A,( A)) — diag(A,{B))ll  for Hermitian A, B. (6.4)
Remark that (6.4) for the case of the spectral norm was already in Weyl (see

(MO, p. 552)).
The majorization (2.5) gives

[A!( A) - An—i-v—](B)] > [)H( A - B)] B
which implies that for any unitary-similarity-invariant norm ||+ [f

I diag( A, A)) — diag(A,_,, { Bl > |A — Bl for Hermitian A, B.
(6.5)

See Sunder (1982a) and Bhatia (1986) in this connection.

The long-standing Weyl conjecture was to ask whether Ky = 1 for
spectral 1|« |l.. Under suitable restrichions on the distribution of eigenvalues of
normal A, B the inequality

1A = Bl = lI(ACA), A(B)) .

has been guaranteed. Here are several examples: (1) by Sunder (1982b) when
A is Hermitian and B is skew-Hermitian, (2) by Bhatia and Davis (1984)
when both A, B are unitary, (3) by Bhatia and Holbrook (1985) when A is
unitary and B is a scalar multiple of unitary, and (4) by Bhatia (1982) when
A — B is normal.
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Proofs for cases (3) and (4) are based on an effective estimate of the
spectral distance by Bhatia (1982): when A, B are connected by a piecewise
Clare X{#) (0 <t < 1), then

LI (Ol de > (M 4), A(B)I.

By a computer experiment, however, Holbrook (1992) finally gave a negative
answer to the Weyl conjecture even for n = 3.

Sunder (1982b) and Ando and Bhatia (1989) studied the best value x, of
the constant x such that

k- llA ~ Bll, 2 I(ACA), A(B))Il,
for Hermitian A and skew-Hermitian B,

to show
kK, =2YP71% (1<p<2) and k,=1 (2<p<=). (66)

With an ingenious use of Fourier analysis, Bhatia, Davis, and Melntosh
(1983) and Bhatia, Davis, and Koosis (1989) discovered a method of finding
universal bounds for k., independent of the norm |- [l One such universal
bound is

ix}ffwlf(x, y)l dxdy,

where f(x, y) runs over the set of integrable functions on R? whose Fourier
transforms f satisfy

f(f.,'ﬂ)=(§+in)_l for |&+ iyl > L.

It is known that this bound is between /2 and 3.
Bhatia (1987) is a nice survey on perturbation of matrix eigenvalues.
Given a map ®(-), defined on a subset of the space of matrices, the
perturbation problem with respect to a norm ||+ is to find a reasonable
bound for [|®(A) — ®(B)| in terms of a quantity related to A — B. When
the map is defined as ®(A) = f(A) by a continuous function f(¢) on an
interval of the real line, there are a number of deep investigations of the St.
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Petersburg school, including Birman, Farfarkova, Naboko, Solomyak, and

others. For instance, Birman, Koplyanko, and Solomyak (1975) showed that
for A, B = 0 and for every unitarily invariant norm |||

1A =Bl" zllA* — B*ll (0 <a<]1).

Using the integral representation (3.4), Ando (1988) showed that for every
nonnegative operator-monotone function f(¢) on [0, %)

If(1A = BYI > 1f(A) —f(B)I  for A, B0,

which is cquivalent to

fAA =Bl =, [f(A) = f(B)]. (6.7)

Mathias (1990) pointed out that the same holds for a matrix-monotone
function of order n and a pair of n X n positive semidefinite matrices.

For general matrices A, B comparison between [|Al —|B|[l. and
llA — Bll= has a long history of research. The best possible Lipschitz constant
for the map P(A) = | Al with respect to spectral norm is known to depend
on the dimension and is asymptotically of order log n. In fact, there is a
universal constant k such that

klogn-A — Bl = 1Al — [Bl ., for n X n matrices A, B. (6.8)

The following form, not containing dimension n, for the spectral norm is due
to Kato (1973):

Ziaeia v tog B L. (69)
= TR A Bl [T - ‘

For the Frobenius norm Araki and Yamagami (1981) showed that

VallA — Blip = 11 Al = [Bllls

and the constant V2 is not necessary when A, B are Hermitian. This is
completed by Kittaneh (1986a, b) in the following form: for all A, B, X

| AX — XB|I3 + || A*X — XB*|}

> 11 AIX — XIBIIIE + 11A*|X — XIB*| 3. (6.10)
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The following inequality was first proved by Kosaki (1984) for the trace
normn and later generalized by Bhatia (1988) to every unitarily invariant norm:

vallA + Bll-A — Bl > II1Al - BI|. (6.11)

For Schatten p-norms sharper estimates were obtained by Kittaneh and
Kosaki (1987) and Bhatia (1988):

max(2'/77172 1) - \/IIA + Bll,-lA — Bll, = 1Al ~|B[l,. (6.12)

Davies (1988) proved Lipschitz continuity of the modidus map A — | Al
for the case of |[-||, (I < p < ): there is an absolute constant x such that

r
4{1 " Kmax(p, p—;_l)}uA Bl > 1Al B, (6.13)

He used a deep result of Matsaev that the |- || p norm of the triangular
truncation map {observed in the next section) is uniform]y bounded without
respect to the order of matrices. See Gohberg and Krein (1967) in this
connection. The inequality (6.13) can also be generalized to the form: for
some constant ¥, and every A, B, X

wllAX = XBIl, + | A*X - XB*Il,} » | AIX — XIBIll,. (6.14)

Davies’s approach was analyzed in detail by Kosaki (1992b) to give a
complete characterization of a unitarily invariant norm for which the modulus
map is Lipschitz-continuous: such is the norm obtained as an interpolation
norm between p - and py-porms for 1 < p,, p, <

7. HADAMARD PRODUCTS

In Mn, besides the usual matrix product, the entrywise product is quite
important and interesting. The entrywise product of two matrices A, B is
called their Hadamard {(or Schur) product and denoted by A e B. With this
multiplication M, becomes a commutative algebra, for which the matrix with
all entries equal to one is a unit. Horn (1990) is an excellent survey on recent
development of the study of the Hadamard product.
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The most basic is the Schur theorem:
AsB 20 whenever A, B 2 0. {7.1)

When combined with the well-known fact that

. . I X
1> Xl if and only if (X* 1)}0,

this yields submultiplicativity of the spectral narm with respect to Hadamard
multiplication:

| Al >l Bll» = || A° Bll, (7.2)

Submultiplicativity for the Frobenius norm is nothing but the Cauchy-Schwarg
inequality.

Marcus, Kidman, and Sandy (1984) investigated several other cases and
conjectured submultiplicativity for all unitarily invariant norms. But it was
shown by Horn and Johnson (1987) that for a unitarily invariant norm || ||
submultiplicativity with respect to the Hamadard is simultaneous with that
with respect to the matrix product, and is characterized by the condition that
XN = | X|lx for all X.

Contrary to the case of usual matrix multiplication, [o,( A)o;( B)] does not
always weakly log majorize [ o;( A o B)]. However, weak majorization holds:

[0:(A)a(B)] >, [o( A~ B)]. (7.3)

This was proved by Bapat and Sunder (1985) and also by Horn and Johnson
(1987) as well as Okubo {1987) and Zhang (1987). As a consequence one has

a( A)B| >, |As Bl

The weak majorization (7.3) is improved by Horn and Johnson (1887) and by
Ando, Horn, and Johnson (1987) in the following way: for any factorization
X*Y = A

[Ci(X)CI(Y)Cri(B)] >w[cri(Ao‘B)]’ (74)
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where for a matrix Z, ¢(Z) > -+ > ¢,(Z) denote the Euclidean length of
its columns, arranged in decreasing order. Bapat (1991) derived (7.4) from
the general theorem (2.24).

Since

*
A% A 50,
A* A

one can obtain from (7.4)

[VP.(A) p(A%) 0( B)] >, (A= B)], (7.5)

where pl(X) > = pﬂ(X) are the diagonal entries of | X|.

Given a matrix A and a unitarily invariant norm || [l, denote by ‘y”_"( A)
the norm of the linear map ®,(X) = A > X with respect to this norm. Then
(7.4) implies that for any unitarily invariant norm || - ||

o(X)ey(Y) = v (A) whenever X*Y = A. (7.8)

In particular, (7.5) implies

vei(A)pi(A%) = ¥, (A). (7.7

For the spectral norm, (7.7} was obtained by Walter (1986).

In an unpublished manuscript Haagerup showed that with a special
choice of X, Y with X*Y = A, the number ¢,(X)¢(Y) in (7.6) gives the
mapping norm ., ( A). This can be formulated in the following form:

L2y, (4) =
X A £ , .
Ay >0 forsame X, Y >0 with 7 2 Xel, Yol (7.8)

With the observation that if A = diag(a,) and B = diag(h,) then AX +
XB = [a, + bj]o X, Corach, Porta, and Recht (1990} derived from (7.6) that
when § is an invertible Hermitian matrix

ISXS~' + S71XS(l. = 21Xl for all X. (7.9)
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Kittaneh {1994) points out that (7.9) is an immediate consequence of a
generalization of (4.15), due to Bhatia and Davis {1993), in the fn“owing
form: for A, B > 0
HIB2X + XA%|| = || BXA|
for every unitarily invariant norm [| - |, (7.10)
which is equivalent to

1 : -
3|B*X + XA* > |BXAl (7.11)

The exuct characterization (7.8} can be also used to show that (7.11) cannot
be generalized to the Young form:

1 1

— = =1).

p q

In this connection only the norm submultiplicative inequality is valid in
general (see Kittaneh, 1993} for every unitarily invariant [[ - [|

1 1
—BPX + — XA

) >, | BXA|
P q

IBexil P XA = IBXAl  (1/p+ 1/9=1).  (7.12)

Ando and Okubo (1991) gave a characterization of the norm 9,(A) of
®,.(+) with respect to the numerical radius norm w(-):

12 7.(A) =

(rii ;) 20 forsome X =0 with I X1, (7.13)
and derived Haagerup’s criterion (7.8) as a corollary. Also, Cowen, Dritschel,
and Penney (1993) give another proof of (7.8).

Let G(V, E) be an undirected graph with vertex set V, indexed by 1
2...., N, and edge set E. Given matrices A, for each (i, j} € E and every
i =], . the positive completion problem is to find a condition for the existence
of a positive semidefinite block matrix A = [ A4, Aoy such that A, = A,
whenever {i, j} € E or i = j. Paulsen, Power, and Sinith (1989) qhowed that
a positive completmn exists if and only if the Hadamard multiplication map
caused by [A, ]U , is positive, where A, whenever {i, j} € E or
i=j, and A = 0 otherwise. They also denved Haagerup s characterization
(78) as a Lonsequem,e
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The exact value of ), (A) is difficult to calculate except for special cases.
It is equal to 1 when A is unitary, and it is equal to max{a,} when A > 0.
When the (i, j) entry of A is 0 or 1 according as i <j or i > j, then
®,(B} =A< B gives the triangular truncation of B. Denote by y, the
I - [l--norm of the triangular truncation map on the space of n X n matrices.
Angelos, Cowen, and Narayan (1993) give an exact asymptotic formula for y,:

‘yﬂ
lim

n—= logn 7

A well-known matrix inequality of Fiedler (1961) says
AcA™ 21 (A>0). (7.14)

[See Bapat and Kwong (1987) for an improvement.] In this connection, as a
consequence of (3.8), Ando (1979b) derived the following inequality:

log(A°B) = (log A + log B}=1 (A, B>0). (7.15)
Since by (2.3)
log A+ logB>(logA+logB)el,
combining {7.15) with (2.5) and (5.12), Ando (1994b) proves
k k
EA”’ +1(A°B) > _]—[TA,,,,.H(AB) (k=1,2,....,n), (7.16)

i=

which is equivalent to the statement that

AVZBAYE » (A7'e B 1" (A, B>0). (7.17)
(og)

Since BT» I = B« I for Hermitian B, one can derive from (7.15) in a similar
way

k k
ITriei(A2B) = [TA_ i (ABT) (K =1,2....,n). (7.18)
i=1 i=1
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Remark that (7.16) gives an affirmative answer to the conjechnre mentioned
in Zhang (1993), and also yields, together with (7.18), the known inequality of
Fiedler (1983):

Ao B> max{A,(AB), A, (AB")}I (A, B>0). (7.19)

Johnson and Elsner (1987} showed that for a positive function f(¢} on
(0, =) the matrix inequality

Ao f(A) 2 A-f(A)  forall A >0

is valid if and only if f(¢) is a positive scalar multiple of + .

8. MAJORIZATION IN VON NEUMANN ALGEBRAS

The algebra M., equipped with spectral norm, and the algebra of
bounded linear operators on a Hilbert space, equipped with operator norm,
are special examples of von Neumann algebras. We refer for the basic notions
and results on von Neumann algebras to Takesaki (1979).

The notion of (decreasingly arranged) generalized s-numbers (= singular
values)} for a not necessarily compact operator on a Hilbert space, or even for
a measurable operator affiliated with a semifinite von Neumann algebra .#
acting on a Hilbert space, with a faithful normal semilinite trace 7(+), was
considered by Ovchinikov (1970), Sonis (1971), Fack (1982), and Fack and
Kosaki (1986). This makes it Possible to introduce various spaces of measur-
able operators as generalizations of the Schatten classes of compact operators.
The abave authors obtained various convexity inequalities, including several
LP-norm inequalities, by exploiting {weak) majorization relations for general-
ized s-numbers of the sum or product of two elements of .#.

Each self-adjoint element a of .# is uniquely written in the form

a=[ tde,(t) (8.1)

where {¢,(t): —% <t < =} is the spectral projection of #. For general
a €.# (also for any measurable operator a affiliated with .#), its generalized
singular value function, or for short generalized s-number p,(a), is defined by

ula) = inf{s = 0:7(1 —¢,(s)) < t] (t > 0). (8.2)
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It is shown that
p,(a) = inf{llae: ¢ €.# a projection with 7(1 ~ ) <t}. (8.3)

When .# is the space of all bounded linear operators on a Hilbert space and
7(-) is the usual trace, this definition coincides with the usnal one of
decreasingly arranged singular valnes for a compact operator, but it makes
sense for every bounded linear operator, too.

When 7(1) < @ and a is self-adjoint, Petz (1985) introduced the spectral
seale A (1) of a by

ALty =inflseR:r(l —e,(s)) <t} [0<t<7(1)]. (8.4)

which corresponds to the decreasingly arranged eigenvalues of a Hermitian
matrix.

Majorization and weak majorization between two sell-adjoint elements of
a finite factor were introduced by Kamei (1983) and extended by Hiai (1987}
to the case of measurable operators affiliated with a semifinite von Neumann
algebra.

When @ and b are positive elements in .#, weak majorization a = b is
defined as

[aaydt > [(p(b)de  for s3>0, (8.5)
] 0

and majorization with the additional requirement

Lmut(a)dttj:)wnt(b)dt, ie. t(a)=r(b).  (86)

Characterizations for (weak) majorization of elements of .# are similar to
the cuse of Hermitian matrices. A somewhat different (and more general}
approach was treated by Alberti and Uhlmann (1982), where the relation of
more mixedness (unitery mixing) plays a corresponding role.

The notion of a doubly stochastic map on a matrix space is naturally
extended te a lincar map ®(-) on a von Neumann algebra .# with trace 7(-).
A map @) is called doubly stochastic if it is positivity-preserving with
®(1} = 1 and 7-preserving. Kamei (1984, 1985) and Hiai (1987) discussed the
Birkhoff-type theorem: when # is a finite factor, then the extreme point of
the convex set of doubly stochastic maps consists exact]y of all maps ()
such that ®{a) is equivalent to a for all a €.#.
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Given a €.#, define its unitary orbit by
#(a) = {uFau:u €4 unitary}, (8.7)

and denote its convex hull by co #(«). Then as an extension of the Hardy-Lit-
tewood-Palya theorem the follomng holds: when # is a factor and a, b are
positive elements with finite trace, then « > b if and only if b is in the il - 1},
closure of co #(a). The same assertion is true for any self-adjoint @, b in
I1.#) when . is a finite factor.

In (‘shlbhqhmg majorization relations the ’ml]owmg‘ gen(‘rdh zation of (2.16),
found in Fack and Kosaki (1956). plays a key rale:

[(udaydt = inf{z(b) +sla — bl b ) (aca). (55)

A Lidskii-Wielandt type theorem for generalized s-numbers was proved
in the setting of von Neumann algebras by Hiai and Nakamura (1987), und is
improved a little by Dodds, Dodds, and de Pagter (1989). It says that

ula —b) =, fpa) — p(b)l (a.bEM), (8.9)

or more explicitly,

flmu,f(a —b)dt » flpc,(a) — p, (D) dt
0 E
for everv Borel subset E < (0, =), (8.10)

where | E| denotes the Lebesgue measure of E. In a similar line a Gelfand-
Naimark type theorem for the generalized smnumbers was established by
Nakamura (1957) in the fol]uwing form: for any Borel subset of (0, 7(1))

fLE‘log w(a)dt + flog p(b) dt = flog m(ab) de,  (8.11)
0 3 E

provided g, (eb) > 0 on (0, 7(1)).
Kasaki (1992a) established a von Neumann algebra version of Araki’s log
majorization (5.14) in the following form: if p > 1 and f(#) is a continuous
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increasing function on R, such that fl0) =0and £ — f(e ) is convex, then

for any positive elements a, b satisfying lim, _ ., p,(a} = lim__, . p(b) =0

fotf( p(afb?)) ds = j:f( w(labl?Y)ds (1> 0).  (8.12)

On the other hand. in the appendix to Iliai and Nakamura (1989), Kosaki
presented the following extension of Ando’s majorization (6.7): if f(z) is a
nonnegative operator monotone function on [O‘ 00), then for positive elements
a b

[mflla = D) ds = ['n(f(a) =f(b))ds (> 0). (8.13)

See Dodds and Dodds (1994) for a generalization.

In Section 6 we discussed a matching problem for normal matrices with
respect to the spectral norm. Let us take a quick look into its modification to
the von Nenmann algebra case. Given two normal clements a, b €.#, define

dist(a, h) = |- Ikdistance between a and #(h)
= || - [[distance between #(a) and #(b). (8.14)
Further define the spectral distance 8(a, b) as
8(a. b) = inf{r > 0:7(ev(a)} = 7(ev(h)) and
7(ev (b)) > (e (a)) for every apen subset V < C}, (8.15)

where for a Borel set E € C, eg(a) denotes the spectral projection of a
corresponding ta K, and E_ is the r-neighborhood of E. It is clear that when
# =M  then (A, B) coincides with [{A A), MB).. defined in (6.1).

As shown in Davidson (1986) and Hiai and Nakamura (1989), the von
Neumann version of the Bhatia-Davis-MclIntosh result holds: there is a
universal constant « such that

wdist(a, b) > 8(a, b) for normal a, b €.#. (8.16)

It is also checked that dist{a, b) = 8(a, k) holds under suitable restrictions
on the distribution of the spectra of a, b, as in Section 6.
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When .# is a finite factor and «, b are self-adjoint, Hiai and Nakamura
(1989) gave an exact formula to calculate the distance and the antidistance
between a and &(h) with respect to the |- [|,-metric (1 < p < =)

. 1/p
mﬂm—u%ﬂwueﬂanﬂ:{f|mm)Mwﬂh@ (8.17)
and

= . 1/p
sup{lie — u*bull, : v €.4# unitary} = {f A (a) — A, (B)I” dt} .
(8.15)

where A,(b) = —A,(—b). This is an extension of the Hoffman-Wielandt
thecorem on matching of eigenvalues for Hermitian matrices.

For self-adjoint 4, b in the o-finite infinite semifinite factor .#, Hiai and
Nakamura (1989) gave an exact [ormula to calculate the distance between a

and co Z(h)

inf{”a —cl:e € co ‘Z"(f))}

1 s 1 sy v
= max{l), ?;ll;:fo [A,(a) — A,(b)] dt, fg}; ?f() [:\t(a) — /\!(}))] di

(8.19)
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