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ABSTRACT 

In matrix theory, majorization plays a significant role. For instance, majorization 
relations among eigenvalues and singular values of matrices produce a lot of norm 
inequalities and even matrix inequalities. This survey article is intended as a review of 
recent results in matrix theory related to majorization. 

I N T R O D U C T I O N  

My aim is to give a br ief  survey of  results related to majorization in matrix 
theory since the appearance in 1979 of  the monumenta l  book Inequalities: 
Theory of Majorization and its Applications by W. Marshall and I. Olkin, 
which will be  cited as [MO]. 

In 1981 I delivered a lecture of  similar nature with the title "Majorization, 
doubly stochastic matrices and comparison of  eigenvalues of  matrices," which 
was published later as Ando (1989), and will be  cited as [A]. 

As the area to be  covered is vast, I have to confine myself  to the field of  
my owa interest. Therefore  main emphasis  is placed on majorization related 
to eigenvalues and singular values, matrix inequalities, and norm inequalities. 
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18 T. ANDO 

The survey consists of  eight sections: 

1. Majorization for sequences 
2. Majorization for matrices 
3. Matrix means 
4. Matrix inequalities 
5. Log majorization 
6. Spectral perturbat ion 
7. Hadamard  products 
8. Majorizations in von Neunmnn algebras 

1. MAJORIZATION F O R  S E Q U E N C E S  

Recall that for a pair of  real vectors a = [a~], b = [b~] ~ N" the ma- 
jor i za t ion  relation a >- b means that 

k k 

E ('E~ >~ E h~,~ (k = 1, .2 . . . . .  , , )  (1.1) 
i = l  i = 1  

and 

L a~ = ~ b~, (1.2) 
i=1  i~1  

where a[1 ] >/a[21 >~ ... >~ a[, I is the decreasing rearrangement  of  the compo-  
nents of  the vector  a. When  the last equal ly '  condition (1.2) is not required, a 
is said to weak ly  major ize  or submajor i ze  b, and this weak relation is denoted 
by a >-w b. Note that in [A] weak majorization >-~L, is denoted by .>- . 

Both >- and >-, introduce pseudo-orders  in ~" .  Remark  that a >~ b 
means a i >~ b i (i = 1, 2 . . . . .  n). Then obviously el >/b implies a >'w b. 

The basic quantity r,~= 1 a[il for a ~ ~ "  can be written in the form 

k 

E aN = max E a,, (1.3) 
i = I  IJI = k  ieJ 

where j is a subset of  {1, 2 . . . . .  n} and ]j[ denotes its cardinality. 
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For a complex vector a = [a i] ~-C", denote by lal the vector [la~l]. 
Besides the formulas 

k 

E lalt,l = max E la,I, (1.4)  
i=  1 IJ I=k i~.l 

one has 

laltu = rain Ibjl + k m a x  l a j  - b,l: b ~ C" . (1.5)  
i=1  j = l  l~<i~<n 

Remark that when la~l > la21 > "'" >/la,I,  the minimum in (1.5) is attained 
at b defined by 

b i = 
s g n ( a , ) .  (la,I -- lakl) ( i  = 1, 2 . . . . .  k ) ,  (1.6) 
0 ( i = k + l  . . . . .  n).  

Alberti and Uhhnann (1982) pointed out that if there is a such that a >- b 
for 'all b in a bounded subset S ~' of ~",  then among all those a's there is a 
minimum (~ in the sense of >-. With the additional requirement that 
al >/a2 > "'" >/a,, this minimum is uniquely determined. 

In this connection Ando and Nakamura (1991), analyzing the approach of 
Li and Tsing (1989) in the proof of (2.21), showed that given a, b ~ ~"  the 
set { a - c : b  >-c} has a minimum element in the sense of >- : there is /~ 
such that b >- l) and a - c >- a - / ~  for all c for which b >- c. 

A corresponding result for weak majorization was pointed out by Bapat 
(1991): given a bounded subset ~ of ~ ,  there is a unique a ~ ~ with 
(~1 >~a2 > "'" >(;,, such that ~ >-~ b for all b ~ 5  ~, and a >-~ ~ whenever 
a ~ R +, and a >-~ b for all b ~ ~ .  In/act ,  this ~ is determined successively 
by the following formulas: 

a l  = m i n { a [ l ] :  a >"w b ( b  E~)} 
and 

ak = m i n  atil:a>'~ b ( b ( E S °  - Y".ai 
~ i = 1  i=1  

( k = 2 , 3  . . . . .  n) .  

(1.7) 

This a will be denoted by LJ~ S ~. 
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A decisive role in majorization theory is played by the theorem of Hardy, 
Littlewood, and P61ya that a = [a t] > b = [b i] if and only if b = Da for 
some doubly stochastic matrix D. Recall here  that a matrix is called doubly 
stochastic if all its entries are nonnegative and all its row sums and column 
sums are equal to 1. I f  the requirements  in the last part  are only for row sums 
(column sums), then the matrix is called row-stochastic (column-stochastic). 
Correspondingly a ~ b is characterized by the existence of  a doubly 
stochastic matrix D for which Da >t b (see [MO, p. 27] and [A, p. 198]). 

When  a continuous function f ( t )  is defined on a region containing all 
components  of  a vector  a = [a~] ~ C",  let us write f(a) =- [f(ai)]. Then  for 
a vector  a ~ N" and a row-stochastic matrix D one has 

Df(a) >1 f (Da)  for continuous convex f .  (1.8)  

Therefore  it follows from the Hardy-Littlewood-P61ya theorem that 

a >-b  implies f (a)  ~-,~ f ( b )  for continuous convex f ,  (1.9)  

and 

a >-~ b implies 

f (a )  >'w f (b )  for continuous convex, nondecreasing f .  
(1.1o) 

When  S is an n x n matrix, denote  by r/(S) the vector 

n ( s )  ~ u.: {ISal, IS*bl: e >1 lal, Ibl}, (1.11) 

where  e is the vector with all components  equal to 1. It is clear that if all 
entries of  S are nonnegative then 

t_J~ {ISaL: e >/lal} = Se; 

hence 

77(D) = e for doubly stochastic D. (1.12) 

Bapat (1991) showed that, with -q = r/(S), 

[hE,l" lal.j] >-~ ISat (a ~ C"). (1.13) 
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In particular, 

]al ~ IDal for doubly stochastic D. (1.14) 

A norm I1" II on C" is called permutation-invariant if for every permuta- 
tion 7r of (1, 2 . . . . .  n} 

[l[a,] II = [l[a~(,)] I[ (a = [a , ]  c C") .  (1.15) 

It is called absolute if 

Ilall = II lal II ( a  ~ C" ) .  (1.16) 

Such a norm is always monotone on ~ + in the sense 

Hall/> Ilb[I whenever a ~> b >1 0. (1.17) 

An absolute, permutation-invariant norm is often called a symmetric gauge 
function. 

Among familiar examples of absolute, permutation-invariant norms are 

I[alrp = la~l p (1 ~< p < ~) ,  [laIL - max la, I, (1.18) 
i=1  l~<i~<n 

Less well known are 

k 

[Jail(k) --- Y'~ [alt,l (k  = 1, 2 . . . . .  n) .  (1.19) 
i=1 

With this notation (1.5) can be written in the following form 

[[afl(k) = min{llblfl + kIla - blL:  b ~ C"}.  (1.20) 

It follows from Birkhoft% theorem that every doubly stochastic matrix is a 
convex combination of  permutation matrices, so that for every permutation 
invariant norm 1[. ][ 

[la/[ >/I/Dall for doubly stochastic D and a E C".  (1.21) 

Further,  by the characterization of  weak majorization mentioned above, one 
has for every absolute, permutation-invariant norm I1" II 

Ilall >/Ilbl[ whenever ]lalla) >/]]bll(k) (k  = 1, 2 . . . . .  n ) .  (1.22) 



22 T. ANDO 

Considering a matrix S as a linear map on C", one can define its mapping 
norm ( =  Lipschitz bound) with respect to a norm II" II on C". When its 
mapping norm is not greater than 1, S is called a I1" II-contraction. Since 

I l s l g ~ ' ~  >/ u., {ISal:~ > lal} 

and ItSl l , -+  ~ = I I s * l l ~  (where, for instance, t lSll~-~ is the mapping norm 
of S with respect to norm I1" 11~), it follows from (1.13) that 

la[ >'~ [Sa[ whenever S is [1" Ill-contractive and I1" II~-contractive. (1.23) 

There are two directions of generalization of the notion of majorization to 
a pair of finite sequences of real vectors {a(i)}i" , {b(i)}'l,'. The first direction is 
along the line of the Hardy-Littlewood-P61ya theorem and requires for 
simultaneous majorization of {a(i)}~ '' over {b(i)}'l" the existence of a doubly 
stochastic matrix D such that b (i) = D a  (i) (i  = 1, 2 . . . . .  m) .  There is an 
extensive study of simultaneous majorization of this type, motivated princi- 
pally from physics, in the monograph of Alberti and Uhlmann (1982). 
Simultaneous majorization of {b (i)} by {a (i)} is characterized in terms of a 
family of inequalities of the form 

cI,( ~,{~ . . . . .  ao,,)) >1 ai,( b ~) . . . . .  b('")),  

where dl)(--. ) are convex functions of m vector variables. 
In the other direction requirement for majorization is that 

b',i) = ~_, d i j a  (j) 
j =  1 

(i = 1,2 . . . . .  m) 
for mum m × m doubly stochastic matrix D = [d i j  ] . 

This has a close conneetion with the Choquet theory of simplexes as seen in 
the monograph of Alfsen (1971). In Fischer and Holbrook (1977, 1980) 
majorization in this sense is characterized by the condition that 

i = 1  i = 1  

for 'all nonnegative convex continuous functions q~(.) on ~". Along similar 
lines is Komiya (1983). 
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The case of  m = 2 is in a special situation. Recall first (see [MO, p. 109] 
and [A, p. 168]) that a >- b is characterized by 

[la + telh >1 lib + tellj ( t  ~ ~ ) .  (1.24) 

This was generalized by Ruth,  Schranner,  and Seligman (1980): for 
stochastic vectors, that is, I1" Ih unit vectors with nonnegative components  
a (~), b (1) (i = 1, 2), there is a column-stochastic matrix S such that b (~) = Sa (~) 
(i = 1, 2) if and only if 

Ila (~) + ta(2)ll~ >1 lib (l~ + tb(Z)lh ( t  ~ ~ ) .  (1.25) 

Hiisselbarth and Ruth  (1993) observed that for general vectors a (n, b (n 
( i =  1, 2) there is a I[ ' lh contraction C such that b ( i ) =  Ca (0 (i = 1, 2) if 
and only if 

lisa (1) + ta(-°~[l~/> I[sb (1) + tb(2)[h ( s ,  t ~ R) .  (1.26) 

T h e  II" I1~ case is valid in a more  general setting. 

2. M A J O R I Z A T I O N  F O R  MATRICES  

We take the view that a noncommutat ive  analogue of a complex number  
is a matrix, say n × n, while an analogue of  a real n u m b e r  is a Hermit ian 
matrix and that of  a nonnegative n u m b e r  is a positive semidefinite matrix. In 
this context the conjugate transpose corresponds to the complex conjugate of  
a number .  For  a matrix A its real (or Hermit ian)  part  Re A is defined as 
½(A + A*), while its imaginary part  Im A is ( 1 / 2 i ) ( A  - A*). The modulus 
[A[ of  a matrix A is defined as the positive semidefinite square root of  A*A. 
Let us denote  by M,, the algebra of  all n × n complex matrices. 

The  order relation A >~ B for two Hermit ian  matrices A, B always means 
that A - B is positive semidefinite. In particular, A >/ 0 means that A is 
positive semidefinite. Let  us write A > 0 to mean that A is positive definite. 

All difficulties with respect  to this order  relation come from the t~act that 
the space of  Hermit ian  matrices does not become  a lattice: given two 
Hermit ian matrices A, B, the set {X : X ~> A and X ~> B} has no min imum 
point except when A ~> B or A ~ B. Ando (1993) gave a complete  
parametrizat ion of  all minimal points of  this set. 

Alberti and Uhlmann (1982) is a useful monograph on the subjects of  this 
section. 
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To each matrix A two kind of nmnerical vectors, one in C" and the other 
in [~", are associated: the one consists of the eigenvalues [Ai(A)] of A, and 
the other of its singular values [o-j(A)], where ~ri(A) = Ai(I A[) by definition. 

When A is Hermitian, all its eigenvalues are real, so let us always arrange 
them in decreasing order: 

A,(A) >i h2(A) >/ .-. >/ < ( a ) .  (2.1) 

For two Hermitian matrices A, B, let us write A >- B or A >-, B according 
as [hi(A)] >- [A,(B)] or [h~(a)] >-~. [A,(B)]. 

An eigenvalue analogue of the extremal characterization (1.3) for a 
Hermitian matrix A is the following formula of Ky Fan: 

k 
h i (A)  = max{Tr( PA): P a Hermitian projection of rank k} 

i = 1  

= max ( U * A U ) . :  U unitary (k = 1, 2 . . . . .  n),  (2.2) 
t i= l  

where (U*AU),  is the (i, i) entry of U*AU. Immediate consequences of 
(2.2) are the Schur theorem 

A >- diag(A) for Hermitian A, (2.3) 

and the Ky Fan theorem 

[hi(Re A)] >- [Re h i (A)]  ( a  ~ M,,). (2.4) 

The inverse problems for (2.3) and (2.4) have affirmative answers (see 
[MO, p. 220]). If [h i] >- [ai], there is a Hermitian matrix A = [a 0] such that 

A,(A)  =hi  and aii= oe i (i = 1,2 . . . . .  n).  

Similarly if [ a i] >- [/3 i ], there is a matrix A for which 

hi(Re A) = a, and Re h i (A)  = fl, (i  = 1, 2 . . . . .  n) 

(see [MO, p. 238]). 
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A practical condition for a non-Hermitian matrix to have real (or even 
positive) eigenvalues only is total positivity. Recall that a real matrix A = [a~j] 
is called totally positive if all its square submatrices have positive determi- 
nants. Ando (1987a) is a comprehensive survey on totally positive matrices. 

It had been conjectured that (2.3) is valid also for a totally positive matrix. 
Garloff (1982, 1985) settled the conjecture affirmatively, and further showed 
that the inverse problem for this majorization relation is not always true even 
when ai i= const (i = 1, 2 . . . . .  n). 

Let A, B be Hermitian matrices. Among vectors of [A~(A)], [A~(0(B)], 
and [Aa(i)(A + B)], 7r, 8 being permutations of {1, 2 . . . . .  n}, there are 
various type of majorization relations. Among the easiest examples is a 
consequence of Ky Fan's formula (2.2): 

[A, CA) + AiCB)] >- [A+(A + 8)].  (2.5) 

A deeper result is the celebrated theorem of V. B. Lidskii (the eider) and 
Wielandt (see [MO, p. 242] and [A, p. 223]): 

[A,(A + B)] > [A+(A) + A,+_,+I(B)], (2.6) 

Hersch and Zwahlen (1962) gave an extremal characterization of F./k= 1 Aj(A) 
for 1 ~<jl <j2 < "'" <jk ~< a, for which Riddle (1984) presented a topo'log- 
ieal minimax characterization. In Smiley (1966) one can find simple proofs for 
some of inequalities of the Lidskii-Wielandt type. 

Amir-Mo6z (1968) and Markus (1964) are excellent surveys of this area, 
containing original contributions. 

Bhatia and Holbrook (1989) showed that if A, B, and A + B are normal, 
there is a permutation 7r of {1, 2 . . . . .  n} and a doubly stochastic matrix D 
such that 

[Ai(A ) + A~(B)] = D[A,(A + B)].  

The inverse eigenvalues problem for a sum of Hermitian matrices is to 
find conditions on three vectors [ai], [bi], and [c i] ~ I~" which guarantee the 
existence of two Hermitian matrices A, B such that 

a, = Ai(A), b i =  Ai(B ), and c+ = A+(A + B) ( i =  1,2 . . . . .  n) .  

Various inequalities of the Lidskii-Wielandt type give necessary conditions for 
the solvability of the inverse problem. A serious combinatorial search for 
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sufficient conditions began with A. Horn (1962). Extending this idea, B. V. 
Lidskii the younger (1982) proposed a complete set of conditions for the 
inverse problem. But no full proof has been published. 

A related problem is the exponential function problem. Remark that a 
matrix W is unitary if and only if it is of the form W = e in for a Hermitian 
matrix H. Therefore, since a product of unitary matrices is again unitary, for 
any Hermitian matrices A, B there must be a Hermitian matrix C such that 

e iC = e i A e  iB.  

The problem is whether C is found in the form C = U*AU + V*BV for 
suitable unitary matrices U, V. A close connection with the inverse eigenvalue 
problem is seen from the relations 

Ai(U*AU) = A , ( A  ) and Ai(V*BV) =Ai (B  ) ( i =  1,2 . . . . .  n). 

This problem is not fully settled either. R. C. Thompson (1986) proposed a 
program of reducing the inverse eigenvalue problem to this problem. He 
showed that the Lidskii conditions can be checked on the basis of Nudelman 
and Shvartzman (1959), in which the eigenvalues of the product of unitary 
matrices are investigated. 

In accordance with (2.1) let us always arrange the singular values of a 
matrix A in decreasing order: 

~ , ( a )  > / , ~ ( A )  >/ ... >i ~ . ( n ) .  (2.7) 

There are singular value versions of (2.5) and (2.6) for general matrices 
A, B (see [MO, p. 243] and [A, p. 229]): 

[ < ( a )  + < ( B ) I  ~-. [ < ( a  + ~)] (2.s) 

and 

[ < ( A  - 8)] ~'w [ l < ( a )  - <(~)1].  (2.9) 

In this connection Gil (1993) proved the following inequalities: 

k k 
2 E {o'i(Re A) 2 - [ ~ e  /~i(A) 12} ~ E {~Tn-i+l(A) 2 - I ~ i ( A )  12} 

i=1 i=1 

(k = 1,2 . . . . .  n).  (2.10) 
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Recall that a norm 11. II on M n is called unitarily invariant if 

II All = IIUAV II for all unitary U, V. (2.11) 

It is known that a unitarily invariant norm ]l" ]l on I~,  stands in one to one 
correspondence with an absolute, permutation-invariant norm I1" II on C n via 

IIAII = I I [ o i ( A ) ] l l  (A ~ Mn). (2.12) 

Now familiar unitarily invariant norms are produced from (1.18) and (1.19): 

} l/p 
[Iellp ~- ~ ~( A) p = {TF(IAIP)} 1/p ( l ~ < p < ~ ) ,  

i=1 (2.13) 

Ir AII~ ~ o"1(A).  

The norms [l" ]h, I]" I1~, and I1" I1~ are called the trace norm, Frobenius norm, 
and spectral norm, respectively. I[" ][p is generally called the Schatten p-norm. 

The unitarily invariant norm corresponding to ]1. II(k) is called the Ky Fan 
no/"//z: 

k 

]JAil(k) = ~'. ~r~(A) (k  = 1 ,2  . . . . .  n ) .  (2.14) 
i = I  

Then the singular value versions of (2.2) and (1.20) hold in the following 
form: 

and 

[1 All(k) = max{ rTr( B 'A) [  : B*B a projection of  rank k} 

= max{ ~ l(U*AV),l:U, V (2.15) 

[rAIItk) = min{flBIh + k- I IA - BIIo~ : B ~ ~n}" (2.16) 

In (2.15) for k = n the maximization can be restricted to U = V. See Li 
(1987). 
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Now it follows from (1.22) and (2.12) that for every unitarily invariant 
norm l I" I I 

IIAII>IIBll whenever IIAll(k~llBIl(k~ ( k = l , 2  . . . . .  n).  (2.17) 

A weaker restriction on a norm 11" II is unitary similarity invariance: 

[IUAU*II = IIA[I for all unitary U. 

The numerical radius (norm) w(') is a typical example: 

w ( A )  -- sup{Ix*Axl: [[xll ~< 1}. (2.18) 

For a linear map dO(.) from ~,,  to ~ .... its adjoint map dO*(-) from M,n 
to g{, is defined by 

Tr(B*.dO(A))  = T r ( d o * ( B ) * . A )  ( A ~ n ,  B~rw~ ). (2.19) 

A linear map d~(.) is called positive if it preserves positive semidefiniteness: 

dO(X) >/0 whenever X > O. 

It is called unital if dO(I n) = I,,~, where I,, is the n x n identity matrix, and is 
called trace-preserving if 

Tr dO ( X ) = Tr X for all X. 

It is obvious that a linear map is positive if and only if its adjoint is positive, 
and that it is unital (is trace-preserving) if and only if its adjoint is trace-pre- 
serving (is unital). 

A positive, unital, and trace-preserving linear map dO(.) is called doubly 
stochastic. Then a natural extension of the Hardy-Littlewood-P61ya theorem 
holds: majorization A >- B for a pair of Hermitian A, B is equivalent to the 
existence of a doubly stochastic map dO(') such that B = dO(A). Also, for a 
Hermitian matrix B, its image set under all doubly stochastic maps {dO( B): dO 
doubly stochastic} coincides with the convex hull of its unitary orbit { U*B U : U 
unitary}. See [A, p. 235]. 
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Li and Tsing (1989) showed that given Hermitian A, B there are doubly 
stochastic maps (I)1(.), (I)2(.) such that for all unitary similarity invariant norm 
I1"11 

IlA - (P~(B)II t> IlA - (I)(n)ll t> IlA - q)e(B)ll 

for all doubly stochastic (I). (2.20) 

Here (I)1(.) is easy to construct on the basis of (2.6); the difficulty in 
constructing ci)2(.) is overcome by the minimum theorem of Ando and 
Nakamura (1991), mentioned in Section 1. 

As an extension of (1.11) to a linear map (I)(,) on M,,, let us define r/(dp) 
by 

rl((I)) --- tJ~ {[(r~((P(A))],  [cr~(cl)*(B))] : IlAIl~, Ilnll~ ~< 1). (2.21) 

If cI)(.) is positive, then 

t_J~ {[o-i((P(A)) ] :llAIl~ ~< 1} = [A,( ( I ) ( I ) ) ] .  (2.22) 

As a consequence one has 

7/((I)) = e for doubly stochastic dp. (2.23) 

From (2.16) one can derive, as in Bapat (1991) (see also Bapat (1987, 1989)), 
an extension of (1.13): for a linear map (I) with r / =  7/((I)(A)), 

[,Tt,j. (A a,,). (2.24) 

As a consequence one has 

IAJ >-~ Iqb(A)[ for doubly stochastic cI). (2.25) 

The majorization (2.25) is valid even when (I)(.) is I1" II~-contractive and 
I1" Ill-contractive. 

Finally let us mention that 

w(A) >1 w(~(A))  for doubly stochastic (D and A E ~/~n" (2.26) 



30 T. ANDO 

The notions and results mentioned above can be extended to the case of a 
compact linear operator on a Hilbert space, because such an operator has 
discrete eigenvalues and is approximated by finite rank operators. 

Gohberg and Krein (1965) and Simon (1979) are excellent surveys on 
unitarily invariant norms as well as majorization relations for Hilbert space 
operators. 

3. MATRIX MEANS 

Let A, B be n × n Hermitian matrices. If A >~ B, then ai(A) >~ ai(B) 
(i = 1, 2 . . . . .  n). If a real valued continuous function f(t)  is defined and 
nondecreasing on an open or closed, finite or infinite interval containing all 
eigenvalues of A and B, then obviously 

A~(f (A))  = f ( A , ( A ) )  > f ( A , ( B ) )  = A , ( f ( B ) )  ( i - -  1 ,2  . . . . .  n) .  

Therefore U*f(A)U >f(B)  for some unitary U. But the order relation 
f (A)  > f ( B )  does not hold in general. 

If 

f ( a )  > f ( B )  whenever A, B ~ M,, and A >~ B, (3.1) 

then the function f(t)  is called matrix-monotone of order n on the interval. 
Correspondingly matrix convexity of order n is defined by the requirement 

af (A)  + ( 1 -  a ) f ( B )  > f ( a A  + ( 1 -  a)B) ( 0 <  a <  1). (3.2) 

Further, f( t)  is called matrix-concave of order n if - f ( t )  is matrix-convex of 
order n. 

A function which is matrix-monotone of all orders is called operator- 
monotone. Correspondingly operator convexity and operator concavity are 
defined. 

Remark that for an operator-monotone function f(t)  the inequality (3.1) 
can be extended to Hermitian operators A, B on Hilbert space. The same is 
true for (3.2) with an operator-convex function. 

According to the celebrated theorem of Loewner (see [MO, p. 464]), a 
function f(t)  on an open interval A is operator-monotone if and only if it 
admits an analytic continuation to the open upper half plane and it transforms 
the half plane into itself. Based on the Nevanlinna integral representation of 
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an analytic function which is defined on the open upper half plane and 
transforms it into itself, an operator-monotone function on an interval A is 
characterized as the one that admits an integral representation 

(1 s) 
f ( t )  = a + bt + f( -=o~)-,a s - t 1 + s  z dl~(s)  ( t  ~ A), (3.3) 

where a ~ ff~, b >1 0, and /z(.) is a positive measure on (-oo,  o0) \ A such 
that f(1 + s2) -1 dlz(s)  < 0o. Here a, b, and /x(.) are determined uniquely. 

Let us mention some important examples. The fractional power t ~ is 
operator-monotone on [0, oo) for 0 < ¢r ~ i but not for ¢e > 1. For 1 ~< p ~< 2 
the function t p is operator-convex, but not for other positive exponents. The 
logarithm log t is operator-monotone on (0, o0), but e t is not operator-mono- 
tone on any interval of ~. 

Nonnegative operator-monotone functions on [0, o0) have been especially 
studied in connection with unitarily invariant norms. In this case, after 
suitable substitution, the integral representation (3.3) is converted to the 
following form: 

f ( t )  = a + /3t + fo --s + t d r ( s )  ( t  >/0) ,  (3.4) 

where a, /3 >~ 0 and u(-) is a positive measure on (0, m) such that 
f(1 + s) -1 d r ( s )  < o0. Furthermore, a, b and ~,(.) are determined uniquely 
from fit).  

This formula shows that in the cone of nonnegative operator-monotone 
functions on [0, m), the constant functions, the scalar multiples of the 
function t, and the functions of the form a t / ( a  + t)  constitute extremal 
rays, and every operator monotone fimction is a continuous weighted average 
of those extremal functions. Therefore various matrix inequalities related to 
operator-monotone functions on [0, m) are reduced to the ease of such 
extremal functions. 

Donoghue (1974) is a monograph devoted to operator-monotone func- 
tions from the standpoint of analytic extensions. Davis (1963) and Ando 
(1979a) give compact surveys of the basic facts on operator-monotone func- 
tions and related matrix inequalities from the standpoint of operator theory. 
Various operations in the class of operator-monotone functions have been 
studied by Nakamura (1989). 

As is shown in Ando (1979a), an operator-monotone function on [0, co) is 
necessarily operator-concave. But this can be proved without appeal to the 
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integral representation. In fact, Davis (1963) proved the pinching inequality 
for operator-monotone f ( t ) ,  

f ( P A P )  >~ P f (A)  P for a Hermitian projection P. (3.5) 

Hansen (1980) showed that the pinching inequality can be generalized to the 
form 

f ( X * A X )  >~ X ' f ( A )  X whenever I >~ X* X (3.6) 

and that this is indeed equivalent to operator concavity. His method shows in 
essence that a matrix-monotone function of order n on (0, ~) is matrix-con- 
cave of order [n/2] ,  as observed by Mathias (1990). 

In a similar line Hansen and Pedersen (1981/82) showed equivalences of 
the following conditions for a continuous real valued function f ( t )  on [0, 1): 

(1) f ( t )  is operator-convex and 0 >~ f(0); 
(2) X * f ( A ) X  >~f(X*AX) for all A with 0 ~<A ~< I and X with 

X*X <<. I; 
(3) X * f ( A ) X  + Y* f (B )Y  >~f(X*AX + ) '*BY)  for A, B with 0 ~< A, 

B ~< I and X, Y with X*X + Y*Y  <~ I; 
(4) Pf(A)P >~f(PAP) ibr A with 0 ~< A ~ I and Hermitian projection P. 

An observation of this type is also in Friedland and Katz (1987). 
Using integral representation (3.3), Ando (1979a, b) showed that if * ( ' )  is 

a unital positive linear map from t ~  to t ~  then 

f ( * ( A ) )  >1 * ( f ( A ) )  for opera tor -monotonefand  A >/. 0. (3.7) 

Since f ( t )  is concave, this can be considered as a matrix version of (1.8). In 
particular, with f ( t )  = log t, one has 

log * ( A )  >/ * ( l og  A) (A  > 0). (3.8) 

Based on the integral representation (3.4), Kubo and Ando (1979/80) 
developed a theory of matrix (or operator) means; a map (A, B) ~ A ~ B in 
the cone of positive semidefinite matrices is called a matrix mean or operator 
mean if the following conditions are satisfied: 

(i) Positive horcu~geneity: a "A¢r B = ( a A )  ~ (aB)  for a >~ 0; 
(ii) Norv~udization: A ~r A = A; 

(iii) Monotonicity: A or B >~ A' cr B' whenever A /> A' and B >~ B'; 
(iv) Continuity from above: A k $ A, B~ $ B implies A k o- B k $ A ~r B; 
(v) Transformer inequality: ( T ' A T )  ~r (T*BT) >~ T*(A ~r B)T for ev- 

ery matrix T. 
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A key for the theory is that there is a one-to-one correspondence between 
a matrix mean o" and a nonnegative operator-monotone function f ( t )  = f¢(t) 
on [0, ~) with f(1) = 1 through the formula 

AorB =A' /2 f (A-X/2BA -'/ '2)A ~/'2 for A > 0, B >~ 0. (3.9) 

If the mean o" corresponds to f ( t )  with integral representation (3.4), then 

A tr B = aA + fiB + ~ A(sA + B ) - l  Bdv ( s )  (3.1o) 

The arithmetic mean corresponds to the function f ( t ) =  (t + 1)/2, 
while the mean corresponding to f ( t ) =  2 t / ( t  + 1) will be called the 
harmonic mean. Half of the harmonic mean of A, B ~> 0 was introduced 
earlier, under the name of parallel sum, and denoted by A : B by Anderson 
and Duffin (1969). With this notation (3.10) has the form 

du(s)  
Atr  B = aA + fiB + f (sA):  B - -  (3.11) 

J0 S 

Then the map (A, B) ~ A or B turns out to be jointly concave in (A, B). 
Ando (1979b) and Kubo and Ando (1979/80) derived from the integral 
representation (3.11) that if ~( . )  is a positive linear map from M,, to [~m, 
then for any matrix mean ~r 

qb(A) tr alp(B) >~ qb(A tr B) (A,  B >/ 0). (3.12) 

In particular, with C >/0 and qb(X) = Tr(XC), one has 

Tr(CA) tr Tr(CB) ~> Tr[C" ( A t r  B)].  

from which it follows that for every unitarily invariant norm I1" II 

IIAI[ tr I[BII ~> Iln tr BI]. (3.13) 

The definitions of arithmetic and harmonic means for matrices suggest 
that the geometric mean should be understood as the mean corresponding to 
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the operator-monotone function t 1/2. This geometric mean is denoted by 
A # B :  

A # B - A I / 2 ( A  ~ / 2 B A - ~ / 2 ) t / 2 A I / 2  ( A > 0 ,  B>~0) .  (3.14) 

The geometric mean A # B is characterized as the maximum of all positive 
semidefinite matrices X for which 

(a X) 
X B >~0. 

Further, for A, B >~0 there is a unitary matrix U such that A # B  = 
A 1/2 UB 1/2. A similar idea appeared in Pusz and Woronowicz (1975) in order 
to define a functional calculus for sesquilinear forms on a C*-algebra. 

The parallel sum A : B is characterized as the maximum of all positive 
semidefinite matrices X for which 

In this connection Anderson, Morley, and Trapp (1990) investigated the 
following problem: what condition for an m × m Hermitian matrix K 
guarantees the existence of maximum in the set of positive semidefinite 
matrices X such that A + K ® X ~> 0 for each positive semidefinite block 
matrix A? They found that a necessary and sufficient condition is that K has 
only one negative eigenvalue. 

Inequalities between matrix means are reduced to those between the 
corresponding functions. For instance, the arithmetic-geometric-harmonic 
mean inequalities hold: 

A + B  
- -  > ~ A # B  >~ 2 ( A :  B) .  (3.15) 

The geometric mean A # B can be obtained as the limit of successive 
iteration of an operation defined by arithmetic means and harmonic means: 

lim A k = lira B k, 

where A o =- A,  B o - B, Ak+ 1 =- (A~  + B k ) / 2 ,  and B~+ I --- 2(A k : Bk). 
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For 0 < a < 1, besides the weighted arithmetic mean (1 - a ) A  + aB ,  
one can define the matrix mean A #~ B corresponding to the operator 
monotone function f~ ( t )  = t~: 

A #,~ B = A1/2( A - 1 / 2 B A  -1/2)  '~A 1/2. (3.16) 

1 When a = 7 this is just the geometric mean. It is seen that 

A # .  B = B # 1 _ .  A (0 < a <  1). (3.17) 

When A commutes with B, then A # ,  B = A 1-"B".  
The traditional averaging operation 

(A ,  B) ~ M s ( a ,  B) --- {½(A" + B " ) }  1/~ with a > 0 

is not a matrix mean in the above sense except for a = 1. In fact, this 
operation is not monotone in A or B except for a = 1. However, from the 
operator monotonicity of the function t "  for 0 < a ~< 1 it follows that 

Mal ( A, B)  >~ M~2 ( A,  B)  whenever a 1 >/ a 2 >/ 1, 

as observed in Bhagwat and Subramanian (1978). The limit of M s ( A ,  B)  as 
a ~ 0 exists and equals exp{(log A + log B)/2}. Contrary to the scalar case 
or the case of commuting A, B, this limit does not coincide with the 
geometric mean A # B in general. Moreover, the map (A ,  B)  ~ exp{(log A 
+ log B)/2} is not monotone in A, B. 

The theory of matrix means is essentially for pairs of matrices and cannot 
be extended to larger sets of matrices. How to define matrix means-- in 
particular, the geometric mean- - for  a larger number of positive definite 
matrices is still a challenging problem. One way is to use the integral 
representation in the definition. In this direction, Kosaki (1983) proposed a 
definition of the geometric mean G(A0, A 1 . . . . .  A N) for an (N + 1)-tuple 
{ A o, A 1 . . . . .  A N } of positive definite matrices by the integral representation 

G ( A  o, A 1 . . . . .  AN)  -- F ( ( N  + 1)-1)  -(N+') 

× fR~+,{ A o : t l A l : ' " :  t NAN} 

N 
× V I t j  -(N+2)/(N+I) dt 1 dt2 ... dtN, 

j = l  
(3.18) 
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where F(.) is the gamma function. For  N = 1 (3.18) reduces to the definition 
(3.14). When  all Aj ( j  = O, 1 . . . . .  N )  commute  with each other, G(A0,  
A 1 . . . . .  A N ) = ( A o A  1 ... AN)l/(,\'+1) 

An axiomatic approach to a definition of  the geometric mean seems more 
difficult. With such a definition in mind, Anderson, Morley, and Trapp (1984) 
introduced the notion of  symmetr ic  f unc t i on  nwans  tbr an N-tuple 
{ A 1 . . . . .  A N} of  positive definite matrices, based on the ingenious represen- 
tation of  the symmetric function means of  Marcus and Lopes for scalars 
(1957). They defined two series of  matrices 

Pk,x -- Pk , x (  A1 . . . . .  a~,)  and Tk, N =- Tt.,N( A , . . . . .  A x )  

(k  = 1 ,2  . . . . .  N ) ,  

starting from PI,N = the arithmetic mean of  A l . . . . .  A N and TN, N = the 
harmonic mean of  A 1 . . . . .  A N, by the successive formulas 

]Pk,N = E 
j=l  

Aj  

N - k + l  

Pk-, ,N-I(A,  . . . . .  a j _ , ,  Aj+, . . . . .  A,,) 
/ 

( k = 2  . . . . .  N) 

and 

N 

Tk,N = H 
j=l  

{kAj  -{- ( N - k ) T k , N _ I (  A 1 . . . . .  Aj  l, Aj+I . . . . .  A N ) )  

( k = l  . . . . .  N - I ) ,  

where 1-I)~ l: denotes the parallel Stlln of  N objects. Pk N coincides with Tk, N 
if all A~ (i = 1, 2 . . . . .  N)  commute  with each other. '" 

Trapp (1984) observed that starting with X[ 1) = A~ (i = 1 . . . . .  N )  and 
defining successively Xff +1) = P,,N(X} k) . . . . .  Xff )) (i = 1 . . . . .  N; k = 1, 
2 . . . . .  ) the limits lira k . ~  X f f  ) exist and coincide with each other for all 
i = 1 , . . . ,  N. This limit is a candidate for the geometric mean of  A I . . . . .  A,,. 
Replacing P by T in the above definition, one can get another candidate for 
the geometric mean of  A 1 . . . . .  A N. The relation among those candidates and 
Kosaki's geometric mean (3.18) is not clear. 
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To establish an order relation between those two candidates of the 
geometric mean, Trapp (1984) conjectured the following inequalities: 

P ,  ,,, >1 ,,T ( k  = 1 . . . . .  N )  (3.19) 

and 

Pk,N >~ P~+~,~, and Tk, x >~ Tk+L, v (k = 1 . . . . .  N - 1). (3.20) 

He proved P2,N >/TN-l,N" 
Ando (1983) discovered a new, powerful method for dealing with the 

conjectures. Using this method, Ando and Kubo (1989, 1990) could affirm 
the inequalities (3.19) and (3.20) for 2 ~< N ~< 4. But the conjectures remain 
open for most k and N. 

The notions and results in this section can be extended to hounded linear 
operators on Hilbert space. 

4. MATRIX INEQUALITIES 

As already mentioned, for 0 < a ~< 1 the function t ~ is operator-mono- 
tone on [0, oo): 

A /> B >/0 implies A s>~B ~ (0 < a~< 1). (4.1) 

Chan and Kwong (1985) surmised that even for p > 1 the functions tP has 
an operator-monotone-like property and conjectured, in particular, that A > 
B >/0 implies A 2 >~ (AB2A) 1/2. 

In this connection Furuta (1987) established the following matrix inequal- 
ities: 

A >/ B /> 0 implies A (p+2r)/q >~ (ArBPAr)  1/q 

whenever r, p ~> 0, q >/ 1 and (1 + 2 r ) q  >lp + 2r.  (4.2) 

With r = 1 and p = q  = 2 this reduces to the conjectured inequality. 
Subsequently Furuta together with his collaborators has been refining the 
inequality (4.2) and applying it to various situations to produce new inequali- 
ties. 
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As an application of (4.2), Ando (1987b) showed that even though the 
function e l is not operator-monotone on the real line, for Hermitian matrices 
H > K the map t ~ e -tK # e TM is increasing. This was generalized by Fujii, 
Furuta, and Kamei (1993) to the effect that the map (p,  r) 
e - r K  ~t pH ~e.(p,t,~) e is increasing for p >~ t and r >~ 0, where a ( p ,  r, t)  -= 
(t + r ) / ( p  + r). 

To see another operator-monotone-like property of t p for p > 1, define 
f o r A > 0  

A pt  p 
fP 'a( t )  = ( p  - 1) t"  + A p ( t  >/ 0). (4.3) 

Then obviously t >~fp,z(t) >~ 0, and further supx> 0 fp,A(t) = t (t >/0). Ando 
and Hiai (1994) show that for any p > 1 and A > 0 and for A, B >~ 0 

fp,a(A) /> B implies A" >/ B". (4.4) 

If f ( t )  is a nonnegative operator-monotone fimction on [0, oo), it admits an 
analytic continuation to the upper half plane and maps the half plane into 
itself. Then for p > 1 the function f ( z l / P )  t' is well defined, is analytic on 
the upper half plane, and transforms it into itself. Then f ( t l /P )  p is again 
operator-monotone. This shows that ~br p > 1 and A, B >/ 0 

A" >~ B ' implies f ( A )  p >~f(B)"  (4.5) 

Lieb (1973) established that if a,  /3 >~ 0 and cr + /3  ~< 1, then for any 
matrix K the functional A ~ Tr(A~/'2K*A~KA~/2) is concave on the cone 
of positive semidefinite matrices. This can be extended to the assertion that 
the function (A,  B) ~ Tr(At3/2K*B"KA l~/2) is jointly concave in (A, B). 

Using the integral representation of an operator-monotone function (3.4) 
Ando (1979b) formulated Lieb's results as concavity of some maps in the 
cone of positive definite matrices and generalized it in the following way: if 
f ( t )  is a nonnegative operator-monotone function on [0, oo), and ¢Pi(') (i = 
1, 2) are concave maps in the cone of positive definite matrices, then the map 

(A ,  B) ~ f ( ~ l ( A )  1 ® ¢p2 (B) ) . [ap l (A  ) ® I] (4.6) 

is jointly concave in (A, B). And if OPl(') is affine, without the assumption of 
nonnegativity of f ( t ) ,  the map 

( A ,  B) ~ f ( d P l ( A )  ® O2(B)  1).[ci)~(A) ® I] (4.7) 
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is convex. For instance, the first assertion implies joint concavity of the map 

( A ,  B )  ~ A al ® B"~ ( a l ,  ot 2 >/ 0, a I + a 2 ~< 1), (4.8) 

while the second implies joint convexity of the map 

(A,  B) ~ ( A . l o g A )  ® I - A  ® l o g B .  (4.9) 

Theorems of this type can form a basis for convexity or concavity of 
certain numerical functionals on the cone of positive definite matrices, say of 
order n. For instance, the classical Minkowski theorem on concavity of the 
map A ~ (det A )  1/" on ~,,  is an immediate consequence of (4.8), because 
the map A ~ A 1/" ® ... ® A l /"  is concave and (det A )  1/" is just the 
restriction of A ~/" ® ...  ® A 1/" to the subspace of antisymmetric tensors. 
Such connections are also pointed out in Bhatia and Davis (1985) and Merris 
(1982). 

Thompson (1978, 1979) established a matrix-valued triangular inequality: 
for matrices A, B there are unitary matrices U, V, W such that 

U * [ A I U  + V * I B I V  ~ IA  + BI and W * I A I W  ~ IRe AI. (4.10) 

He investigated the case of equality. 
Thompson (1976) also proved the following matrix inequality: 

U*( I + IAI)~/2V*( I + IBI)V( I + IAI)I/2U ~ I + IA + BI 

for some unitary U, V, (4.11) 

from which one can derive the determinantal inequality of Seiler and Simon 
(1975), 

det( I  + IAI) de t ( I  + PB]) > /de t ( I  + IA + BI). 

When A, B are strictly contractive,  that is, I - A ' A ,  I - B * B  > 0, Hua 
(1955) proved the inequality 

( I - B * A ) (  I - A * A ) - I (  I - A * B )  >~ I - B * B ,  (4.12) 
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which is equivalent to 

( I - A ' A )  
I ( I  - A ' B )  

( I  - B ' A )  1 I \ 

( t  - 8 " ~ )  -~ ) > 0 .  

T. ANDO 

(4.12) implies the determinantal inequality 

Idet(I  - A*B)I 2 > de t ( I  - A'A) det ( I  - B 'B ) .  

Ando (1979c) pointed out that (4.12) is a consequence of an obvious 
inequality 

R e ( /  - A'B)  >1 2 - ' { ( I  - A'A) + ( I  - B'B)} 

and generalized (4.12) to the effect that for every operator-monotone func- 
tion f ( t )  on (0, m) 

Re f ( I -  A*B) > 2 I { f ( I -  A*A) + f ( I -  B'B)} ,  (4.13) 

where f ( I  - A* B) is defined by the analytic continuation of f(t).  
It is obvious that for A, B > 0 

(1 - c~)A + c~B > / A # ~  B (0 < c~ ~< 1). (4.14) 

Bhatia and Kittaneh (1990) established a matrix arithmetic-geometric mean 
inequality in the following form: for matrices A, B 

U , (  'Ale IBle} 
- -  + - -  U > I AB*I for some unitary U. (4.15) 

2 2 

Ando (1994a) generalizes (4.15) to a matrix Young inequality: for p, q > 1 
with p-1 + q-1 = 1 

U,(  'A''' IB'q) 
- -  + - -  U >~ I AB*I ~br some unitary U. (4.16) 

P q 

Olson (1971) pointed out that the space of Hermitian matrices becomes a 
conditionally complete lattice under a more restrictive order ~ ; here X N Y 
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is defined as f ( X )  >~f(Y) for all real valued increasing functions f ( t )  on the 
real line. This new order relation is characterized by that the Hermitian 
projection to the eigenspace of X corresponding to the k largest eigenvalues 
is greater than that of Y for k = 1, 2 . . . . .  n. For A, B >~0 the relation 
A >~ B is seen to be equivalent to A m ~> B"  (m = 1,2 . . . .  ). 

In this connection, Kato (1979) showed that the supremum of positive 
semidefinite A 1 . . . .  , A,,, with respect to this new order is obtained as 

k 1/k  l i m k ~ ( A  ~ + - . - + A m )  . 
Most of the results of this section can be extended to bounded linear 

operators on a Hilbert space. But the assertions on existence of unitaries 
requires separate considerations. For instance, Akemann, Anderson, and 
Pedersen (1982) got an inequality corresponding to (4.10) in a C*-algebra 
setting with isometrics in place of unitaries. And with unitaries only, an 
approximate version was proved with the left hand side of (4.10) increased by 
e l  with arbitrarily small e > 0. 

Generalizations of (4.15) or (4.16) to the C*-algebra case are not known. 

5. LOG MAJORIZATION 

An important notion in majorization theory is log majorization for a pair of 
positive vectors. For 0 < a, b ~ ~", log majorization, in symbols 

a > - b ,  
(log) 

means that log a >- log b. This is equivalent to requiring that 

and 

k k 

~=laE~l>~.= i~=lbH.= ( k =  1,2 . . . . .  n) (5.1) 

I I  

1-I a, = hi. (5 .2 )  
i = 1  i = 1  

Weak log majorization, or log submajorization, for a pair of a, b > 0, in 
symbols 

a >-wb, 
(log) 

is defined by (5.1). This can be extended to a pair of nonnegative vectors. 
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Remark that, as in (1.3), for a > 0 

k 

1-IaE~ ~ = max F l a ,  ( k  = 1, 2 . . . . .  , , ) .  (5 .3 )  
i= I IJl=k i~J 

It follows from (1.10) that if f ( t )  is defined on (0, ~)  and f ( e t )  is convex 
and increasing, 

a >-wb implies f ( a )  >-, f ( b ) .  (,5.4) 
(log) 

Since the function f ~ ( t ) -  e at for c~ > 0 is convex and increasing on 
( - ~ ,  ~) ,  

a ~,,,b implies a" >',~, b ~. 
(log) 

In particular, 

a >-, b implies a ~-,,, b. (5.5) 
(log) 

Further  it follows, with f ( t )  = - l o g  t, from (1.9) that 

a > 0 and a >-b implies a - l  > . ,b  i, (5.6) 
(log) 

which means 

k k 

1-Ibt , ,_ ,+ ,  ~ >/ 1-Iat, ,_,+,~ (k  = 1, 2 . . . . .  , ,) 
i = I  i=1  

if a , b  > 0 and a >-b. 

(5.7) 

The eigenvalue analogue of (5.3) for a positive definite matrix A is 

k 

I--I Ai(A) = max{det[ PAP + ( I - P ) ] :  
i=1  

P a nermi t ian  projection of rank k}. (5.8) 
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A fundamental relation between eigenvalues and singular values for a 
general matrix A was discovered by Weyl: 

[o - , (A) ]  >-- [ IA, (A)I] ,  
(log) 

(,5.9) 

Here the eigenvalues Ai(A) are arranged as ]AI(A)[ ~ [A2(A)] ~> "'" ~> 
[A,,(A)]. This is a consequence of the rather trivial inequality 

o-1(A) >~ I/~1( A)I, 

which means that spectral radius is not greater than the spectral norm. To 
extend this to (5.9) is based on the use of compounds Ck(A) (k = 1, 
2 . . . . .  n) with the help of the basic identities 

k k 
o'~(Ck(A)) = I-[o ' i (A) and A~(Ck(A))= 1-[Ai(A).  (5.10) 

i = l  i=1  

The inverse problem for the majorization relation (5.9) has an affirmative 
solution. In fact, if 

[ ,r,]  >- [IA, I] for [ ~ ]  ~ [~+, [Ai] E C '*, 
(log) 

there is a matrix A for which 

~r~(A) = o-~ and A,(A) = A~ 

See [MO, p. 233]. 
For A, B > 0 let us write 

A > - B  
(Iog) 

to mean 

[Ai(A)] >-[Ai(B)] 
(log) 

( i  = 1 , 2  . . . . .  n ) .  

A >-~ B) 
(log) 

([Ai(A)] >-~ [Ai(B)]). 
(log) 
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C. J. Thompson (1971) established that 

IAI >-1t31 
(log) 

if and only if for some unitary U two matrices U[ A] and I B] have the same set 
of eigenvalues. 

A matrix version of (5.6) is 

A >'wqb(A- l )  I 
(log) 

for doubly stochastic qb and A > O. (5.11) 

Considering the map qb(X) - diag(X), (5.11) gives the Hadamard determi- 
nantal inequality: 

t l  

1-I a,, > det A (A > 0). 
i=1 

The other fundamental fact about this subject is log majorization between 
singular values for the product of matrices, due to A. Horn (see [MO, p. 246] 
and [A, p. 229]): for any matrices A, B 

[o- i (A)er~(B)]  >- [tri(AB)]. 
(log) 

(5.12) 

This is a generalization of tile trivial inequality 

o-~( A)o-~( B) = ]IAI]~IIBII~ ~ IIABI]~ = o-,( A B ) .  

A Lidskii-Wielandt type relation for singular values was established by 
Gelfand and Naimark (see [MO, p. 248] and [A, p. 228]): 

[<(AB)] 
(log) 

(5.13) 

Use of the compound matrices makes it possible to formulate some 
assertions on matrix inequalities in terms of log majorization. For instance, as 
observed in Araki (1990), the Loemler inequaliW (4.1), 

A >~ B > 0  implies A" >~ B e for 0 < a < 1, 



MAJORIZATIONS AND INEQUALITIES 45 

can be restated in the form 

( x Y x )  ~ -  x ~ Y ~ x  ° f o r 0 < ~ < l  (x ,Y> 0). (5.14) 
(log) 

See also Furuta (1989) and Wang and Gong (1993) for this relation. 
We now show that many known trace inequalities can be extended to 

inequalities with respect to all unitarily invariant norms by establishing log 
majorization in a relatively easy way. 

A typical example is the Golden-Thompson inequality (see [MO, p. 252]): 

Tr(eHe  K) >~ Tr e H+K for Hermitian H, K. 

This is generalized to the form 

Ile%Kll ~ Ileg/2eHeK/2fl ~ Ile"+Kl[ 

for every unitarily invariant norm I]" 11. (5.15) 

This fact itself was already pointed out by C. J. Thompson (1971). The reason 
behind such generalization is better understood as follows. According to the 
Lie-Trotter formula (see Simon (1979, p. 97).) 

lim ( e~K/2e~He~K/2 )  1/~ = e H+K, 
a$O 

(5.9) and (5.14) imply 

leHeKf >" e H+K (5.16) 
(log) 

In a similar way, Bernstein's trace inequality (1988) 

Tr  e A+ A* >i T r ( e A e  a*) 

was extended by Cohen (1988) to the form 

]IeA+A*II ~ ]]eAeA*]] for everyunitarilyinvariant norm II'll. (5.17) 
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The line of such generalizations is fully developed in Hiai and Petz (1993) 
and Ando and Hiai (1993), in which also an estimate for e H+ K from below is 
established in the log majorization sense: 

X ¢ # ~ Y  ~ >- ( X # , ~ Y )  ~ for 0 < 13 < 1 
(log) 

(0 < a < 1), (5.18) 

and 

e(1 a)H+e,K = lira (e 13H #,~ e~r )  l/~ >- e H #,~ e K. 
/3 ~ 0 (log) 

(5.19) 

As the Loevamr inequality (4.1) is rewritten in terms of log majorization, 
the Furuta inequality (4.2) can also be expressed in the log majorization form 

A(1 ~)/2B,~A(1 ,~)/.2 >. (A  t ~.ff: ( A(1-~)j,/2.BtA(I ~>t,/.2,~)}l/t 
(log) 

whenever 1 > c~> O, t > O, and min(c~, c~t)>~/x>~O. In the converse 
direction, (5.18) is equivalent to the matrix inequality: 

A >~B >~0 implies 

AP>~ { A P / 2 ( A - ' / ' 2 B % - I / e ) ; ' A " / 2 } ' / t  ( p , t  >~ 1). (5.20) 

See Ando and Hiai (1993) for details. We should mention that Fumta (1994) 
presents a parametric formula interpolating (4.2) and (5.20). 

There are several known log majorization relations among products of 
fractional powers; see, for instance, Marshall and Olkin (1985). Those are 
unified in Ando and Hiai (1993) in the following way: 

IA ~'+ ' +""B ~ +  '"  +&'l >- IA~"B Iz . . . .  A<"B~"I  
(log) 

(A,  B > 0) (5.21) 

whenever cei, 13i >~ 0 (i = 1, 2 . . . .  , m), and 

k k k - 1  

Y'.13,  E<>-- E13, ( k = 1 , 2  .... .  .,) 
i=1 i=1  i=1  

and 
i = l  i=1  
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In particular, for any ~i >~ 0 (i = 1, 2 . . . . .  m) 

IA"I+ +="B"I+'"+""I >- IA"'B . . . . .  A~'B~"I, 
(log) 

and 
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(5.22) 

IA~+~B~I >-IA~B~AaI forany a, fl, y >~ O. 
(log) 

(5.23) 

Further, for natural powers the following holds: for A, B >__ 0 

A(k+I)/2BkA (k+1)/2 >- ( A B ) k A  (k = 1,2 . . . .  ). 
(log) 

(5.24) 

6. SPECTRAL PERTURBATION 

Given an n × n matrix X, denote by A(X) an arbitrarily arranged 
sequence of its eigenvalues, considered as a vector in C n. The spectral 
distance II(A(A), A(B))[[ of a pair of normal matrices A, B with respect to a 
norm I1" II o n  ~y~ n i s  defined as 

II(A(A), A(B))II 

_ inf{]l diag( A(A)) - pT diag( A(B)) Prl: P a permutation matrix}. 

(6.1) 

The matching problem is to obtain the optimal value xll.ll of K for which 

K-i]A -- BI[ >/ II(A(A), A(B))ff for all normal A, B. (6.2) 

Hoffman and Wielandt proved that KII.II = 1 for the Frobenius norm II • 112 
(see [MO, p. 274]). Using a Clifford algebra method, Bhatia and Bhat- 
tacharyya (1993) generalized this result to the case of commuting tuples of 
normal matrices: if {A(1),..., A (m)} is an m-tuple of commuting normal 
matrices with joint eigenvalues [otj (k)] ( j  = 1, 2 . . . . .  n), and (B O) . . . . .  B (r")) 
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is another m-tuple of commuting normal matrices with joint eigenvalues 
[/3] k)] ( j  = 1, 2 . . . . .  n), then there is a permutation 7r of{1 . . . . .  n} such that 

~ - ~ j  , • 

k = l  k=l ,j=l 
(6.3) 

See Eisner (1993) for a simple proof. 
For Hermitian A, B one has by Lidskii-Wielandt majorization (2.6) 

[ a , ( a  - B)]  ~- [ a i ( A )  - a , ( ~ ) ] ,  

which implies that for every unitary-similarity-invariant norm I1" II 

ilA - BI[ ~> Ildiag(A+(A)) - diag(X~(B))ll fbr Hermitian A, B. (6.4) 

Remark that (6.4) for the case of the spectral norm was already in Weyl (see 
[MO, p. 552]). 

The majorization (2.5) gives 

[a,  Ca)  - a , , _ , + l ( ~ ) ]  >- [a+Ca - B ) ] ,  

which implies that for any unitary-similarity-invariant norm II" II 

Ildiag(Ai(A)) - diag(A,, i+l(B))ll >t llA - BII for Hermitian A, B. 

(6.5) 

See Sunder (1982a) and Bhatia (1986) in this connection. 
The long-standing Weyl conjecture was to ask whether KII.II = 1 for 

spectral ]l" I[~. Under suitable restrictions on the distribution of eigenvalues of 
normal A, B the inequality 

IIA - BIL >/II(A(A), A(B))IL 

has been guaranteed. Here are several examples: (1) by Sunder (1982b) when 
A is Hermitian and B is skew-Hermitian, (2) by Bhatia and Davis (1984) 
when both A, B are unitary, (3) by Bhatia and Holbrook (1985) when A is 
unitary and B is a scalar multiple of unitary, and (4) by Bhatia (1982) when 
A - B is normal. 
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Proofs for cases (3) and (4) are based on an effective estimate of the 
spectral distance by Bhatia (1982): when A, B are connected by a piecewise 
CLarc X(t) (0 <~ t <<. 1), then 

Llllx'(t)ll dt >1 I1( A(A), A( B))]I. 

By a computer experiment, however, Holbrook (1992) finally gave a negative 
answer to the Weyl conjecture even for n = 3. 

Sunder (1982b) and Ando and Bhatia (1989) studied the best value Kp of 
the constant K such that 

K" IIA - Blip >1 I1( A(A), A( B))llp 

for Hermitian A and skew-Hermitian B, 

to show 

Kp = 2  ]/p-1/2 ( l ~ < p  ~<2) and Kp = 1 (2 < p  <oo). (6.6) 

With an ingenious use of Fourier analysis, Bhatia, Davis, and McIntosh 
(1983) and Bhatia, Davis, and Koosis (1989) discovered a method of finding 
universal bounds for KII.I[ independent of the norm ]l" I[. One such universal 
bound is 

f. I/( y)l dx dy, 

where f (x ,  y,) runs over the set of integrable functions on ~2 whose Fourier 
transforms f satisfy 

f ( ~ ,  ~) = ( { +  i~)-1 for I ~ + i n l >  1. 

It is known that this bound is between 7r/2 and 3. 
Bhatia (1987) is a nice survey on perturbation of matrix eigenvalues. 
Given a map ~(.),  defined on a subset of the space of matrices, the 

perturbation problem with respect to a norm ]]" II is to find a reasonable 
bound for lID(A) - ~(B)II in terms of a quantity related to A - B. When 
the map is defined as ~ ( A )  = f ( A )  by a continuous function f ( t )  on an 
interval of the real line, there are a number of deep investigations of the St. 
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Petersburg school, including Birman, Farfarkova, Naboko, Solomyak, and 
others. For instance, Birman, Koplyanko, and Solomyak (1975) showed that 
for A, B >1 0 and for every unitarily invariant norm I1" II 

II IA - BI"II ~ IIA" - B~'[I (0 < a < 1). 

Using the integral representation (3.4), Ando (1988) showed that for every 
nonnegative operator-monotone function f ( t )  on [0, ~) 

IIf(IA - B011 > / [ I f ( a )  - f ( B ) l l  for A, B >/ 0, 

which is equivalent to 

f ( l A -  BI) >w I f (A)  - f ( B ) l .  (6.7) 

Mathias (1990) pointed out that the same holds for a matrix-monotone 
function of order n and a pair of n x n positive semidefinite matrices. 

For general matrices A, B comparison between ][ ]A[ - ]B] ]]~ and 
1] A - B 11~ has a long history of research. The best possible Lipsehitz constant 
for the map ~ ( A )  --]A] with respect to spectral norm is known to depend 
on the dimension and is asymptotically of order log n. In fact, there is a 
universal constant K such that 

Klogn ' I IA-BII~>~II IAI - IBI I I~  forn×nmatr iees  A, B. (6.8) 

The following form, not containing dimension n, for the spectral norm is due 
to Kato (1973): 

2 ( II AII~ -t- IIBII~ ) 
~ I I A - B [ I ~  2 + l o g  ~ A - B I I ~  >~I[IAI-LBIII~. (6.9) 

For the Frobenius norm Araki and Yamagami (1981) showed that 

x~-II A - BLL.z ~ II IAI - IBi 112 

and the constant ¢-2 is not necessary when A, B are Hermitian. This is 
completed by Kittaneh (1986a, b) in the following form: for all A, B, X 

I IAX-  XBII~ + I IA*X-  XB*II~ 

II IALX - XIB11122 + II IA*IX - XIB*I I1~. (6.10) 
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The following inequality was first proved by Kosaki (1984) for the trace 
norm and later generalized by Bhatia (1988) to every unitarily invariant norm: 

X/211A + BII'IIA - BII > / I I IAI-  rBI II. (6.11) 

For Schatten p-norms sharper estimates were obtained by Kittaneh and 
Kosaki (1987) and Bhatia (1988): 

max(21/p-1 /2 ,  1).  V/IIA + Blip" IIA - Blip ~ II ]AI - Inl lip. (6.12) 

Davies (1988) proved Lipschitz continuity of the modulus map A ~ I AI 
for the case of II'llp (1 < p < o~): there is an absolute constant K such that 

4 1 + x max p,  IIA - Blip /> II IAI - Inl lip. (6.13) 

He used a deep result of Matsaev that the II'llp norm of the triangular 
truncation map (observed in the next section) is uniformly bounded without 
respect to the order of matrices. See Gohberg and Krein (1967) in this 
connection. The inequality (6.13) can also be generalized to the form: for 
some constant yp and every A, B, X 

~p{llAX - XBllp + IIA*X - XB*llp} >1 II IAIX - XIBI lip. (6.14) 

Davies's approach was analyzed in detail by Kosaki (1992b) to give a 
complete characterization of a unitarily invariant norm for which the modulus 
map is Lipschitz-continuous: such is the norm obtained as an interpolation 
norm between Pl- and p2-norms for 1 < Pl, P2 < oo. 

7. HADAMARD PRODUCTS 

In Mn, besides the usual matrix product, the entrywise product is quite 
important and interesting. The entrywise product of two matrices A, B is 
called their Hadamard (or Schur)  product and denoted by A o B. With this 
multiplication ~/~n becomes a commutative algebra, for which the matrix with 
all entries equal to one is a unit. Horn (1990) is an excellent survey on recent 
development of the study of the Hadamard product. 
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The most basic is the Schur theorem: 

T. ANDO 

AoB >/0 whenever A, B >10. 

When combined with the well-known fact that 

(7.1) 

l>~]]X][o~ if and only if (X / X) * I >~0, 

this yields submultiplicativity of the spectral norm with respect to Hadamard 
multiplication: 

IIAII~'IIBII~ >/I[Ao BII~, (7.2) 

Submultiplicativity for the Frobenius norm is nothing but the Cauchy-Schwarz 
inequality. 

Marcus, Kidman, and Sandy (1984) investigated several other cases and 
conjectured submultiplicativity for all unitarily invariant norms. But it was 
shown by Horn and Johnson (1987) that for a unitarily invariant norm I1" II 
submultiplicativity with respect to the Hamadard is simultaneous with that 
with respect to the matrix product, and is characterized by the condition that 
lIx[I >/Ilx[l~ for all X. 

Contrary to the case of usual matrix multiplication, [o'i( A)tri(B)] does not 
always weakly log majorize [o'i( A o B)]. However, weak majorization holds: 

[ < ( A ) < ( B ) ]  > - ~ [ < ( A o B ) ] .  (7.3) 

This was proved by Bapat and Sunder (1985) and also by Horn and Johnson 
(1987) as well as Okubo (1987) and Zhang (1987). As a consequence one has 

o-I(A)IB[ >% IAo BI. 

The weak majorization (7.3) is improved by Horn and Johnson (1987) and by 
Ando, Horn, and Johnson (1987) in the following way: for any factorization 
X * Y  = A 

[ c i ( X ) c , ( Y ) ~ ( B ) ]  >-w [o'i(A° B)], (7.4) 
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where for a matrix Z, cl(Z)/> ... > /c , (Z)  denote the Euclidean length of 
its columns, arranged in decreasing order. Bapat (1991) derived (7.4) from 
the general theorem (2.24). 

Since 

IA*I A ) 
A* IAI >t0, 

one can obtain from (7.4) 

[ ¢ p i ( A ) p , ( A * ) c r i ( B ) ]  >'w [ cri(A ° B)] ,  (7.5) 

where p l ( X )  >1 ... >1 p , ( X )  are the diagonal entries of IXI. 
Given a matrix A and a unitarily invariant norm I1" II, denote by TIr.II(A) 

the norm of the linear map ~ A ( X )  =-- A o X with respect to this norm. Then 
(7.4) implies that for any unitarily invariant norm II • II 

Cl( X ) c l ( Y  ) >1 "~II.II(A) whenever X * Y  = A. (7.6) 

In particular, (7.5) implies 

~/Pl(A) Pl( A* ) /> Yllll(A). (7.7) 

For the spectral norm, (7.7) was obtained by Walter (1986). 
In an unpublished manuscript Haagerup showed that with a special 

choice of X, Y with X * Y  = A, the number Cl (X)c l (Y )  in (7.6) gives the 
mapping norm "yrl.li(A). This can be formulated in the following form: 

1 1> ~'lHl~(A) ,=, 

A* >/0 for some X , Y > ~ O  with I > ~ X o I ,  y o I .  (7.8) 

With the observation that if A = diag(a i) and B = diag(b i) then AX + 
XB = [a~ + bj]o X, Corach, Porta, and Recht (1990) derived from (7.6) that 
when S is an invertible Hermitian matrix 

I l s x s  -1 + s - l x s l l oo  >1 211xll~ for all X. (7.9) 
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Kittaneh (1994) points out that (7.9) is an immediate consequence of a 
generalization of (4.15), due to Bhatia and Davis (1993), in the following 
form: for A, B >I- 0 

~IIB2X + XA2[I >/IIBXAII 

for every unitarily invariant norm I1" II, (7.10) 

which is equivalent to 

±l + XA2I ~'~ [BXAI. (7.11) 

The exact characterization (7.8) can be also used to show that (7.11) cannot 
be generalized to the Young form: 

1 1 

In this connection only the norm submultiplicative inequality is valid in 
general (see Kittaneh, 1993): for every unitarily invariant I1" II 

IIBPXIIt/PI[XAqI] 1/q >1 IIBXA[I ( 1 / p  + 1/q = 1). (7.12) 

Ando and Okubo (1991) gave a characterization of the norm T~(A) of 
~a( ')  with respect to the numerical radius norm w('): 

1 >~ Yw(A) 

A* >~0 for some X > / 0  with I > T X o I ,  (7.13) 

and derived Haagerup's criterion (7.8) as a corollary. Also, Cowen, Dritschel, 
and Penney (1993) give another proof of (7.8). 

Let G(V, E) be an undirected graph with vertex set V, indexed by 1, 
2 . . . . .  N, and edge set E. Given matrices Aij for each {i, j} ~ E and every 
i = j,  the positive completion problem is to find a condition for the existence 

. . . .  ^ N ^ of a positive semldefimte block matrix A = [Aij] i j_ 1 such that Aij = Aij 
whenever {i, j} ~ E or i = j .  Paulsen, Power, and Smith (1989) showed that 
a positive completion exists if and only if the Hadamard multiplication map 
caused by [,4ij]ffj_ 1 is positive, where Aij = A~j whenever {i, j} ~ E or 
i = j  and z(ij = '0 otherwise. They also derived Haagerup's characterization 
(7.8) as a consequence. 
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The exact value o f  TII.II ( A )  is difficult to calculate except for special cases. 
It is equal to 1 when A is unitary, and it is equal to max{aii} when A >~ 0. 

When the (i, j )  entry of A is 0 or 1 according as i < j  or i ~>j, then 
Oa(B) = A o B gives the triangular truncation of B. Denote by y,, the 
II • lip-norm of the triangular truncation map on the space of n × n matrices. 
Angelos, Cowen, and Narayan (1993) give an exact asymptotic formula for %: 

% 1 
lim 

n - ~  log n 7r" 

A well-known matrix inequality of Fiedler (1961) says 

a o a ( a  > 0). (7.14) 

[See Bapat and Kwong (1987) for an improvement.] In this connection, as a 
consequence of (3.8), Ando (1979b) derived the following inequality: 

log(Ao B) >/ (log A + log B)o I ( a ,  B > 0). (7.15) 

Since by (2.3) 

I o g A + l o g B  >- ( l o g A + l o g B ) o I ,  

combining (7.15) with (2.5) and (5.12), Ando (1994b) proves 

k k 

I'-I*n_i+l(A°B) ~ I'-I*n_i+l(AB) ( k  = 1 , 2  . . . . .  n ) ,  (7.16) 
i=1  i = l  

which is equivalent to the statement that 

A1/2BA1/2 >'w ( A - l °  B - l )  -1 (A ,  B > 0).  (7.17) 
(log) 

Since B T o I = B o I for Hermitian B, one can derive from (7.15) in a similar 
way 

k k 
I"I~,n_i+l(A°B) >1 l'-IAn_i+l(AB T) (k = 1 ,2  . . . . .  n ) .  (7.18) 
i = 1  i=1  
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Remark that (7.16) gives an affirmative answer to the conjecture mentioned 
in Zhang (1993), and also yields, together with (7.18), the known inequality of 
Fiedler (1983): 

A o B >1 max{A,(AB), A,,(ABT)}I (A,  B > 0). (7.19) 

Johnson and Eisner (1987) showed that for a positive function f ( t )  on 
(0, m) the matrix inequality 

A o f ( A )  ~ > A . f ( A )  for all A > 0 

is valid if and only if f ( t )  is a positive scalar multiple of t i. 

8. MAJORIZATION IN VON NEUMANN ALGEBRAS 

The algebra M n, equipped with spectral norm, and the algebra of 
bounded linear operators on a Hilbert space, equipped with operator norm, 
are special examples of yon Neumann algebras. We refer for the basic notions 
and results on von Neumann algebras to Takesaki (1979). 

The notion of (decreasingly arranged) generalized s-numbers ( = singular 
values) for a not necessarily compact operator on a Hilbert space, or even for 
a measurable operator affiliated with a semifinite yon Neumann algebra ~ /  
acting on a Hilbert space, with a faithful normal semifinite trace r(-), was 
considered by Ovchinikov (1970), Sonis (1971), Fack (1982), and Fack and 
Kosaki (1986). This makes it possible to introduce various spaces of measur- 
able operators as generalizations of the Schatten classes of compact operators. 
The above authors obtained various convexity inequalities, including several 
L P-norm inequalities, by exploiting (weak) majorization relations for general- 
ized s-numbers of the sum or product of two elements of ~/. 

Each self-adjoint element a of ~t" is uniquely written in the form 

a = f tdea(t  ) (8.1) 

where {ea( t ) : - -~  < t < ~} is the spectral projection of a. For general 
a ~ "  (also for any measurable operator a affiliated with ~/'), its generalized 
singular value function, or for short generalized s-number/,/,t(a), is defined by 

, , ( a )  = inf{s  >_- 0: (1 - .< t} ( t  > 0 ) .  
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It is shown that 

tzt(a ) = inf{llaell:e ~ f "  a projection with r (1  - e) ~< t}. (8.3) 

When ~ is the space of all bounded linear operators on a Hilbert space and 
r( . )  is the usual trace, this definition coincides with the usual one of 
decreasingly arranged singular values for a compact operator, but it makes 
sense for every bounded linear operator, too. 

When ~'(1) < ~ and a is self-adjoint, Petz (1985) introduced the spectral 
scale A.(t) of a by 

h . ( t )  = inf(s ~ ~ :  r (1  - ea(S)) <~ t} [0 < t < r ( 1 ) ] ,  (8.4) 

which corresponds to the decreasingly arranged eigenvalues of a Hermitian 
matrix. 

Majorization and weak majorization between two self-adjoint elements of 
a finite factor were introduced by Kamei (1983) and extended by Hiai (1987) 
to the ease of measurable operators affiliated with a semifinite yon Neumann 
algebra. 

When a and b are positive elements in ~t', weak majorization a >-~ b is 
defined as 

foStxt(a) dt >1 jo~tX,(b) dt for s > 0, (8.5) 

and majorization with the additional requirement 

fo U,( a) at = b ) at, i.e., ~-(a) = ~'(b). (8.6) 

Characterizations for (weak) majorizafion of elements of ~t" are similar to 
the case of Hermitian matrices. A somewhat different (and more general) 
approach was treated by Alberti and Uhlmann (1982), where the relation of 
more mixedness (unitary mixing) plays a corresponding role. 

The notion of a doubly stochastic map on a matrix space is naturally 
extended to a linear map (P(-) on a yon Neumann algebra .~g with trace ~-(-). 
A map ~ ( ' )  is called doubly stochastic if it is positivity-preserving with 
• (1) = 1 and r-preserving. Kamei (1984, 1985) and Hiai (1987) discussed the 
Birkhoff-type theorem: when ~t" is a finite factor, then the extreme point of 
the convex set of doubly stochastic maps consists exactly of all maps ¢P(-) 
such that (P(a) is equivalent to a for all a ~¢~,'. 
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Given a ~J//, define its unitar~j orbit by 

~ '(a)  - {u*au: u ~ ¢ "  unitary}, (8.7) 

and denote its convex hull by co ~/(a). Then as an extension of the Hardy-Lit- 
tlewood-P61ya theorem the following holds: when ~" is a factor and a, b are 
positive elements with finite trace, then a >- b if and only if b is in the I1 " tl] 
closure of co ~'(a). The same assertion is true for any self-adjoint a, b in 
Ll(/d/) when ~" is a finite factor. 

In establishing majorization relations the following generalization of (2.16), 
found in Faek and Kosaki (1986), plays a key role: 

£ ' /x , (a)  dt = inf{r(Ibl) + slla - bll: b ~ ' }  (,, e~ ' ) .  (8.8) 

A Lidskii-Wielandt type theorem for generalized s-numbers was proved 
in the setting of von Neumann algebras by Hiai and Nakamura (1987), and is 
improved a little by Dodds, Dodds, and de Pagter (1989). It says that 

~ , ( a  - b) >-,~, I /~ , (a)  - ~ , ( b ) l  ((,,  t) ~ ' ) ,  (8 .9)  

or more explicitly, 

LI~:I . Ll~,(a) ~t(b)ldt Ixt( a - b )  d t  >1 

for every Borel subset E C (0, oo), (8.1o) 

where IEI denotes the Lebesgue measure of" E. In a similar line a Gelfand- 
Naimark type theorem for the generalized s-numbers was established by 
Nakamura (1987) in the following fbrm: for any Borel subset of (0, r(1)) 

fole llo g ~,(~) at + £1og . , (b)  a, > £1og . , ( ,+)  d,, (8.11) 

provided txt(ab) > 0 on (0, r(1)). 
Kosaki (1992a) established avon Neumann algebra version of Araki's log 

majorization (5.14) in the following form: if p >/ 1 and f ( t)  is a continuous 



MAJORIZATIONS AND INEQUALITIES 59 

increasing function on R+ such that f(0) = 0 and t ~)f(e t) is convex, then 
for any positive elements a, b satisfying lim s ~=/G(a)  = lira . . . .  /zs(b) = 0 

f(~f(t&(aPbP)) ds >~ fc~f(tz,(labl")) ds ( t  > 0). (8.12) 

On the other hand, in the appendix to Hiai and Nakamura (1989), Kosaki 
presented the following extension of Ando's majorization (6.7): if f(t) is a 
nonnegative operator monotone function on [0, oo), then for positive elements 
a,b 

f~z~(f(la - b[)) ds > / f o ' l ~ ( f ( a )  - f i b ) )  ds (t > 0). (8.18) 

See Dodds and Dodds (1994) for a generalization. 
In Section 6 we discussed a matching problem for normal matrices with 

respect to the spectral norm. Let us take a quick look into its modification to 
the von Neumann algebra case. Given two normal elements a, b ~Av, define 

dist(a, b) ~ I[" [I-distance between a and ~/(b) 

= [l" [I-distance between ~ ' (a)  and ~ ' (b) .  (8.14) 

Further define the spectral distance 6(a, b) as 

6(a,b) =-inf{r > 0 : r ( e v r ( a ) )  >/~-(ev(b)) and 

"/-(evr(b)) >/ r(ev(a)) for every open subset V c C } ,  (8.15) 

where for a Borel set E c C, ee(a) denotes the spectral projection of a 
corresponding to E, and E r is the r-neighborhood of E. It is clear that when 

= ~n ,  then 3(A, B) coincides with II(A(A), A(B))[I~ defined in (6.1). 
As shown in Davidson (1986) and Hiai and Nakamura (1989), the yon 

Neumann version of the Bhatia-Davis-Mclntosh result holds: there is a 
universal constant K such that 

K dist(a, b) >/ 6(a ,  b) for normal a, b ~[. (8.16) 

It is also checked that dist(a, b) = 6(a, b) holds under suitable restrictions 
on the distribution of the spectra of a, b, as in Section 6. 
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When  M: is a finite factor and a, b are self-adjoint, Hiai and Nakamura 
(1989) gave an exact formula to calculate the distance and the antidistance 
between a and ~ ' (b)  with respect to the II • I I t , -metr ie  (1 ~ p ~ ~) :  

inf{l la  - u ' b u l l y  : u ~ l t "  un i ta ry}  = ( a )  - £ ( b ) ]  p dt ( 8 . 1 7 )  

and 

sup{lla-u*bull":u~unitary} ~ {S~lA'(a)-h'(b)l"dt} ' i v ' ,  
(8.18) 

where ~tt(b)= - h t ( - b ) .  This is an extension of  the Hoffman-Wielandt 
theorem on matching of  eigenvalues for Hermitian matrices. 

For  self-adjoint a, b in the ~r-finite infinite semifinite factor ~¢', Hiai and 
Nakamura (1989) gave an exact formula to calculate the distance between a 
and co ~/(b): 

i n f { l i a  - c l l :  c ~ c o  ~ / ( b ) }  

= max 0, s u p - -  [ h t ( a  ) - At(b)]  dt, s u p -  ,~t(a) - ~tt(b ) dt 
s > 0  S 0 s > 0  S 

(8.19) 
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