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In biological applications, the tandem mass spectrometry is a widely used method for
determining protein and peptide sequences from an “in vitro” sample. The sequences are
not determined directly, but they must be interpreted from the mass spectra, which is
the output of the mass spectrometer. This work is focused on a similarity-search approach
to mass spectra interpretation, where the parameterized Hausdorff distance (dHP) is used
as the similarity. In order to provide an efficient similarity search under dHP , the metric
access methods and the TriGen algorithm (controlling the metricity of dHP) are employed.
Moreover, the search model based on the dHP supports posttranslational modifications
(PTMs) in the query mass spectra, what is typically a problem when an indexing approach
is used. Our approach can be utilized as a coarse filter by any other database approach for
mass spectra interpretation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Proteins, organic molecules made of amino acids, are the basis of all living organisms. They are essential for construction
of cells and for their proper function [15]. For bioinformatics purposes, a protein can be understood as a linear sequence
over 20-letter subset of the English alphabet,1 where each letter corresponds to an amino acid. A protein sequence must
be determined from an “in vitro” protein sample, while tandem mass spectrometry is a very fast and popular method for
this task. The proteins in the sample are split by enzymes into shorter pieces called peptides, and these are subsequently
analyzed by the tandem mass spectrometer [8]. However, instead of direct production of the desired peptide sequences,
the spectrometer outputs a set of experimental mass spectra2 that have to be interpreted in order to obtain the peptide
sequences. In particular, the interpretation of an experimental spectrum may be accomplished by means of similarity search.

In order to interpret an experimental spectrum, a database D P of known protein sequences (e.g., MSDB [11]) can be
employed. The peptide sequences and their hypothetical spectra are generated from the database D P , forming a virtual
database D S of mass spectra. Then, the experimental spectrum is used as a query object and the database D S is searched
for its nearest neighbor spectrum (the most similar spectrum from D S ). The experimental spectrum is then interpreted as a
peptide sequence corresponding to the spectrum found as the nearest neighbor.

The interpretation of spectra is often complicated by posttranslational modifications (PTMs) occurring in the query. The
PTMs are usually not supported in existing similarity approaches among which using of cosine distance is popular.
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Fig. 1. An example of a mass spectrum.

1.1. Paper contribution

We present the non-metric parameterized Hausdorff distance dHP , which exhibits better correctness of mass spectra
interpretation than the cosine similarity does. Moreover, we propose a technique for efficient similarity search in a database
of mass spectra indexed under dHP , where for indexing we employ metric access methods (MAMs). In order to use MAMs
efficiently, prior to indexing we utilize the TriGen algorithm to control the metricity of dHP . The MAM, which we have
chosen in our study, is the M-tree.

Due to the complexity of similarity search of mass spectra with PTMs, this problem is usually neglected in existing
indexing approaches. Here, we extend the approach based on dHP to support processing of spectra including PTMs. This
extension can be also used in the approaches for mass spectra interpretation based on the cosine similarity.

2. Related work

We briefly describe the structure of data captured by the mass spectrometer and the common techniques employed for
mass spectra interpretation using the database search approach.

2.1. Mass spectrometry fundamentals

The mass spectrum is a histogram of peaks corresponding to fragment ions (Fig. 1). A peak is represented by a pair
(m

z , I), where m
z is the ratio of mass and charge, and I is the intensity of a fragment ion occurrence. For our purposes it

is sufficient to consider z = 1 only, thus the ratios m
z are equal to the mass m of fragment ions in Daltons.3 The precursor

mass mp (the mass of a peptide before splitting) and charge zp are also provided as an additional information for each
peptide spectrum captured by the spectrometer.

In a mass spectrum, there are several types of fragment ions that are highly important for correct peptide sequence
identification. The most frequent types of fragment ions with well predictable structure are y-ions and b-ions.4 Each type
of fragment ions forms a ion series, e.g., y-ions series or b-ions series (Fig. 1). The completeness of y-ions and b-ions series
is crucial for correct spectra interpretation, because the mass difference between two neighboring peaks in one series, e.g.,
yi and yi+1 corresponds to a mass of one amino acid.

Often, many of the y-ions or b-ions may never arise in the spectrometer and thus the number of missing y-ions and
b-ions is too high to correct mass spectra interpretation. In fact, more than 85% of spectra captured by the spectrometer
cannot be interpreted neither by an algorithm nor manually because the split process generates non-standard fragments.
However, there are more factors making the interpretation complex. Up to 80% of peaks in each experimental spectrum may
correspond to fragment ions with very complicated or unpredictable chemical structure and they make the recognition of
y-ions and b-ions difficult. Such peaks are regarded as noise.

2.1.1. Posttranslational modifications
The interpretation of spectra is often complicated due to chemical modifications of amino acids, because masses of

amino acids are changed in that case and thus peaks are shifted. This may happen during a sample preparation for the mass
analysis, during the mass analysis in the spectrometer or after the translation of proteins in organisms. The last are so-called
posttranslational modifications (PTMs; Fig. 2). Since it is not necessary to distinguish the modifications in our study, we use
the term PTMs for all the modification types. The database UNIMOD [25] gathers discovered protein modifications for the
mass spectrometry. At the time of writing this paper, there were about 660 known modifications.

3 Dalton (Da) is a unit of the relative atom mass.
4 In fact, more types of fragment ions with predictable structure may arise in the spectrometer, but many of them occur very rarely.
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Fig. 2. A peptide with a PTM α (black peptide fragments are affected by the PTM — their masses are modified and corresponding peaks are shifted).

2.2. Similarity search

The best way how the mass spectra may be interpreted is to search a database of already known or predicted peptide
(protein, respectively) sequences [8,19]. There are hypothetical mass spectra generated from peptide sequences, and an al-
gorithm (mostly sequential) is used for similarity comparison of an experimental (query) spectrum with the hypothetical
(database) spectra. The only difference is that fragment ions intensities cannot be generated from peptide sequences.5 The
basic similarity functions for comparison of an experimental spectrum with the hypothetical spectra generated from the
database of protein sequences are, e.g., SPC [7] (shared peak count; in fact, the Hamming distance on boolean vectors, see
Fig. 4), spectral alignment [16] (kind of dynamic programming distance on boolean vectors), SEQUEST-like scoring [20].
The most common tools for mass spectra interpretation based on the similarity search in a database are SEQUEST [20],
MASCOT [10], ProteinProspector [17], OMSSA [5], etc. A few approaches for interpretation of spectra with PTMs were pro-
posed [9,12,16,23,24].

2.2.1. Metric indexing
Since protein sequence databases grow rapidly and a sequential scan of the whole database becomes slow and inefficient,

there is a need for utilization of index structures. A few methods for mass spectra interpretation based on metric access
methods were proposed. Metric space approaches are usually based on variants of the cosine similarity (Section 4.1). One
of them uses local sensitive hashing to preprocess the database [4], another uses the MVP-tree [18]. The latter approach
defines two alternatives of the cosine similarity. The first is called fuzzy cosine distance, while the other is called tandem
cosine distance.

In general, a disadvantage of indexing approaches is that they usually do not support the search of spectra with PTMs.

3. Metric access methods

Since our approach to mass spectra interpretation is based on metric similarity search, we need to briefly summarize the
main points concerning metric access methods (MAMs) [26] and their applicability. The MAMs were designed for efficient
search in databases where a metric distance d(x, y) is employed as the similarity function. The metric distance is a function
that satisfies postulates of identity, symmetry, non-negativity and triangle inequality [26]. The metric postulates (especially
the triangle inequality) are crucial for MAMs, in order to correctly organize database objects within metric regions and to
prune irrelevant regions while searching. The MAMs usually support range and k-NN (k-nearest neighbor) queries. Among
the vast number of MAMs developed so far, in our approach we have utilized the M-tree.

3.1. M-tree

The M-tree [3] is a dynamic (updatable) index structure that provides good performance in secondary memory, i.e., in
database environments. The M-tree index is a hierarchical structure, where some of the data objects are selected as centers
(also called local pivots) of ball-shaped regions, while the remaining objects are partitioned among the regions in order to
build up a balanced and compact hierarchy of data regions. While inner nodes contain routing entries associated with metric
regions, leaf nodes are represented by ground entries containing data objects or identifiers uniquely identifying the data
(Fig. 3). When performing a query, the M-tree is traversed from the root, while the subtrees the regions of which overlap
the query region must be searched as well, recursively.

3.2. Intrinsic dimensionality

The requirement on metric postulates is crucial for MAMs to index the database, however, the postulates alone do not
guarantee an efficient query processing. The efficiency limits of any MAM also heavily depend on the distance distribution

5 But it does not cause any problems, because intensities are only a secondary information used for a noise filtering from the experimental spectra.
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Fig. 3. M-tree.

in the database S , and can be formalized by the concept of intrinsic dimensionality ρ(S,d) = μ2

2σ 2 , where μ is the mean and

the σ 2 is the variance of the distance distribution [2]. In other words, the intrinsic dimensionality is low if the data form
tight clusters. Hence, the database can be efficiently searched by a MAM, because a query overlaps only a small number of
clusters. On the other hand, a high intrinsic dimensionality (say, ρ > 10) indicates most of the data objects are more or less
equally far from each other. Hence, in intrinsically high-dimensional database there do not exist clusters, while the search
deteriorates to sequential search.

3.3. Non-metric and approximate search

The applicability of MAMs can be extended beyond the metric space model, so that MAMs could be used also for non-
metric and/or approximate similarity search. In particular, given a semi-metric distance d(x, y) (a metric distance violating
the triangle inequality) and a database, the triangle inequality can be added to the semi-metric, so that we obtain a metric
modification f (d(x, y)) that could be used for similarity search instead. Hence, the MAMs can be correctly used to index
and search the database using the metric modification. Moreover, the enforcement of the triangle inequality could be only
partial, where the “partial” metric distance could be used for approximate search by MAMs.

3.3.1. TriGen algorithm
The TriGen algorithm [21] was proposed to keep a user-controlled amount of triangle inequality in a semi-metric dis-

tance. The idea is based on utilization of a T-modifier, which is either a concave or a convex increasing function f , such
that f (0) = 0. A concave function f , when applied on a semi-metric, increases the number of triplets 〈 f (d(x, y)), f (d(y, z)),
f (d(x, z))〉 that form a triangle (so-called triangle triplets), and so improves the triangle inequality fulfillment of f (d). On
the other hand, a convex T-modifier f does the opposite — it decreases the number of triangle triplets. Simultaneously,
a concave modification f (d) increases the intrinsic dimensionality, as it inhibits the differences between distances. Con-
versely, a convex modification f (d) decreases the intrinsic dimensionality, as it magnifies the differences between distances.
Formally, the proportion of triplets that are NOT triangular in a sample of examined triplets is called the T-error. Given a
user-defined T-error tolerance, the TriGen algorithm was designed to find a T-modifier for which the intrinsic dimensionality
ρ(S, f (d)) is minimized, while the T-error does not exceed the tolerance.

In order to automate the search for the optimal T-modifier, the TriGen works with so-called T-bases f (v, w). A T-base
is a T-modifier with an additional parameter w , that aims to control to convexity or concavity of f . For w > 0, the f gets
more concave, for w < 0 it gets more convex, and for w = 0 we get the identity f (v,0) = v . A simple T-base used by TriGen
is the Fractional-Power base (FP-base) (Eq. (1)).

FP(v, w) =
{

v
1

1+w for w > 0

v1−w for w � 0
(1)

The modified distance f (d) determined by TriGen can be then employed by any MAM for an exact but slower (T-error
tolerance is zero, so ρ gets higher) or only an approximate but fast (T-error tolerance is positive, so ρ gets smaller) similarity
search (metric or non-metric).

4. Similarity functions employed in mass spectra interpretation

Although the TriGen algorithm (Section 3.3.1) allows to use MAMs also with non-metric distances, it does not guarantee
that a particular non-metric distance modified into metric will be suitable for indexing by MAMs. In particular, a highly
non-metric distance (exhibiting high T-error) is modified by TriGen very aggressively to achieve zero T-error, which means
the resulting metric will imply high intrinsic dimensionality of the database, thus making it not indexable. Hence, when
designing a new similarity that should be indexable by MAMs, the attention must be given not only to the semantics of the
similarity/effectiveness, but also to its indexability/efficiency (low both, the T-error and intrinsic dimensionality).
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Fig. 4. A high-dimensional boolean representation of a mass spectrum.

Fig. 5. The fundamentals of dHP (the dashed arrows indicates the closest peaks in �y to the peaks in �x).

4.1. Cosine similarity

The cosine similarity and its metric form, the angle distance, are commonly mentioned in mass spectrometry literature
for peptide mass spectra interpretation [1,4,9,18,22]. The cosine similarity requires a representation of mass spectra as high-
dimensional boolean vectors (Fig. 4). For example, let the range of m

z values in a mass spectrum be 0–2000 Da and let
it be divided in subintervals of 0.1 Da. The mass spectrum is then represented by a 20 000-dimensional boolean feature
vector having ones at places corresponding to intervals for which the m

z value is nonzero in the spectrum. Instead of storing
the high-dimensional sparse vector x, there is usually a compact representation �x used, where the positions of ones in x
(i.e., dimensions in which the values of x are nonzero) are substituted with values of the compact vector �x. The compact
representation of vector x in Fig. 4 is �x = 〈7,13,18,23,27,34〉. We use a semi-metric variant dA of the angle distance
(Eq. (4)) based on the compact representation, where dim(�x) is the length/dimension of �x (the number of peaks/ones) and
ξ is a mass error tolerance.

da(�xi, �y j) =
{

0, if |�xi − �y j| > ξ

1, else
(2)

a(�x, �y) =
∑

xi∈�x maxy j∈�y{da(�xi, �y j)}√
dim(�x)dim(�y)

(3)

dA(�x, �y) = arccos
(
a(�x, �y)

)
(4)

4.2. Parameterized Hausdorff distance

The parameterized Hausdorff distance dHP (Eq. (7)), suitable for the similarity search in protein sequence-derived
databases of theoretical peptide mass spectra, was proposed in [13]. �x and �y represent vectors of m

z ratios and dim(�x)
is the length of the vector �x. The internal distance dh measures the difference between two values, while only distances
exceeding threshold ξ (mass error tolerance) are taken into account.

dh(�xi, �y j) = max
(
0, |�xi − �y j| − ξ

)
(5)

h(�x, �y) =
∑

�xi∈�x n
√

(min�y j∈�y{dh(�xi, �y j)})
dim(�x) (6)

dHP(�x, �y) = max
(
h(�x, �y),h(�y, �x)) (7)

dHP is a semi-metric and it reduces the impact of noise peaks using nth root (Fig. 5). The dHP works as follows. First, the
value/peak in the minimal distance in the vector/spectrum �y is found for each peak in �x. The nth root is applied on each of
the minimal distances and the sum is computed. The nth root causes that pairs of noise peaks in small distances (exceeding
a small error tolerance ξ ) have big contributions in the sum and vice versa pairs of noise peaks in big distances have small
contributions in the sum (in order to decrease their impact on the sum). Since the number of peaks in compared spectra
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Table 1
Intrinsic dimensionality ρ and empirically determined FP(v,w) modifiers for dHP (n = 30) and dA .

T-error dHP dA

ρ w ρ w

0 88.5 −0.17 158.1 −0.84
0.01 5.2 −4.44 11.1 −7.43
0.02 4.0 −5.23 8.5 −8.94
0.03 3.5 −5.71 7.1 −10.01
0.04 3.2 −6.08 6.3 −10.92
0.05 2.9 −6.40 5.7 −11.65
0.06 2.8 −6.64 5.2 −12.34
0.07 2.6 −6.87 4.8 −13.00
0.08 2.5 −7.06 4.5 −13.63
0.09 2.4 −7.25 4.2 −14.28
0.1 2.3 −7.42 3.9 −14.92

may be different, an average is computed. The process is repeated with �x and �y vectors switched and maximum value is
selected to obtain a symmetric measure.

Since the values in �x and �y are ordered, the dHP computation is of linear complexity [13] (unlike the general Hausdorff
distance [26]). Moreover, using of the time expensive nth root function does not cause any problem, because the range of
mass corresponding to generated peptide sequences is limited and thus a table of the roots can be precomputed. It was
shown that interpretation using dHP exhibits better efficiency and effectiveness than cosine similarity commonly mentioned
in mass spectrometry literature [13].

4.3. TriGen-based modification

dHP and dA are semi-metric distances, the T-error for each of them is very low (below 0.001) but the intrinsic dimen-
sionality is very high (above 88 for dHP and above 158 for dA ). Thus, we used TriGen to improve the intrinsic dimensionality,
setting the T-error tolerances to be 0–0.1. Note that dHP and dA must be normalized to 〈0,1〉 in order to employ the TriGen.

The dHP is normalized by n
√

dmax
h , where dmax

h is the maximal possible value in a compact vector (i.e., the dimension of the

high-dimensional representation). The dA is normalized by π
2 .

For all the T-error tolerances, the TriGen found convex T-modifiers (w < 0), so the intrinsic dimensionality was reduced
(down to 2 for T-error tolerance 0.1). The resulting modifiers determined by TriGen for dHP (n = 30) and dA are shown in
Table 1.

5. Interpretation using similarity search

The entire process of peptide mass spectra interpretation we propose, incorporating the previously defined measures,
can be summarized as follows:

Indexing

1. Each protein sequence in the database is split to shorter peptide sequences. The rules for the splitting are determined
by an enzyme. The most common enzyme is trypsin, which splits the protein chains after each amino acid K (lysine)
and R (arginine) if they are not followed by P (proline) [14]. However, even if the splitting sites are well predictable, the
process is not perfect in practice and some missed cleavage sites can occur. The maximum number of missed cleavage
sites maxcs is adjusted as a parameter.

2. The m
z values of y- and b-ions are generated in ascending order for each peptide sequence, while each sequence

corresponds to one indexed vector. The vector for the peptide sequence of the length l has the dimension 2(l − 1), see
Fig. 1.

3. The vectors are indexed by a MAM (e.g., by the M-tree) under dHP or dA modified by the TriGen (Section 3.3.1).

Querying/Interpretation

1. The experimental spectrum is preprocessed before the interpretation. The p peaks with highest intensity I from the
experimental spectrum are selected and they form a query corresponding to a vector of their m

z values.
2. A kNN query is processed by the MAM, while the correct peptide sequence corresponding to the spectrum is

obtained as the first neighbor in many cases. However, in real-world applications we need to provide more nearest
neighbors, because an additional scoring algorithm could select a different peptide as the correct one from the kNN
set. Such refining algorithm could be, e.g., SPC, spectral alignment, SEQUEST-like scoring (Section 2.2).
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Fig. 6. Dealing with PTMs (SDB corresponds to S0 with PTM α happened at position 3 in the respective peptide sequence).

In the experimental section we assume that a mass spectrum is successfully interpreted if the correct peptide sequence
is among the k nearest neighbors (regardless of its position in the kNN result). Such an approach is often employed and the
scoring is then handled separately. Hence, the overall setup of our method can be utilized as a coarse filter by any other
database approach for mass spectra interpretation.

5.1. Dealing with PTMs

If an experimental spectrum contains PTMs, some peaks in the spectrum are shifted. The shifts depend on the positions
of PTMs in the peptide, i.e., which amino acids in the sequence have modified mass (Fig. 2). There are two basic ways to
support identification of the spectra with PTMs. First, all peaks in the database-generated spectra can be shifted for any PTM
(or any combination of PTMs) and indexed by a MAM, while the query is unchanged. Since the number of known PTMs is
high [25], we use the other way — the modification of the query, while the database remains unchanged. The entire process
of the query construction for one random PTM α can be summarized as follows:

1. Let SDB be the database-generated spectrum of a peptide sequence (Fig. 6a). Let S0 = 〈m1, . . . ,mp〉 (Fig. 6b) be an
experimentally taken (i.e., captured by the mass spectrometer) peptide mass spectrum with p peaks (mass-to-charge
ratios with z = 1).

2. When a PTM α (e.g., α = 57) happens at an unknown position i in the peptide, only mi and some of the following
peaks are shifted. Since we cannot predict this position, the entire spectrum is shifted by −α. A shift of the spectrum
S0 for the PTM α is a vector Sα = 〈m1 − α, . . . ,mp − α〉 (Fig. 6c). Thus peaks shifted by α in S0 have their “unshifted”
counterparts in Sα .

3. S0 and Sα are joined (Fig. 6d), where the union of spectra S0 ∪ Sα is a sorted vector of all peaks in the spectra S0
and Sα .

4. While S0 forms the query for an unmodified spectrum, the query for the spectrum with PTM α is S I = S0 ∪ Sα .

A disadvantage is that two other types of noise peaks occur in queries. First, the peaks shifted by PTM “in vitro” in S0,
which are superfluous in the union S0 ∪ Sα . Second, the artificial noise peaks computed in Sα , which were not modified
by PTM and they should not have been shifted in Sα . These two types of noise peaks cannot be removed, because we are
not able to recognize them. Since mass spectra contain up to 80% of noise peaks and dHP is able to reduce them, the other
noise peaks are reduced as well.

In case of two PTMs α and β , the query is represented by spectrum S II = S0 ∪ Sα ∪ Sβ ∪ Sα+β , where α + β are
peaks shifted by both modifications at once. In case of three PTMs α, β and γ , the query is represented by spectrum
S III = S0 ∪ Sα ∪ Sβ ∪ Sγ ∪ Sα+β ∪ Sα+γ ∪ Sβ+γ ∪ Sα+β+γ , etc. Since the length of peptide sequences is limited, the number
of PTMs per spectrum usually does not exceed 2 or 3 (Table 2). Therefore the maximum number of spectra unified in the
query, which might be up to 2q for q PTMs, is not reached in practice.

A way, how to simplify the query, is to limit the maximum number of simultaneously occurring PTMs ns per spectrum.
For example, if ns = 1 the query spectrum S III is reduced to S ′

III = S0 ∪ Sα ∪ Sβ ∪ Sγ . Another example, if ns = 2 and each of
PTMs α and β can be repeated up to 2×, we obtain the query spectrum S IV = S0 ∪ Sα ∪ Sβ ∪ Sα+β ∪ S2×α ∪ S2×β , etc.

6. Experiments

In the experiments, we used a union of the collections Amethyst and Opal [6] of experimental tandem mass spectra.
The collections are formed from the mass spectra of peptides founded in the human genome and they contain mass spectra
with PTMs (Table 2). The database used in our experiments is an extension of the list of correct protein sequences assigned
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Table 2
The number of PTMs per spectrum and the number of spectra in the collections Amethyst and Opal.

Num. of PTMs 0 1 2 3 4 5 6

Amethyst 1095 371 85 13 2 2 1
Opal 239 237 51 8 1 0 0

Fig. 7. Correctness of interpretation of dHP — sequential scan (a) and distance distributions (b).

to the experimental mass spectra. The database was extended with protein sequences from MSDB (release 08-31-2006) [11],
it contained 100 000 protein sequences (5 612 211 peptide sequences).

In the experiments, we measured two quantities. First, we computed the correctness of mass spectra interpretation (or
correctness of peptide sequence identification) as a ratio of correctly assigned peptide sequences to all spectra from a query
set. As mentioned in Section 5, we assume that a query spectrum is correctly assigned to the peptide sequence if the correct
peptide sequence is among the k nearest neighbors to the query spectrum. Second, we measured the average query time
per one mass spectrum interpretation.

All experiments were carried out on a machine with 2 processors Intel Xeon E5450 (8 cores × 3 GHz) with 8 GB RAM
and 64-bit OS Windows Server 2008 R2.

The following settings were used unless otherwise specified — the dHP was computed with n = 30, the splitting enzyme
was trypsin, the maximum missed cleavage sites (maxcs) was set to 1, the mass error tolerance (ξ ) was 0.4 Da, 50 peaks
with the highest intensity were selected from experimental spectra, y- and b-ions were generated to the hypothetical mass
spectra.

6.1. Sequential scan

First, dHP was employed with the sequential scan of the whole database of hypothetical mass spectra, while the correct-
ness of interpretation and average query time were measured on the experimental spectra lacking PTMs. The correctness of
interpretation was higher with increasing index of the root n (Fig. 7a). The correctness of interpretation was up to 98.3%
(n = 30; 10 NN queries). The average query time was 14.4 s. The correctness of interpretation for dA was 95.7% (10 NN
queries) and the average query time was 9.8 s.

6.2. Improving the Indexability

A disadvantage of the nth root function in dHP is that intrinsic dimensionality ρ increases with the increasing n, hence
the difference between MAMs and sequential scan decreases with increasing n. In Fig. 7b see the distance distributions
under dHP (not modified by TriGen) for various n. The x-axis represents normalized distances in the database. The more the
distribution is pushed to the right, the higher the intrinsic dimensionality.

In Fig. 8 observe the impact of T-error tolerance on the distance distributions obtained using the TriGen-modified dHP

and dA considering the FP-base. Obviously, higher T-error tolerance leads to more convex T-modifier, hence to lower intrinsic
dimensionality (distance distributions pushed to the left).
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Fig. 8. dHP (a) and dA (b) — distance distributions (modified by TriGen).

Fig. 9. dHP and dA — correctness of interpretation (a) and average query time (b) on M-tree.

6.3. Speed-up using M-tree

In order to verify the behavior of dHP and dA predicted in Section 6.2, we employed 1000 NN queries for various T-error
tolerances on the M-tree (Fig. 9). The correctness of interpretation was higher for dHP than for dA with increasing T-error
tolerance. On average, it was 1.3× higher than for dA . The dHP was 4.9× faster than sequential scan, while the correctness
of interpretation was more than 90% (T-error = 0.03). The dA was 5.4× faster at the same T-error tolerance, but correctness
was only 73.9%. The average query time was 14.4 s for dHP and 9.8 s for dA on the sequential scan (Section 6.1).

6.4. Searching with PTMs

In this section we show that our proposed measures are also capable of interpretation of mass spectra containing PTMs.

6.4.1. Utilization of dHP

The correctness of interpretation was taken using kNN queries without/with (Table 3) the support of the search of PTMs
using the sequential scan. We tested 467 spectra containing one PTM, 77 spectra containing two PTMs and 10 spectra con-
taining three PTMs. The following PTMs α ∈ {−28,−17,−14,1,14,16,28,57}, pairs of PTMs {α,β} ∈ {{−17,57}, {57,57}}
and triplets of PTMs {α,β,γ } ∈ {{−17,57,57}, {57,57,57}} were searched. The queries S I were performed for spectra with
one PTM, S II for spectra with pairs of PTMs and S III for spectra with triplets of PTMs (Section 5.1).

Since modifications might not affect all peaks in the experimental spectrum, the dHP is still partially able to determine
the correct peptide sequence without PTMs support. The correctness of interpretation was more than 90% in all cases when
PTMs were supported (1000 NN queries). It decreases with increasing number of PTMs per spectrum when smaller kNN
queries are used.
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Table 3
Correctness of interpretation without/with the support of PTMs in the query mass spectra.

PTMs
per spectrum

Correctness of interpretation [%]

1 NN 10 NN 100 N N 1000 NN

without the support of PTMs

1 20.0 41.0 61.7 75.0
2 9.3 18.6 28.7 65.8
3 0 0 0 0

with the support of PTMs

1 69.9 84.0 94.3 98.9
2 24.8 55.1 76.8 90.8
3 31.0 54.8 61.9 100.0

Fig. 10. PTMs — correctness of interpretation (a) and average query time (b) on the M-tree.

The number of peaks in the query increases with increasing number of PTMs to be supported and the average query
time increases too. The average query time for the spectra with one PTM was 18.9 s, for the spectra with two PTMs was
24.2 s and for the spectra with three PTMs was 35.6 s.

6.4.2. Queries on M-tree
We performed a set of 1000 NN queries for different T-error tolerances, while the M-tree and dHP were employed. The

results for spectra with one and two PTMs are shown in Fig. 10. The M-tree was 3.3× faster for spectra with one PTM and
2.5× faster for spectra with two PTMs than the sequential scan (T-error = 0.06), while the correctness of interpretation was
still about 90%.

6.4.3. Impact of PTMs setup
The user of a real-life application, who wants to interpret the mass spectra, is usually able to predict some of the PTMs,

which may occur in the data-set captured by the spectrometer. Thus the PTMs, which are taken into account during the
search, are commonly selected by the user before the search. We are interested in the impact of the query construction (i.e.,
in the user’s well/badly formed choice of PTMs) on the correctness of interpretation.

The correctness of interpretation was taken for the mixture of experimental spectra with modifications {0,57,−17,16}
(none or one modification per spectrum is assumed, i.e., ns = 1). The results were taken for dHP (Table 4) and dA (Table 5),
while the sequential scan was employed for different k in kNN queries. The queries were gradually expanded to cover all
the PTMs in the mixture. The PTM supported by the current query extension is indicated by ↓ (e.g., if the query is changed
from S0 to S0 ∪ S57, the PTM +57 Da is indicated) and the results for the distance with higher correctness are highlighted.

dHP had better correctness of interpretation in comparison to dA when smaller kNN queries (1 NN to 100 NN) were used.
When 1000 NN queries were employed, dA had a little bit better correctness than dHP in half the cases. The dHP would be
better than dA , if a bigger protein sequence database and 1000 NN query were used, because false hits in the kNN query
worse the correctness of dA .

Some spectra with PTMs were correctly assigned to the peptide sequences even if the queries were not modified to
support them, while the results were noticeably better for dHP than for dA . The query expansion to cover more PTMs
considerably increases the correctness for the spectra with these PTMs and slightly decreases the correctness for the spectra
with PTMs, which were covered before the query expansion. In another words, if the user’s selection of PTMs to be searched



J. Novák et al. / Journal of Discrete Algorithms 13 (2012) 19–31 29
Table 4
dHP — correctness of interpretation [%].

PTM [Da] 0 57 −17 16 Total

Num. of spectra 1334 280 29 34 1677

S0 ↓
1 NN 91.4 30.7 27.6 50.0 79.3
10 NN 98.3 46.1 62.1 79.4 88.6
100 NN 98.8 61.4 93.1 97.1 92.4
1000 NN 99.1 76.8 93.1 100.0 95.3

S0 ∪ S57 ↓
1 NN 70.5 68.9 13.8 8.8 70.0
10 NN 93.1 90.0 31.3 41.2 90.5
100 NN 97.4 97.9 58.6 64.7 96.1
1000 NN 98.4 98.9 82.8 85.3 97.9

S0 ∪ S57 ∪ S−17 ↓
1 NN 63.9 57.1 51.8 8.8 61.5
10 NN 84.3 80.7 62.1 26.5 82.1
100 NN 93.4 93.2 65.5 52.9 92.1
1000 NN 95.7 98.6 72.4 79.4 95.5

S0 ∪ S57 ∪ S−17 ∪ S16 ↓
1 NN 46.5 38.2 48.3 26.5 44.7
10 NN 71.1 65.4 58.6 61.2 69.7
100 NN 84.6 83.6 65.5 91.2 84.2
1000 NN 92.0 92.9 72.4 100.0 91.9

Table 5
dA — correctness of interpretation [%].

PTM [Da] 0 57 −17 16 Total

Num. of spectra 1334 280 29 34 1677

S0 ↓
1 NN 84.8 21.8 13.8 17.6 71.7
10 NN 95.7 35.7 37.9 38.2 83.5
100 NN 99.0 46.1 58.6 64.7 88.7
1000 NN 99.6 63.6 82.3 97.1 93.3

S0 ∪ S57 ↓
1 NN 59.4 60.7 3.4 8.8 57.7
10 NN 79.4 79.3 10.3 14.7 76.9
100 NN 92.7 91.8 37.9 38.2 91.0
1000 NN 99.0 99.3 65.5 55.9 97.6

S0 ∪ S57 ∪ S−17 ↓
1 NN 50.7 54.3 44.8 8.8 50.3
10 NN 70.9 71.4 72.4 17.6 69.9
100 NN 88.0 88.6 89.7 32.4 87.0
1000 NN 97.2 97.1 100.0 55.9 96.4

S0 ∪ S57 ∪ S−17 ∪ S16 ↓
1 NN 38.6 43.2 17.2 23.5 38.7
10 NN 57.4 62.1 58.6 58.8 58.3
100 NN 77.5 81.1 79.3 73.5 78.1
1000 NN 93.5 96.1 100.0 88.2 93.9

is too vigorous (i.e., many unnecessary PTMs are selected), the correctness of interpretation might dramatically decrease. On
the other hand, if the user omits some of the PTMs, which are presented in the experimental mass spectra, the spectra can
be still successfully interpreted.

6.4.4. Search of spectra with more PTMs
The spectra with at most two PTMs (ns = 2) per spectrum were interpreted with dHP , while more complex queries S IV

(Section 5.1) with α = 57 and β = −17 were performed using the sequential scan (100 and 1000 NN queries were used).
Otherwise stated, we were trying to simulate a more real-life search situation, where two PTMs were given on the input of
an application and the query spectra could contain up to both PTMs or did not have to contain any PTM. The results are
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Table 6
Search of spectra with more PTMs — correctness of interpretation [%].

PTMs in
spectra [Da]

Num. of
spectra

Query

S0 S I S II S IV

100 NN

none 1334 98.8 – – 65.1
+57 280 61.4 97.9 – 66.8
−17 29 93.1 86.2 – 58.6
+57 + 57 64 34.4 – 84.4 65.6
−17 + 57 13 23.1 – 69.2 53.8

1000 NN

none 1334 99.1 – – 82.5
+57 280 76.8 98.9 – 86.4
−17 29 93.1 93.1 – 68.7
+57 + 57 64 46.9 – 96.9 85.9
−17 + 57 13 84.6 – 84.6 69.2

summarized in Table 6. The correctness of interpretation was more than 82% for spectra without PTMs, more than 85% for
spectra with up to two PTMs +57 Da and almost 70% for spectra containing one PTM −17 Da or the combination of PTMs
−17 Da and +57 Da (1000 NN queries are assumed). We employed the sequential scan with the average query time 32.8 s.

For a comparison, we performed queries S0 (i.e., PTMs were not supported) and also queries S I , S II (i.e., it was known
what PTMs should be found). For the spectra with PTMs, the correctness was in many cases better for S IV than for S0 but
a little bit lower than for S I and S II .

7. Conclusions

The best way how to interpret the tandem mass spectra of peptides is to search a database of already known or predicted
protein sequences. We have shown that M-tree and parameterized Hausdorff distance (dHP) is a powerful combination for
this task. The dHP models the similarity among the spectra very well and it can be utilized by MAMs when TriGen algorithm
is employed. In general, if the T-error is higher, the indexability of the dHP by MAMs is better, the search is faster and the
correctness of interpretation is a little bit lower.

Moreover, we have proposed an extension of the dHP approach for the spectra containing posttranslational modifications
(PTMs), which are in practice a relatively frequent phenomenon but often neglected in the existing indexing approaches.
Since the extension is independent of dHP and MAMs, it can be implemented by other approaches to increase the effective-
ness for spectra contaminated by PTMs, e.g., that one based on the cosine similarity.
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