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ABSTRACT 

A gobo G in any incidence structure K is a (perhaps degenerate) tactical 
configuration having the property that no three points in G are collinear and 
no three lines in G are concurrent. General results are obtained where K is a 
finite projective plane of order n and G has k points and k lines such that each 
point (line) lies on r lines (points) of C. Particular attention is called to the 
contrast between the case r = 1 and the case r # 1 when k = n. 

1. INTRODUCTION 

In [2] the author defined a gobo to be a substructure Q of any incidence 
structure 7~ such that 6 is a tactical configuration (perhaps degenerate) 
having the additional property that no three points of 6 are collinear and 
no three lines of 6 are concurrent. We shall restrict ourselves to the case 
n is a finite projective plane of order n. A set of k points in x such that no 
three are collinear is called a k-arc. Thus, a (pO, b, ,p, , b,)-gobo 
6 = (‘$, L!) in 7~ is the union of a p,-arc ‘$3 and the dual 53 of a b,-arc such 
that every line in f! lies on exactly p1 points of ‘$3 and every point in ‘J3 lies 
on exactly b, lines of f?. It follows that p,,b, = plb, , 0 < p,, < n + 2, 
0 < b, < n + 2, 0 < p1 < 2, and 0 < b, < 2. A (k, k, r, r)-gobo is said 
to be symmetric and, for simplification, is called a (k, r)-gobo. 

A k-arc 13 in T can be r-jagged if there exists an L? such that (‘J3, f?) is a 
(k, r)-gobo. A (k, r)-gobo is r-complete if it is not contained in a (k + 1, r)- 
gobo. A k-arc is complete if it is not contained in a (k + l)-arc. An 
(n + I)-arc is called an oval. In [2] the study of (n, 1)-gobos leads to a 
characterization of complete n-arcs in 7~ when n is odd: An n-arc in a 
projective plane of odd order n is complete if and only if it can not be 
l-flagged. In examining the statements that are analogous to the theorems 
that give this characterization, we find that each fails for r f  1: 
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THEOREM A. Each of the following statements is true for r = 1. For 
the remaining cases, r = 0 and r = 2, each statement fails. 

I. An n-arc contained in an oval in a projective plane of order n > 4 can 
not be r-flagged in more than one way. 

II. The arc of every (n, r)-gobo in a projective plane of odd order n is 
contained in an oval. 

III. There does not exist an r-complete (n, r)-gobo in a projective plane 
of odd order n. 

Before proving Theorem A, we shall prove several theorems concerning 
arcs and gobos. These theorems, which are of interest in their own right, 
and examples they provide will be used to prove Theorem A. 

2. ARCS AND GOBOS 

We now assume the definitions and results of [l] and [2]. Let ‘$3, and ‘$ 
be disjoint arcs in V. We say ‘!J3, is interior or exterior to ‘!& if every point 
of ‘& is, respectively, an interior or an exterior point of $3, . (Of course it 
may happen that ‘& is neither interior nor exterior to ‘pz .) Dually, if 
Q1 and 5$ are disjoint duals of arcs, 5.& is interior or exterior to & if every 
line of I?, is. respectively, an interior or an exterior line of 2, . 

Let ‘5# be an arc and 2 the dual of an arc in n. We say ‘$3 is external, 
internal, or interior to 9 if every point of ‘$3 is an external, an internal, or 
an interior point of 2, respectively. Dually, 9 is internal, external, or 
exterior to ‘$3 if every line of I! is an internal (secant), an external (tangent), 
or an exterior line of ‘$3, respectively. 

Let ‘$3 be a k-arc and 2 the dual of a k-arc. Then, from the definitions, 
we have that (‘$3, 2) is a (k, I)-gobo if and only if (a) !lJ is internal to 2, 
and (b) f! is external to ‘$3. Note that (a) and (b) are not equivalent. 
However, here and in the following theorem, (a) and (b) are dual state- 
ments. 

THEOREM 1. Let ‘$3 be a k-arc and 2 the dual of a k-arc in a finite 
projective plane. Then the following are equivalent: 

(a) !@ is interior to I?. 
(b) L! is exterior to ‘@. 
(c) (‘$3, 2) is a (k, 0)-gobo. 

Also, the following are equivalent to each other: 

(a) Cp is external to I!. 
(b) 9 is internal to ‘@. 
(c) (‘ij.3, 52) is a (k, 2)-gobo. 
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Proof. For each case, the definition of (c) is equivalent to (a) and (b). 
However, since k is finite, (a) and (b) are seen to be equivalent. 

THEOREM 2. Let (‘@, 9) be a (k, I)-gobo in a finite projective plane 
with k even. If Q is a k-arc interior to ‘J3, then (Q, 2) is a (k, 0)-gobo. 

Proof. By hypothesis, k is even and less than n + 2. Thus, every 
interior point of ‘p is an interior point of 2. The result follows from the 
first part of Theorem 1. 

Let (‘$, 9) be a (k, 0)-gobo in n. If Q is any h-arc contained in ‘$? and 
9J331 is any subset of h lines from 2, then, clearly, (Q, 9J3) is an (h, 0)-gobo. 

A (k, 2)-gobo 6 in n is irreducible if it is not the union of a (k, , 2)-gobo 
6, and a (k, , 2)-gobo (~5~ where 6x and CCj2 are disjoint. It is easily seen 
that a (k, 2)-gobo 6 is the union of u mutually disjoint, irreducible 
(ki ,2)-gobos 6, where k, + k, -+- ... + k, = k. Further, except for 
order, the Qi are unique. We may take k, < k, < ... < k, and say 6 is 
of kind (k, , k, ,..., k,?. Since the smallest (k, 2)-gobo is a (3, 2)-gobo 
(a triangle), we have 1 < u < k/3. Also, it follows that an (n t 2, 2)- 
gobo, an (n + 1,2)-gobo, or an (n, 2)-gobo is necessarily complete in a 
plane of order n; if n is odd, then an (n ~ 1, 2)-gobo is also necessarily 
complete. 

THEOREM 3. Let (+p, 9) and (Q, ‘331) be (n + 1, I)-gobos in a projective 
plane of odd order n. Then, (33, cJJ1) is an (n + 1, 0)-gobo if and only tf !Jl is 
interior to Q. Also, (Q, 9) is an (n + I, 2)-gobo if and only if Q is exterior 
to ‘J?. 

Proof. With k = n + 1 even, the interior points of Q are exactly the 
interior points of 9JI, and the exterior points of 13 are exactly the external 
points of 2. The result follows from Theorem 1. 

If (+$I, 2) is a (k, I)-gobo and (Q, 2) is a (k, 2)-gobo, then, trivally, Q is 
exterior to ‘$3. However, it does not follow that ‘$3 is necessarily interior to 
8, even in the case k = n + 1 and the plane is Desarguesian of odd order. 
In fact, as Theorem 3 and Example 1 below demonstrate, ‘$I! may also be 
exterior to Q. Further, if (‘$, 2) and (Q, ‘9JI) are both (n + 1, 1)-gobos and 
(33, ‘91) is an (n + 1, 0)-gobo then it does not follow that (Q, 2) is an 
(n + 1,2)-gobo, even with n odd. As Theorem 3 and Example 1 below 
demonstrate, (Q, 2) may also be an (n + 1, 0)-gobo since each of $8 and 
Q may be interior to the other. 

EXAMPLE 1. Using the standard notation, let Oi be the oval having 
equation x2 + y2 = iz2, i # 0, in the projective plane over the Galois 
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field of order 7. Q, and 0, are exterior to each other, while Q2 and Q, are 
interior to each other. We note that Q3, is interior to 0, and that Qs is 
interior to Q5, but 0, is exterior to Q5. Also Q, is exterior to Q1 and Q, 
is exterior to Qd , but Q, is interior to Qa _ 

Let !i$ be the set of tangents to Q6. Since Q, is interior to both Q, 
and Q6 , (0, , 9,) and (Qr , !&J are (n + 1, 0)-gobos. Since Q1 is exterior 
to both Q, and QA ,8, = (Q1 ,9,) and 6, = (Qi ,9J are both (n + 1,2)- 
gobos. 8, is of kind (8) and 6, is of kind (4,4). Q, is an oval that can be 
both O-flagged and 2-flagged in more than one way. 

Let ‘$ and Q be two intersecting arcs in x. We say ‘$3 is interiorly tangent 
or exteriorly tangent to $3 if every point of ‘$\Q is, respectively, an interior 
point or an exterior point of Q. 

EXAMPLE 2. We shall give an example of a O-complete (n, 0)-gobo 
(!@, f!) in a Desarguesian plane of odd order n such that neither ‘p nor L! 
is complete. In the same plane as Example 1, let !& be the set of all points 
(x, y, z) satisfying xy = iz2, i # 0. The oval &2 is interiorly tangent to the 
oval $, . The only points $3i and sj, have in common are (010) and (100). 
The only common tangents are the lines with equations x = 0 and 
y = 0. Let ‘?I3 be the n-arc obtained by deleting the point (010) from e2 . 
Let f? be the dual of an n-arc obtained by deleting the line with equation 
y = 0 from the set of tangents to .$ . ‘$3 has only the one completion 
point and it lies on a line of !G!; L! has only the one completion line and 
it lies on a point of 13. Thus, (‘JJ,e) has the desired properties. 

THEOREMS. Let $3 be a k-arc exterior to oval Q in a projective plane qf 
odd order. If k is even and Q is interior to ‘$3, then there exists L! such that 
(‘$3, 52) is a (k, 2)-gobo. 

Proof. Since every point of !J3 lies on exactly two tangents of Q and 
every tangent of Q that intersects ‘$3 is a secant of VP, 52 may be constructed 
as follows. Let p1 be an arbitrary point of ‘$3, and let ~7~ be a point of Q 
such that plql is a tangent of Q. Then plql intersects ‘!I3 in a unique point 
p2 with pz # p1 . Let q2 be the unique point of Q such that q2 # q1 and 
p2q2 is a tangent of Q. Let p2q2 intersect ‘!$3 in the unique point p3 with 
p3 # p2 . As p3 was uniquely determined by p2, we continue constructing 
the points p4, p5 ,..., pT+l until pT+l = p1 . This is possible since k is 
finite. At this point we have an irreducible (r, 2)-gobo 8, = (‘$r , &) 
where % = tpl, pz ,..., ~2 and 

& = {PEPS, pzp3 ,..., P~-~P~, prpll. 3 G r G k. 

If r = k, we are done. If r < k, pick a new point p12 from ‘$3 but not in 
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‘$J, and repeat the process. Continue in this fashion until every point of ‘$3 
occurs exactly once in the list 

PI ,p2 . 2 V~YPT ?Pl TP2 2,...,Ps2;...; PIU, P2U,...,PtU. 

For i > 1, Gji = (+& , f?{), where ‘& = (pIi, p2i ,..., pji) and 

is an irreducible (i, 2)-gobo. The union of the u !I& is ‘!$I. The & are pairwise 
disjoint and each is contained in the set of tangents to the oval Q. Let 2 
be the union of the u & . I! is the dual of a k-arc, and Q = (!$?, !G) is the 
desired (k, 2)-gobo. 

Besides having proved the theorem, we have a schema 

PI', Pzl,..., Prl; P12, P22,..., ps2;...; PIS, P2”,..., Pt’l 

that completely describes a (k, 2)-gobo of kind (r, s,..., r). 

EXAMPLE 3. Cp = ((OOl), (011) (101) (11 l), (561) (651)) is a complete 
(n - I)-arc in the projective plane of order 7. ‘$3 can be l-flagged in more 
than one way, [2]. We can not use Theorem 4 to 2-flag ‘tp, since ‘$I has only 
six interior points. In fact, the set of interior points of ‘$3 is a complete 
6-arc whose set of interior points is ‘$3. However, ‘$ may be 2-flagged to 
obtain complete (6,2)-gobos of kind (6) and (3, 3) respectively: 

(011) (OOl), (lOl), (651), (561), (111). 

(011) (001) (101); (651), (561), (111). 

The part of Theorem 3 referring to (k, 2)-gobos is a special case of the 
construction in Theorem 4. Both Theorem 3 and Theorem 4 require that 
k be even. The following theorem is relevant to 2-flagging a k-arc with 
k odd. Although the hypotheses are rather strict, the theorem will be 
useful in 2-flagging n-arcs when n is odd. 

THEOREM 5. Suppose ‘$3 is a k-arc properly contained in an oval B in a 
projective plane of odd order and Q is an oval containing D\‘$ but disjoint 
from ‘$3. If B is exteriorly tangent to EJ and D is interiorly tangent to D, then 
there exists L! such that (‘$3, !S) is a (k, 2)-gobo. 

Proof. First observe that, if point t is common to Q and Q, then the 
tangent of Q at t and the tangent of Q at t coincide, since Q is interiorly 
tangent to Q. Now, since 13 is exteriorly tangent to Q, each point of 
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‘$ = Q\Q lies on exactly two tangents of Q. Such a tangent is off Q\‘@ and, 
since Q is interiorly tangent to Q, is a secant of ‘!!. We now observe that 
we have satisfied the conditions that were necessary for the construction 
of the 2 in the proof of Theorem 4. By this same construction, we obtain 
an 2 that gives us our result here. 

EXAMPLE 4. In the projective plane of order 7, let 2, be the oval 
having equation x2 - yz + iz2 = 0. 2, ,2, , and 2, are each interiorly 
tangent to 2,. To is exteriorly tangent to each of il, ,2, , and 2,. Thus, 
the n-arc $J consisting of all points (x, x2, 1) can be 2-flagged by the con- 
struction of Theorem 5, taking Q = 2, and Q to be Z1 , 2,) or 5, . This 
results in three distinct (7, 2)-gobos, each of kind (7): 

(OOl), (241) (421), (61 l), (ill), (321) (541). 

(OOI), (11 l), (241) (321) (421) (541), (611). 

(001) (421), (11 l), (541), (241) (61 l), (321). 

EXAMPLE 5. Let & be as in Example 2. &r is exteriorly tangent 
to b2 , and 52 is interiorly tangent to & . ‘$3 = !&\$j2 is a 6-arc. 
Application of Theorem 5 to the (n - I)-arc ‘$, contained in an oval, 
yields a necessarily complete (6, 2)-gobo of kind (3, 3): 

(1 II), (241), (421); (351) (661) (531). 

‘$I may also be 2-flagged to obtain a (6, 2)-gobo of kind (6): 

(11 l), (351), (531), (661), (421), (241). 

EXAMPLE 6. Finally, we give an example of a complete (n - 2, 2)-gobo 
6 = (‘p, 2) in the Desarguesian plane of order n = 7. Q must be of 
kind (5): 

(011). (601) (061) (lOI), (221). 

8 can be properly contained in a (k, 2)-gobo only when k = n + 1. The 
only oval containing ‘$3 is Q1 in Example 1. Since three of the external 
points of 2 lie on the triangle determined by &\‘$, it follows that Q is 
complete. 

3. PROOF OF THEOREM A 

For the case r = 1, the statements I, II, and III are Theorems 4, 5, and 
6 of [2], respectively. 

For the case r = 0: 
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(I) The oval Q in Example I can be O-flagged in more than one way. 
Hence, by the first remark following Theorem 2, any n-arc contained in 
n, can be O-flagged in several ways. 

(II) Since it is well known that any n-arc in a Desarguesian plane of odd 
order is never complete, we must turn to a non-Desarguesian plane for a 
counterexample. Let 

be the complete n-arc in the Hughes plane of order 9, given on page 329 
of [I]. (Professor R. H. F. Denniston has kindly pointed out to the author 
that the complete n-arc ‘!& given on the same page of [1] is projectively 
equivalent to !Xn, .) Then 

is the dual of an n-arc and is complete. (%, , 2) is a O-complete (n, 0)-gobo 
for n = 9. 

(Ill) The example in II proves III. However, it is not necessary to go to 
a non-Desarguesian plane as Example 2 shows. 

For the case r = 2: 

(I) Follows from Example 4. 

(II) The n-arc 9&, above, in the Hughes plane of order 9 can be 2- 
flagged to give a complete (n, 2)-gobo of kind (9): 

(III) Since an (n, 2)-gobo is always complete, III follows from either I 
or 11. 
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