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This paper studies a class of binomial ideals associated to graphs
with finite vertex sets. They generalize the binomial edge ideals,
and they arise in the study of conditional independence ideals.
A Gröbner basis can be computed by studying paths in the graph.
Since these Gröbner bases are square-free, generalized binomial
edge ideals are radical. To find the primary decomposition a
combinatorial problem involving the connected components of
subgraphs has to be solved. The irreducible components of the
solution variety are all rational.
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1. Introduction

Let X0 and Xin be finite sets, d0 = |X0| > 1, and denote X = X0 × Xin. Let K be a field, and
consider the polynomial ring R= K[px: x ∈X ] with |X | unknowns px indexed by X . For all i, j ∈X0
and all x, y ∈Xin let

f i j
xy = pix p jy − piy p jx.

For any graph G on Xin the ideal IG in R generated by the binomials f i j
xy for all i, j ∈X0 and all edges

(x, y) in G is called the d0th binomial edge ideal of G over K. This is a direct generalization of [3]
and [4], where the same ideals have been considered in the special case d0 = 2. For a comparison of
the results of the present paper to previous results see Remark 8.
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One motivation to look at generalized binomial edge ideals comes from the study of conditional
independence ideals. Given n + 1 random variables X0, X1, . . . , Xn , generalized binomial edge ideals
correspond to a collection of statements of the form (see [3] for an explanation of the notation and
further details)

X0 XR | X S = xS ,

where R ∪ S = {1, . . . ,n}. Such statements naturally occur in the study of robustness. Implications
of the algebraic study of generalized binomial edge ideals will be studied in another paper [5], see
also [3, Section 4]. Generalized binomial edge ideals also cover the conditional independence ideals
associated with the intersection axiom in [2]. A different generalization of the results in [2] was
recently studied in [7]. The ideals I〈1〉 defined in [7] are special cases of binomial edge ideal.

2. The Gröbner basis

Choose a total order > on Xin (e.g. choose a bijection Xin ∼= [N]). This induces a lexicographic
monomial order on R, also denoted by >, via

pix > p jy ⇐⇒
{

either i > j,
or i = j and x > y.

A Gröbner basis for IG with respect to this order can be constructed using the following definitions:

Definition 1. A path π : x = x0, x1, . . . , xr = y from x to y in G is called admissible if

(i) xs 	= xt for s 	= t , and x < y;
(ii) for each k = 1, . . . , r − 1 either xk < x or xk > y;

(iii) for any proper subset {y1, . . . , ys} of {x1, . . . , xr−1}, the sequence x, y1, . . . , ys, y is not a path.

A function κ : {0, . . . , r} → [d] is called π -antitone if it satisfies

xs < xt �⇒ κ(s) � κ(t), for all 0 � s, t � r.

κ is strictly π -antitone if it is π -antitone and satisfies κ(0) > κ(r).

The notion of π -antitonicity also applies to paths which are not necessarily admissible. However,
since admissible paths are injective (i.e. they only pass at most once at each vertex), in the admissible
case it is possible to write κ(�) instead of κ(s), if � = xs .

To any x < y, any path π : x = x0, x1, . . . , xr = y from x to y and any function κ : {0, . . . , r} → X0
associate the monomial

uκ
π =

r−1∏
k=1

pκ(k)xk .

Theorem 2. The set of binomials

G =
⋃
i< j

{
uκ

π f κ(y)κ(x)
xy : x < y, π is an admissible path in G from x to y, κ is strictly π-antitone

}

is a reduced Gröbner basis of IG with respect to the monomial order introduced above.



J. Rauh / Advances in Applied Mathematics 50 (2013) 409–414 411
The role of π -antitonicity is the following: In smaller monomials
∏r

k=1 pikxk , smaller indices ik are

associated to larger points xk . Hence the initial term of uκ
π f κ(y)κ(x)

xy is uκ
π pκ(y)x pκ(x)y . This explains

why in the definition of G the point x is associated to the index κ(y), and vice versa. The main idea
of the proof of Theorem 2 is that reduction modulo G changes the association of the indices {ik} and
the points {xk} until the resulting monomial is minimal. The following lemma is a first step:

Lemma 3. Let π : x0, . . . , xr be a path in G, and let κ : {0, . . . , r} → [d] be an arbitrary function. If κ is not

π -antitone, then there exists g ∈ G such that ini<(g) divides the initial term of uκ
π f κ(y)κ(x)

xy .

Proof. Choose 0 � i0 < i1 < · · · < is � r such that τ : xi0 , . . . , xis is a path that is minimal with respect
to the property that the restriction of κ to τ is not τ -antitone. This means that κ is τ0-antitone
and τs-antitone, where τ0 = xi1 , . . . , xis and τs = xi0 , . . . , xis−1 . Assume without loss of generality that
xi0 < xis , otherwise reverse τ . The minimality implies that κ(i0) < κ(is). It follows that τ is admissi-
ble: By minimality, if xi0 < xik < xis , then κ(ik) � κ(is) > κ(i0)� κ(ik), a contradiction. Define

κ̃(k) =
⎧⎨
⎩

κ(is), if k = 0,

κ(i0), if k = s,
κ(ik), if 0 < k < s.

Then κ̃ is τ -antitone, and ini<(uκ̃
τ f κ̃(ys)κ̃(y0)

y0 ys ) divides ini<(uκ̃
π f κ̃(y)κ̃(x)

xy ). �
Proof of Theorem 2. The proof is organized in three steps.

Step 1: G is a subset of IG . Let π : x = x0, x1, . . . , xr−1, xr = y be an admissible path in G . The proof that
uκ

π f κ( j)κ(i)
xy belongs to IG is by induction on r. Clearly the assertion is true if r = 1, so assume r > 1.

Let A = {xk: xk < x} and B = {x�: x� > y}. Then either A 	= ∅ or B 	= ∅.
Suppose A 	= ∅ and set xk = max A. The two paths π1: xk, xk−1, . . . , x1, x0 = x and π2: xk, xk+1, . . . ,

xr−1, xr = y in G are admissible. Let κ1 and κ2 be the restrictions of κ to π1 and π2. Let a = κ(r),
b = κ(0) and c = κ(k). The calculation

(pby pax − pbx pay)pcxk = (pbxk pcx − pbx pcxk )pay + (paxk pby − pay pbxk )pcx

− (paxk pcx − pax pcxk )pby

implies that uκ
π f ab

xy lies in the ideal generated by uκ1
π1 f bc

xk x , uκ2
π2 f ab

xk y and uκ1
π1 f ac

xk x . By induction it lies
in IG . The case B 	= ∅ can be treated similarly.

Step 2: G is a Gröbner basis of IG . Let π : x0, . . . , xr and σ : y0, . . . , ys be admissible paths in G with
x0 < xr and y0 < ys , and let κ and μ be π - and σ -antitone. By Buchberger’s criterion it suffices to
show that the S-pairs S := S(uκ

π f κ(r)κ(0)
x0xr , uμ

σ f μ(s)μ(0)
y0 ys ) reduces to zero.

If S 	= 0, then S is a binomial. Write S = S1 − S2, where S1 = ini<(S). S is homogeneous with
respect to the multigrading given by

deg(pix) j = δi j =
{

1, if i = j,
0, else,

and

deg(pix)y = δxy =
{

1, if x = y,

0, else

(this is a multigrading with |X0| + |Xin| components).
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If π and σ are disjoint paths, then S trivially reduces to zero, since uκ
π f κ(r)κ(0)

x0xr and uμ
σ f μ(s)μ(0)

y0 ys

contain different variables. So assume that π and σ meet and that S 	= 0. Then S1 and S2 are mono-
mials, and the unknowns pix occurring in S1 and S2 satisfy x ∈ π ∪ σ . Assume that there are x < y
such that Dx := min{i ∈X0: pix | S1} < max{i ∈X0: piy | S1} =: D y . Since π ∪ σ is connected there is
an injective path τ : z0, . . . , zs from x = z0 to y = zs in π ∪ σ . Choose a map λ : {0, . . . , s} → X0 such
that λ(0) = Dx , λ(s) = D y and pλ(a)a | S1 for all 0 � a � s. Then uλ

τ divides S1, and λ is not τ -antitone.
So Lemma 3 applies, and S can be reduced to a smaller binomial.

Let S ′ be the reduction of S modulo G . If S ′ 	= 0, then let S ′
1 = ini<(S ′). The above argument shows

that min{i ∈ X0: pix | S ′
1} � max{i ∈ X0: piy | S ′

1} for all x < y. This property characterizes S ′
1 as the

unique minimal monomial in R with multidegree deg(S ′
1) = deg(S). But since the reduction algorithm

turns binomials into binomials, S ′ − S ′
1 is also a monomial of multidegree deg(S), and smaller than

deg(S ′
1). This contradiction shows S ′ = 0.

Step 3: G is reduced. Let π : x0, . . . , xr and σ : y0, . . . , ys be admissible paths in G with x0 < xr and
y0 < ys , and let κ and μ be strictly π - and σ -antitone. Suppose that uκ

π pκ(r)x0 pκ(0)xr divides ei-
ther uμ

σ pμ(s)y0 pμ(0)ys or uμ
σ pμ(s)ys pμ(0)y0 . Then {x0, . . . , xr} is a subset of {y0, . . . , ys}, and κ(b) =

μ(σ−1(xb)) for 0 < b < r. From admissibility follows x0 � y0 < ys � xr and κ(0) �μ(0) > μ(s) � κ(r).
If x0 < y0, then pκ(r)x0 divides uμ

σ , and so x0 = yt for some t < s with μ(t) = u = κ(r). On the
other hand, since yt � y0, it follows that μ(t)�μ(0) > κ(r), a contradiction. Hence x0 = y0. Similarly,
by a symmetric argument, xr = ys . This means that π is a sub-path of σ . By Definition 1, π equals σ .

Therefore, uκ
π f κ(r)κ(0)

x0xr and uμ
σ f μ(s)μ(0)

y0 ys have the same (total) degree, and hence they agree. �
Corollary 4. IG is a radical ideal.

Proof. The assertion follows from Theorem 2 and the following general fact: A homogeneous ideal
that has a Gröbner basis with square-free initial terms is radical. See the proof of [3, Corollary 2.2]
for details. �
3. The primary decomposition

Since IG is radical, in order to compute the primary decomposition of the ideal it is enough to
compute the minimal primes. From this it will be easy to deduce the irreducible decomposition of
the variety V G of IG in the case of characteristic zero. The following definition is needed: Two vec-
tors v , w (living in the same K-vector space) are proportional whenever v = λw or w = λv for some
λ ∈K. A set of vectors is proportional if each pair is proportional. Since λ = 0 is allowed, proportional-
ity is not transitive: If v and w are proportional and if u and v are proportional, then u and w need
not proportional, because v may vanish.

Let V G be the variety of IG , which is a subset of K
X0×Xin . As usual, elements of K

X0×Xin will
be denoted with the same symbol p = (pix)i∈X0, x∈Xin as the unknowns in the polynomial ring
R = K[pix: (i, x) ∈ X0 × Xin]. Any p ∈ K

X0×Xin can be written as a d0 × |Xin|-matrix. Each bino-
mial equation in IG imposes conditions on this matrix saying that certain submatrices have rank 1.
For a fixed edge (x, y) in G the equations f i j

xy = 0 for all i, j ∈ X0 require that the submatrix
(pkz)k∈X0, z∈{x,y} has rank one. More generally, if K ⊆ G is a clique (i.e. a complete subgraph), then the
submatrix (pkz)k∈X0, z∈K has rank one. This means that all columns of this submatrix are proportional.
The columns of p will be denoted by p̃x , x ∈ Xin. A point p lies in V G if and only if p̃x and p̃ y are
proportional for all edges (x, y) of G .

Even if the graph G is connected, not all columns p̃x must be proportional to each other, since
proportionality is not a transitive relation. Instead, there are “blocks” of columns such that all columns
within one block are proportional. For any subset Y ⊆ Xin denote by GY the subgraph of G induced
by Y . Then:

• A point p lies in V G if and only if p̃x and p̃ y are proportional whenever x, y ∈ S lie in the same
connected component of GS , where S = {x ∈Xin: p̃x 	= 0}.
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Let V G,Y be the set of all p ∈ K
X0×Xin for which p̃x = 0 for all x ∈ Xin \Y and for which p̃x and

p̃ y are proportional whenever x, y ∈Xin lie in the same connected component of GY . Then

V G =
⋃

Y⊆Xin

V G,Y . (1)

The sets V G,Y are rational irreducible algebraic varieties:

Lemma 5. For any Y ⊆Xin the set V G,Y is the variety of the ideal IG,Y generated by the monomials

pix for all x ∈ Xin \Y and i ∈ X0, (2)

and the binomials f i j
xy for all i, j ∈ X0 and all x, y ∈ Y that lie in the same connected component of GY . The

ideal IG,Y is prime, and the variety V G,Y is rational.

Proof. The first statement follows from the definition of V G,Y . Write I1
G,Y for the ideal generated by

all monomials (2), and for any Z ⊆ Y write I2
Z for the ideal generated by the binomials f i j

xy , with
i, j ∈X0 and x, y ∈ Z . Then I1

G,Y is obviously prime. Each of the I2
Z is a 2 × 2 determinantal ideal. It

is a classical (but difficult) result that this ideal is the defining ideal of a Segre embedding, and that
it is prime (see [6] for a rather modern proof). In fact, both I1

G,Y and I2
Z are geometrically prime,

i.e. they remain prime over any field extension. Hence the ideal IG,Y is the sum of the geometrically
prime ideals I1

G,Y and I2
Z for all connected components Z of GY , and since the defining equations

of all these ideals involve disjoint sets of unknowns, IG,Y itself is prime. V G,Y is rational, since the
varieties of I1

G,Y and I2
Z are rational. �

The decomposition (1) is not the irreducible decomposition of V G , because the union is redundant.
Let Y,Z ⊆Xin. Using Lemma 5 it is easy to remove the redundant components:

Lemma 6. Let Y,Z ⊆ Xin . Then V G,Y is contained in V G,Z if and only if the following two conditions are
satisfied:

• Y ⊆Z .
• If x, y ∈Y are connected in GZ , then they are connected in GY .

Proof. Assume that V G,Y ⊆ V G,Z . Then IG,Y ⊇ IG,Z . For any x ∈ Xin \Z and any i ∈ X0 this implies
pix ∈ IG,Y . On the other hand, Lemma 5 shows that the point with coordinates

piy =
{

1, if y ∈ Y,

0, else,

lies in V G,Y and hence in V G,Z . This implies x ∈Xin \Y ; and so Y ⊆Z .
Let x ∈ Y . Choose two linearly independent non-zero vectors v, w ∈ K

d0 . By Lemma 5 the matrix
with columns

p̃ y =
⎧⎨
⎩

v, if y ∈ Y is connected to x in GY ,

w, if y ∈ Y is not connected to x in GY ,

0, else,

is contained in V G,Y and hence in V G,Z . Therefore, if z is connected to x in GZ , then it is connected
to x in GY .

Conversely, if the two conditions are satisfied, then all defining equations of IG,Z lie in IG,Y . �
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Theorem 7. The primary decomposition of V G is

IG =
⋂
Y

IG,Y ,

where the intersection is over all Y ⊆ Xin such that the following holds: For any x ∈ Xin \ Y there are edges
(x, y), (x, z) in G such that y, z ∈ Y are not connected in GY . Equivalently, for any x ∈ Xin \ Y the induced
subgraph GY∪{x} has fewer connected components than GY .

Proof. First, assume that K is algebraically closed. By (1) and Lemma 5 it suffices to show that the
condition on Y stated in the theorem characterizes the maximal sets V G,Y in the union (1) (with
respect to inclusion). This follows from Lemma 6.

If K is not algebraically closed, then one can argue as follows: By [1] a binomial ideal has a
binomial primary decomposition over some algebraic extension field K̂ = K[α1, . . . ,αk]. The algebraic
numbers α1, . . . ,αk are coefficients of the defining equations of the primary components. Let K be
the algebraic closure of K. Since the ideals IG,Y are defined by pure differences and since the ideals
K⊗ IG,Y are the primary components of K⊗ IG,Y in K⊗R it follows that the ideals IG,Y are already
the primary components of IG (in other words, the primary decomposition is independent of the base
field). �
Remark 8. (Comparison to [4,3].) Both [4] and [3] discuss Gröbner bases and primary decompositions
of binomial edge ideals with d0 = 2. The Gröbner basis of Theorem 2 generalizes Theorem 2.1 from [3]
and Theorem 3.2 in [4]. While the proofs in [3] and [4] use a case by case analysis, the proof of
Theorem 2 is more conceptual.

The primary decomposition in Theorem 7 generalizes Theorem 3.2 from [3]. The proof of Theo-
rem 7 relied on the irreducible decomposition of the corresponding variety. On the other hand, the
proof in [3] directly shows the equality of the two ideals.

Instead of describing the primary decomposition explicitly, [4] presents an algorithm to compute
the primary decomposition. Since the primary decomposition of a binomial edge ideal is independent
of d0, the same algorithm applies for all d0. A nice feature of the algorithm is that it works graph-
theoretically.
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