Arc-transitive circulant digraphs of odd prime-power order

Ming-Yao Xua,*,1, Young-Gheel Baikb, Hyo-Seob Simb

aDepartment of Mathematics, Shanxi Teachers University, Linfen, Shanxi 041004, People’s Republic of China
bDivision of Mathematical Sciences, Pukyong National University, Pusan 608-737, Republic of Korea

Received 30 April 2002; received in revised form 10 February 2004; accepted 7 June 2004

Abstract

In this paper, the full automorphism group of a circulant digraph of prime-power order is investigated, and as a result, a complete classification of arc-transitive circulant graphs of odd prime-power order is given.

© 2004 Elsevier B.V. All rights reserved.

MSC: 05C25; 20B25

Keywords: Circulant; Normal circulant; Arc-transitive graph

1. Introduction

Throughout this paper we consider only finite, simple, (undirected or directed) graphs, and only finite groups.

Let \(p \) be an odd prime number and let \(G = \mathbb{Z}_{p^m} = \{0, 1, \ldots, p^m - 1\} \) be a finite cyclic group of order \(p^m \), written additively. Let \(S \) be a subset of \(G \) not containing the zero element 0. We define the Cayley digraph \(X = \text{Cay}(G, S) \) of \(G \) with respect to \(S \) by

\[
V(X) = G,
E(X) = \{(g, s + g) | g \in G, s \in S\},
\]

and we call \(X \) a \textit{circulant digraph} of order \(p^m \), and \(S \) a \textit{symbol} of \(X \).

Proposition 1.1. Let \(X = \text{Cay}(G, S) \) be a Cayley digraph of \(G \) with respect to \(S \). Then

(1) \(\text{Aut}(X) \) contains the right regular representation \(R(G) \) of \(G \), so \(X \) is vertex-transitive, where \(R(G) = \{R(g) | g \in G\} \) and \(R(g) \) maps \(x \) to \(x + g \) for any \(x \in G \).

(2) \(X \) is connected if and only if \(G = \langle S \rangle \).

(3) \(X \) is undirected if and only if \(-S = S\).

The following fact is well-known:

* This work was supported by the National Natural Science Foundation of China (Proj. No. 10371003).
* Corresponding author. Permanent address: Institute of Mathematics, Peking University, Beijing 100871, People’s Republic of China.
E-mail addresses: xumy1@math.pku.edu.cn (M.-Y. Xu), ygbaik1@pknu.ac.kr (Y.-G. Baik), hsim1@pknu.ac.kr (H.-S. Sim).
1 Most of the work in this paper was done when he visited Shanxi Teachers University.

0012-365X/ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.06.012
Proposition 1.2. A digraph $X = (V, E)$ of order p^m is a circulant digraph if and only if $\text{Aut}(X)$ contains a regular subgroup isomorphic to Z_p^m.

Let s be a positive integer s. An s-arc of X is an $(s + 1)$-tuple (v_0, v_1, \ldots, v_s) of vertices such that $\{v_{i-1}, v_i\} \in E(X)$ for $1 \leq i \leq s$ and if $s > 2$, then $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. We call X an s-arc-transitive, if $\text{Aut}(X)$ acts transitively on $V(X)$ and on the set of s-arcs; and X is called an s-transitive graph if X is s-arc-transitive but not $(s + 1)$-arc-transitive. For the case $s = 1$, we simply use $A(X)$ to denote its 1-arc set and call 1-arc-transitive graphs arc-transitive.

The purpose of this paper is to classify all arc-transitive circulant graphs and digraphs of order p^m, where p is an odd prime. For the case $m = 1$, that is, for the group $G = Z_p$, C.Y. Chao [3] gave such a classification for the undirected case in 1971, and in 1972 J.L. Berggren [2] simplified Chao’s proof; also Chao and Wells [4] did the same thing for the directed case in 1973. Nothing of this kind is known in the literature for $m \geq 2$. On the other hand, Alspach, Conder, Marušić and the first author [1] classified all 2-arc-transitive circulant graphs, and they said in the introductory section of [1] that “Our long-term goal is to classify all arc-transitive circulants”, and that “As a first step towards our long-term goal, we wish to determine which circulants are 2-arc-transitive.” Later, Meng and Wang classified 2-arc-transitive circulant digraphs in 2000, and Li et al. classified all arc-transitive circulants of square-free order in 2001; see [10, 11]. The present paper could be viewed as another step towards this long-term goal.

The method we use in this paper is mainly group-theoretic. The key result is a necessary and sufficient condition for such a circulant (di)graph to be normal, (see Theorems 3.1 and 3.2.) The concept of normality of a Cayley (di)graph was introduced by the first author in [14]. Here we will restate the definition and some basic facts for the normality of circulant (di)graphs.

Let $X = \text{Cay}(G, S)$ be a circulant digraph of order p^m with symbol S, and let

$$\text{Aut}(G, S) = \{x \in \text{Aut}(G) | S^x = S\}.$$

Obviously, $\text{Aut}(X) \supseteq R(G)\text{Aut}(G, S)$. Let $A = \text{Aut}(X)$. We have

Proposition 1.3 (Godsil and Xu [5, 14]).

1. $N_A(R(G)) = R(G)\text{Aut}(G, S)$;
2. $A = R(G)\text{Aut}(G, S)$ is equivalent to $R(G)$ being normal in A.

Definition 1.4. The circulant digraph $X = \text{Cay}(G, S)$ is called normal if $R(G) \triangleleft A = \text{Aut}(X)$.

Proposition 1.5. Let $X = \text{Cay}(G, S)$ be a Cayley digraph of G with respect to S, and $A = \text{Aut}(X)$. Let A_0 be the stabilizer of the zero element 0 in A. Then X is normal if and only if every element of A_0 is an automorphism of the group G.

For two graphs X and Y, the lexicographic product of X by Y, denoted by $X[Y]$ is the graph with vertex set $V(X) \times V(Y)$ such that (v_1, u_1) is adjacent to (v_2, u_2) if and only if either v_1 is adjacent to v_2 in X, or $v_1 = v_2$ and u_1 is adjacent to u_2 in Y, where $v_1, v_2 \in V(X)$ and $u_1, u_2 \in V(Y)$. If in addition, X and Y have the same vertex set then denote by $X - Y$ the graph with vertex set $V(X)$ and having two vertices adjacent if and only if they are adjacent in X but not adjacent in Y.

This paper is organized as follows. After this introductory section, in Section 2 we collect some preliminary, mainly group-theoretic results we need later on. In Section 3 we investigate the normality of circulant (di)graphs, and finally in Section 4, we give a complete classification of arc-transitive circulant graphs and digraphs of odd prime power order.

2. Preliminaries

Let T be a nonabelian simple group. We call a group G an almost simple group with socle T if $T \leq G \leq \text{Aut}(T)$, where we identify the group T with its inner automorphism group $\text{Inn}(T)$.

The following result due to Guralnick [6] is of crucial importance to the theme of this article.

Theorem 2.1 (Guralnick [6]). Let T be a nonabelian simple group with a subgroup $H < T$ satisfying $|T : H| = p^d$, p a prime. Then one of the following holds:

1. $T = A_p$ and $H \cong A_{p-1}$ with $n = p^d$.
2. $T = \text{PSL}(n, q)$ and H is the stabilizer of a projective point or a hyperplane in $\text{PG}(n-1, q)$, and $|T : H| = (q^n - 1)/(q - 1) = p^d$. (Note that n must be prime.)
3. $T = \text{PSL}(2, 11)$ and $H \cong A_5$.
4. $T = M_{11}$ and $H \cong M_{10}$.
5. $T = M_{23}$ and $H \cong M_{22}$.
6. $T = \text{PSU}(4, 2) \cong \text{PSp}(4, 3)$ and H is a subgroup of index 27.
Theorem 3.1. Let p be an odd prime and $G = \mathbb{Z}_{p^m}$. Let $S \subseteq G \setminus \{0\}$ and $X = \text{Cay}(G, S)$, which is neither complete nor totally disconnected. If $(|\text{Aut}(G, S)|, p) = 1$, then X is normal.

Proof. Let $A = \text{Aut}(X)$. If $m = 1$, that is, $G = \mathbb{Z}_p$, the conclusion is true by [14, Example 2.2]. So we may assume that $m > 1$.

First, we claim that $(|A_0|, p) = 1$, where A_0 is the stabilizer of 0 in A. Assume the converse. Then $p || A_0$. Let P be a Sylow p-subgroup of A with $P \supseteq R(G)$. Then $P > R(G)$, and hence $N_A(R(G)) \supseteq NP(R(G)) > R(G)$. By Proposition 1.3, $N_A(R(G)) = R(G)\text{Aut}(G, S)$. It follows that $p || \text{Aut}(G, S)$, a contradiction.

Furthermore, in all the above cases apart from $T = A_n$, $n = p^a > p$, and case (6), H is a Hall p'-subgroup of T.

Corollary 2.2. Let T be a nonabelian simple group with a subgroup $H < T$ and a cyclic Sylow p-subgroup $C < T$ satisfying $|T : H| = p^a$, $|C| = p^b$, $T = HC$ and p is an odd prime. Then one of the following holds:

1. $T = A_p$ and $H \cong A_{p-1}$ with $a = 1$.
2. $T = PSL(n, q)$ and H is the stabilizer of a projective point or a hyperplane in $PG(n-1, q)$, and C is the Singer cycle. In this case $|T : H| = (q^n - 1)/(q - 1) = p^b$, and n is a prime.
3. $T = PSL(2, 11)$ and $H \cong A_5$, and $p^6 = 11$.
4. $T = M_{11}$ and $H \cong M_{10}$, and $p^6 = 11$.
5. $T = M_{23}$ and $H \cong M_{22}$, and $p^6 = 23$.

In all cases, the permutation representation of T on the cosets of H is doubly transitive.

Table 1

<table>
<thead>
<tr>
<th>(i)</th>
<th>T</th>
<th>$\text{Aut}(T)$</th>
<th>$\text{Mult}(T)$</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>A_p</td>
<td>S_p</td>
<td>Z_2, if $p \neq 7$</td>
<td>$\text{Mult}(A_7) = Z_6$</td>
</tr>
<tr>
<td>(2)</td>
<td>$PSL(2, q)$</td>
<td>$PGL(2, q)$</td>
<td>Z_d, $d = (2, q - 1)$</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>$PSL(n, q)$, $n > 2$</td>
<td>$PGL(n, q) \times Z_2$</td>
<td>Z_d, $d = (n, q - 1)$</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>M_{11}</td>
<td>M_{11}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>M_{23}</td>
<td>M_{23}</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

For later use, in Table 1 we give the automorphism group and the Schur Multiplier of the groups listed in Corollary 2.2. (See [9].)

We need the following two Propositions.

Proposition 2.3 (Zsigmondy [15]). Let p and a be integers with $p \geq 2$ and $a \geq 3$. Provided $(p, a) \neq (2, 6)$, there is a prime r such that $r | p^a - 1$ but r does not divide $p^i - 1$ for $1 \leq i < a$.

Proposition 2.4. Let $T = PSL(n, q)$ and let H be the stabilizer of a projective point or a hyperplane in $PG(n-1, q)$ as in Case (2) of Corollary 2.2, where $|T : H| = (q^n - 1)/(q - 1) = p^b$, and n is a prime.

(i) Assume that $n = 2$ and p is odd. Then either p is a Fermat prime and $a = 1$, or $p = 3$ and $a = 2$.

(ii) Assume that $n \geq 3$ and p is odd. Then $p | q - 1$.

Proof. (i) In this case $p^a = q + 1$. Since p is odd, q is a power of 2. If $a = 1$, then p is a Fermat prime. If $a = 2$, then $(p - 1)(p + 1) = q$, and hence both $p - 1$ and $p + 1$ are powers of 2. It follows that $p = 3$ and $q = 8$. If $a \geq 3$, by Proposition 2.3 and $2 | p - 1$, $p^a - 1$ would have a prime divisor $\neq 2$, a contradiction.

(ii) Assume the converse, that is, $p | q - 1$. By Proposition 2.3, $q^n - 1$ has a prime divisor $r \neq p$, contradicting the fact that $(q^n - 1)/(q - 1) = p^a$. \(\square\)

Let G be a finite group. G is said to be a Burnside group, if every primitive group which has a regular subgroup isomorphic to G is doubly transitive. (See [13, Definition 25.1].) We have

Proposition 2.5 (Wielandt [13, Theorem 25.3]). Every cyclic group of composite order is a Burnside group.

3. Normality of circulants

Theorem 3.1. Let p be an odd prime and $G = \mathbb{Z}_{p^m}$. Let $S \subseteq G \setminus \{0\}$ and $X = \text{Cay}(G, S)$, which is neither complete nor totally disconnected. If $(|\text{Aut}(G, S)|, p) = 1$, then X is normal.

Proof. Let $A = \text{Aut}(X)$. If $m = 1$, that is, $G = \mathbb{Z}_p$, the conclusion is true by [14, Example 2.2]. So we may assume that $m > 1$.

First, we claim that $(|A_0|, p) = 1$, where A_0 is the stabilizer of 0 in A. Assume the converse. Then $p || A_0$. Let P be a Sylow p-subgroup of A with $P \supseteq R(G)$. Then $P > R(G)$, and hence $N_A(R(G)) \supseteq NP(R(G)) > R(G)$. By Proposition 1.3, $N_A(R(G)) = R(G)\text{Aut}(G, S)$. It follows that $p || \text{Aut}(G, S)$, a contradiction.
We claim that
\[\text{Theorem 3.2.} \]
\[\text{If } p \text{ is the } p \text{-part of } G, \text{ then } p \text{ divides } |G|, \text{ and hence } p \mid |G|. \]
\[\text{Let } \text{Aut}(G, S), \text{ Aut}(G, S), \text{ the lexicographic product of } (G, S) \text{ and } (G, S), \text{ is not normal in } \text{Aut}(X) \text{; the conclusion holds.} \]
\[\text{In the remainder of the proof we assume that } X \text{ is connected, that is, } S \text{ contains elements } s \text{ with } (p, s) = 1. \]
\[\text{Let } P = \left\{ 0, p^{m-1}, 2p^{m-1}, \ldots, (p-1)p^{m-1} \right\}. \]
\[\text{Let } S_1 = \left\{ s \in S \mid (p, s) = 1, S_1 \subseteq S \right\} \text{ and } S_2 = S \setminus S_1. \]
\[\text{Let } X_1 = \text{Cay}(G, S_1 \cup S_2) \text{ and } X_2 = \text{Cay}(G, S_2). \]
\[\text{Since } p \mid |\text{Aut}(G, S), \text{ Aut}(G, S), \text{ the lexicographic product of } G, \text{ which is generated by } x : x \mapsto x(1 + a), \forall a \in G. \]
\[\text{For any } s \in S_1, \text{ we have } s^{(2)} \subseteq S_1. \]
\[\text{Since } x^2 = s(1 + p^{m-1}) = s + sp^{m-1}, x^3 = s(1 + p^{m-1})^2 = s + 2sp^{m-1}, \ldots, x^{2p-1} = s(1 + p^{m-1})p-1 = s + s(p-1)p^{m-1}, \]
\[\text{We claim that } \sigma = \sigma \in \text{Aut}(X). \text{ In fact, letting } B_i = i + (p^{m-1}) \text{ for } 0 \leq i \leq p^{m-1} - 1, \sigma \text{ fixes every block } B_i \text{ setwise.} \]
\[\text{Consider the graph } X_2. \text{ Since elements in } S_2 \text{ are all multiples of } p, \text{ every edge of } X_2 \text{ is between two blocks } B_i \text{ and } B_j \text{ with } i \equiv j \pmod{p} \text{ and the induced graph } [B_i, B_j] \text{ keeps invariant under the action of } \sigma. \]
\[\text{So } \sigma \text{ also maps edges of } X_2 \text{ to themselves. Thus, } \sigma \text{ is an automorphism of } X_1 \text{ and also of } X_2, \text{ and } \sigma \text{ is an automorphism of } X. \]
We define a digraph \(G(pm, r) \) \(^{(1)}\).

Theorem 4.1. \(^{(1)}\) Let \(p \) be an odd prime and \(m \geq 2 \) be an integer. Let \(G = Z_{pm} \) and \(X = \text{Cay}(G, S) \), and let \(S_1 = \{s \in S | (p, s) = 1\} \). Then \(X \) is normal for \(G \) if and only if \((G, S) \) is arc-transitive.

Corollary 3.3. Chao and Wells \([3,4]\) proved the following result: \(G(p, r) \) for every divisor \(r \) of \(p \) is arc-transitive. Also, since \(\text{Aut}(G(p, r)) = \langle x \rangle \), \(G(p, r) \) is an arc-transitive digraph of order \(p \) with out-valency \(r \).

Theorem 4.2. \(^{(1)}\) Every normal arc-transitive circulant digraph of order \(p \) is isomorphic to \(Z_p \times H_r \). The proof is different but Theorem 3.2 is not. The smallest counterexample is: \(G = Z_4 \times \{a\}, S = \{a, -a\}, X = \text{Cay}(G, S) \cong C_4 \), \(\text{Aut}(X) = D_8 \), \(X \) is normal but \(\text{Aut}(G, S) = Z_2 \).

Remark 3.4. Theorem 3.1 is also true for the case \(p = 2 \); the proof is different but Theorem 3.2 is not. The smallest counterexample is: \(G = Z_4 \times \{a\}, S = \{a, -a\}, X = \text{Cay}(G, S) \cong C_4 \), \(\text{Aut}(X) = D_8 \), \(X \) is normal but \(\text{Aut}(G, S) = Z_2 \).

4. Arc-transitive circulant digraphs

In this section we determine all arc-transitive circulant (di)graphs of order \(pm \), where \(p \) is an odd prime. In the whole section we assume that \(G = Z_{pm} \) is a finite cyclic group of order \(pm \), written additively, and that \(S \subseteq G^* = G - \{0\} \). Let \(X = \text{Cay}(G, S) \) and \(A = \text{Aut}(X) \).

For the case \(m = 1 \), that is, the case \(G = Z_p \), Chao and Wells \([3,4]\) classified the arc-transitive circulant (di)graphs of order \(p \). First we review their classification.

The automorphism group \(\text{Aut}(Z_p) \) of \(Z_p \) is isomorphic to \(Z_{p-1} \). For any positive divisor \(r \) of \(p - 1 \) we use \(H_r \) to denote the unique subgroup of \(\text{Aut}(Z_p) \) of order \(r \), which is isomorphic to \(Z_r \). We identify \(H_r \) with a subgroup of \(Z_{p-1}^* \).

Now we define a digraph \(G(p, r) \) of order \(p \) for each divisor \(r \) of \(p - 1 \) by

\[
V(G(p, r)) = Z_p,
E(G(p, r)) = \{(x, y) | x - y \in H_r\}.
\]

Chao and Wells \([3,4]\) proved the following result:

Theorem 4.1. \(^{(2)}\) (1) \(G(p, r) \) is an arc-transitive digraph of order \(p \) with out-valency \(r \) and in-valency \(p - 1 \).

(2) \(G(p, r) \) is undirected if and only if \(r \) is even.

(3) Every arc-transitive digraph of order \(p \) is isomorphic to \(pK_1 \) or \(G(p, r) \) for some divisor \(r \) of \(p - 1 \); the undirected graphs correspond to even divisors \(r \).

(4) \(A = \text{Aut}(G(p, r)) \cong Z_p \times H_r \leq \text{AGL}(1, p) \) acts regularly on the set of arcs for \(r < p - 1 \). \(G(p, p - 1) \) is the complete graph \(K_p \), and so \(\text{Aut}(G(p, p - 1)) = S_p \).

To generalize Chao’s result, we first define a digraph \(G(pm, r) \) for arbitrary \(m \geq 1 \) and for any divisor \(r \) of \(p - 1 \). Note that \(\text{Aut}(Z_{pm}) \cong Z_{pm-1} \times Z_{p-1} \). We use \(H_r \) to denote the unique subgroup of \(\text{Aut}(Z_{pm}) \) of order \(r \), which is isomorphic to \(Z_r \).

We define a digraph \(G(pm, r) \) by

\[
V(G(pm, r)) = Z_{pm},
E(G(pm, r)) = \{(x, y) | x - y \in H_r\}.
\]

Theorem 4.2. \(^{(2)}\) (1) \(G(pm, r) \) is an arc-transitive digraph of order \(pm \) with out-valency \(r \) and in-valency \(p - 1 \). \(G(pm, r) \) is undirected if and only if \(r \) is even.

(2) Every normal arc-transitive circulant digraph of order \(pm \) is isomorphic to \(G(pm, r) \) for some divisor \(r \) of \(p - 1 \), and with \((pm, r) \neq (p, p - 1) \). (Note that \(G(p, p - 1) \) is complete, so it is not normal.)

(3) \(A = \text{Aut}(G(pm, r)) \cong Z_{pm} \times H_r \) acts regularly on the set of arcs for either \(m > 1 \), or \(m = 1 \) and \(r < p - 1 \). So normal arc-transitive circulant (di)graphs are 1-regular.

Proof. \(^{(2)}\) (1) By definition \(G(pm, r) = \text{Cay}(G, S) \), where \(S = H_r \). So \(\text{Aut}(G, S) = H_r \), which acts transitively on \(S \), and hence \(G(pm, r) \) is arc-transitive. Also, since \(p | \text{Aut}(G, S) \) and \(X \) is not complete, we have that \(X \) is normal by Theorem 3.1.

(2) Assume that \(X = \text{Cay}(G, S) \) is a normal arc-transitive circulant digraph. By Theorem 3.2, \(p | \text{Aut}(G, S) \), and hence \(\text{Aut}(G, S) \) is the unique subgroup \(H_r \) of order \(r \) of \(\text{Aut}(G) \) for some \(r | p - 1 \). Since \(X \) is arc-transitive, \(A_0 = \text{Aut}(G, S) \) acts transitively on \(S \), so \(S = sH_r \) is a coset of \(H_r \) (in the group \(\text{Aut}(G) \) which is viewed as a multiplicative group). Obviously, \(\text{Cay}(G, sH_r) \cong \text{Cay}(G, H_r) \), so \(X \cong G(pm, r) \). Since \(X \) is normal and it is not complete, we have \((pm, r) \neq (p, p - 1) \).

(3) follows immediately from the normality of \(X \) and the fact that \(\text{Aut}(G, S) \) is cyclic. \(\square \)
The following two propositions are important for our purpose:

Proposition 4.3. For $1 \leq i < m$, $K_{p^i}[p^{m-i}K_1]$ and $G(p^i, r)[p^{m-i}K_1]$ are arc-transitive circulant digraphs of order p^m.

Proposition 4.4. Let \overline{X} be an arc-transitive circulant digraph of order p^m and $X = \overline{X}[p^kK_1] - p^k\overline{X}$. Then X is arc-transitive but not circulant, and $\text{Aut}(X) = \text{Aut}(\overline{X}) \times S_{p^k}$ which contains a regular subgroup $Z_{p^m} \times Z_{p^k}$, but not $Z_{p^{m+k}}$.

(Proofs of Propositions 4.3 and 4.4 are easy and omitted.)

Since a disconnected circulant digraph is arc-transitive if and only if its connected components are arc-transitive, we only need to consider the connected case. The following theorem gives a classification for connected circulant (di)graphs of odd prime power order.

Theorem 4.5. Let X be a connected arc-transitive circulant (di)graph of order p^m. Then either $X \cong K_{p^m}$, or $X \cong G(p^m, r)$ for some divisor r of $p - 1$, or $X \cong K_{p^i}[p^{m-i}K_1]$, or $X \cong G(p^i, r)[p^{m-i}K_1]$ for $1 \leq i < m$, and in the second and fourth cases, undirected graphs correspond to even divisors r.

Proof. Here we only give a proof for the undirected case. For the directed case the proof is essentially the same and is left to the reader.

Assume first that X is normal, then by Theorem 4.2, $X \cong G(p^m, r)$ for some even divisor r of $p - 1$.

In the remainder of the proof we shall assume that X is not complete and is not normal, and that $m > 1$.

By Proposition 2.5, Z_{p^m} is a Burnside group. It follows that A is not primitive since X is not complete. Let B be a smallest block of imprimitivity, and $\mathcal{B} = \{B = B_0, B_1, \ldots, B_{p^m - 1}\}$ the corresponding complete block system. So the length of B is p^{m-1}.

Let the quotient graph of X modulo \mathcal{B} be \overline{X}. Let K be the kernel of the action of A on \mathcal{B}. Since B is also a block of $G = (\mathcal{A}) = Z_{p^m}$, \mathcal{B} is just the set of cosets of the subgroup $H = (a^l)$ of G. So $R(H)$, the right translation of H, is contained in K. That means K^B contains a cyclic regular subgroup isomorphic to K. Since $G/K \cong Z_{p^l}$ is contained in $\text{Aut}(\overline{X})$, \overline{X} is a circulant of order p^l. We shall distinguish two different cases.

Case 1: $m - i > 1$. Since B is the smallest block of A, $A^B_{\{B\}}$ is primitive. Since $m - i > 1$, $|H| > p$, and hence H is a Burnside group by Proposition 2.5. It follows that $A^B_{\{B\}}$ is doubly transitive on B. Since $1 \neq K^B \cong A^B_{\{B\}}$ and $A^B_{\{B\}}$ has no noncyclic p-group, checking the list of doubly-transitive groups in [8], we have K^B is also doubly transitive on B. We want to prove that X is a lexicographic product of \overline{X} by $p^{m-1}K_1$, that will complete the proof in this case.

We assume the converse, that is, X is not a lexicographic product of \overline{X} by $p^{m-1}K_1$. Note that there are no edges between vertices inside any block B by [12]. Let us consider the induced graph $[B_1, B_2]$ for any two adjacent blocks B_1 and B_2. By the assumption, $[B_1, B_2]$ is not bipartite complete. (By the arc-transitivity of the quotient graph \overline{X}, $[B_1, B_2]$ are the same for any two adjacent blocks B_1 and B_2.) Let K_j be the kernel of the action of K on B_j and K_j the kernel on B_j. Take a vertex $v \in B_j$. If K_j is transitive on B_j, then it is clear that $[B_1, B_2]$ is bipartite complete, a contradiction. Assume that K_v fixes every vertex B_j, that is, $K_v \subseteq K_j$. Since K_v is transitive on $B_j \setminus \{v\}$, for any vertex $u \in B_j$ such that u is adjacent to a vertex in $B_j \setminus \{v\}$, we have that u is adjacent to every vertex in $B_j \setminus \{v\}$; and hence $[B_1, B_2] = K_{p,p}$ minus a one-factor because $[B_1, B_2] \neq K_{p,p}$. This implies that K_1 fixes every vertex in B_1, and hence $K_1 = K_j$, contradicting the fact that $K_v \cong K_j$. So we have $K_v \cong K_j$ and K_v is not transitive on B_j. Since $[B_1, B_2] \neq K_{p,p}$, the doubly transitive group $K/K_j \cong K_{[B_j]}$ must be almost simple with socle $\text{PSL}(n, q)$, and $(q^n - 1)/(q - 1) = p^{m-1}$. Since K_vK_j/K_j is a subgroup of K/K_j of p-power index at most $[B_j] = p^{m-i}$, we obtain that $|K : K_vK_j| = p^{m-i}$ since $\text{PSL}(n, q)$ has no subgroup of index $(q^n - 1)/(q - 1) = p^{m-i}$ (see [9, Table 5.2.A]).

It follows that $K_v \cong K_j$ and that $K_j = K_1$. By the connectedness and the arc-transitivity of \overline{X}, K_1 fixes every block pointwise, and hence $K_1 = 1$ and the action of K on any block B is faithful. Now we claim that the representations of K on any two adjacent blocks B_1 and B_2 are equivalent, and hence K_1 fixes a unique vertex in every block B. If not, K has socle $\text{PSL}(n, q)$, and by the arc-transitivity of \overline{X} the representations of K on any two adjacent blocks B_1 and B_2 are not equivalent. Take a Hamilton cycle in \overline{X}; it has odd length. So there must be two adjacent blocks such that the representations of K on these two adjacent blocks B_1 and B_2 are equivalent, a contradiction. Now it is easy to see that $[B_1, B_2] = K_{p,p}$ minus a one-factor, or $[B_1, B_2]$ is perfect by matching. In the latter case the graph X is not connected. So the former happens and $X \cong \overline{X}[p^{m-1}K_1] - p^{m-1}\overline{X}$. By Example 4.4, X is not a circulant, a contradiction.

Case 2: $m - i = 1$. By the nonnormality of X, the subgroup of order p of $\text{Aut}(G)$ is contained in $\text{Aut}(X)$, which is generated by $z : x \mapsto x(1 + p^{m-i})$, $\forall x \in G$. Since X is connected, there is an $s \in S$ such that $(s, p) = 1$. So we have $s + ks^{m-i} \in S$ for $k = 0, 1, \ldots, p - 1$. Let $B_0 = \langle p^{m-1} \rangle$ and $B_1 = s + \langle p^{m-1} \rangle$. The induced graph $[B_0, B_1] = K_{p,p}$. By the arc-transitivity of...
X, we have that for any two adjacent blocks B_l and B_j, the induced graph $[B_l, B_j] = K_{p, p}$. It follows that X is a lexicographic product of X and pK_1.

Summarizing Cases 1 and 2 we complete the proof of this theorem. □

References