of few large subquadrangles

H. Van Maldeghem ${ }^{1}$
Department of Pure Mathematics and Computer Algebra, University of Ghent, Galglaan 2, 9000 Gent, Belgium

Received 5 March 1997; accepted 5 January 1998

Abstract

We study the question: what is the smallest number n of subquadrangles of order $\left(s, t^{\prime}\right)$ of a finite generalized quadrangle Γ of order (s, t) such that the union of the point sets of all these subquadrangles is equal to the point set of Γ ? It turns out that $n \geqslant s+1$ and if $n=s+1$, then except for a finite list of small examples, either all the subquadrangles are disjoint, or $\sqrt{t}=s=t^{\prime}$ and all the subquadrangles meet pairwise in a common subquadrangle of order $(s, 1)$. Examples exist in both cases and they show that a further classification is out of reach. A similar result holds for finite polar spaces. (C) 1999 Elsevier Science B.V. All rights reserved.

Keywords: Finite generalized quadrangles; Subquadrangles; Polar spaces; Polar subspaces

1. Introduction, notation and statement of the results

A finite generalized quadrangle of $\operatorname{order}(s, t), s, t \geqslant 1$, is a point-line geometry $\Gamma=(\mathscr{P}, \mathscr{L}, \mathbf{I})$ (where we treat the incidence relation \mathbf{I} as a symmetric relation) satisfying the following axioms:
(GQ1) each point is incident with $1+t$ lines and two distinct points are incident with at most one line;
(GQ2) each line is incident with $1+s$ points and two distinct lines are incident with at most one point;
(GQ3) if x is a point and L is a line not incident with x, then there is a unique pair $(y, M) \in \mathscr{P} \times \mathscr{L}$ for which $x \mathbf{I} M \mathbf{I} y \mathbf{I} L$.

Generalized quadrangles were introduced by Tits [8]. The above definition is taken from Payne and Thas [4].

[^0]A subquadrangle $\Gamma^{\prime}=\left(\mathscr{P}^{\prime}, \mathscr{L}^{\prime}, \mathbf{I}^{\prime}\right)$ of a given generalized quadrangle $\Gamma=(\mathscr{P}, \mathscr{L}, \mathbf{I})$ is a generalized quadrangle for which $\mathscr{P}^{\prime} \subseteq \mathscr{P}, \mathscr{L}^{\prime} \subseteq \mathscr{L}$ and \mathbf{I}^{\prime} is the restriction of I to $\left(\mathscr{P}^{\prime} \times \mathscr{L}^{\prime}\right) \cup\left(\mathscr{L}^{\prime} \times \mathscr{P}^{\prime}\right)$. Let us define a large subquadrangle of a generalized quadrangle of order (s, t) as a subquadrangle of order $\left(s, t^{\prime}\right)$ with $t^{\prime}<t$, i.e., they are 'large' with respect to the point set (a large subquadrangle in this sense is often called a full subquadrangle). Natural questions are
(1) whether a given generalized quadrangle has a (large) subquadrangle;
(2) are there restrictions on the orders of a quadrangle and a (large) subquadrangle;
(3) how many large subquadrangles do we need to cover a generalized quadrangle?

Considerable attention is always given to the first question when a new class of quadrangles is discovered. The second question has been solved by Thas [5] and the answer is as follows, see also Payne and Thas [4].

Theorem 1 (Thas [5]). Let Γ be a generalized quadrangle of order (s, t). If Γ contains a large subquadrangle Γ^{\prime} of order $\left(s, t^{\prime}\right)$, then $t \geqslant s t^{\prime}$. If $t^{\prime}>1$, then $t \geqslant \sqrt{s^{3}}$. If $t=s t^{\prime}$, then every line of Γ not in Γ^{\prime} is incident with a unique point of Γ^{\prime}. If Γ^{\prime} contains a large subquadrangle of order $\left(s, t^{\prime \prime}\right)$, then $t^{\prime \prime}=1, t^{\prime}=s$ and $t=s^{2}$.

In the present paper, we give a fairly general answer to the third question. For short, we say that a generalized quadrangle is the union of n large subquadrangles if its point set is the union of the point sets of n large subquadrangles. Our main result is:

Theorem 2. Let Γ be a generalized quadrangle of order (s, t) with $s, t>1$. Then Γ cannot be the union of fewer than $s+1$ large subquadrangles. Also, if Γ is the union of $s+1$ subquadrangles, then, if $s>2$, these subquadrangles all have the same order $\left(s, t^{\prime}\right)$, and one of the following holds (denoting by \mathscr{S} the set of $s+1$ large subquadrangles):
(i) the point set of Γ is the disjoint union of the points sets of the members of \mathscr{S}, and $t^{\prime}=(t-1) /(s+1)$;
(ii) there exists a large subquadrangle Γ^{*} of order $(s, 1)$ such that every two members of \mathscr{S} meet precisely in Γ^{*}. Every member of \mathscr{S} has order (s, s), and $t=s^{2}$;
(iii) $\left(t^{\prime}, s, t\right)=(2,4,8)$, every two members of \mathscr{S} meet in the nine points of an ovoid in both members, there are exactly 30 points of Γ which lie in at least two members of \mathscr{S} and every such point lies in exactly 3 members, every member contains exactly 18 points which lie in three members of \mathscr{S} and no line is contained in at least two members of \mathscr{S};
(iv) $\left(t^{\prime}, s, t\right)=(1,3,3)$ and there are exactly two non-isomorphic examples, one with no line of Γ in at least two members of Γ, and the other with two unique concurrent lines contained in 3 members of Γ.
(v) $\left(t^{\prime}, s, t\right)=(10,15,160)$ and there exists a line L of Γ such that every two members of \mathscr{S} meet precisely in L.

There are plenty of examples for the first two cases. In fact, for case (i), every known generalized quadrangle Γ of order $(s, s+2)$ has at least $s+2$ different sets of
$s+1$ large subquadrangles of order $(s, 1)$ whose union is Γ. Indeed, every known such quadrangle arises from a quadrangle Γ^{\prime} of order $(s+1, s+1)$ by deleting a regular point p, all points collinear with p and all lines through p, and adding as new lines all traces containing p (a trace is the set of points collinear with two given non-collinear points). The set of points of Γ collinear in Γ^{\prime} with a given point x of $\Gamma^{\prime} \backslash \Gamma, x \neq p$, is easily seen to be the point set of a large subquadrangle of Γ. Varying x over some fixed line L of Γ^{\prime} through p, we obtain a partition of the point set of Γ into large subquadrangles. Varying L, we obtain $s+2$ such partitions.

For case (ii), it is enough to have a regular line for which the corresponding dual net satisfies the axiom of Veblen, see Thas and Van Maldeghem [7]. Examples include the classical quadrangles $Q(5, q)$, the Tits quadrangles $T_{3}(O)$ (for O an ovoid in three-dimensional projective space), the generalized quadrangles discovered by Kantor [2], and the dual of the Roman generalized quadrangles discovered by Payne [3].

Concerning case (iii), an example exists which is the smallest case of a covering of $H\left(4, q^{2}\right)$ by a set of $2 q^{2}-2 q+1$ large subquadrangles isomorphic to $H\left(3, q^{2}\right)$. It is not known whether or not case (v) occurs.

Applied to the classical quadrangles $Q(5, q)$ and generalized to finite polar spaces of arbitrary (finite) rank, we obtain (with similar definitions for polar spaces as for quadrangles above):

Theorem 3. Let Γ be a finite polar space of rank r naturally embedded in $\operatorname{PG}(d, q)$. Suppose that Γ is the union of $k \leqslant q+1$ large polar subspaces of rank r, and that $q>2$ if $r=2$. Then $k=q+1$ and either $r=2$ and one of the cases (iii) or (iv) of Theorem 2 holds (where for case (iii) the quadrangle Γ is isomorphic to $H(4,4)$), or Γ is an elliptic quadric and there exist $q+1$ hyperplanes of $\operatorname{PG}(d, q)$ containing a ($d-2$)-dimensional space U such that each hyperplane meets Γ precisely in a large polar subspace (which is a parabolic quadric). Also, U meets Γ in a large polar subspace of rank r (which is a hyperbolic quadric).

Hence one can see that the fact that makes it possible to write an elliptic quadric in d-dimensional projective space as the union of $(q+1)$ subquadrics is strongly related to the fact that there exist (hyperbolic) quadrics of the same rank in $(d-2)$-dimensional projective space.

Let us mention here that Peter Johnson (unpublished) proves related results, allowing also infinite polar spaces of possibly infinite rank.

Finally, we mention a corollary, which gives a characterization of the quadrangles of Kantor mentioned above. For the definition of flock quadrangle, we refer to e.g. Thas [6].

Corollary. Let Γ be a flock quadrangle of order $\left(q^{2}, q\right)$, q odd, with elation point (∞). Then Γ is isomorphic to the flock quadrangle of Kantor, or to the classical quadrangle $H\left(3, q^{2}\right)$ if and only if the dual of Γ is the union of $q+1$ large subquadrangles all containing (∞).

2. Proof of Theorem 2

Let Γ be a finite generalized quadrangle of order $(s, t), s, t \geqslant 2$. Suppose that \mathscr{S} is a set of n large subquadrangles whose union is Γ.

Lemma 4. We have $n \geqslant s+1$.

Proof. Suppose by way of contradiction that $n \leqslant s$. Let L be any line of Γ. Since there are $s+1$ points incident with L, there must be at least two points of the same member of \mathscr{S} on L; hence, L belongs to at least one member of \mathscr{S}. So we have the inequality

$$
s\left(1+t^{\prime}\right)\left(1+s t^{\prime}\right) \geqslant(1+t)(1+s t) .
$$

Since $t \geqslant s t^{\prime}$, this implies $s+t \geqslant 1+s t \geqslant 1+2 t$, hence $s>t$, in contradiction with $t \geqslant s t^{\prime} \geqslant s$.

From now on we assume that $n=s+1$.

Lemma 5. If a point of Γ is contained in at least two members of \mathscr{S}, then every line of Γ incident with x is a line of some member of \mathscr{S}.

Proof. Let $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ be defined such that x is contained in every member of \mathscr{S}^{\prime} and in no member of $\mathscr{S} \backslash \mathscr{S}^{\prime}$ and suppose that \mathscr{S}^{\prime} has cardinality $\ell>1$. Let M be a line through x not belonging to one of the members of \mathscr{S}. Then the $s+1-\ell$ elements of $\mathscr{S} \backslash \mathscr{S}^{\prime}$ have to cover the s points on M distinct from x. This is only possible if at least one member covers at least two points, hence M is contained in some member Γ_{M} of $\mathscr{S} \backslash \mathscr{S}^{\prime}$.

The following lemma is crucial.

Lemma 6. If every point of some line L of Γ is contained in at least two members of \mathscr{S}, then either $s=2$, or L is contained in at least s members of \mathscr{S}.

Proof. Suppose that the line L of Γ is contained in $\ell \geqslant 1$ members of \mathscr{S}, which we gather in the set $\mathscr{S}^{\prime} \subseteq \mathscr{S}$ (note that indeed $\ell \geqslant 1$ by the previous lemma). Let x be any point on L. There are at most ℓt^{\prime} lines through x distinct from L and belonging to one of the members of \mathscr{S}^{\prime}, where

$$
t^{\prime}=\max \left\{t^{*} \mid \text { some member of } \mathscr{S} \text { has order }\left(s, t^{*}\right)\right\} .
$$

Let M be a line through x not belonging to one of the members of \mathscr{S}^{\prime}. Then by Lemma $5 M$ is contained in some member Γ_{M} of $\mathscr{S} \backslash \mathscr{S}^{\prime}$. Suppose some other line M^{\prime} concurrent with L is also contained in Γ_{M}. If M^{\prime} is not incident with x, then this implies that L is in Γ_{M}, a contradiction to our assumptions. Therefore, M^{\prime} is incident with x. Since there are at least $t-\ell t^{\prime}$ lines through x not contained in any member
of \mathscr{S}^{\prime}, there are at least $\left(t-\ell t^{\prime}\right) /\left(t^{\prime}+1\right)$ members of $\mathscr{S} \backslash \mathscr{S}^{\prime}$ containing x. Varying x, this gives us a total of at least

$$
\ell+\frac{\left(t-\ell t^{\prime}\right)(s+1)}{t^{\prime}+1}
$$

elements of \mathscr{S}. Expressing that this is at most equal to $s+1$, we obtain after a short calculation

$$
l \geqslant \frac{\left(t-t^{\prime}-1\right)(s+1)}{s t^{\prime}-1}
$$

which, using $t \geqslant s t^{\prime}$, simplifies to

$$
\ell \geqslant s-\frac{t^{\prime}+1}{s t^{\prime}-1}
$$

Noting that $t^{\prime}+1 \geqslant s t^{\prime}-1$ (which is equivalent with $(s-1) t^{\prime} \leqslant 2$) if and only if $s=2$ or 3 , we are done if $s>3$. Suppose now that $s=3$ and $\ell<3$. Then $t^{\prime}+1 \geqslant 3 t^{\prime}-1$, hence $t^{\prime}=1$ and $\ell=2$. Consequently, equality holds in the above expressions, implying first that $t=s t^{\prime}=4$, and second that each x is contained in exactly $\left(t-\ell t^{\prime}\right) /\left(t^{\prime}+1\right)=\frac{1}{2}$ members of $\mathscr{S} \backslash \mathscr{S}^{\prime}$, a contradiction.

We now treat some special cases.

Lemma 7. If all members of \mathscr{S} have order ($s, 1$), then either $s=t=2$, or $s=t=3$, or $t=s+2$ and \mathscr{S} forms a partition of the point set of Γ.

Proof. Since all points of Γ must be covered, we have

$$
(s+1)^{3} \geqslant(s+1)(1+s t)
$$

This implies $2 s+s^{2} \geqslant s t$, hence $t \leqslant s+2$. By the divisibility condition $s+t \mid(1+s t) s t$ (see Payne and Thas $[4,1.2 .2]$), $t \neq s+1$. Hence $t=s+2$ or $t=s$. If $t=s+2$, then the assertion follows from the equality $(s+1)^{3}=(s+1)(1+s t)$. So we may suppose that $s=t$. Note that every line of Γ meets every member of \mathscr{S} in exactly one point if it is not contained in it (this follows from Theorem 1).
(i) First suppose that some line L of Γ is contained in $\ell>1$ members of \mathscr{S}. Since this implies that all points of L are contained in at least two members of \mathscr{S}, we conclude with Lemma 6 that L is contained in at least s members of \mathscr{S}. Let \mathscr{S}^{\prime} be the set of elements of \mathscr{S} containing L.

Assume first that $s \geqslant 4$ and $\ell=s$. If every line of Γ concurrent with L is contained in a member of \mathscr{S}^{\prime}, then every point is in a member of \mathscr{S}^{\prime}, contradicting Lemma 4. So there exists a line N meeting L not contained in a member of \mathscr{S}^{\prime}. But that means that two members of \mathscr{S}^{\prime} share a line $L^{\prime} \neq L$ incident with the meeting point y of L and N. Again, L^{\prime} is contained in at least s members of \mathscr{S}. Suppose first that it is contained in precisely s members, which we gather in $\mathscr{S}^{\prime \prime}$. Then clearly $\left|\mathscr{S}^{\prime} \cap \mathscr{S}^{\prime \prime}\right|$ is either s or $s-1$. In the first case, the $s-1$ lines through y distinct from L and L^{\prime} must lie in the unique element of $\mathscr{S} \backslash \mathscr{S}^{\prime}$; in the second case these $s-1$ lines must
lie together with L and L^{\prime} in one of the members of $\mathscr{S} \backslash\left(\mathscr{S}^{\prime} \cap \mathscr{S}^{\prime \prime}\right)$. In either case we deduce $s-1 \leqslant 2$, or $s=3$, a contradiction. Now, suppose that L^{\prime} is contained in all members of \mathscr{S}, then we interchange the roles of L and L^{\prime} in the next paragraph.

So assume now that $s \geqslant 4$ and $\ell=s+1$. Let x be any point on L. Then some line $K \neq L$ through x is also contained in at least s members of \mathscr{S}. At most one member remains to cover the points of Γ collinear with x and not incident with L or K, and that member also contains L. Hence $s=2$.
(ii) Now, suppose that no line of Γ lies in two distinct members of \mathscr{S}. It follows readily from Lemma 5 that any point x which is contained in at least two members of \mathscr{S}, lies in exactly $(s+1) / 2$ members of \mathscr{S}.

Now, consider any line M contained in some member of \mathscr{S}, say, Γ^{\prime}. Every member of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$ meets M in exactly one point. But every point defines exactly $(s-1) / 2$ members of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$. Hence s is odd and $2 s$ must be divisible by $s-1$, which implies that $s=3$.

This completes the proof of the lemma.
Lemma 8. If at least one member of \mathscr{S} has order $\left(s, t^{\prime}\right)$ with $t^{\prime}>1$, and if two collinear points x, y of Γ lie each in at least two members of \mathscr{S}, then all points of the line joining x and y do, or $s=2$, or $\left(t^{\prime}, s, t\right)=(2,4,8)$.

Proof. Suppose z is a point of the line L of Γ incident with both x and y, with the property that it lies in a unique member Γ^{\prime} of \mathscr{S}, and suppose that x, respectively, y is contained in two members of \mathscr{S}, say Γ_{1} and Γ_{2}, respectively, Γ_{3} and Γ_{4}. By Lemma 5, we may assume that L belongs to Γ_{1}, and similarly to Γ_{3} as well. This implies that $\Gamma_{1}=\Gamma_{3}=\Gamma^{\prime}$ (otherwise z is contained in at least two members of \mathscr{S}). Let M be a line through x not belonging to Γ_{1}. Remark that by Lemma 5 every line through x lies in some member of \mathscr{S}.

Let t^{\prime} be the largest number such that \mathscr{S} contains a member of order $\left(s, t^{\prime}\right)$. Then it is clear that x lies in at least

$$
\frac{t-t^{\prime}}{t^{\prime}+1}
$$

members of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$. We now show that, provided $s>2$ and $s \neq 4$, this is more than half of the members of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$, i.e., we show that

$$
\frac{t-t^{\prime}}{t^{\prime}+1}>\frac{s}{2}
$$

Suppose on the contrary that

$$
\frac{t-t^{\prime}}{t^{\prime}+1} \leqslant \frac{s}{2}
$$

Then $2 t-2 t^{\prime} \leqslant s t^{\prime}+s$. From Theorem 1 , we infer $t \geqslant s t^{\prime}$, hence $2 t-2 t^{\prime} \leqslant t+s$. Multiplying with s, we obtain $s t-2 t \leqslant s^{2}$. Since we may suppose that $t^{\prime}>1$ and $s>2$, we use $t \geqslant \sqrt{s^{3}}$ (see Theorem 1) to obtain $s-2 \leqslant \sqrt{s}$, which implies after a short calculation $(s-4)(s-1) \leqslant 0$. Hence $s=3,4$, disregarding the case $s=2$. If $s=3$, then automatically
$t^{\prime}=3$ and hence, since $t \geqslant s t^{\prime}, t=9$. But in this case there are at least $\left(t-t^{\prime}\right) /\left(t^{\prime}+1\right)=\frac{3}{2}$, hence 2 members of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$ containing x.

If $s=4$, then since $(s-4)(s-1)=0$, equality holds in every equation above, so $\left(t^{\prime}, s, t\right)=(2,4,8)$.

If $s>2$ and $\left(t^{\prime}, s, t\right) \neq(2,4,8)$, then we similarly deduce that y is contained in more than half of the members of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$. Hence at least one member of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$ contains both x and y and hence L is contained in at least two members of \mathscr{S}, therefore also z is.

Lemma 9. Suppose that at least one member of \mathscr{S} has order $\left(s, t^{\prime}\right)$ with $t^{\prime}>1$ and that st >9. If $\left(t^{\prime}, s, t\right) \neq(2,4,8)$, then one of the following holds:
(i) no line of Γ is contained in at least two members of \mathscr{P};
(ii) all members of \mathscr{S} have the same order, $\left(t^{\prime}, s, t\right)=\left(s, s, s^{2}\right)$ and there exists a large subquadrangle Γ^{*} of order $(s, 1)$ such that the intersection of any two members of \mathscr{S} is exactly Γ^{*};
(iii) there is a unique line L of Γ belonging to at least two members of \mathscr{S}. In this case L belongs to all members of \mathscr{S} and $\left(t^{\prime}, s, t\right)=(10,15,160)$.

Proof. We may assume that there exists a line L contained in at least two members of \mathscr{S}. By Lemma 6, L is contained in $\ell \geqslant s$ members of \mathscr{S}. Suppose first that $\ell=s$. Let Γ^{\prime} be the unique element of \mathscr{S} not containing L. Let u be any point of Γ not on L, and not contained in any member of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$ (u exists by Lemma 4). Let L_{u} be the unique line of Γ through u meeting L. Then the s points of L_{u} not on L all belong to Γ^{\prime} (since if one such point belongs to a member $\Gamma^{\prime \prime}$ of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$, the line L_{u} and hence the point u also belongs to $\Gamma^{\prime \prime}$), and hence so does L_{u}. So there exists a point x on L (namely, the intersection of L and L_{u}) contained in Γ^{\prime}. It is easily seen that there is at least one other point z in Γ^{\prime} not collinear with x. Let M be the line of Γ through z and meeting L. Since M is not incident with x, the line M belongs to a member of $\mathscr{S} \backslash\left\{\Gamma^{\prime}\right\}$. But that means that z is contained in at least two members of \mathscr{S}. By Lemmas 8 and 6 , the line M, and hence the point z belongs to at least s members of \mathscr{S}. We can do this reasoning with every point of Γ^{\prime} collinear with z, but not collinear with x. But by Lemma 8, this property also holds for all points of Γ^{\prime} collinear with x. Hence all points of Γ^{\prime} are contained in at least s members of \mathscr{S}. Deleting Γ^{\prime} from \mathscr{S}, we obtain a contradiction to Lemma 4.

Now, suppose that L is contained in exactly $s+1$ members of \mathscr{S}. By the previous paragraph, we may assume that every line which is contained in at least two members of \mathscr{S}, is contained in all members of \mathscr{S}. Let x be any point on L. Let C be the number of lines through x contained in all members of \mathscr{S}. Then, since by Lemma 5 every line through x is contained in either 1 or all members of \mathscr{S}, C satisfies the equation $(s+1) C+(s+1-C)=\tau$, where τ is the sum of all $t^{*}+1$ such that $\left(s, t^{*}\right)$ is the order of a member of \mathscr{S}. Hence C is a constant. If $C>1$, then the set of all points lying in all members of \mathscr{S} forms a large subquadrangle Γ^{*}, which is also a large subquadrangle of any member of \mathscr{S}. Now (ii) follows from Theorem 1.

So we may assume that $C=1$. Then, clearly, there is a unique line L contained in all members of \mathscr{S} and every point of Γ contained in at least two members of \mathscr{S} is incident with L. Let $\Gamma^{\prime} \in \mathscr{S}$ have order $\left(s, t^{\prime}\right)$. Let \mathscr{R} be the set of all lines of Γ not contained in any member of \mathscr{S}. Then every element of \mathscr{R} is incident with a unique point of every element of \mathscr{S}, hence with a unique point of Γ^{\prime}. Conversely, every point of Γ^{\prime} not incident with L is incident with exactly $t-t^{\prime}$ elements of \mathscr{R}. So the set \mathscr{R} has size $(1+s) s t^{\prime}\left(t-t^{\prime}\right)$. Similarly, if $\Gamma^{\prime \prime} \in \mathscr{S}$ has order $\left(s, t^{\prime \prime}\right)$, then \mathscr{R} has size $(1+s) s t^{\prime \prime}\left(t-t^{\prime \prime}\right)$. It follows that $t^{\prime}\left(t-t^{\prime}\right)=t^{\prime \prime}\left(t-t^{\prime \prime}\right)$, therefore either $t^{\prime}=t^{\prime \prime}$ or $t^{\prime}+t^{\prime \prime}=t$. In the latter case, we consider a point of L and deduce from $C=1$ and Lemma 5 that $\mathscr{S}=\left\{\Gamma^{\prime}, \Gamma^{\prime \prime}\right\}$, so $s=1$, a contradiction. We conclude that $t^{\prime}=t^{\prime \prime}$, so all members of \mathscr{S} have the same order $\left(s, t^{\prime}\right)$. If x is incident with L, then every line through x distinct from L belongs to exactly one member of \mathscr{S}, so we deduce from this that $(1+s) t^{\prime}=t$.

We now show that the parameter set $\left(t^{\prime}, s, t\right)=\left(t^{\prime}, s, t^{\prime}+s t^{\prime}\right)$ is never feasible, except for $\left(t^{\prime}, s, t\right)=(10,15,160)$. Indeed, we must have $s+t \mid(1+s t) s t$, which is readily seen to be equivalent with $s+t \mid\left(s^{2}-1\right) s^{2}$. Let k be the greatest common divisor of s^{2} and $s+t$. Let p^{i} divide k, with p prime and i maximal. Let p^{j} divide s, with $j \leqslant i$ maximal. Then p^{j} divides $t=(1+s) t^{\prime}$, and so p^{j} divides t^{\prime}. It follows that $p^{2 j}$ divides $s t^{\prime}$, so p^{i} divides $s+t-s t^{\prime}=s+t^{\prime}$ (because $i \leqslant 2 j$). We conclude that k divides $s+t^{\prime}$. Suppose first that $k \leqslant\left(s+t^{\prime}\right) / 3$.

Note that $s+t=s+(1+s) t^{\prime}$ and $s+1$ are relatively prime. Hence $(s+t) / k$ must divide $s-1$. However, the greatest common divisor of $s-1$ and $s+t^{\prime}+s t^{\prime}$ is a divisor of $(s-1)+1+t^{\prime}+(s-1) t^{\prime}+t^{\prime}$, hence of $1+2 t^{\prime}$. Consequently, $(s+t) / k$ must divide $1+2 t^{\prime}$. So we obtain

$$
\begin{aligned}
1+2 t^{\prime} & \geqslant \frac{s+t^{\prime}+s t^{\prime}}{k} \\
& \geqslant \frac{s+t^{\prime}+s t^{\prime}}{\frac{s+t^{\prime}}{3}} \\
& \geqslant 3+3 \frac{s t^{\prime}}{s+t^{\prime}},
\end{aligned}
$$

which implies $2 t^{\prime 2} \geqslant 2 s+2 t^{\prime}+s t^{\prime}$. This is only possible if $2 t^{\prime} \geqslant 2+s$.
On the other hand, we also have

$$
\begin{aligned}
s-1 & \geqslant \frac{s+t^{\prime}+s t^{\prime}}{k} \\
& \geqslant 3+3 \frac{s t^{\prime}}{s+t^{\prime}},
\end{aligned}
$$

which implies that $s^{2} \geqslant 2 s t^{\prime}+4 s+4 t^{\prime}$. Using the inequality $2 t^{\prime} \geqslant 2+s$, this means that $s^{2} \geqslant s^{2}+8 s+4$, a contradiction. Hence we have shown that $k=s+t^{\prime}$ or $k=(s+$ $\left.t^{\prime}\right) / 2$. Moreover, we have shown that, if $T=\left[\left(1+2 t^{\prime}\right)\left(s+t^{\prime}\right)\right] /\left(s+t^{\prime}+s t^{\prime}\right) \geqslant 3$, then $S=\left[(s-1)\left(s+t^{\prime}\right)\right] /\left(s+t^{\prime}+s t^{\prime}\right)<3$.

First, let $k=s+t^{\prime}$. Then $\left(s+t^{\prime}+s t^{\prime}\right) /\left(s+t^{\prime}\right)$ divides both $s-1$ and $1+2 t^{\prime}$. Hence both S and T (defined above) are positive integers. We first show that $T \geqslant 3$.

Indeed, the only other possibilities are $T=1$ and 2 . If $T=1$, then one calculates that $s t^{\prime}+2 t^{\prime 2}=0$, a contradiction. If $T=2$, then one computes that $2 t^{\prime 2}=s+t^{\prime}$, and since $s \leqslant t^{\prime 2}$, this implies $t^{\prime 2} \leqslant t^{\prime}$, so $t^{\prime}=1=s$, a contradiction. So we must have $S=1$ or 2. If $S=1$, then an elementary calculation shows $s^{2}=2 s+2 t^{\prime}$. Since $t^{\prime}<s$ (indeed, $t^{\prime}=s$ implies $t>s^{2}$), we have $s^{2}<4 s$, so $s=2$ (because s must clearly be even). But now $t^{\prime}=0$ follows, a contradiction. Suppose now $S=2$. Then $s^{2}=3 s+3 t^{\prime}+s t^{\prime}$. Hence the quadratic equation $s^{2}-\left(3+t^{\prime}\right) s-3 t^{\prime}=0$ in s has an integer solution. The discriminant is, however, $t^{\prime 2}+18 t^{\prime}+9=\left(t^{\prime}+9\right)^{2}-72$. So the square root d of the discriminant satisfies $t^{\prime}+3<d<t^{\prime}+9$. If $d=t^{\prime}+i$, with $i=4,6,8$, then t^{\prime} is not an integer. If $d=t^{\prime}+5$, then $t^{\prime}=2$ and $s=6$, a contradiction. If $d=t^{\prime}+7$, then $t^{\prime}=10$, $s=15$ and $t=160$ and all divisibility conditions are satisfied.

Now, suppose that $k=\left(s+t^{\prime}\right) / 2$. Then both S and T must be even integers. But $T \neq 2$ as above, hence $S=2$. This again implies $\left(t^{\prime}, s, t\right)=(10,15,160)$, except that this cannot happen now since it means that $s+t^{\prime}$ is odd.

Lemma 10. Suppose that at least one member of \mathscr{S} has order $\left(s, t^{\prime}\right)$ with $t^{\prime}>1$, that st >9 and that $\left(t^{\prime}, s, t\right) \neq(2,4,8)$. If no line of Γ is contained in at least two members of \mathscr{S}, then (the point set of) Γ is the disjoint union of (the point sets of) the members of \mathscr{S} and $\left(t^{\prime}, s, t\right)=\left(t^{\prime}, s, s t^{\prime}+t^{\prime}+1\right)$.

Proof. Let \mathscr{R} be the set of points of Γ contained in at least two members of \mathscr{S}. Let $x \in \mathscr{R}$. Assume that x is not contained in all members of \mathscr{S} and let Γ^{\prime} be a member of \mathscr{S} not containing x. Let y be a point of Γ^{\prime} collinear with x. By Lemma 5, the line $x y$ belongs to some member of \mathscr{S}. Clearly, $x y$ does not belong to Γ^{\prime} since otherwise x would belong to Γ^{\prime}. So $x y$ belongs to another member, which implies $y \in \mathscr{R}$. By Lemmas 8 and 6 , the line $x y$ belongs to at least two members of \mathscr{S}, a contradiction. Hence x belongs to all members of \mathscr{S}.

Now, let z be a point of Γ not belonging to \mathscr{R}. Then z is contained in a unique member Γ_{1} of \mathscr{S}. Consider two members Γ_{2} and Γ_{3} of \mathscr{S} with $\Gamma_{1} \neq \Gamma_{2} \neq \Gamma_{3} \neq \Gamma_{1}$. Let Γ_{i} have order $\left(s, t_{i}\right), i=1,2,3$. The number of points of $\Gamma_{j}, j=2,3$, collinear with z is $1+s t_{j}$ (since this set forms an ovoid in Γ_{j}). Every line through z not in Γ_{1} meets Γ_{j}, $j=2,3$, because every such line is contained in no member of \mathscr{S} and therefore cannot contain two points of the same member. Hence there are precisely $1+s t_{j}-\left(t-t_{1}\right)$ lines of Γ_{1} through z meeting Γ_{j}, or in other words, there are precisely $1+s t_{j}-$ $t+t_{1}$ elements of \mathscr{R} collinear with z. Since this number should be independent of j, we conclude $t_{2}=t_{3}$. It is now easy to see that all members of \mathscr{S} have the same order $\left(s, t^{\prime}\right)$.

There remains to show that \mathscr{R} is empty. Suppose it is not empty. Then by Lemma 5 we have $(s+1)\left(t^{\prime}+1\right)=t+1$. Let z, Γ_{1} and Γ_{2} be as above. Remember that there are precisely $1+(s+1) t^{\prime}-t$ elements of \mathscr{R} collinear with z. In view of the equality $(s+1)\left(t^{\prime}+1\right)=t+1$, this number becomes $1-s$, a contradiction.

The lemma is proved.

All we still have to consider are the small cases, i.e., the cases st <9 and $\left(t^{\prime}, s, t\right)=(2,4,8)$.

Lemma 11. If $(s, t)=(4,8)$, then every member of \mathscr{S} has order $(4,2)$, every two members of \mathscr{S} meet in the nine points of an ovoid in both members, there are exactly 30 points of Γ which lie in at least two members of \mathscr{S} and every such point lies in exactly 3 members, every member contains exactly 18 points which lie in three members of \mathscr{S} and no line is contained in at least two members of \mathscr{S}.

Proof. Note that by counting the points, there are at least 2 members of \mathscr{S} of order $(4,2)$. Since every possible subquadrangle of Γ has either order $(4,2)$ or order $(4,1)$, and since $45+45+25+25+25=165$, we see that, if \mathscr{S} contains exactly two members of order $(4,2)$, then the point set of Γ is the disjoint union of the point sets of the elements of \mathscr{S}. But similarly as before, we count in two ways the number of lines not belonging to any member of \mathscr{S}. Starting with the points of a member of \mathscr{S} of order (4,2), we obtain $45 \times 6=270$; starting with the points of a member of \mathscr{S} of order $(4,1)$, we obtain $25 \times 7=175$, a contradiction. Hence \mathscr{S} contains at least three members of order $(4,2)$ and there exists at least one point of Γ lying in at least two members of \mathscr{S}. Let \mathscr{D} be the set of all such points.
(i) First suppose that no line of Γ is contained in at least two members of \mathscr{S}. We showed that \mathscr{D} is non-empty. By Lemma 5, we can now write 9 as the sum of a number of 3 's and at most two 2's. So clearly only 3 's are possible, hence no element of \mathscr{D} belongs to a member of \mathscr{S} of order $(4,1)$. Hence, again, the number of lines of Γ which do not belong to any member of \mathscr{S} is equal to $25 \times 7=175$, provided \mathscr{S} contains an element of order $(4,1)$. So $175=d \times 6$, where d is de number of points of a member of \mathscr{S} of order $(4,2)$ not belonging to any other member of \mathscr{S}. Since 6 does not divide 175, this leads to a contradiction. Therefore, all members of \mathscr{S} have order (4,2). Also, the number of points of such a member of \mathscr{S} not belonging to any other member of \mathscr{S} must be a constant d. And so there are exactly $6 d$ lines of Γ not contained in any member of \mathscr{S}. Counting all lines of Γ, we obtain

$$
297=6 d+5 \times 27
$$

hence $d=27$. Counting the number of pairs $\left(x, \Gamma^{\prime}\right)$, where x is a point of $\Gamma^{\prime} \in \mathscr{S}$ and x lies in at least two (and hence exactly in three) elements of \mathscr{S}, we obtain that the number of points contained in three members of \mathscr{S} is equal to

$$
\frac{5 \times(45-d)}{3}=30
$$

Note that, since $t=s t^{\prime}$, with $\left(t^{\prime}, s, t\right)=(2,4,8)$, every line of any member of \mathscr{S} meets every other member of \mathscr{S} in a point. Hence two members meet in an ovoid of both members. Since $d=27$, there are $45-d=18$ points of each member of \mathscr{S} belonging to three members of \mathscr{S}.
(ii) Now, suppose that there exists a line L of Γ belonging to at least two members Γ_{1} and Γ_{2} of $\mathscr{S}=\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}\right\}$. Since every line through every point of L
must belong to some member of \mathscr{S} (by Lemma 5), and these members have either order $(4,2)$ or $(4,1)$, we deduce that every point of L is in at least two members of $\left\{\Gamma_{3}, \Gamma_{4}, \Gamma_{5}\right\}$. Since L is incident with 5 points, at least one pair must appear twice, so we have shown that L lies in at least 4 elements of \mathscr{S}, say, $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and Γ_{4}.
(a) First, suppose that L does not lie in Γ_{5}. If no line of Γ_{5} meets L, then we consider any pair of collinear points x, y with $x y$ concurrent with L, and such that L is incident with neither x nor y. If both x and y belong to Γ_{5}, then $x y$ belongs to Γ_{5}, a contradiction. Hence we may assume that x does not belong to Γ_{5}. Consequently, x belongs to, say, Γ_{1}. But then also the line $x y$ and the point y belong to Γ_{1}. We conclude that in this case Γ is the union of $\mathscr{S} \backslash\left\{\Gamma_{5}\right\}$, contradicting Lemma 4. So there is a unique point x on L incident with some lines of Γ_{5}. We claim that every line M meeting L not in x is contained in a unique element of $\mathscr{S} \backslash\left\{\Gamma_{5}\right\}$. Indeed, M is contained in at least one such element and the order $\left(4, t^{\prime}\right)$ of $\Gamma_{i}, i \in\{1,2,3,4\}$, satisfies $t^{\prime} \leqslant 2$. So $2 \times 4=8$ implies that Γ_{i} has order (4,2), for all $i \in\{1,2,3,4\}$, and our claim follows.

Now, consider a point z of Γ_{5} not collinear with x. Then z is incident with a line N meeting L, and N belongs to, say, Γ_{1}, but not to Γ_{2}, Γ_{3} or Γ_{4}. But z is incident with Γ_{1} and with Γ_{5}, hence it is incident with at least one other element of \mathscr{S} (indeed, if not, then by Lemma 5 , the order $\left(s, t^{\prime \prime}\right)$ of Γ_{5} satisfies $3+t^{\prime \prime}+1 \geqslant 9$, since Γ_{1} has order (4,2), and this contradicts Theorem 1), say, Γ_{2}. But then N belongs to Γ_{2} as well, a contradiction.
(b) So we may suppose that L belongs to all members of \mathscr{S}. In fact, by the foregoing, we may assume that every line of Γ which belongs to at least two members of \mathscr{S}, belongs to all members of \mathscr{S}. Suppose now that a line M meeting L belongs to at least two members of \mathscr{S}. Each line through the meeting point x of L and M must belong to a member of \mathscr{S}. But every member of \mathscr{S} has at most 3 lines through x, two of which are L and M. This leads to a contradiction. So every line of Γ meeting L belongs to a unique element of \mathscr{S}. It follows that three elements of \mathscr{S}, say $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$, have order $(4,2)$, and two of them, say Γ_{4}, Γ_{5}, have order $(4,1)$. Since Γ_{1}, Γ_{2} and Γ_{3} each have 40 points off L, and Γ_{4} and Γ_{5} each have 20 points off L, and since $165=3 \cdot 40+2 \cdot 20+5$, no point off L belongs to at least two members of \mathscr{S}. Counting in two ways (as above) the number of lines not belonging to any member of \mathscr{S}, we obtain $40 \cdot 6=20 \cdot 7$, a contradiction.

The lemma is proved.

Example. Let Γ be the unitary quadrangle $H\left(4, q^{2}\right)$ embedded in a standard way in $\operatorname{PG}\left(4, q^{2}\right)$. Let π be a plane of $\operatorname{PG}\left(4, q^{2}\right)$ meeting $H\left(4, q^{2}\right)$ in a non-degenerate hermitian curve \mathscr{C}. Let L be the polar line of π. Then L meets $H\left(4, q^{2}\right)$ in $q+1$ points $x_{0}, x_{1}, \ldots x_{q}$. Let $x_{q+1}, \ldots, x_{q^{2}}$ be the remaining points on L. The hyperplane determined by π and $x_{i}, i \in\left\{q+1, q+2, \ldots, q^{2}\right\}$, meets $H\left(4, q^{2}\right)$ in a non-degenerate hermitian variety $H\left(3, q^{2}\right)$, which is a subquadrangle of order $\left(q^{2}, q\right)$. These $q^{2}-q$ subquadrangles cover already all points of Γ, except for the points off \mathscr{C} and collinear with one of the x_{i}, $i \in\{0,1, \ldots, q\}$. Let π^{\prime} be a plane containing $q+1$ lines of Γ through x_{0}. Then the
hyperplane generated by π^{\prime} and L meets $H\left(4, q^{2}\right)$ in a subquadrangle of order $\left(q^{2}, q\right)$. The lines of Γ through x_{0} form a hermitian curve in the residue of x and the tangent hyperplane of $H\left(4, q^{2}\right)$ in x. The point set of a hermitian curve \mathscr{U} can be partitioned into $q^{2}-q+1$ intersections with $(q+1)$-secants. Indeed, it suffices to consider a point off \mathscr{U} in a projective plane where \mathscr{U} lives, and the $(q+1)$-secants through x together with the polar line of x with respect to \mathscr{U} do the job. Hence we can find $q^{2}-q+1$ additional subquadrangles containing $\left\{x_{0}, x_{1}, \ldots, x_{q}\right\}$ and covering all points on all lines of Γ through $x_{i}, i \in\{0,1, \ldots, q\}$. So we have covered the point set of Γ by $2 q^{2}-2 q+1$ subquadrangles of order $\left(q^{2}, q\right)$. For $q=2$, this number equals exactly $5=q^{2}+1$. My conjecture is that $2 q^{2}-2 q+1$ is the least possible number to cover $H\left(4, q^{2}\right)$ with subquadrangles of order $\left(q^{2}, q\right)$, and the proof probably will not be too difficult at all.

Lemma 12. If $(s, t)=(3,3)$, then there are exactly two non-isomorphic examples, one with no line of Γ in at least two members of Γ, and the other with a unique pair of concurrent lines contained in 3 members of Γ.

Proof. We distinguish two cases.
(i) Suppose first that there is some line L, which is contained in at least two members of $\mathscr{S}=\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}\right\}$, say, Γ_{1} and Γ_{2}. By Lemma 4, L is contained in at least 3 members of \mathscr{S}, say L is also contained in Γ_{3}. If L is, moreover, contained in Γ_{4}, then through every point x of L, there is a line $L_{x} \neq L$ contained in at least 2 , and hence in at least 3 members of \mathscr{S}. Taking $x \neq y$, both incident with L, we see that L_{x} and L_{y} are contained in at least two members of \mathscr{S}, a contradiction because two opposite lines determine a subquadrangle completely. Hence L is not contained in Γ_{4}. But L must be incident with a unique point z of Γ_{4} (by Theorem 1). Through z, there must be a line $M \neq L$ contained in at least 2 , and hence again 3 members of \mathscr{S}. Suppose these members are $\Gamma_{2}, \Gamma_{3}, \Gamma_{4}$. Let M^{\prime} be the unique line of Γ_{1} through z distinct from L. No line concurrent with L and not incident with z can belong to Γ_{4}. On the other hand, whenever a point u not collinear with z belongs to Γ_{i}, for some $i \in\{1,2,3\}$, then the unique line through u concurrent with L belongs to Γ_{i}. Hence we deduce easily that every line concurrent with L and not incident with z must belong to some $\Gamma_{i}, i=1,2,3$. Now, notice that L is a regular line (since Γ contains subquadrangles of order (3,1), Γ is isomorphic to $Q(4,3)$). It is now easily seen using the projective plane corresponding to L that Γ_{1} and Γ_{2} share a line N concurrent with L and not through z. But then Γ_{3} should contain three lines through the meeting point of L and N, a contradiction. So M belongs to Γ_{1}, Γ_{2} and Γ_{3}. It follows that Γ_{4} contains the two lines through z which are distinct from L and M. There are actually three choices for Γ_{4} at this stage, but they are easily seen to be equivalent under the automorphism group of Γ (which is a classical quadrangle) fixing the line L pointwise, and fixing all lines meeting L (root elations).
(ii) Now, suppose that no line of Γ is contained in at least 2 members of \mathscr{S}. Notice that the lines of Γ can be viewed as the non-isotropic points of a unitary polarity in $\operatorname{PG}(3,4)$. Let $\mathscr{2}$ be the corresponding hermitian variety. The points of Γ are then the
sets of 'polar quadrangles', i.e., sets of 4 pairwise conjugate (w.r.t. the unitary polarity) points of $\operatorname{PG}(3,4)$. It is readily seen that the lines of a subquadrangle of order $(3,1)$ of Γ correspond to the points off $\mathscr{2}$ but in a tangent plane of $\mathscr{2}$. And two subquadrangles meet in 4 non-collinear points if and only if the corresponding points (the intersections of $\mathscr{2}$ with the tangent planes) on $\mathscr{2}$ are on a line contained in $\mathscr{2}$. Hence \mathscr{S} defines a set of 4 points on a line T of $\mathscr{2}$. Now, let θ be an element of order 5 of the automorphism group of \mathscr{Q}, preserving T. Then the corresponding set \mathscr{S}^{\prime} of 5 subquadrangles of Γ covers Γ and no line of Γ belongs to two members of \mathscr{S}^{\prime}. Since every point of Γ is in at most two members of \mathscr{S}^{\prime}, the number of pairs $\left(x, \Gamma^{\prime}\right)$, where x is a point in a member Γ^{\prime} of \mathscr{S}^{\prime}, is at most 80 , if we first count the points x. But it is exactly 80 is we first count the members of \mathscr{S}^{\prime}. Hence every point lies in exactly 2 members of \mathscr{S}^{\prime}.

Now, the members of \mathscr{S} correspond to 4 collinear points on 2 . Hence these points are contained in a line of $\mathscr{2}$ and so \mathscr{S} arises from \mathscr{S}^{\prime} by deleting one member. Any members gives rise to an isomorphic set of 4 subquadrangles because of the transitive group of order 5 acting on it. Since every point is covered twice by the \mathscr{S}^{\prime}, deleting a member does give rise to a set \mathscr{S} of 4 subquadrangles whose union is Γ.

This completes the proof of the lemma.

The case $s=2$ will not be treated here. It is an easy case. Indeed, if $t=4$, then there are coverings with 3 subquadrangles of order (2,1). Extending any number of them to a subquadrangle of order $(2,2)$ gives an example of a covering with $s+1$ subquadrangles for which the order is not necessarily a constant pair. If $t=2$, then all coverings with 3 subquadrangles of order $(2,1)$ can be found as an easy exercise.

We now turn our attention to finite polar spaces, in order to show Theorem 3.

3. Proof of Theorem 3

Let Γ be a finite non-degenerate classical polar space of rank $\ell \geqslant 2$, viewed as a geometry over the diagram of type B_{ℓ}. This just means that we consider quadrics and hermitian varieties together with their totally singular subspaces. We assume $\ell>2$, since otherwise the result follows readily from Theorem 2. Indeed, this is clear if we show that Case (i) of Theorem 2 never occurs with classical quadrangles of order (s, t) with $t \geqslant s>2$. The only possibilities are $(s, t) \in\left\{(q, q),\left(q, q^{2}\right),\left(q^{2}, q^{3}\right)\right\}$, for some prime power q. Then $t^{\prime} \in\left\{(q-1) /(q+1), q-1,\left(q^{3}-1\right) /\left(q^{2}+1\right)\right.$ and this leads to a contradiction (every subquadrangle of a classical quadrangle must again be a classical quadrangle). Denote by $\operatorname{PG}(m, q), q$ a power of a prime, the ambient projective space (and in characteristic 2 we consider a symplectic polar space embedded as a quadric). We suppose that the point set of Γ is covered by the point sets of $k \leqslant q+1$ polar subspaces of rank ℓ and each of these polar subspaces has also $q+1$ points on a line. Let \mathscr{P} be the set of these polar subspaces. First, we want to show that $k=q+1$. To that end, we prove a lemma, which is well-known (it is a special case of the main result of Bose and Burton [1]), but we include a proof for the sake of completeness.

Table 1

Polar space	Number of points	Number of maximal subspaces
$Q^{+}(2 \ell-1, q)$	$\frac{\left(q^{\ell}-1\right)\left(q^{\ell-1}+1\right)}{q-1}$	$2(q+1)\left(q^{2}+1\right) \ldots\left(q^{\ell-1}+1\right)$
$Q(2 \ell, q)$	$\frac{q^{2 \ell}-1}{q-1}$	$(q+1)\left(q^{2}+1\right) \ldots\left(q^{\ell}+1\right)$
$Q^{-}(2 \ell+1, q)$	$\frac{\left(q^{\ell+1}+1\right)\left(q^{t}-1\right)}{q-1}$	$\left(q^{2}+1\right)\left(q^{3}+1\right) \ldots\left(q^{\ell+1}+1\right)$
$H\left(2 n-1, q^{2}\right)$	$\frac{\left(q^{2 n}-1\right)\left(q^{2 n-1}+1\right)}{q^{2}-1}$	$(q+1)\left(q^{3}+1\right) \ldots\left(q^{2 n-1}+1\right)$
$H\left(2 n, q^{2}\right)$	$\frac{\left(q^{2 n+1}+1\right)\left(q^{2 n}-1\right)}{q^{2}-1}$	$\left(q^{3}+1\right)\left(q^{5}+1\right) \ldots\left(q^{2 n+1}+1\right)$

Lemma 13. Let the point set of $\operatorname{PG}(d, q), d \geqslant 2$, be the union of $q+1$ hyperplanes. Then all these hyperplanes have a $(d-2)$-dimensional subspace in common and hence every point of $\operatorname{PG}(d, q)$ either belongs to all these hyperlanes, or to exactly one. Also, the point set of $\mathrm{PG}(d, q)$ cannot be the union of q hyperplanes.

Proof. Let \mathscr{S} be the set of these $q+1$ hyperplanes. Let H_{1} and H_{2} be two of them, and suppose they meet in the $(d-2)$-dimensional subspace U. Suppose that H_{3} is a member of \mathscr{S} not containing U. Then there is some hyperplane H of $\mathbf{P G}(d, q)$ containing U, but not belonging to \mathscr{S}. If we intersect every member of \mathscr{S} with H, then we obtain a set of at most q different ($d-2$)-dimensional subspaces of H covering all points of H. Hence

$$
q^{d-1}+q^{d-2}+\cdots+q+1 \leqslant q\left(q^{d-2}+\cdots+q+1\right)
$$

a contradiction. The result follows, noting that a similar counting argument proves that q hyperplanes cannot cover all points of $\operatorname{PG}(d, q)$.

Now, we list the number of points and the number of maximal singular subspaces of the various finite polar spaces of rank ℓ. We use the following notation: $Q^{-}(2 \ell+1, q)$ for the elliptic quadric, $Q(2 \ell, q)$ for the parabolic quadric, $Q^{+}(2 \ell-1, q)$ for the hyperbolic quadric, $H(n, q)$ for the hermitian variety in $\operatorname{PG}(n, q)$ (see Table 1). Note that we do not have to consider symplectic polar spaces since they are either isomorphic to a quadric (in characteristic 2), or they do not have proper large polar subspaces of the same rank (odd characteristic).

Note that, if $\Gamma \cong Q^{-}(2 \ell+1, q)$, then every member of \mathscr{P} is isomorphic to $Q(2 \ell, q)$ or $Q^{+}(2 \ell-1, q)$; if $\Gamma \cong Q(2 \ell, q)$, then every member of \mathscr{P} is isomorphic to $Q^{+}(2 \ell-1, q)$; if $\Gamma \cong H(2 \ell, q)$, then every member of \mathscr{P} is isomorphic to $H(2 \ell-1, q)$; finally, Γ cannot be isomorphic to either $Q^{+}(2 \ell-1, q)$ or $H(2 \ell-1, q)$.

Lemma 14. With the above notation, we must have $k=q+1$.

Proof. Suppose that $k \leqslant q$. Consider a maximal singular subspace U of Γ and suppose that U does not belong to any member of \mathscr{P}. Note that U has dimension $\ell-1$. Then every member of \mathscr{P} can have at most an $(\ell-2)$-dimensional subspace in common with U. That implies that U must be the union of at most q subspaces of dimension at most $\ell-2$, contradicting Lemma 13. Hence every maximal singular subspace U belongs to a member of \mathscr{P}. So the number of maximal singular subspaces of Γ must be at most q times the number of maximal singular subspaces of any element of \mathscr{P} having a maximum number of maximal singular subspaces, contradicting the number of maximal singular subspaces given above.

Lemma 15. Each point of Γ belongs to a maximal singular subspace which does not belong to any member of \mathscr{P}.

Proof. Suppose by way of contradiction that a point x exists such that every maximal singular subspace of Γ through x belongs to some member of \mathscr{P}. Then every line $x y$ on Γ is contained in some member of \mathscr{P}. Projecting the whole situation on a hyperplane of $\operatorname{PG}(m, q)$ (the space of Γ) not containing x, we obtain a covering of a polar space Γ^{\prime} of rank $\ell-1$ by at most $q+1$ proper polar subspaces of the same rank such that every maximal singular subspace of Γ^{\prime} is contained in one of the polar subspaces. The same counting argument as in the previous proof leads to a contradiction (now considering $q+1$ polar subspaces instead of q, but the contradiction remains).

Lemma 16. Every maximal singular subspace U of Γ which does not belong to any member of \mathscr{P} contains a unique $(\ell-3)$-dimensional subspace V such that every point of V belongs to every member of \mathscr{P}, and every other point of U belongs to exactly one member of \mathscr{P}.

Proof. It is easily seen that \mathscr{P} induces a covering of the point set of U consisting of at most $q+1$ proper projective subspaces of U. Counting the points, one immediately finds that there must be exactly $q+1$ proper subspaces of dimension $\ell-2$ and hence the result follows directly from Lemma 13.

The last two lemmata imply:

Lemma 17. Every point of Γ is contained in either every member of \mathscr{P}, or in exactly one. Also, if two points x and y belong to all members of \mathscr{P} and x and y are collinear in Γ, then all points of the line $x y$ belong to all members of \mathscr{P}.

So the geometry Γ^{\prime} having as point set the set of all points of Γ which belong to all members of \mathscr{P} (with lines and other subspaces induced by Γ) satisfies the one-or-all axiom of polar spaces; hence it is a polar space of rank ℓ provided we prove that it contains at least one singular subspace of dimension $\ell-1$, and that no point of it is collinear in Γ with all other points of Γ^{\prime}.

We know by Lemma 16 that there is at least one singular subspace V of dimension $\ell-3$ contained in all members of \mathscr{P}. We project from V onto a subspace of dimension $m-\ell+2$, skew to V. The projection of Γ is a generalized quadrangle Γ^{*}, and the projections of the members of \mathscr{P} induce a covering \mathscr{P}^{*} of Γ^{*} of $q+1$ large subquadrangles such that each point of Γ^{*} is in either a unique member of \mathscr{P}^{*}, or in all members of \mathscr{P}^{*}. From Theorem 2, it readily follows that either Γ^{*} is isomorphic to the elliptic quadric $Q^{-}(5, q)$, all members of \mathscr{P}^{*} are isomorphic to $Q(4, q)$, and the intersection of all members is isomorphic to $Q^{+}(3, q)$, or $q=2$. In the first case, it follows that there are plenty of maximal singular subspaces in Γ^{\prime}. Now, suppose $q=2$. We may assume that Γ^{\prime} does not contain a singular subspace of dimension $\ell-1$, hence that no line of Γ^{*} belongs to all members of \mathscr{P}^{*}. If Γ^{*} is isomorphic to $Q(4,2)$, then it is readily seen that exactly 6 points of Γ^{*} are contained in each member of \mathscr{P}^{*} (which has order $(2,1)$), contradicting the fact that no two such points can be collinear in Γ^{*}. Now, suppose that Γ^{*} is isomorphic to $Q^{-}(5,2)$. Let the three members of \mathscr{P}^{*} have respective orders $\left(2, t_{1}\right),\left(2, t_{2}\right)$ and $\left(2, t_{3}\right)$. If there is a point of Γ^{*} in all members of \mathscr{P}^{*}, then by Lemma $5,3+t_{1}+t_{2}+t_{3}=5$, a contradiction. Hence the point set of Γ^{*} is the disjoint union of the point sets of the members of \mathscr{P}^{*}. This implies that all members of \mathscr{P}^{*} are isomorphic to $Q^{-}(3,2)$. Consequently, every element of \mathscr{P} is isomorphic to $Q^{+}(2 \ell-1,2)$ and Γ itself is isomorphic to $Q^{-}(2 \ell+1,2), n \geqslant 3$. Counting the number of points, we must have $3\left(2^{\ell-1}+1\right) \geqslant 2^{\ell+1}+1$, implying $\ell \leqslant 2$, a contradiction.

Hence we have shown that there is a maximal singular subspace contained in all members of \mathscr{P}. Moreover, our arguments show that Γ is isomorphic to $Q^{-}(2 \ell+1, q)$ and every member of \mathscr{P} is isomorphic to $Q(2 \ell, q)$.

Now, suppose that there exists a point x of Γ^{\prime} such that all points which belong to Γ^{\prime} are collinear in Γ with x. The number of points of Γ not collinear with x is $q^{2 \ell}$. The number of points in each member of \mathscr{P} not collinear with x is $q^{2 \ell-1}$. Since each point must occur exactly once, this implies $(q+1) q^{2 \ell-1}=q^{2 \ell}$, a contradiction.

Hence we have shown that the intersection of all members of \mathscr{P} is a polar subspace of rank ℓ. And it is clear that it must be isomorphic to $Q^{+}(2 \ell-1, q)$. Theorem 3 is proved.

4. Proof of the Corollary

For the notions below not defined in this paper, we refer to Payne and Thas [4] or Thas [6].

Let Γ be a flock quadrangle of order $\left(t^{2}, t\right)$, t odd, covered (as set of lines!) by a set \mathscr{S} of $t+1$ subquadrangles of order (t, t), all containing the point (∞). Then all these subquadrangles meet in a subquadrangle Γ^{\prime} of order $(1, t)$, by Theorem 2. According to Theorem 7.2 of Thas and Van Maldeghem [7], we have to show that the net corresponding with the point (∞) satisfies the axiom of Veblen. By Theorem 8.1 of loc.cit., this is equivalent to showing that every two non-collinear points x, y, with
x collinear with (∞) and y not collinear with (∞), are contained in a subquadrangle of order (t, t). Since Γ is an elation generalized quadrangle, we may assume that y belongs to Γ^{\prime} (because there is an automorphism group acting regularly on the points of Γ not collinear with (∞)). It is now easy to see that exactly one member of \mathscr{S} contains x, namely the unique member containing all lines of Γ through x.

References

[1] R.C. Bose, R.C. Burton, a characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96-104.
[2] W.M. Kantor, Some generalized quadrangles with parameters $\left(q^{2}, q\right)$, Math. Z 192 (1986) 45-50.
[3] S.E. Payne, q-clans e quadrangoli generalizzati, Sem. Geom. Combin. 79 (1988) 1-16.
[4] S.E. Payne, J.A. Thas, Finite generalized quadrangles, Pitman Res. Notes Math. Ser. 110, London, Boston, Melbourne, 1984.
[5] J.A. Thas, 4-gonal subconfigurations of a given 4-gonal configuration, Rend. Accad. Naz. Lincei 53 (1972) 520-530.
[6] J.A. Thas, Generalized polygons, in: F. Buekenhout (Ed.), Handbook of Incidence Geometry, Elsevier, Amsterdam, 1995, pp. 383-431 (Chapter 9).
[7] J.A. Thas, H. Van Maldeghem, Finite generalized quadrangles and the axiom of Veblen, Geometry, Combinatorial Designs and Related Structures, in: S.W.P. Huschfeld (Ed.), Cambridge University Press, London Math. Soc. Lecture Note Ser. 245 (1997) 241-253.
[8] J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959) 13-60.

[^0]: E-mail address: hvm@cage.rug.ac.be (H. Van Maldeghem)
 ${ }^{1}$ The author is a Research Director of the Fund for Scientific Research, Flanders, Belgium.

