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Abstract

Although HIV-1 (HIV) replicates poorly in non-dividing CD4 lymphocytes, resting T cells contribute to the latent reservoir. The gc-related

cytokines reverse this block to HIV infection; however, the molecular mechanisms controlling this process are not understood. We asked whether

the gc-cytokine regulated transcription factor, signal transducer and activator of transcription 5 (STAT5), activates HIV transcription. We identified

three regions in the long terminal repeat (LTR) as close matches to the STAT5 consensus-binding site and show that STAT5 binds the LTR during

HIV infection. Expression of Janus kinase 3 (JAK3) or STAT5 in primary human CD4 T cells activated LTR transcription, while transactivation-

incompetent dominant-negative STAT5 inhibited JAK3-induced LTR activity and infection of activated HIV-producing CD4 T-cells. In addition,

overexpression of STAT5 increased virus production in unstimulated primary T cells – both the number of p24+ cells and their level of p24

production – suggesting that STAT5 promotes a permissive state for HIV infection. These data may have implications for regulation of latency

and therapeutic strategies for control of HIV disease.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

HIV entry into activated CD4 T cells leads to a productive

infection. In contrast, the virus enters but remains latent in

naı̈ve or resting CD4 T cells, in the absence of T cell

stimulation (reviewed in Blankson et al., 2002; Stevenson,

2003). Although these cells appear resistant to productive

infection in vitro, active HIV gene expression has been

demonstrated in resting CD4 lymphocytes within peripheral

blood and lymphoid tissues of HIV-positive individuals (Blaak

et al., 2000; Ostrowski et al., 1999; Zhang et al., 1999).

Factors that promote infection of resting CD4 T cells might

contribute to the regulation of HIV latency and viral spread
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(Blankson et al., 2002). Recent data suggest that the restriction

to viral infection can be reversed by genetic manipulation of

the host cell transcription factors, NFAT2 (by constitutive

expression) (Kinoshita et al., 1998) or NF-nB (by inhibition of

the cellular factor, Murr-1) (Ganesh et al., 2003). In addition,

the gc-cytokines increase susceptibility of resting CD4 T cells

to HIV infection (Ducrey-Rundquist et al., 2002; Unutmaz

et al., 1999), although their mechanism of action has not been

defined.

The cytokines that support viral infection, IL-2, IL-4, IL-7

or IL-15 (Unutmaz et al., 1999), bind to the gc-related

cytokine receptors. Ligand binding results in tyrosine

phosphorylation and activation of the Janus family kinase,

JAK3. The latent cytoplasmic transcription factor, STAT5, is

recruited to the cytokine receptor and phosphorylated by

JAK3. Phosphorylated STAT5 then enters the nucleus to

regulate gene transcription (Darnell, 1997). STAT5 is a

critical component of the IL-2 receptor-mediated proliferative
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signal and regulates expression of mitogenic and survival

genes (Lord et al., 2000). STAT5 has not previously been

implicated in regulation of the HIV LTR (Pereira et al.,

2000).

Here, we show that overexpression of STAT5 promotes a

permissive state for HIV infection. We demonstrate that
Fig. 1. STAT5 binds the HIV LTR. (A) Sequence of the HIV 3V LTR. Putative STAT5
NFAT sites. Forward and reverse arrows indicate primers for real-time PCR, which

cells in vitro. Nuclear extracts from PHA plus IL-2-stimulated primary human CD4

HIV LTR site S2 (lanes 1–5), without (lane 1) or with unlabeled self-competitor pr

STAT5 (lane 5). A representative experiment of 5 performed is shown. Binding of th

STAT5 but not by antibodies to STAT1 or STAT3. (C–F) STAT5 binds the HIV LT

isolated from HIV-infected WE17/10 T-cells and immunoprecipitated with antibodie

control and demonstrated the feasibility of this assay to detect transcription factor b

control was amplified by conventional (C) or real-time (D) PCR using primers and

representative experiment of 3 performed is shown. Note the qualitative and quantita

after immunoprecipitation of bound STAT5 or NFnB, compared to a mouse IgG iso

IL-2, infected with HIV NL4-3, and then stimulated for 2 h with PHA (10 Ag/ml;

sonicated DNA using anti-STAT5 (red, green, yellow triplicate lines) or isotype

amplified with primers specific for the proximal HIV LTR. Two representative exper

amplification cycles) between STAT5 and control.
STAT5 binds and activates the viral LTR in stimulated and

unstimulated primary CD4 T cells, and that functional

expression of STAT5 is correlated with increased virus

production. These data provide a mechanism by which gc-

cytokines induce susceptibility of resting CD4 T cells to HIV

infection.
binding sites are indicated in bold and underlined. Boxed sites are dual NFnB/
include STAT5 binding sites S2–S3. (B) STAT5 binds the HIV LTR in CD4 T

T cells were incubated with radiolabeled oligonucleotides corresponding to the

obe (lane 2) or with antibodies specific for STAT1 (lane 3), STAT3 (lanes 4) or

e LTR S2 site is inhibited by unlabeled self-oligonucleotide and by antibody to

R in infected CD4 T cells in vivo. (C–D) Protein cross-linked chromatin was

s to STAT5, NFnB, or an isotype antibody control. NFnB was used as a positive

inding to the LTR in vivo. Immunoprecipitated DNA or a DNA-free negative

a probe specific to the proximal HIV LTR, including sites S2–S3 (see A). A

tive (8- to 16-fold) increases in PCR amplification of LTR STAT5 sites S2–S3

type control. (E–F) Primary human CD4 T cells were activated with PHA plus

E) or with PMA plus ionomycin (F). ChIP was performed on cross-linked and

control (violet, purple, blue lines) antibodies. Immunoprecipitated DNA was

iments of four performed are shown. Note the 4- to 8-fold differences (i.e., 2–3



Fig. 1 (continued ).
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Results and discussion

STAT5 binds to the HIV LTR in vitro and in vivo

We identified 3 regions in the LTR (sites 1–3, S1–S3;

Fig. 1A) as close matches to the STAT5 consensus-binding

sequence and demonstrated STAT5 binding to the LTR in

vitro by EMSA (Fig. 1B). Nuclear extracts from PHA-

stimulated primary human CD4 T cells were incubated with

radiolabeled oligonucleotides corresponding to the HIV LTR

S2 site. Two gel-retarded complexes were identified by the

mobility shift assay (Fig. 1B, lane 1). These complexes were

specific in that they were competed away by 100-fold excess

of unlabeled (cold) self-probe (Fig. 1B, lane 2). The upper

complex migrated identically to STAT5 consensus-binding

sequences from the Bcl-xL promoter or the prolactin response

element of the h-casein promoter (data not shown). To

characterize the STAT proteins bound to this probe, nuclear

extracts were first incubated with specific anti-STAT anti-

bodies prior to incubation with the oligonucleotide probe.

Antibody directed to STAT5 consistently blocked formation

of both bands (Fig. 1B, lane 5), whereas antibody to STAT1

or STAT3 had no effect (Fig. 1B, lanes 3 and 4). Similar

results were obtained using the LTR S3, but not the LTR S1,

site (data not shown). These in vitro binding studies suggest

that STAT5 from primary human T cell extracts binds to the

HIV LTR.

To determine whether STAT5 binding to LTR occurs in

vivo, we used the ChIP assay (Schubert et al., 2002). We

immunoprecipitated sonicated chromatin from an HIV-infected

IL-2 dependent CD4 T cell line, WE17/10 (Figs. 1C–D) or

from HIV-infected primary human CD4 T cells (Figs. 1E–F)

and analyzed immunoprecipitates by conventional or real-time

PCR. As detected by ethidium bromide staining, relative PCR

amplification was greater after DNA immunoprecipitation by

antibody to STAT5 than by control antibody (Fig. 1C),

demonstrating LTR binding by STAT5 in vivo. Although we

cannot rule out an indirect interaction of STAT5 and LTR, our

in vitro data suggest that STAT5 binds directly to the LTR sites

assayed here by ChIP (Fig. 1B). We quantified binding of

STAT5 by amplifying the immunoprecipitated DNA with

primers and a probe designed to detect LTR STAT5 sites

S2–S3, using real-time PCR. The STAT5 and NFnB curves

showed fewer amplification cycles required to reach threshold

levels compared to the mouse isotype control (i.e., 2–3 fewer
Fig. 2. STAT5 regulates HIV LTR activity. (A) STAT5 activates LTR activity. Hela c

and HIV LTR-responsive firefly luciferase and control Renilla luciferase constru

efficiency by Renilla luciferase, are shown. Comparisons of LTR activity were made

performed (*P = 0.02). Note that expression of STAT5 increases LTR activity. (B)

transfected with HIV LTR-responsive firefly luciferase and control Renilla luciferase

activity over control expression vector is shown. Data are the mean T SEM of 4 expe

activity. (C) Dominant-negative STAT5 inhibits LTR activity. Primary CD4 T cells w

LTR-luciferase reporter construct (*P = 0.008). Note that DNSTAT5 decreases JAK

Primary CD4 T cells were PHA-activated for 3 days, infected with HIV NL4-3, an

EGFP vector. Cells were incubated in media containing IL-2 and harvested 2 days lat

are representative of 4 experiments performed. Note that expression of transactiva

p24+ cells and p24 mean fluorescence intensity (MFI) in cultures of activated HIV
cycles for primary T cells, 3–4 fewer cycles for the T cell line),

demonstrating reproducible levels (4- to 16-fold above

background) of STAT5 and NFnB binding to the HIV LTR

in vivo. In contrast, we found no evidence of transcription

factor binding to the coding region of HIV, using primers and a

probe specific to the gag gene (data not shown). Therefore,

similar to the in vitro binding studies (Fig. 1B), STAT5 is

capable of binding the HIV LTR in vivo in infected primary

CD4 T cells.

STAT5 regulates viral transcription

Does STAT5 binding to the HIV LTR alter its function?

We transfected unstimulated primary human CD4 T cells or

Hela cells expressing the IL-2 receptor (Hela-IL2R) with an

LTR-driven reporter construct, with or without co-transfection

of JAK3 or STAT5 expression vectors. Expression of STAT5

increased LTR activity in Hela-IL2R cells by more than 200-

fold (Fig. 2A), while 2- to 3-fold increases in transcription

were observed in primary T cells (Fig. 2B). These increases

are similar quantitatively to prior studies of transcriptional

activation in primary CD4 T cells (Cron et al., 1999, 2000;

Sweetser et al., 1998), possibly due to tighter transcriptional

regulation compared to activated tumor cells. Since resting T

cells have a limited amount of JAK3, ectopic JAK3

expression also increased LTR activity, likely via auto-

phosphorylation and activation of endogenous STAT5 (Fig.

2B). In contrast, expression of transactivation-incompetent

DNSTAT5 significantly inhibited JAK3-induced LTR activity

(Fig. 2C) and virus expression in PHA-stimulated HIV-

infected primary CD4 T cells (Fig. 2D). Importantly, these

differences did not appear to be due to increased cell death

induced by the DNSTAT5 vector, as measured by trypan blue

or scatter change (by flow cytometry) (data not shown). In

addition, to correct for possible differences in cell viability

induced by the DNSTAT5 expression vector, the calculation

of luciferase activity was based upon equal numbers of live

cells in each sample. Finally, virus expression in the PHA-

stimulated HIV-infected primary CD4 T cells after transfec-

tion with DNSTAT5 was analyzed in the live GFP+ cell

population, to correct for the possibility of differential cell

death and to analyze virus production solely in the transfected

cell population. These data suggest that STAT5 regulates

transcriptional activation of the HIV LTR in primary CD4 T

cells.
ells were co-transfected with IL-2R chains, JAK3 or STAT5 expression vectors,

cts. Arbitrary light units of LTR-luciferase activity, corrected for transfection

using the Student’s two-tailed t test. Data are the mean T SEM of 3 experiments

JAK3 and STAT5 activate LTR activity. Primary human CD4 T cells were co-

constructs, and STAT5 or JAK3 expression vectors. Fold increase of luciferase

riments performed. Note that overexpression of JAK3 or STAT5 increases LTR

ere transfected with JAK3 and a DNSTAT5 expression vector or control, and the

3-induced LTR activity. (D) Dominant-negative STAT5 inhibits HIV infection.

d transfected with a DNSTAT5 expression plasmid or control plasmid plus an

er. GFP+ (transfected) cells were analyzed for intracellular p24 expression. Data

tion-incompetent DNSTAT5 inhibits virus expression, as measured by percent

-infected primary CD4 T cells.
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STAT5 increases virus expression in primary CD4 T cells

To determine the effect of STAT5 on HIV infection in the

absence of T cell stimulation, we expressed STAT5 in

unstimulated primary CD4 T cells and measured the late viral

gene product, p24, in total cells and in GFP+ (transfected) vs.

GFP� (non-transfected) populations. Measurement of cell-

associated and supernatant p24 antigen has demonstrated good
agreement between the concentration of p24 antigen and virion

equivalents measured by RT-PCR (O’Doherty et al., 2000). In

STAT5-transfected cells, a maximum increase in HIV produc-

tion was achieved between 48 and 72 h after electroporation

(data not shown). Fig. 3A is representative of 7 replicate

experiments, showing a 2- to 3-fold increase in %p24+ cells, in

the presence of STAT5. In addition, experiments measuring

p24 in culture supernatants by ELISA showed an increase from



Fig. 3. STAT5 increases HIV production in primary CD4 T cells. (A) Primary CD4 T cells were analyzed by flow cytometry for transfection (GFP positivity) and

infection (p24 positivity) after transfection with EGFP plus STAT5 or control expression vectors and infection with HIV NL4-3. Percentages of p24+ cells in bulk-

transfected (control or STAT5) cultures are shown and represent 7 independent experiments. Note that STAT5 increases the percentage of p24+ cells in the bulk

population of unstimulated CD4 T cells. (B) Percentages of p24+ cells (mean proportions T SEM) from 7 independent experiments are shown for each of 4

conditions [the transfection of interest (STAT5 vector, GFP+) and 3 controls (control vector, GFP�) (control vector, GFP+) (STAT5 vector, GFP�)]. Statistically

significant differences were observed between the STAT5 vector, GFP+ group, and each of the 3 controls, individually, using a two-sample test of proportions (**P <

0.001). Note that in STAT5-transfected cultures, significant increases in infection frequency are seen only in transfected (GFP+) but not in untransfected (GFP�)

cells. (C) The relative increase in MFI [(STAT5–control vector)/control vector] for high GFP+ cells was compared with values for GFP� cells, using the Mann–

Whitney U two-sample test of location (*P < 0.05). Note that STAT5 expression induces a significant increase in virus production, as measured by intracellular p24

positivity.
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14 T 12 pg/ml immediately after virus inoculation to 211 T 25

pg/ml by day 3 post-infection, in STAT5-transfected unstimu-

lated CD4 T cells (n = 3, P = 0.002). These increases, though

small, correlate with the effect of STAT5 on LTR activity (Fig.

2B) and are in agreement with the reported effects of gc-

cytokines on virus expression in resting primary CD4 T cells

(Scripture-Adams et al., 2002; Unutmaz et al., 1999).

Importantly, we observed a significant increase both in

%p24+ cells and in levels of p24 expression in STAT5

transfected (GFP+), compared to non-transfected (GFP�)

controls (Figs. 3B–C). As above, these differences did not

appear to be due to enhanced viability induced by the STAT5

vector; the viability of STAT5-transfected cells was not

significantly different from control vector-transfected cells

after 3 days of transfection (average percent of viable GFP+

cells = 27.79 T 3.73 vs. 25.89 T 3.83, respectively). In addition,

in order to analyze virus production solely in the transfected

cell population and to correct for the possibility of differential

cell death, we gated selectively on the live, transfected (GFP+)
cells and assessed p24 positivity, as shown in Figs. 3B and C.

These data confirm that STAT5 expression is associated with a

higher percentage of p24-positive cells, expressing higher

levels of p24 per cell, compared to cells expressing the control

vector. Thus, STAT5 increases HIV production in primary CD4

T cells.

In conclusion, we have for the first time demonstrated a role

for STAT5 in regulating HIV gene expression. We show that

STAT5 binds to the LTR in vivo during HIV infection. This

binding activates LTR transcription in otherwise unstimulated

primary CD4 T cells and is correlated with increased virus

production. STAT5 overexpression increases the number of

p24+ cells, as well as their level of p24 production, suggesting

that STAT5 promotes a permissive state for HIV infection.

While our data demonstrate that STAT5 increases virus

production in unstimulated primary T cells, it will be important

to determine whether STAT5 induces permissiveness in fully

quiescent (G0) T cells or requires early events of activation or

cell cycle entry. Of note, STAT5’s role in HIV infection is
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supported by our data showing inhibition of virus expression

by DNSTAT5 in activated HIV-infected T cells.

Our data may have relevance to recent studies showing

susceptibility of resting CD4 T cells to HIV infection in the

presence of the gc-cytokines, IL-2, IL-4, IL-7, and IL-15

(Ducrey-Rundquist et al., 2002; Unutmaz et al., 1999). In vitro,

HIV enters resting CD4 lymphocytes but, instead of replicating

as in activated T cells, remains latent in the absence of T cell

stimulation (Chou et al., 1997; Scales et al., 2001; Zack et al.,

1992), reviewed in Blankson et al., 2002; Stevenson, 2003;

Zack et al., 1992). Although these cells are highly resistant to

productive infection, active HIV gene expression has been

demonstrated in resting CD4 lymphocytes in vivo, within

peripheral blood and lymphoid tissues of HIV-positive indivi-

duals (Blaak et al., 2000; Ostrowski et al., 1999; Zhang et al.,

1999). The nature of the induced factors that lead to HIV

permissiveness and the molecular mechanisms of virus release

from resting CD4 T cells are not understood. Barriers that

preclude infection include host restriction factors, inefficiency

of reverse transcription, energy levels that are too low for

effective nuclear import, blocks to integration and lack of

activation-dependent host transcription factors (Chiu et al.,

2005; Kinoshita et al., 1998; Pereira et al., 2000; Stevenson,

2004). Here, we show that the gc-regulated T cell transcription

factor, STAT5, binds to and activates the HIV LTR and virus

transcription, suggesting at least one mechanism by which gc-

cytokines reverse the block to productive infection in resting T

cells. This is consistent with recent data suggesting that HIV

can accumulate stable long reverse transcripts, albeit ineffi-

ciently, and integrate within resting lymphocytes (Stevenson,

2004; Swiggard et al., 2004, 2005). In addition, data showing

that the gc-cytokine, IL-7, can drive infected T cells out of

latency (Scripture-Adams et al., 2002) argue that the JAK3/

STAT5 pathway may play a role in reactivation of latent

provirus. Whether STAT5 also acts to reverse the block to

reverse transcription (like NFAT2) or to promote integration is

currently under investigation.

In conclusion, we have for the first time demonstrated a role

for STAT5 in regulating HIV production. Future therapeutic

strategies targeting JAK3 or STAT5 (Changelian et al., 2003),

in combination with current anti-retroviral therapy, may allow

elimination of both productive and latently infected T cells

from HIV-infected individuals.

Materials and methods

Isolation of CD4 T cells

CD4 T cells were isolated by negative selection from

heparinized venous blood of healthy adult human donors, as

described (Hamilton et al., 2003; Selliah and Finkel, 2001).

Isolated cells were 90–95% CD3 + CD4+.

Electrophoretic mobility shift assays (EMSA)

Nuclear extracts were isolated from phytohemagglutinin

(PHA)-stimulated human CD4 T cells. EMSA was performed
as described (Cron et al., 1999), using LTR oligonucleotides

(IDT, Coralville, IA) containing potential STAT5 binding sites

(Fig. 1A). Antibodies incubated with extract, 20 min prior to

adding probe, were mouse monoclonal anti-STAT1 (Zymed

Laboratories, South San Francisco, CA), rabbit polyclonal anti-

STAT3 (Upstate Biotechnology, Waltham, MA), or rabbit

polyclonal anti-pan STAT5 (Santa Cruz Biotechnology, Santa

Cruz, CA).

Chromatin immunoprecipitation (ChIP) assays

ChIP assays were performed as described (Schubert et al.,

2002). WE17/10 T cells (NIH ARRRP, Bethesda, MD) were

infected with HIV NL4-3 [multiplicity of infection (MOI) 0.05]

and cultured with IL-2 (30 U/ml, ARRRP) for 3 days. Cells

were fixed, lysed and sonicated, and soluble chromatin

collected as supernatant after centrifugation. Lysates were

pre-cleared with salmon sperm DNA–protein A-agarose beads

(Upstate Biotechnology) and immunoprecipitated with beads

plus anti-STAT5, anti-NFnB (p65; Santa Cruz Biotechnology)

or mouse IgG (Pharmingen, San Diego, CA). Immunoprecipi-

tated DNAwas eluted and reverse cross-linked, then extracted,

precipitated, washed, and resuspended in Tris/EDTA buffer.

HIV-1 LTR sequence primers (F, 5V-TTGACAGCCGCCTAG-
CATT-3V; R, 5V-CACGCCTCCCTGGAAAGTC-3V; IDT) were
used to amplify immunoprecipitated DNA as template.

Samples were done in triplicate with reagents contained in

TaqMan Universal Master Mix (PerkinElmer Life Sciences,

Boston, Massachusetts) according to the manufacture’s instruc-

tions. Fluorescence signals were detected during each of 40

cycles (denaturing for 15 s at 95 -C, annealing/extension for 1

min at 60 -C) by binding of TaqMan probe (5V-/56-FAM/

CATCACGTGGCCCGAGAGCTGC/3BHQ_1/-3V) to double-

stranded DNA products. Real-time quantitative PCR was done

in an ABI Prism 7000 Sequence Detection System (PerkinEl-

mer Life Sciences). Graphs were generated with software

included with this system.

Transfections, infections, and luciferase assays

CD4 T cells were transiently transfected with enhanced

green fluorescent protein (EGFP) vector (0.5 Ag, pEGFP-F,
Clontech, Palo Alto, CA) TSTAT5 expression vector (1.5 Ag,
pc-STAT5), using AMAXA technology (Cron, 2003)

(AMAXAR Biosystems, Cologne, Germany). This protocol

results in 50–80% transfection efficiency of primary human

CD4 T cells (Cron, 2003), without observed effects on resting

T cell phenotype (Ganesh et al., 2003). Twenty-four hours post-

transfection, cells were infected with HIV NL4-3 with DEAE-

dextran (MOI 0.05) and analyzed 3 days later by flow

cytometry, as described (Rapaport et al., 1998), using labeled

KC57 to detect a late viral gene product, p24 antigen. This

IgG1 antibody recognizes p55, p39, p33, and p24 kDa proteins

of the core antigens of HIV. Prior studies have demonstrated

flow cytometric detection of infected lymphocytes in culture

and from HIV-infected patients by intracellular staining with

anti-p24 antibody (Cory et al., 1987; Costigliola et al., 1992;
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Jason and Inge, 1999; Mascola et al., 2002; McSharry et al.,

1990; Steele-Mortimer et al., 1990; Vanham et al., 2000).

Supernatants collected from infected cultures were assayed for

p24 antigen by enzyme-linked immunosorbent assay (ELISA;

Beckman Coulter, Inc., Fullerton, CA). For luciferase assays,

CD4 T cells were co-transfected as described (Cron et al.,

2000) with LTR-firefly luciferase reporter gene (1 Ag), JAK3,
STAT5 or dominant-negative STAT5 (DNSTAT5) (Ahonen et

al., 2003) expression vectors (1.5 Ag), and Renilla luciferase-

expressing control plasmid (pRL-null, 0.5 Ag). Cells were then
incubated for 6 h, and IL-2 (100 U/ml) was added for the final

2 h prior to lysis. Cell viability was determined, and samples

were normalized to equalize numbers of viable cells prior to

lysis. Hela cells were transfected with IL-2 receptor chains h
and gc, the luciferase genes, and JAK3 with or without STAT5

(Zhu et al., 1998) using FUGENE 6 reagent (Roche), incubated

for 24 h, and IL-2 (100 U/ml) was added for the final 2 h prior

to lysis.

Acknowledgments

The authors are indebted to Stefania Gallucci, Rick

Bushman, Drew Weissman and Una O’Doherty for critical

review of the manuscript and to John O’Shea for the kind gift

of human STAT5 and JAK3 expression vectors.

Supported by the National Institutes of Health (NIH) P30

AI45008, NIH RO1 AI35513, the Joseph L. Hollander Chair,

the Bender Foundation (T.H.F.), NIH T32 AR07442 (N.S.),

the Mary L. Smith Charitable Trust, the Elizabeth Glaser

Pediatric AIDS Foundation (R.Q.C.), the Penn Cancer Center,

the NIH AIDS Research and Reference Reagent Program

(ARRRP), and the University of Pennsylvania Center for

AIDS Research.

The laboratories of R.Q.C. and T.H.F. contributed equally to

this study.

References

Ahonen, T.J., Xie, J., LeBaron, M.J., Zhu, J., Nurmi, M., Alanen, K., Rui,

H., Nevalainen, M.T., 2003. Inhibition of transcription factor Stat5

induces cell death of human prostate cancer cells. J. Biol. Chem. 278

(29), 27287–27292.

Blaak, H., van’t Wout, A.B., Brouwer, M., Hooibrink, B., Hovenkamp, E.,

Schuitemaker, H., 2000. In vivo HIV-1 infection of CD45RA (+)CD4 (+) T

cells is established primarily by syncytium-inducing variants and correlates

with the rate of CD4 (+) T cell decline. Proc. Natl. Acad. Sci. U.S.A. 97 (3),

1269–1274.

Blankson, J.N., Persaud, D., Siliciano, R.F., 2002. The challenge of viral

reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593.

Changelian, P.S., Flanagan, M.E., Ball, D.J., Kent, C.R., Magnuson, K.S.,

Martin, W.H., Rizzuti, B.J., Sawyer, P.S., Perry, B.D., Brissette, W.H.,

McCurdy, S.P., Kudlacz, E.M., Conklyn, M.J., Elliott, E.A., Koslov, E.R.,

Fisher, M.B., Strelevitz, T.J., Yoon, K., Whipple, D.A., Sun, J., Munchhof,

M.J., Doty, J.L., Casavant, J.M., Blumenkopf, T.A., Hines, M., Brown,

M.F., Lillie, B.M., Subramanyam, C., Shang-Poa, C., Milici, A.J., Beckius,

G.E., Moyer, J.D., Su, C., Woodworth, T.G., Gaweco, A.S., Beals, C.R.,

Littman, B.H., Fisher, D.A., Smith, J.F., Zagouras, P., Magna, H.A.,

Saltarelli, M.J., Johnson, K.S., Nelms, L.F., Des Etages, S.G., Hayes, L.S.,

Kawabata, T.T., Finco-Kent, D., Baker, D.L., Larson, M., Si, M.S.,

Paniagua, R., Higgins, J., Holm, B., Reitz, B., Zhou, Y.J., Morris, R.E.,
O’Shea, J.J., Borie, D.C., 2003. Prevention of organ allograft rejection by a

specific Janus kinase 3 inhibitor. Science 302 (5646), 875–878.

Chiu, Y.L., Soros, V.B., Kreisberg, J.F., Stopak, K., Yonemoto, W., Greene,

W.C., 2005. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+

T cells. Nature 435 (7038), 108–114.

Chou, C.S., Ramilo, O., Vitetta, E.S., 1997. Highly purified CD25-resting T

cells cannot be infected de novo with HIV-1. Proc. Natl. Acad. Sci. U.S.A.

94 (4), 1361–1365.

Cory, J.M., Ohlsson-Wilhelm, B.M., Brock, E.J., Sheaffer, N.A., Steck, M.E.,

Eyster, M.E., Rapp, F., 1987. Detection of human immunodeficiency virus-

infected lymphoid cells at low frequency by flow cytometry. J. Immunol.

Methods 105 (1), 71–78.

Costigliola, P., Tumietto, F., Ricchi, E., Chiodo, F., 1992. Detection of

circulating p24 antigen-positive CD4+ cells during HIV infection by flow

cytometry. AIDS 6 (10), 1121–1125.

Cron, R.Q., 2003. CD154 transcriptional regulation in primary human CD4 T

cells. Immunol. Res. 27 (2–3), 185–202.

Cron, R.Q., Bort, S.J., Wang, Y., Brunvand, M.W., Lewis, D.B., 1999. T cell

priming enhances IL-4 gene expression by increasing nuclear factor of

activated T cells. J. Immunol. 162 (2), 860–870.

Cron, R.Q., Bartz, S.R., Clausell, A., Bort, S.J., Klebanoff, S.J., Lewis, D.B.,

2000. NFAT1 enhances HIV-1 gene expression in primary human CD4 T

cells. Clin. Immunol. 94 (3), 179–191.

Darnell Jr., J.E., 1997. STATs and gene regulation. Science 277 (5332),

1630–1635.

Ducrey-Rundquist, O., Guyader, M., Trono, D., 2002. Modalities of interleu-

kin-7-induced human immunodeficiency virus permissiveness in quiescent

T lymphocytes. J. Virol. 76 (18), 9103–9111.

Ganesh, L., Burstein, E., Guha-Niyogi, A., Louder, M.K., Mascola, J.R.,

Klomp, L.W., Wijmenga, C., Duckett, C.S., Nabel, G.J., 2003. The gene

product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes.

Nature 426 (6968), 853–857.

Hamilton, B.J., Genin, A., Cron, R.Q., Rigby, W.F., 2003. Delineation of a

novel pathway that regulates CD154 (CD40 ligand) expression. Mol. Cell.

Biol. 23 (2), 510–525.

Jason, J., Inge, K.L., 1999. Increased expression of CD80 and CD86 in in vitro-

infected CD3+ cells producing cytoplasmic HIV type 1 p24. AIDS Res.

Hum. Retroviruses 15 (2), 173–181.

Kinoshita, S., Chen, B.K., Kaneshima, H., Nolan, G.P., 1998. Host control

of HIV-1 parasitism in T cells by the nuclear factor of activated T cells.

Cell 95 (5), 595–604.

Lord, J.D., McIntosh, B.C., Greenberg, P.D., Nelson, B.H., 2000. The IL-2

receptor promotes lymphocyte proliferation and induction of the c-

myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5.

J. Immunol. 164 (5), 2533–2541.

Mascola, J.R., Louder, M.K., Winter, C., Prabhakara, R., De Rosa, S.C.,

Douek, D.C., Hill, B.J., Gabuzda, D., Roederer, M., 2002. Human

immunodeficiency virus type 1 neutralization measured by flow cytometric

quantitation of single-round infection of primary human T cells. J. Virol. 76

(10), 4810–4821.

McSharry, J.J., Costantino, R., Robbiano, E., Echols, R., Stevens, R., Lehman,

J.M., 1990. Detection and quantitation of human immunodeficiency virus-

infected peripheral blood mononuclear cells by flow cytometry. J. Clin.

Microbiol. 28 (4), 724–733.

O’Doherty, U., Swiggard, W.J., Malim, M.H., 2000. Human immunodefi-

ciency virus type 1 spinoculation enhances infection through virus

binding. J. Virol. 74 (21), 10074–10080.

Ostrowski, M.A., Chun, T.W., Justement, S.J., Motola, I., Spinelli, M.A.,

Adelsberger, J., Ehler, L.A., Mizell, S.B., Hallahan, C.W., Fauci, A.S.,

1999. Both memory and CD45RA+/CD62L+ naive CD4 (+) T cells are

infected in human immunodeficiency virus type 1-infected individuals.

J. Virol. 73 (8), 6430–6435.

Pereira, L.A., Bentley, K., Peeters, A., Churchill, M.J., Deacon, N.J., 2000. A

compilation of cellular transcription factor interactions with the HIV-1 LTR

promoter. Nucleic Acids Res. 28 (3), 663–668.

Rapaport, E., Casella, C.R., Ikle, D., Mustafa, F., Isaak, D., Finkel, T.H., 1998.

Mapping of HIV-1 determinants of apoptosis in infected T cells. Virology

252 (2), 407–417.



Rapid Communication 291
Scales, D., Ni, H., Shaheen, F., Capodici, J., Cannon, G., Weissman, D., 2001.

Nonproliferating bystander CD4+ T cells lacking activation markers

support HIV replication during immune activation. J. Immunol. 166 (10),

6437–6443.

Schubert, L.A., Cron, R.Q., Cleary, A.M., Brunner, M., Song, A., Lu, L.S.,

Jullien, P., Krensky, A.M., Lewis, D.B., 2002. AT cell-specific enhancer of

the human CD40 ligand gene. J. Biol. Chem. 277 (9), 7386–7395.

Scripture-Adams, D.D., Brooks, D.G., Korin, Y.D., Zack, J.A., 2002. Interleu-

kin-7 induces expression of latent human immunodeficiency virus type 1

with minimal effects on T-cell phenotype. J. Virol. 76 (24), 13077–13082.

Selliah, N., Finkel, T.H., 2001. HIV-1 NL4-3, but not IIIB, inhibits

JAK3/STAT5 activation in CD4 (+) T cells. Virology 286 (2), 412–421.

Steele-Mortimer, O.A., Meier-Ewert, H., Loser, R., Hasmann, M.J., 1990. Flow

cytometric analysis of virus-infected cells and its potential use for screening

antiviral agents. J. Virol. Methods 27 (3), 241–252.

Stevenson, M., 2003. HIV-1 pathogenesis. Nat. Med 9 (7), 853–860.

Stevenson, M., 2004. Developments in basic science research. Highlights of the

11th Conference on Retroviruses and Opportunistic Infections, February

8–11, 2004, San Francisco, California, USA. Top. HIV Med. 12 (1), 4–7.

Sweetser, M.T., Hoey, T., Sun, Y.L., Weaver, W.M., Price, G.A., Wilson, C.B.,

1998. The roles of nuclear factor of activated T cells and ying-yang 1 in

activation-induced expression of the interferon-gamma promoter in T cells.

J. Biol. Chem. 273 (52), 34775–34783.

Swiggard, W.J., O’Doherty, U., McGain, D., Jeyakumar, D., Malim, M.H.,

2004. Long HIV type 1 reverse transcripts can accumulate stably within

resting CD4+ T cells while short ones are degraded. AIDS Res. Hum.

Retroviruses 20 (3), 285–295.
Swiggard, W.J., Baytop, C., Yu, J., Dai, J., Li, C., Schretzenmair, R.,

Theodosopoulos, T., O’Doherty, U., 2005. HIV-1 can establish latent

infection in resting CD4+ T cells in the absence of activating stimuli. J.

Virol. 79 (22), 14179–14188.

Unutmaz, D., KewalRamani, V.N., Marmon, S., Littman, D.R., 1999. Cytokine

signals are sufficient for HIV-1 infection of resting human T lymphocytes.

J. Exp. Med. 189 (11), 1735–1746.

Vanham, G., Penne, L., Allemeersch, H., Kestens, L., Willems, B., van der

Groen, G., Jeang, K.T., Toossi, Z., Rich, E., 2000. Modeling HIV transfer

between dendritic cells and T cells: importance of HIV phenotype, dendritic

cell-T cell contact and T-cell activation. AIDS 14 (15), 2299–2311.

Zack, J.A., Haislip, A.M., Krogstad, P., Chen, I.S., 1992. Incompletely reverse-

transcribed human immunodeficiency virus type 1 genomes in quiescent

cells can function as intermediates in the retroviral life cycle. J. Virol. 66

(3), 1717–1725.

Zhang, Z., Schuler, T., Zupancic, M., Wietgrefe, S., Staskus, K.A., Reimann,

K.A., Reinhart, T.A., Rogan, M., Cavert, W., Miller, C.J., Veazey, R.S.,

Notermans, D., Little, S., Danner, S.A., Richman, D.D., Havlir, D., Wong,

J., Jordan, H.L., Schacker, T.W., Racz, P., Tenner-Racz, K., Letvin, N.L.,

Wolinsky, S., Haase, A.T., 1999. Sexual transmission and propagation of

SIV and HIV in resting and activated CD4+ T cells [published erratum

appears in Science 1999 Dec 17;286 (5448):2273]. Science 286 (5443),

1353–1357.

Zhu, M.H., Berry, J.A., Russell, S.M., Leonard, W.J., 1998. Delineation of the

regions of interleukin-2 (IL-2) receptor beta chain important for association

of Jak1 and Jak3. Jak1-independent functional recruitment of Jak3 to Il-

2Rbeta. J. Biol. Chem. 273 (17), 10719–10725.


	The gammac-cytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells
	Introduction
	Results and discussion
	STAT5 binds to the HIV LTR in vitro and in vivo
	STAT5 regulates viral transcription
	STAT5 increases virus expression in primary CD4 T cells

	Materials and methods
	Isolation of CD4 T cells
	Electrophoretic mobility shift assays (EMSA)
	Chromatin immunoprecipitation (ChIP) assays
	Transfections, infections, and luciferase assays

	Acknowledgments
	References


