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Given a group G with lower central series G = G, 2 G, 2 G; 2 -, we say

that a sequence g: Z — G is polynomial if for any k there is d such that the
sequence obtained from g by applying the difference operator Dg(n) = g(n)!
g(n + 1) d times takes its values in G,. We introduce the notion of the degree of a
polynomial sequence and we prove that polynomial sequences of degrees not
exceeding a given one form a group. As an application we obtain the following
extension of the Hall-Petresco theorem:

THEOREM. Let G = G, 2 G, 2G5 2 - be the lower central series of a group
G. Let x € Gy, y € G; and let p,q be polynomials 7 — 7 of degrees k and I,
respectively. Then there is a sequence zy € G, z; € G; fori € N, such that xP(My("
= 20(8)21(?) Z}Sx) foralln € N.  © 1998 Academic Press

0. INTRODUCTION
The intention of this paper is to provide an answer to a question related

to the following Hall-Petresco theorem:

THEOREM HP. (See, for example, [4]) Let G =G, 2G, 2G; 2 - be
the lower central series of a group G and let x, y € G. There exists a sequence
z; € G; fori € N, such that

yr = 2D 2, (0.1)
foralln € N.
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The question was: does the conclusion of Theorem HP remain true if one
replaces (0.1) by

under the assumption that x € G, y € G, and k > [?

We answer this question positively, using the technique of what we call
polynomial sequences. The elementwise product gh of two homomorphisms
g, h: Z — G, that is of two “linear” sequences g(n) = x" and h(n) = y" in
G, is not, generally speaking, a homomorphism. However, gh is a homo-
morphism modulo the commutator subgroup G, =[G, G] of G: gh(n) =
(x)"r(n) with r(n) € G, for all n € Z. It is seen from Theorem HP that
for any k € N, the sequence gh(n) can be written as a polynomial
expression modulo G,,,: gh(n) =zl(’1’)zz(§) zk(Z)r(n) with r(n)
G,,, forall n € N, where (7)) =[n(n — 1)---(n — [ + 1)]/I! is a polyno-
mial of degree / with respect to n.

The sequence gh(n) = x"y" is an example of a polynomial sequence of
degree < (1,2,3,...) in G. One could define a general polynomial se-
guence as a mapping g: Z — G such that for every k € N there are
z4,...,2, € G and polynomials p, ..., p,: Z — Z for which g(n)(z{«" -
zPM)~l e G, , for n € Z. We preferred a different approach, based on
the following property of ordinary polynomials: they vanish after finitely
many applications of the difference operator Dp(n) = p(n + 1) — p(n).
We call a mapping g: Z — G a polynomial sequence in G if for every
k € N the sequence obtained from g by applying the operator Dg(n) =
g(n)~tg(n + 1) finitely many times takes its values in G, ;. The degree of
a polynomial sequence g is the sequence (d,, d,, d,, ...) of integers where
d, = min{d: D*'g(n) € G, for all n}.

We show that polynomial sequences form a group with respect to
elementwise multiplication. This is not surprising and follows from the well
known fact that multiplication in a nilpotent group is polynomial (see
Subsection 2.9). What is more important, for every sequence d =
(dy, d,, ds, . ..) with the property d,,; > d; + d; for all i, j € N, the poly-
nomial sequences whose degrees do not exceed d also form a group. An
example is given by the group of polynomial sequences of degrees <
(1,2,3,...); we denote it by p; , 3 . ,G. This group contains all homomor-
phisms Z - G, n — x", as well as all sequences of the form x” with
x € G, and p being a polynomial of degree < k for some k € N. We
prove that the polynomial sequences z(2) with z e G, form a sort of
basis for ¢, , 5 ,G: for any sequence g € ¢, , 5 G there are z, € G
and z, € G, for k € N, such that for every k € N one has g(n) =
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z(1) = z(#) () with r(n) € G, for all n € Z. It gives an alternative
proof of Theorem HP and answers the foregoing question.

After this paper was written, it was brought to our attention that similar
problems were treated in [3]. In (a part of) his work, M. Lazard used the
Lie algebra associated to a group G to study the group of sequences in G
of the form xf«™ --- x7<", where x; € G, and p; is a polynomial of
degree < j (the group ¢, , 5 G in our notation). In particular, a version
of Proposition 3.1 is proved there. Though it seems clear enough that the
methods of [3] can be utilized to obtain the other results of our paper, we
feel that our approach has advantages of its own and may lead to new
developments. For instance, instead of polynomial sequences Z — G, one
can consider polynomial mappings H — G, where H is a general abelian
group; most of the results of this paper can be extended to this case. (See
also Remark 3.4.)

1. GROUPS OF POLYNOMIAL SEQUENCES

1.1. We define Z,=1{0,1,2,...}, Z, = {—»,0,1,2,...}. We will always
assume that —o + (—o) = —o, and that —o < ¢ and —o + ¢ = —o for
alre 7.

We also define d~t ford € Z, and t € Z, by

_fd—t, ifd=>t,
d*’_{—oo, if d < 1.

Note that (d~t,)~t, = d=(t; + t,).
_ Let d=(d,), . Where d, € Z,, for k € N, and let t € Z . We define
d-t = (dkjt)keN'

Given d = (d),cn and ¢ = (¢;), ey With d,,c, € Z,, for k € N, we
will write d < ¢ if d, < ¢, for all k € N. Clearly, d~t, < d~t, for t; > t,.

1.2. Let G be a group. For x,y € G, the commutator of x and y is
[x, y] =x 'y~ xy; the identity xy = yx[x, y] will be frequently used in the
sequel. For A, B € G, [A, B] is the group generated by {[x, y]|x € A4,
y € B}.

Let G =G, 2G, 2G; 2 - be the lower central series of G, that is
G, =G, G, =1G,G,]for k=1,2,.... It is known (and not hard to
verify) that [G,, G;]1 € G, ; for any i, j € N.

1.3. Given a (two-sided) sequence g: Z — G, its derivative Dg is the
sequence defined by Dg(n) = g(n) " 'g(n + 1). Every sequence g in G is
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uniquely defined by its derivative Dg and one of its values, say g(0):

LEMMA. Let g and h be two sequences in G with Dg = Dh and g(0) =
h(0). Then g(n) = h(n) foralln € 7.

Proof. By induction on n. |

1.4. The derivation D is a mapping from the set GZ of sequences in G
into itself; let D' =D, D'**=DoD'forl=1,2,..., and D * =D° =
id;z.

Let d = (d,, d,,...) where d, € Z,, for k € N. A sequence g € G” is
said to be polynomial of degree < d |f for every k € N, D%* g takes its
values in G, ,: D%*'g(n) € G, ., for all n € Z. In particular, d, = —
implies g(n) € G, , forall n € 7.

1.5. Let H be a subgroup of G, let H=H, o H, 2 H; 2 -+ be its
lower central series and let g be a sequence in H. Because H, C G, for
all k €N, if g is polynomial in H then it is also polynomial in G.

1.6. EXAMPLES

1.6.1. Let x € G, let p € Z[n] be a polynomial of degree < d. Then
the sequence g(n) =x”" is polynomial of degree < (d,d,d,...): we
have Dg(n) = x?"+*Y=P( and p(n + 1) — p(n) is a polynomial of degree
<d— 1,50 D 'g =1.. We say that g is of absolute degree < d.

If, in addition, x € G,, then g is polynomial of degree < (—c,

c— 9y, d,d, . ).

1.6.2. Let G ={x,y,z|[x,yl =z [x,z] = [y, z] = lg} (G is isomorphic
to the smallest Heisenberg group, the group of 3 X 3 upper triangular
matrices over Z with unit main diagonal). Let g(n) = x"y". Then

n+1 n+1l

Dg(n) _y "y nxn+l n+1l _y xy _y y [ yn+l]

=yxzn+l
D*g(n) =z7"(yx) ‘"t =z € G,,
D3%(n) =z7'z=1,.

Hence, g is a polynomial sequence of degree < (1,2,2,...).

1.6.3. Let G be a nilpotent group of class </, that is Iet G, = {15}
Then a sequence g in G is polynomial if and only if D*g(n) € G,, , for
some d € Z,, that is D"'g =1,. If this is the case, g is of degree
<(d,d,d,...) (that is of absolute degree < d).

Note that when we deal with nilpotent (in particular, abelian) groups the
degree of a polynomial sequence is actually represented by a finite
sequence: if G is of class <[ then any polynomial sequence in G is of
degree < (d,,d,,...)withd,=d,,, =d,,, == --- . Insuch case we will
say that the polynomial sequence is of degree < (d,,...,d)).
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16.4. Let g be a polynomial sequence of degree < (0,,...,
0y, dyi1,--.). Then Dg(n) =g(n)'gln +1) € G q, 0 gW)Gy,, =
gln + )G, ,, for n € Z. This means that g is constant on G/G,, ;:
g(m)G,,, = g(0)G,,, for all n € Z. The following two elementary propo-
sitions will be used many times in the sequel; we omit proofs.

1.7. PROPOSITION.  If g is a polynomial sequence of degree < d, then Dg
is a polynomial sequence of degree < d=1. If Dg is a polynomial sequence of
degree < (c,), then g is a polynomial sequence of degree < (b)), where
by=c,+1lifc,=20and b, =0ifc, = —».

1.8. PROPOSITION.  If g(n) is a polynomial sequence of degree < d, then
for any fixed m € 7 the sequence g(n + m) is also polynomial of degree < d.

1.9. A sequence d = (d,), . With d, € 7, is said to be superadditive if
it is nondecreasing and satisfies d; + d; < d,; for all i,j € N.

ExampLEs. (1,2,3,...,), (=, —,0,1,2,...), (3,6,9,...), and
(1,2,4,...) are superadditive sequences, (2,3,4,...) is not.
1.10. The following lemma is obvious.

LEMMA. Ift € Z, and d is a superadditive sequence, then d~t is also a
superadditive sequence.

Note also that for every sequence ¢ = (c;), cy With ¢, € Z,, there is a
superadditive sequence d dominating c: ¢ < d.

1.11. Remark. Given d = (d,), c and € = (¢;), ey With d,,c, € Z,,
define d+ ¢ = (a,),cn by a; = —o, a, = max{d, + ¢;|i +j = k} for k =
2,3,... . The operation * =" preserves the set of superadditive sequences:
if d and ¢ are both superadditive then d#¢ is. Moreover, if d is
superadditive, we have (d—t,)*(d~t,) < d=(t, +t,) for any t,,t, € Z,.
This property of superadditive sequences will be implicitly used in the
proof of Proposition 1.14.

1.12. The following theorem is the main result of this paper.

THEOREM.  Let d be a superadditive sequence. Then polynomial sequences
of degree < d form a group (with respect to elementwise multiplication).

1.13. CoROLLARY. The set of polynomial sequences in G is a group.
1.14. Theorem 1.12 is a corollary of the following proposition:

PROPOSITION. Let d = (d)ien be a superadditive sequence, let t,t,,
t,eXZ,.

(@) If g, h are polynomial sequences of degree < d~t, then gh is a
polynomial sequence of degree < d~t as well.
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(b) If g is a polynomial sequence of degree < d~t, and h is a
polynomial sequence of degree < d~t,, then [g, h] is a polynomial sequence
of degree < d—(t; + t,).

(c) If g is a polynomial sequence of degree < d~t, then so is g *.

Proof. Let s € Z,, assume that (a) and (b) of the proposition hold for
t=s+1and ¢ +1¢,>s + 1, respectively, and prove that they hold for
t=1t +1t,=s.

_(a) Let t=s, let g and & be polynomial sequences of degree
< d—t. Write

D(gh)(n) =h(n) 'g(n) "g(n + 1)h(n + 1)
= h(n) " Dg(n)h(n + 1)
= h(n) "h(n + 1) Dg(n)[Dg(n), h(n + 1)]
= Dh(n)Dg(n)[Dg(n), h(n + 1)].

By Propositions 1.7 and 1.8, Dg(n) and Dh(n) are polynomial sequences of
degree < (d=t)~1 = d~(t + 1) and h(n + 1) is a polynomial sequence of
degree < d~t. Thus by our assumption, [ Dg(n), h(n + 1)] is a polynomial
sequence of degree < d~(t + 1 +t) < d~ (¢t + 1), and D(gh) is a polyno-
mial sequence of degree < d—(t + 1).

By Proposition 1.7, gh is a polynomial sequence of degree < (b,).cn
with b, = d, — t if d, > t. To prove that gh is of degree < d—t it suffices
to check that gh(n) € G, , forall n € Z if d, < t. But it is so because in
this case g(n), h(n) € G, , for all n € Z.

(b) Letnow 1, + 1, =s, let g be of degree < d~t, and let & be of
degree < d-t,. Utilize the commutator identities,

[, 2] =[x, z][[x. 2], y][y. 2],
[z, 9] = [z, y]ly. [x, 2]][ 2, x]
= [z, x][z. y1ly. [x. 2] [[2 y1[y. [x, 211, [z, 1],

to write
D[g, h](n)
= [g(n), k()] '[g(n + 1), h(n + 1)]
= [g(n), h(n)] "*[g(n) Dg(n), h(n + 1)]

= [g(n), h(n)] "[&(n), h(n + D)][[g(n), h(n + 1)], Dg(n)]
X[Dg(n),h(n + 1)]
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= [g(n), h(m)] *[g(n), h(n) Dh(m)][[g(n), h(n + 1)], Dg(n)]
x[Dg(n), h(n + 1)] (1.1)

= [g(n), h(n)] "[&(n), h(n)][g(n), Dh(n)]
X[Dh(n),[h(n), g(n)]]
X [[g(n), Dh(n)][ Dh(n), [h(n), g(n)]], [g(n), h(n)]]
x[[g(n),h(n + )], Dg(n)][Dg(n), h(n + 1)]

= [g(n), Dh(n)][ Dh(n),[h(n), g(n)]]
X [[g(n), Dh(n)][ Dh(n), [h(n), g(n)]], [g(n), h(n)]]
x[[g(n),h(n + 1)], Dg(n)][Dg(n), h(n + 1)].

By Propositions 1.7 and 1.8, Dg(n), Dh(n), and h(n + 1) are polynomial
sequences of degrees < d~(t, + 1), < d~(t, + 1), and < d(t,), respec-
tively. Thus, by our assumption, all commutators on the right-hand part of
(1.1) are polynomial sequences of degree < d-(t, +t, + 1) = d~(s + 1),
and so is their product, D[ g, h](n).

Thus, by Proposition 1.7, [g, 4] is a polynomial sequence of degree
<(b)ycn with b, =d, — (t; +t,) if d, >t +t,. To prove that [g, A] is
of degree < d-(t, + t,), it is only to check that [g, #](n) € G, , for all
nelZif d, <t +t, Fix neZ If either g(n) € N,_, G, or h(n)
N;—1 G, then also [g(n), (n)l € N,_; G,. Let i,j € N be such that
g(n) € G;\ G, and h(n) € G, \ G, . Thend, —t; >0and d; — t, >
0, so d;,;>2d;+d;>t; +1,>d, and thus i+j >k But then
[g(n), k(W] € G,,; € Gy, 4.

Now we can prove (a) and (b) by induction on decreasing t and ¢, + ¢,.
We have the step of this induction process, it is only to establish its base.
We have to show in part (a) of the proposition that

DDt lgn(n) € G,,, forallneZ, (1.2)
and in (b) that
Dt o p](n) € G,,, foralln e Z, (1.3)

for all kK € N. Fix I € N and pass from G to G/G;: if (1.2) and (1.3) hold
in G/G,, they also hold in G for any k < /.

Thus, assume that G,,; = {15} (that is G is nilpotent of class < ).
Now, if ¢ is big enough (¢ > d,), the assumption in (a) that g and % are of
degree < d~t implies g(m)h(n) € G,,, forall n € Z, thatis g = h = 1.
Hence gh = 1 is a polynomial sequence of degree < (—, —o,...) <
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d~t, that shows that (a) holds for such ¢. If ¢, + ¢, > d,, the assumption in
(b) that g and h are of degrees < d-t, and < d~t, implies, as it was
previously proved, that [g(n), i(n)]l € G, , forall n € Z. So [g,h] = 1,
that is [g, 2] is a polynomial sequence of degree < (—oo, —o0,...) <
d~(t, + t,). This gives the base of our induction for (b).

(c) To prove part (c) of the proposition we have to check that

DW=+ (g ) (n) € G,,, forall n € Z, (1.4)

for all kK € N. Fix / € N and pass from G to G/G,, ,: if (1.4) holds in
G/G,,, itholdsin G for k <.

Thus, assume that G,,, = {15} and assume that g is a polynomial
sequence of degree <d-t in G. If t>d, we have g(n) € G,,, for
n € Z, that is g(n) is trivial in G and so is g(n)~!. We now use induction
on decreasing ¢. Write

D(g™*)(n)
—g(n)g(n +1) " =g(n)(g(n) "g(n+1)) g(n)"*
— g(n)Dg(n) *g(n) " = Dg(n) *g(n)[g(n), Dg(n) | g(n) "
— Dg(n) *[g(n), Dg(n) | g(n)[g(n).|g(n), Dg(n) "] g(n) "
= - =Dg(n) [ g(n), Dg(n) | [&(n), [g(n), Dg(n) ]| -
[g(n).....[g(n), Dg(n) ] -] g(n) - C-g(n) *,

where C =[g(n),...,[g(n), Dg(n)™*]1---1€ G,,, and thus C = 1.
Hence,

D(g*)(n) = Dg(n) *[g(n), Dg(n) *|[8(n).[g(n), Dg(n) ]| -
[s(n).....[s(n), Dg(n) "] -] (1.5)

Assume that ¢ = s and assume that the conclusion of (c) holds for all
t > s + 1. Then Dg(n)~* is a polynomial sequence of degree < d~(t + 1),
and so, by (b), all factors on the right-hand side of (1.5) are polynomial
sequences of degree < d-(t + 1). By (a), D(g(n)~!) is a polynomial
sequence of degree < d-(t + 1). By Proposition 1.7, g(n)~* is a polyno-
mial sequence of degree < (b,), c With b, = d, — ¢t if d, > t. It remains
to check that g(n)™! € G, , for all n € Z if d, < t. But this is obvious,
because d, <t implies g(n) € G, forall n € Z. 1
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Remark. The proof of Proposition 1.14 is based on the fact that the
product xy is linear on G,/G,, ,, and the commutator [x, y] is a bilinear
mapping (G/Gy. 1) X (G,/G 1) = Gy 1/Gyyyyq Torany k.1 € N.

1.15. For completeness, let us bring one more theorem of the same
type; we will not use it.

THEOREM. Let d = (d}), . be a superadditive sequence, let g be a
polynomial sequence of degree < d, and let p be a polynomial taking on
integer values on the integers with deg p = c. Then the sequence h(n) =
g(m)?"™ for n € Z is polynomial of degree < (d; + k¢ < -

Proof.  We will use induction on increasing ¢ and on decreasing ¢t € Z .,
to prove that if g(n) is a polynomial sequence of degree < d-t, then
g(n)?™ is a polynomial sequence of degree < (d,~t + kc), e If ¢ =0
the polynomial p is constant, and the statement is a corollary of Theorem
1.12.

Let ¢ > 1. The base of induction on ¢ is established by passing to factors
G/G, ., for k € N, as in the proof of Proposition 1.14. Write

D(g(n)p(n)) =g(n)*p(n)g(n + 1)p(n+1)
=g(n)*p(n)g(n)p(rwrl)g(n)*p(n+1)g(n + 1)p(n+l)

_ g(n)p(n+1)—p(n)(Dg(n))p(nJrl).

p(n + 1) — p(n) is a polynomial of degree ¢ — 1, so by the induction
hypothesis the sequence g(n)?**D=,(" js a polynomial of degree <
(dy=t + k(c = D)y < (dp=t + ke — D, . Dg(n) is a polynomial se-
quence of degree < d-(t + 1), so by the induction hypothesis
(Dg(n))P**D is a polynomial sequence of degree < (d,~(t+ 1) +
ko), cn < (dy=t + ke — 1), . By Theorem 1.12 their product D(g(n)*)
is also a polynomial of degree < (d,~t + k¢ — 1), ., and by Proposition
1.7 the sequence g(n)?™ is a polynomial of degree < (d,~t + kc), - |

1.16. Remark. Theorems 1.12 and 1.15 hold true if we substitute Z for
an arbitrary abelian group H and consider polynomial mappings H - G
instead of polynomial sequences Z — G.

2. REPRESENTATION BY INFINITE SERIES

2.1. We keep the notation of Section 1. We will denote the group of
polynomial sequences in G by pG. For a Z,-valued superadditive se-

guence d, we will denote the group of polynomial sequences of degree
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< d by p ;G. The goal of this section is to represent polynomial sequences
in the form of infinite products of elements of G raised to polynomial
exponents.

2.2. Introduce on G the {G,},y-adic topology: in this topology the
groups G, for k € N form a basis of neighbourhoods of 1. Now, a
sequence (x;) in G converges to x € G, x; — x or lim,_,_ x, = x, if for
any k € N there is / such that x 'x;, € G, for all i > 1.

Given a sequence (x,)7_, in G, we define IT7_,x;, = lim,_, IT'_,x, if
the limit exists.

Note that I17_,x; may exist only if x; — 1; the converse is not true
generally speaking. Besides, if the nilpotent residue N,_,G, is nontrivial,
the product I'17_, x; is not uniquely defined (the introduced topology is not
Hausdorff in this case). One could avoid these troubles by passing to the
completion of G, G, = lim G/G,: for any sequence (x;) in G, converg-
ing to 1 , the product I1;_,x; exists and is unique. We however prefer to
remain in G.

2.3. We define an integral polynomial as a polynomial with rational
coefficients taking on integer values on the integers. The binomial coeffi-
cients b, (n) = (3) =[n(n — 1) --(n — k + D] /[k(k — 1)---1]fork € Z,
form a natural basis for the module (over Z) of integral polynomials: b,(n)
is (the only) integral polynomial of degree k satisfying b,(0) = -+ =
b, (k — 1) =0, b, (k) = 1. Every integral polynomial p(n) of degree <d
is uniquely determined by its values at any d + 1 distinct points; we have,
consequently,

p(n) = cobo(n) + ¢;by(n) + - +cyby(n),
where ¢y = p(0), ¢, = p(k) — (cobo(k) + -+ +cy_1b_1(K))
fork=1,....d. (2.1)
The difference operator Dp(n) = p(n + 1) — p(n) maps the group of
integral polynomials onto itself: the “primitive” P of an integral polyno-
mial p, defined by DP = p and say P(0) = 0, is an integral polynomial as
well. Indeed, b, = Db, , for all k € Z_ (to check this note that Db, , ,(0)

=0forn=0,...,k—1and Db, (k)= 1.

2.4. We will now show that polynomial sequences in G are exactly
(infinite) products of elements raised to integral polynomial exponents.

THEOREM. Let d = (d}), c  be a superadditive sequence, let a sequence
g in G be given by a (converging) product,

g(n) =[1xr"™ fornez,
i=1
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where, fori € N, x; € G, and p; is an integral polynomial of degree < d, .
Then g € ;G.

Proof. We have to show that, for every k € N, D%*1g(n) € G, , for
all neZ. To do it, we may pass to G/G,,,, that is assume that
Gi,1 ={15}. Because x; > 1;, g is then given by a finite product

g(n) = TTL_ ,xPi™ for n €7, and by 1.6.1, xP is a polynomial sequence
of degree < (—oo,..., = _1,d;,dy,...) <d foreveryi=1,...,1 By
Theorem 1.12, g is polynomial of degree <d. |

2.5. The converse theorem holds as well.

THEOREM. Let d = (d,), < be a superadditive sequence, let g € ¢ ;G.
Then there exist a sequence (x,);_, with x; € G, and a sequence of integral
polynomials (p);_, with deg p;, < d,. such that g(n) = TT7_ xP™ for all
n € Z. Moreover, if X is a subset of G ‘such that for every k € N the elements
of X lying in G, generate G,/G,, ,, then x; for all i € N can b chosen
from X.

Proof. We have to find elements x,, x,,... € X and integral polynomi-
als py, p,,... such that for every k € N there is / € N such that x; € G, ,
fori>1[ deg p, <d, fori </ and

I -1
(l_[lx{’f(")) g(n) € G,,, forallneZ. (2.2)

We will do it using induction on k.
Assume that we found elements x; € X N G, and polynomials p; with
deg p; <d, fori=1,...,jsuch that

~ -1
j

g'(n) = (nxipf(”)) g(n) € G, forallneZ.
i=1

By Theorem 1.12, g'(n) is a polynomial sequence of degree < d, thus
D%*1g'(n) € G;,, for all neZ Assume now that we can find
Xip1,--- X, € X N G, and integral polynomials p;., 4, ..., p; with deg p; <
d, for i =j+1,. l such that g'(n) - G, ., = Hf j1XP Gy, forall
n € Z. Then we WiII have (2.2).

2.6. It follows that we may confine ourselves to the case of an abelian
group, that is, it suffices to prove the following proposition:

PrRoPOSITION.  Let H be an abelian group, let a set X C H generate H and
let h be a sequence in H satisfying D***h(n) = 1,, for somed € 7, d > —1.
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Then h can be represented in the form,

N

h(n) = nyqi(n) forne 7,

i=1

where y,,...,y, € X and q,, ..., q, are integral polynomials of degree < d.

Indeed, applying this proposition to the abelian group H = G, /G, ., and
the sequence h(n) =g'(n)-G,,, in H we will find the required
Xivpponxand piq,.o,pp

Proof of Proposition. We will use induction on d. For d = —1 the
statement is trivial; assume that it holds for 4 — 1. Find y,,...,y, € X and
integral polynomials ¢},...,q, of degree <d — 1 such that Dh(n) =
[1:_,y#™ for n € Z. Let q,, ..., q, be integral polynomials with ¢,(n + 1)
— gq.(n) = ¢i(n) for n € Z (they exist, see 2.3). We may also assume that
q(0)=0fori=1,...,¢. Represent h(0) =y,,, -y, with y,,,,...,y, €
X. Define

h'(n) = ny‘“”) ]_[ y; fornez. (2.3)

i=t+1

Then A’(0) = h(0) and

Dh'(n) =h'(n) *h'(n + 1) = (]_[qu 1 y,) I‘Iy“"“) 1—[ 7,

i=t+1 i=t+1
t t
— [Typr+ =000 = TTy#® = Dh(n) for n e 2.
i=1 i=1

By Lemma 1.3, & = i’ and so (2.3) is the desired representation of 4. |

2.7. In the proof of Theorem 2.5 the elements x,, x,, x5, ..., participat-
ing in the product g(n) = IT7_,x/", are picked from successive members
of the lower central series of G: say, x;,...,x, € Gy, X, ,q,..., X, € G,,

and so on. This is not however necessary, because the proof works as well
if one requires that x; for i € N occur in this product in accordance with
any a priori chosen ordering.

Let us define such a product in the following way. Let S be a linearly
ordered set, let {x} ., be a subset of G indexed by S. If S is finite,
S =(s1,8,...,8), we put [T, c gx; =x; x; - x,. If Sissuch that S, =
{seSlx, & G,,,} is finite for all ke N, we define IT,_ x, =
lim, .. IT,cgx, if this limit exists.

ExampLEs. If § =(1,2,...), then I, ¢x, = I'l7_,x;; both parts have
sense only if x; —» 1. 1f S =(..., =2 —1), then IT,cgx, = T[T "x,. If

S=(,2.., -1 -2...) then IT,_sx, = [T ,xT17x_, (f these
products are defined).
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2.8. Now we can generalize Theorems 2.4 and 2.5.
THEOREM. Let d = (d,), < be a superadditive sequence.

(@ Let S be a linearly ordered subset of G, for every x € S let k, € N
be such that x € G, , let {p,},cs be a family of integral polynomials with
deg p, < d, forx €S, and let a sequence g(n) in G be given by g(n) =
IT,. x”*‘") forn € 7. Then g € p ;G.

(b) Let g € p;G, let X be a linearly ordered subset of G such that for
every ke N, X N G, generates G, /G, . Then there is S C X and a family
{p.Jics of integral polynomials with deg p, < d, for x € S (where again,
k. € N is such that x € G, ) such that g(n) = [1,.gx?™ foralln € Z.

Proof. (@ Fix ke N, let S, =S \ G,. S, must be finite (otherwise
g(n) =TI, csx™ has no sense), thus in G, /G, , the sequence g(n) -
Gy, is represented by the finite product IT, o x”x(”) which belongs to
9#{G/G,,,) by Theorem 1.12. So, de”g(n) Gy = 16,6, that is
D%*lg(n) € G, , forall n € 7.

(b) We use induction on k& € N to find a sequence of sets R, € X N

G, and families of integral polynomials {p,}, .z, with deg p, <d, for
x € R, such that for §, = R, U -+ U R, one has

-1
( I x”x(”)) g(n) €G,,, fornez. (2.4)
xE€S;
Then, for S = U;_,R,, we will have g(n) = gxP<m forall n € 7.
Assume that R,,...,R,_; and {p},cr, - {px}xeR were found: for

S, =R, U-U Rk ., we have g'(n) = (ersk X P le(n) € G, for
n€Z. By Theorem 112, g' € p;G, so D‘““g’(n) € G,,,, that is
D%*'g'(n)- Gy yy = 15 ¢, for all n € Z. By Proposition 2.6, applied to
the sequence g'(n)-G,,, in the abelian group G,/G,.,, there are
X1,..., X, € X N G, and integral polynomials p, ,..., p, of degree <d,
such that

t
g'(n) Gy = _]j[lx,!’n(”) -G,,, fornez.

Put R, = {x,,...,x,}, S, = S,_; UR,. Because G,/G,.,, is in the center
of G/G,, ,, we have

[[x7"-Gy= T1 x™ []x""-Gy.y fornez,

XES, XES; 4 XER,
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thus,

(TT+) ()G

xXE€S,

=( 1—[ xpx(n))_l( 1_[ xpx(n))_lg(n) “Grin

XERy XES;_1

-1
= ( 11 xpx(”)) g'(n) Gy =15,5,, fornez.

XER,

It gives (2.4). 1

2.9. As an application, let us derive from Theorem 2.8 the fact that “‘the
multiplication in a nilpotent group is polynomial.” Namely, let G be a
finitely generated torsion free nilpotent group of class </ (that is, let
G,., = {1:D. All factors G, /G, ., for k = 1,...,1 are then finitely gener-
ated free abelian groups (see, for example, [2]). Let X = (x,,...,x,) be a
linearly ordered subset of G such that X N (G, \ G,.,) is a basis for
G./Gy,, forall k=1,...,1 Then every element y € G can be uniquely
written in the form y = I'T{_,x/, where a, € Zfor i = 1,...,t. Indeed, let
it be so in G/G, by induction: y -G, =I1, ;i G, Represent y' =
(nx[ec,xia")_ly € G, as y' =1l,cqx" Then y = (T, ¢ 6, X

(IT1, c g x¥), and because G, is in the center of G, y = I'T!_,x/.
X; 1 i i

PROPOSITION.  Under the previous assumption

(@) There are polynomials P,, ..., P, of 2t variables such that for any
y,z€G, if y=TI'"_,x% z=TI!"_,x' and yz =TI'_ x5, then c; =
P(a,,...,a,,by,....,b) fori=1,...,t.

(b) There are polynomials Q,,...,Q, of t + 1 variables such that for
anyy € G and any b € Z, if y = ITi_,x% and y® = T1'_,x{i, then c; =
Oflay,...,a,b) fori=1,...,¢t.

Proof. (a) The product yz = ITi_,x%TI:{_,x’ is a polynomial se-
quence of degree < (1,2,...,1) with respect to any of variables a,, ..., b,
if the rest are fixed. By Theorem 2.8, in the unique representation
yz = I'Ti_,x{" the exponents c,, ..., c, are polynomials of degree <[ with

respect to any of these variables. It remains to use the following fact:

LEMMA. Let F(uy,...,u,) be a function on Z° such that F is a polyno-
mial of degree <1 of every of its variables if the rest are fixed. Then F is a
polynomial.

(Note that the lemma does not hold if the degrees of the polynomials are
not assumed to be uniformly bounded.)
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(b) Similarly, y? = (IT!_,x%)" is a polynomial sequence of degree
<(1,2,...,1) with respect to any of the variables a, ..., a,, b if the rest
are fixed. So by Theorem 2.8, in the (unique) representation y® = TT!_, x¢:
the exponents c,, ..., ¢, are polynomials of degree < [ with respect to any
of these variables. By the foregoing lemma c¢;, ..., c, are polynomials. |

3. THE GROUP OF POLYNOMIAL SEQUENCES
OF DEGREE < (1,2,3--+)

Let us turn now to a concrete group of polynomial sequences, the group
9,23, .G By definition, p, , 5 G consists of sequences g in G satisfy-
ing D*"'g(n) € G,,, forall n € Z and k € N.

3.1. ProposITION (See also [3]). Let S denote {0,1,2,. ..} with any linear
ordering on it. Every g € 91,5 G can be uniquely written in the form
g(n) =TT, c52() with zy € G and z, € G, fork € N,

If, in addition, g(0) =g(1) = - =g(l) =1, then zy =z, = -+ =z
=1;.

3.2. We need the following simple fact:

LEMMA.  Let H be a group, let g be “a polynomial sequence in H of
absolute degree <d,” that is let D'**h(n) = 1,,. Then h is completely
defined by its values in 0,1,...,d: if h' is another sequence in H with
D h(n) =1, and h'(n) = h(n) for n =0,1,...,d, then h'(n) = h(n)
foralln € 7.

Proof. We use induction on d. For d = —1 the statement is trivial; let
it be true for d — 1, d > 0. Then we can apply it to Dh'(n) and Dh(n):
Dh'(n) =) *h'(n + 1) = h(n)"*h(n + 1) = Dh(n) for n=0,1,...,
d — 1, hence Dh' coincides with Dh. Because, in addition, 2'(0) = h(0), A’
and & coincide by Lemma 1.3. |

Proof of Proposition 3.1. We define elements z, for k € Z, recur-
rently: z, = g(0) and z, is such that g(k) = IT¥_,z(}) for k=1,2,...
(because (¥) = 1, z, is uniquely defined; cf. (2.1)). We have only to check
that

g (n) = ( I1 z[_(?)) g(n) €G,,, fornez, (3.1)

ieS
O<i<k
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for all k£ (“< " is used in the usual sense). Then, in particular,

k+1 k+1
1_[ ZE ! )'Gk+1=g(k+1)'Gk+1= 1_[ ZE ! )'Gk+1v

ieS ieS
O<i<k O<i<k+1

SO 23,1 € Giyq, and g(n) = lim,  TT,c¢ OSiskZ,-(7) = l_ll-eszi(?) for
n € Z. The second statement of the proposition follows immediately.

We use induction on k. The statement is trivial for k = 0; fix kK € N and
assume that z, € G, for i <k. Then g, € 9,5 ,G by Theorem 1.12,
thus D**1g,(n) € G, for n € Z. But g,(0) = g, (1) = -+ =g (k) =1,
by construction, so by Lemma 3.2, applied to the sequence g.(n) - G, ,, it
is trivial in the group G /Gy, 12 g,(n) - Gy, = 1, forall n € Z. This
gives 3.1). 1

3.3. We are now in position to obtain the promised generalization of
Hall-Petresco’s theorem.

COROLLARY. Let xy,...,x,; be elements of G where x; € ij, and let
D1, Py be integral polynomials with deg p; < k; forj =1,...,s. Let S be
the set of nonnegative integers with a fixed linear ordering. Then there are
zo € Gand z;, € G, fork =1,2,... such that

s

[Txp =TT 2,

j=1 kes
0<k<n

foralln € 7. (If the ordering of S is standard, the last product is Hﬁzozlgﬁ) )
If, in addition, pj(O) = - =pj(l) =0 forallj=1,...,s, then

N

[Txp = TT =0,

j=1 keS

foralln € 7.

Proof. Indeed, g(n) = TT_xP" € pq,, G, s0 g(n) = l_[keszk(?é)

for all n € Z for suitable z,, z,,... . But for n > 0 one has () # 0 only
for k =0,...,n.

If p0) = -+ =p(I)=0forj=1,...,s then g(0) = -+ =g(I) =1,
and thus z, = - =z, =1,. |

3.4. Remark. Considering polynomial mappings 7" — G instead of
polynomial sequences Z — G, we easily obtain a generalization of the
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Dark theorem (see, for example, [4]):

THEOREM. Let xq,...,x, be elements of G where x; € ij_, and let
P1r---, Dy be polynomials 7" — 7 with deg p; < k; forj=1,...,s. Fixa
linear ordering on the set (Z_.)'. Then for every (I;,...,1) € (Z,) there

existsz, ., € Gy ... such that
N
[Txrre o = TTz(8) - (3) | (3.2)
j=1 1
forall(ny,...,n,) € Z, ,wherel ={0 <1, <n} X - XxX{0<I <n,}, and

the factors in the product on the right-hand side of (3.2) are multiplied in
accordance with the ordering induced on I from (7).

(In Dark’s theorem, [x", y"] =TI, _; _, 1s12snzzz(1,n5§)(7;)' where the
factors in the product are ordered first according to n, + n, and then
according to 7,.)

Sketch of the Proof for r = 2. Fix l,,l, € Z,, let I =1, + 1,. Because
(1)) = 1, the element z, , is uniquely defined by (3.2). It is only to
check that z, , € G,. Assume by induction that z, , € G, ., for all

(ky, k) € (Z,)? with k; + k, < L. Then the polynomial mapping g: Z? —
G defined by

N

-1

g(nymy) = (nxjp,(nl,nz)) T =00
/=1 (ky k) €@ )2

ky ko<l

is of degree <(1,2,3,...). So, g(n,,n,) G, is a polynomial mapping
7? - G /G, of absolute degree <1 — 1, and thus it is determined by its
values at the points (n,,n,) € Z> with n,,n, > 0, n, + n, < [. Because

(X)) = 0 if either k; > n, or k, > n,, by definition of z, , we have

g(ny, n,) = 1, for all such (n, n,). Hence, g(n,, n,) € G, forall n;,n, €
7%; it implies z, , € G,. 1
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