Polynomial Sequences in Groups

A. Leibman*
Department of Mathematics, The Ohio State University, Columbus, Ohio 43210

Communicatod he, Whaltar Fait
metadata, citation and similar papers at core.ac.uk

Given a group G with lower central series $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots$, we say that a sequence $g: \mathbb{Z} \rightarrow G$ is polynomial if for any k there is d such that the sequence obtained from g by applying the difference operator $D g(n)=g(n)^{-1}$ $g(n+1) d$ times takes its values in G_{k}. We introduce the notion of the degree of a polynomial sequence and we prove that polynomial sequences of degrees not exceeding a given one form a group. As an application we obtain the following extension of the H all-Petresco theorem:

Theorem. Let $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots$ be the lower central series of a group G. Let $x \in G_{k}, y \in G_{l}$ and let p, q be polynomials $\mathbb{Z} \rightarrow \mathbb{Z}$ of degrees k and l, respectively. Then there is a sequence $z_{0} \in G, z_{i} \in G_{i}$ for $i \in \mathbb{N}$, such that $x^{p(n)} y^{q(n)}$

0. INTRODUCTION

The intention of this paper is to provide an answer to a question related to the following H all-Petresco theorem:

Theorem HP. (See, for example, [4].) Let $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots$ be the lower central series of a group G and let $x, y \in G$. There exists a sequence $z_{i} \in G_{i}$ for $i \in \mathbb{N}$, such that

$$
\begin{equation*}
x^{n} y^{n}=z_{1}^{\left(\frac{n}{1}\right)} z_{2}^{\left(\frac{n}{2}\right)} \cdots z_{n}^{(n)}, \tag{0.1}
\end{equation*}
$$

for all $n \in \mathbb{N}$.

[^0]The question was: does the conclusion of Theorem HP remain true if one replaces (0.1) by

$$
x^{\left({ }_{k}^{n}\right)} y^{\left({ }_{l}^{n}\right)}=z_{l}^{\left(l_{l}\right)} z_{l+1}^{\left(n_{l}^{n} 1^{n}\right)} \cdots z_{n}^{\left(n_{n}^{n}\right)},
$$

under the assumption that $x \in G_{k}, y \in G_{l}$, and $k \geq l$?
We answer this question positively, using the technique of what we call polynomial sequences. The elementwise product $g h$ of two homomorphisms $g, h: \mathbb{Z} \rightarrow G$, that is of two "linear" sequences $g(n)=x^{n}$ and $h(n)=y^{n}$ in G, is not, generally speaking, a homomorphism. However, $g h$ is a homomorphism modulo the commutator subgroup $G_{2}=[G, G]$ of $G: \operatorname{gh}(n)=$ $(x y)^{n} r(n)$ with $r(n) \in G_{2}$ for all $n \in \mathbb{Z}$. It is seen from Theorem HP that for any $k \in \mathbb{N}$, the sequence $g h(n)$ can be written as a polynomial expression modulo $G_{k+1}: g h(n)=z_{1}^{\binom{n}{1}} z_{2}^{\binom{n}{2}} \cdots z_{k}^{\binom{n}{k}} r(n)$ with $r(n) \in$ G_{k+1} for all $n \in \mathbb{N}$, where $\binom{n}{l}=[n(n-1) \cdots(n-l+1)] / l!$ is a polynomial of degree l with respect to n.
The sequence $g h(n)=x^{n} y^{n}$ is an example of a polynomial sequence of degree $\leq(1,2,3, \ldots)$ in G. One could define a general polynomial sequence as a mapping $g: \mathbb{Z} \rightarrow G$ such that for every $k \in \mathbb{N}$ there are $z_{1}, \ldots, z_{t} \in G$ and polynomials $p_{1}, \ldots, p_{t}: \mathbb{Z} \rightarrow \mathbb{Z}$ for which $g(n)\left(z_{1}^{p_{1(n)}} \ldots\right.$ $\left.z_{t}^{p_{t}(n)}\right)^{-1} \in G_{k+1}$ for $n \in \mathbb{Z}$. We preferred a different approach, based on the following property of ordinary polynomials: they vanish after finitely many applications of the difference operator $D p(n)=p(n+1)-p(n)$. We call a mapping $g: \mathbb{Z} \rightarrow G$ a polynomial sequence in G if for every $k \in \mathbb{N}$ the sequence obtained from g by applying the operator $D g(n)=$ $g(n)^{-1} g(n+1)$ finitely many times takes its values in G_{k+1}. The degree of a polynomial sequence g is the sequence ($d_{1}, d_{2}, d_{3}, \ldots$) of integers where $d_{k}=\min \left\{d: D^{d+1} g(n) \in G_{k+1}\right.$ for all $\left.n\right\}$.

We show that polynomial sequences form a group with respect to elementwise multiplication. This is not surprising and follows from the well known fact that multiplication in a nilpotent group is polynomial (see Subsection 2.9). What is more important, for every sequence $\bar{d}=$ $\left(d_{1}, d_{2}, d_{3}, \ldots\right)$ with the property $d_{i+j} \geq d_{i}+d_{j}$ for all $i, j \in \mathbb{N}$, the polynomial sequences whose degrees do not exceed \bar{d} also form a group. An example is given by the group of polynomial sequences of degrees \leq $(1,2,3, \ldots)$; we denote it by $\wp_{(1,2,3, \ldots)} G$. This group contains all homomorphisms $\mathbb{Z} \rightarrow G, n \mapsto x^{n}$, as well as all sequences of the form $x^{p(n)}$ with $x \in G_{k}$ and p being a polynomial of degree $\leq k$ for some $k \in \mathbb{N}$. We prove that the polynomial sequences $z\binom{n}{k}$ with $z \in G_{k}$ form a sort of basis for $\wp_{(1,2,3, \ldots)} G$: for any sequence $g \in \wp_{(1,2,3, \ldots)} G$ there are $z_{0} \in G$ and $z_{k} \in G_{k}$ for $k \in \mathbb{N}$, such that for every $k \in \mathbb{N}$ one has $g(n)=$
 proof of Theorem HP and answers the foregoing question.
A fter this paper was written, it was brought to our attention that similar problems were treated in [3]. In (a part of) his work, M. Lazard used the Lie algebra associated to a group G to study the group of sequences in G of the form $x_{1}^{p_{1}(n)} \cdots x_{s}^{p_{s}(n)}$, where $x_{j} \in G_{j}$ and p_{j} is a polynomial of degree $\leq j$ (the group $\wp_{(1,2,3, \ldots)} G$ in our notation). In particular, a version of Proposition 3.1 is proved there. Though it seems clear enough that the methods of [3] can be utilized to obtain the other results of our paper, we feel that our approach has advantages of its own and may lead to new developments. For instance, instead of polynomial sequences $\mathbb{Z} \rightarrow G$, one can consider polynomial mappings $H \rightarrow G$, where H is a general abelian group; most of the results of this paper can be extended to this case. (See also Remark 3.4.)

1. GROUPS OF POLYNOMIAL SEQUENCES

1.1. We define $Z_{+}=\{0,1,2, \ldots\}, Z_{*}=\{-\infty, 0,1,2, \ldots\}$. We will always assume that $-\infty+(-\infty)=-\infty$, and that $-\infty<t$ and $-\infty \pm t=-\infty$ for all $t \in \mathbb{Z}_{+}$.
We also define $d-t$ for $d \in \mathbb{Z}_{*}$ and $t \in \mathbb{Z}_{+}$by

$$
d-t= \begin{cases}d-t, & \text { if } d \geq t \\ -\infty, & \text { if } d<t .\end{cases}
$$

N ote that $\left(d-t_{1}\right) \div t_{2}=d-\left(t_{1}+t_{2}\right)$.
Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ where $d_{k} \in \mathbb{Z}_{*}$ for $k \in \mathbb{N}$, and let $t \in \mathbb{Z}_{+}$. We define $\bar{d}-t=\left(d_{k}-t\right)_{k \in \mathbb{N}}$.

Given $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ and $\bar{c}=\left(c_{k}\right)_{k \in \mathbb{N}}$ with $d_{k}, c_{k} \in \mathbb{Z}_{*}$ for $k \in \mathbb{N}$, we will write $\bar{d} \leq \bar{c}$ if $d_{k} \leq c_{k}$ for all $k \in \mathbb{N}$. Clearly, $\bar{d}-t_{1} \leq \bar{d}-t_{2}$ for $t_{1} \geq t_{2}$.
1.2. Let G be a group. For $x, y \in G$, the commutator of x and y is $[x, y]=x^{-1} y^{-1} x y$; the identity $x y=y x[x, y]$ will be frequently used in the sequel. For $A, B \subseteq G,[A, B]$ is the group generated by $\{[x, y] \mid x \in A$, $y \in B\}$.

Let $G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots$ be the lower central series of G, that is $G_{1}=G, G_{k+1}=\left[G, G_{k}\right]$ for $k=1,2, \ldots$. It is known (and not hard to verify) that $\left[G_{i}, G_{j}\right] \subseteq G_{i+j}$ for any $i, j \in \mathbb{N}$.
1.3. Given a (two-sided) sequence $g: \mathbb{Z} \rightarrow G$, its derivative $D g$ is the sequence defined by $D g(n)=g(n)^{-1} g(n+1)$. Every sequence g in G is
uniquely defined by its derivative $D g$ and one of its values, say $g(0)$:
Lemma. Let g and h be two sequences in G with $D g=D h$ and $g(0)=$ $h(0)$. Then $g(n)=h(n)$ for all $n \in \mathbb{Z}$.

Proof. By induction on n.

1.4. The derivation D is a mapping from the set $G^{\mathbb{Z}}$ of sequences in G into itself; let $D^{1}=D, D^{l+1}=D \circ D^{l}$ for $l=1,2, \ldots$, and $D^{-\infty}=D^{0}=$ $\mathrm{id}_{G^{\mathrm{z}}}$.

Let $\bar{d}=\left(d_{1}, d_{2}, \ldots\right)$ where $d_{k} \in \mathbb{Z}_{*}$ for $k \in \mathbb{N}$. A sequence $g \in G^{\mathbb{Z}}$ is said to be polynomial of degree $\leq \bar{d}$ if for every $k \in \mathbb{N}, D^{d_{k}+1} g$ takes its values in $G_{k+1}: D^{d_{k}+1} g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$. In particular, $d_{k}=-\infty$ implies $g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$.
1.5. Let H be a subgroup of G, let $H=H_{1} \supseteq H_{2} \supseteq H_{3} \supseteq \cdots$ be its lower central series and let g be a sequence in H. Because $H_{k} \subseteq G_{k}$ for all $k \in \mathbb{N}$, if g is polynomial in H then it is also polynomial in G.

1.6. Examples

1.6.1. Let $x \in G$, let $p \in \mathbb{Z}[n]$ be a polynomial of degree $\leq d$. Then the sequence $g(n)=x^{p(n)}$ is polynomial of degree $\leq(d, d, d, \ldots)$: we have $D g(n)=x^{p(n+1)-p(n)}$ and $p(n+1)-p(n)$ is a polynomial of degree $\leq d-1$, so $D^{d+1} g \equiv \mathbf{1}_{G}$. We say that g is of absolute degree $\leq d$.
If, in addition, $x \in G_{k}$, then g is polynomial of degree $\leq\left(-\infty_{1}\right.$, $\left.\ldots,-\infty_{k-1}, d_{1}, d_{1} . ..\right)$.
1.6.2. Let $G=\left\{x, y, z \mid[x, y]=z,[x, z]=[y, z]=\mathbf{1}_{g}\right\}$ (G is isomorphic to the smallest H eisenberg group, the group of 3×3 upper triangular matrices over \mathbb{Z} with unit main diagonal). Let $g(n)=x^{n} y^{n}$. Then

$$
\begin{aligned}
D g(n) & =y^{-n} x^{-n} x^{n+1} y^{n+1}=y^{-n} x y^{n+1}=y^{-n} y^{n+1} x\left[x, y^{n+1}\right]=y x z^{n+1}, \\
D^{2} g(n) & =z^{-n}(y x)^{-1} y x z^{n+1}=z \in G_{2} \\
D^{3} g(n) & =z^{-1} z=\mathbf{1}_{G} .
\end{aligned}
$$

Hence, g is a polynomial sequence of degree $\leq(1,2,2, \ldots)$.
1.6.3. Let G be a nilpotent group of class $\leq l$, that is let $G_{l+1}=\left\{\mathbf{1}_{G}\right\}$. Then a sequence g in G is polynomial if and only if $D^{d+1} g(n) \in G_{l+1}$ for some $d \in \mathbb{Z}_{+}$, that is $D^{d+1} g \equiv \mathbf{1}_{G}$. If this is the case, g is of degree $\leq(d, d, d, \ldots)$ (that is of absolute degree $\leq d)$.
N ote that when we deal with nilpotent (in particular, abelian) groups the degree of a polynomial sequence is actually represented by a finite sequence: if G is of class $\leq l$ then any polynomial sequence in G is of degree $\leq\left(d_{1}, d_{2}, \ldots\right)$ with $d_{l}=d_{l+1}=d_{l+2}==\cdots$. In such case we will say that the polynomial sequence is of degree $\leq\left(d_{1}, \ldots, d_{l}\right)$.
1.6.4. Let g be a polynomial sequence of degree $\leq\left(0_{1}, \ldots\right.$, $0_{k}, d_{k+1}, \ldots$). Then $D g(n)=g(n)^{-1} g(n+1) \in G_{k+1}$, so $g(n) G_{k+1}=$ $g(n+1) G_{k+1}$ for $n \in \mathbb{Z}$. This means that g is constant on G / G_{k+1} : $g(n) G_{k+1}=g(0) G_{k+1}$ for all $n \in \mathbb{Z}$. The following two elementary propositions will be used many times in the sequel; we omit proofs.
1.7. Proposition. If g is a polynomial sequence of degree $\leq \bar{d}$, then $D g$ is a polynomial sequence of degree $\leq \bar{d}-1$. If $D g$ is a polynomial sequence of degree $\leq\left(c_{k}\right)$, then g is a polynomial sequence of degree $\leq\left(b_{k}\right)$, where $b_{k}=c_{k}+1$ if $c_{k} \geq 0$ and $b_{k}=0$ if $c_{k}=-\infty$.
1.8. Proposition. If $g(n)$ is a polynomial sequence of degree $\leq \bar{d}$, then for any fixed $m \in \mathbb{Z}$ the sequence $g(n+m)$ is also polynomial of degree $\leq \bar{d}$.
1.9. A sequence $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ with $d_{k} \in \mathbb{Z}_{*}$ is said to be superadditive if it is nondecreasing and satisfies $d_{i}+d_{j} \leq d_{i+j}$ for all $i, j \in \mathbb{N}$.

Examples. $(1,2,3, \ldots),,(-\infty,-\infty, 0,1,2, \ldots),(3,6,9, \ldots)$, and $(1,2,4, \ldots)$ are superadditive sequences, $(2,3,4, \ldots)$ is not.
1.10. The following lemma is obvious.

Lemma. If $t \in \mathbb{Z}_{+}$and \bar{d} is a superadditive sequence, then $\bar{d}-t$ is also a superadditive sequence.

Note also that for every sequence $\bar{c}=\left(c_{k}\right)_{k \in \mathbb{N}}$ with $c_{k} \in \mathbb{Z}_{*}$ there is a superadditive sequence \bar{d} dominating $\bar{c}: \bar{c} \leq \bar{d}$.
1.11. Remark. Given $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ and $\bar{c}=\left(c_{k}\right)_{k \in \mathbb{N}}$ with $d_{k}, c_{k} \in \mathbb{Z}_{*}$, define $\bar{d} * \bar{c}=\left(a_{k}\right)_{k \in \mathbb{N}}$ by $a_{1}=-\infty, a_{k}=\max \left\{d_{i}+c_{j} \mid i+j=k\right\}$ for $k=$ $2,3, \ldots$. The operation "*" preserves the set of superadditive sequences: if \bar{d} and \bar{c} are both superadditive then $\bar{d} * \bar{c}$ is. Moreover, if \bar{d} is superadditive, we have $\left(\bar{d}-t_{1}\right) *\left(\bar{d}-t_{2}\right) \leq \bar{d}-\left(t_{1}+t_{2}\right)$ for any $t_{1}, t_{2} \in \mathbb{Z}_{+}$. This property of superadditive sequences will be implicitly used in the proof of Proposition 1.14.
1.12. The following theorem is the main result of this paper.

Theorem. Let \bar{d} be a superadditive sequence. Then polynomial sequences of degree $\leq \bar{d}$ form a group (with respect to elementwise multiplication).

1.13. Corollary. The set of polynomial sequences in G is a group.

1.14. Theorem 1.12 is a corollary of the following proposition:

Proposition. Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ be a superadditive sequence, let t, t_{1}, $t_{2} \in \mathbb{Z}_{+}$.
(a) If g, h are polynomial sequences of degree $\leq \bar{d}-t$, then $g h$ is a polynomial sequence of degree $\leq \bar{d}-t$ as well.
(b) If g is a polynomial sequence of degree $<\bar{d}-t_{1}$ and h is a polynomial sequence of degree $\leq \bar{d}-t_{2}$, then $[g, h]$ is a polynomial sequence of degree $\leq \bar{d}-\left(t_{1}+t_{2}\right)$.
(c) If g is a polynomial sequence of degree $\leq \bar{d}-t$, then so is g^{-1}.

Proof. Let $s \in \mathbb{Z}_{+}$, assume that (a) and (b) of the proposition hold for $t \geq s+1$ and $t_{1}+t_{2} \geq s+1$, respectively, and prove that they hold for $t=t_{1}+t_{2}=s$.
(a) Let $t=s$, let g and h be polynomial sequences of degree $\leq \bar{d}-t$. Write

$$
\begin{aligned}
D(g h)(n) & =h(n)^{-1} g(n)^{-1} g(n+1) h(n+1) \\
& =h(n)^{-1} \operatorname{Dg}(n) h(n+1) \\
& =h(n)^{-1} h(n+1) \operatorname{Dg}(n)[\operatorname{Dg}(n), h(n+1)] \\
& =\operatorname{Dh}(n) \operatorname{Dg}(n)[\operatorname{Dg}(n), h(n+1)] .
\end{aligned}
$$

By Propositions 1.7 and $1.8, \operatorname{Dg}(n)$ and $D h(n)$ are polynomial sequences of degree $\leq(\bar{d}-t)-1=\bar{d}-(t+1)$ and $h(n+1)$ is a polynomial sequence of degree $\leq \bar{d}-t$. Thus by our assumption, $[D g(n), h(n+1)]$ is a polynomial sequence of degree $\leq \bar{d}-(t+1+t) \leq \bar{d}-(t+1)$, and $D(g h)$ is a polynomial sequence of degree $\leq d-(t+1)$.

By Proposition 1.7, $g h$ is a polynomial sequence of degree $\leq\left(b_{k}\right)_{k \in \mathbb{N}}$ with $b_{k}=d_{k}-t$ if $d_{k} \geq t$. To prove that $g h$ is of degree $\leq \bar{d}-t$ it suffices to check that $g h(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$ if $d_{k}<t$. But it is so because in this case $g(n), h(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$.
(b) Let now $t_{1}+t_{2}=s$, let g be of degree $\leq \bar{d}-t_{1}$ and let h be of degree $\leq \bar{d}-t_{2}$. U tilize the commutator identities,

$$
\begin{aligned}
{[x y, z] } & =[x, z][[x, z], y][y, z] \\
{[z, x y] } & =[z, y][y,[x, z]][z, x] \\
& =[z, x][z, y][y,[x, z]][[z, y][y,[x, z]],[z, x]]
\end{aligned}
$$

to write

$$
\begin{aligned}
D[g, & h](n) \\
= & {[g(n), h(n)]^{-1}[g(n+1), h(n+1)] } \\
= & {[g(n), h(n)]^{-1}[g(n) D g(n), h(n+1)] } \\
= & {[g(n), h(n)]^{-1}[g(n), h(n+1)][[g(n), h(n+1)], D g(n)] } \\
& \times[D g(n), h(n+1)]
\end{aligned}
$$

$$
\begin{align*}
= & {[g(n), h(n)]^{-1}[g(n), h(n) D h(n)][[g(n), h(n+1)], D g(n)] } \\
& \times[D g(n), h(n+1)] \tag{1.1}\\
= & {[g(n), h(n)]^{-1}[g(n), h(n)][g(n), D h(n)] } \\
& \times[D h(n),[h(n), g(n)]] \\
& \times[[g(n), D h(n)][D h(n),[h(n), g(n)]],[g(n), h(n)]] \\
& \times[[g(n), h(n+1)], D g(n)][D g(n), h(n+1)] \\
= & {[g(n), D h(n)][D h(n),[h(n), g(n)]] } \\
& \times[[g(n), D h(n)][D h(n),[h(n), g(n)]],[g(n), h(n)]] \\
& \times[[g(n), h(n+1)], D g(n)][D g(n), h(n+1)] .
\end{align*}
$$

By Propositions 1.7 and $1.8, \operatorname{Dg}(n), \operatorname{Dh}(n)$, and $h(n+1)$ are polynomial sequences of degrees $\leq \bar{d}-\left(t_{1}+1\right)$, $\leq \bar{d}-\left(t_{2}+1\right)$, and $\leq \bar{d}-\left(t_{2}\right)$, respectively. Thus, by our assumption, all commutators on the right-hand part of (1.1) are polynomial sequences of degree $\leq \bar{d}-\left(t_{1}+t_{2}+1\right)=\bar{d}-(s+1)$, and so is their product, $D[g, h](n)$.
Thus, by Proposition 1.7, $[g, h]$ is a polynomial sequence of degree $\leq\left(b_{k}\right)_{k \in \mathbb{N}}$ with $b_{k}=d_{k}-\left(t_{1}+t_{2}\right)$ if $d_{k} \geq t_{1}+t_{2}$. To prove that [$\left.g, h\right]$ is of degree $\leq \bar{d}-\left(t_{1}+t_{2}\right)$, it is only to check that $[g, h](n) \in G_{k+1}$ for all $n \in \mathbb{Z}$ if $d_{k}<t_{1}+t_{2}$. Fix $n \in \mathbb{Z}$. If either $g(n) \in \cap_{k=1}^{\infty} G_{k}$ or $h(n) \in$ $\cap_{k=1}^{\infty} G_{k}$, then also $[g(n), h(n)] \in \bigcap_{k=1}^{\infty} G_{k}$. Let $i, j \in \mathbb{N}$ be such that $g(n) \in G_{i} \backslash G_{i+1}$ and $h(n) \in G_{j} \backslash G_{j+1}$. Then $d_{i}-t_{1} \geq 0$ and $d_{j}-t_{2} \geq$ 0 , so $d_{i+j} \geq d_{i}+d_{j} \geq t_{1}+t_{2}>d_{k}$ and thus $i+j>k$. But then $[g(n), h(n)] \in G_{i+j} \subseteq G_{k+1}$.

Now we can prove (a) and (b) by induction on decreasing t and $t_{1}+t_{2}$. We have the step of this induction process, it is only to establish its base. We have to show in part (a) of the proposition that

$$
\begin{equation*}
D^{\left(d_{k}-t\right)+1} g h(n) \in G_{k+1} \quad \text { for all } n \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

and in (b) that

$$
\begin{equation*}
D^{\left(d_{k}-\left(t_{1}+t_{2}\right)\right)+1}[g, h](n) \in G_{k+1} \quad \text { for all } n \in \mathbb{Z}, \tag{1.3}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Fix $l \in \mathbb{N}$ and pass from G to G / G_{l} : if (1.2) and (1.3) hold in G / G_{l}, they also hold in G for any $k \leq l$.
Thus, assume that $G_{l+1}=\left\{\mathbf{1}_{G}\right\}$ (that is G is nilpotent of class $\leq l$). Now, if t is big enough $\left(t>d_{l}\right.$), the assumption in (a) that g and h are of degree $\leq \bar{d}-t$ implies $g(n) h(n) \in G_{l+1}$ for all $n \in \mathbb{Z}$, that is $g \equiv h \equiv \mathbf{1}_{G}$. Hence $g h \equiv \mathbf{1}_{G}$ is a polynomial sequence of degree $\leq(-\infty,-\infty, \ldots) \leq$
$\bar{d}-t$, that shows that (a) holds for such t. If $t_{1}+t_{2}>d_{l}$, the assumption in (b) that g and h are of degrees $\leq \bar{d}-t_{1}$ and $\leq \bar{d}-t_{2}$ implies, as it was previously proved, that $[g(n), h(n)] \in G_{l+1}$ for all $n \in \mathbb{Z}$. So $[g, h] \equiv \mathbf{1}_{G}$, that is $[g, h]$ is a polynomial sequence of degree $\leq(-\infty,-\infty, \ldots) \leq$ $\bar{d}-\left(t_{1}+t_{2}\right)$. This gives the base of our induction for (b).
(c) To prove part (c) of the proposition we have to check that

$$
\begin{equation*}
D^{\left(d_{k}-t\right)+1}\left(g^{-1}\right)(n) \in G_{k+1} \quad \text { for all } n \in \mathbb{Z}, \tag{1.4}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Fix $l \in \mathbb{N}$ and pass from G to G / G_{l+1} : if (1.4) holds in G / G_{l+1}, it holds in G for $k \leq l$.
Thus, assume that $G_{l \pm 1}=\left\{\mathbf{1}_{G}\right\}$ and assume that g is a polynomial sequence of degree $\leq \bar{d}-t$ in G. If $t>d_{l}$ we have $g(n) \in G_{l+1}$ for $n \in \mathbb{Z}$, that is $g(n)$ is trivial in G and so is $g(n)^{-1}$. We now use induction on decreasing t. Write

$$
\begin{aligned}
D\left(g^{-1}\right) & (n) \\
= & g(n) g(n+1)^{-1}=g(n)\left(g(n)^{-1} g(n+1)\right)^{-1} g(n)^{-1} \\
= & g(n) D g(n)^{-1} g(n)^{-1}=D g(n)^{-1} g(n)\left[g(n), D g(n)^{-1}\right] g(n)^{-1} \\
= & D g(n)^{-1}\left[g(n), D g(n)^{-1}\right] g(n)\left[g(n),\left[g(n), D g(n)^{-1}\right]\right] g(n)^{-1} \\
= & \cdots=D g(n)^{-1}\left[g(n), D g(n)^{-1}\right]\left[g(n),\left[g(n), D g(n)^{-1}\right]\right] \cdots \\
& {\left[g(n), \ldots,\left[g(n), D g(n)^{-1}\right] \cdots\right] g(n) \cdot C \cdot g(n)^{-1}, }
\end{aligned}
$$

where $C=\left[g(n), \ldots,\left[g(n), D g(n)^{-1}\right] \cdots\right] \in G_{l+1}$ and thus $C=\mathbf{1}_{G}$. Hence,

$$
\begin{align*}
D\left(g^{-1}\right)(n)= & D g(n)^{-1}\left[g(n), D g(n)^{-1}\right]\left[g(n),\left[g(n), D g(n)^{-1}\right]\right] \cdots \\
& {\left[g(n), \ldots,\left[g(n), D g(n)^{-1}\right] \cdots\right] . } \tag{1.5}
\end{align*}
$$

A ssume that $t=s$ and assume that the conclusion of (c) holds for all $t \geq s+1$. Then $D g(n)^{-1}$ is a polynomial sequence of degree $\leq \bar{d}-(t+1)$, and so, by (b), all factors on the right-hand side of (1.5) are polynomial sequences of degree $\leq \bar{d}-(t+1)$. By (a), $D\left(g(n)^{-1}\right)$ is a polynomial sequence of degree $\leq \bar{d}-(t+1)$. By Proposition 1.7, $g(n)^{-1}$ is a polynomial sequence of degree $\leq\left(b_{k}\right)_{k \in \mathbb{N}}$ with $b_{k}=d_{k}-t$ if $d_{k} \geq t$. It remains to check that $g(n)^{-1} \in G_{k+1}$ for all $n \in \mathbb{Z}$ if $d_{k}<t$. But this is obvious, because $d_{k}<t$ implies $g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$.

Remark. The proof of Proposition 1.14 is based on the fact that the product $x y$ is linear on G_{k} / G_{k+1}, and the commutator $[x, y$] is a bilinear mapping $\left(G_{k} / G_{k+1}\right) \times\left(G_{l} / G_{l+1}\right) \rightarrow G_{k+l} / G_{k+l+1}$ for any $k, l \in \mathbb{N}$.
1.15. For completeness, let us bring one more theorem of the same type; we will not use it.
Theorem. Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ be a superadditive sequence, let g be a polynomial sequence of degree $\leq \bar{d}$, and let p be a polynomial taking on integer values on the integers with $\operatorname{deg} p=c$. Then the sequence $h(n)=$ $g(n)^{p(n)}$ for $n \in \mathbb{Z}$ is polynomial of degree $\leq\left(d_{k}+k c\right)_{k \in \mathbb{N}}$.

Proof. We will use induction on increasing c and on decreasing $t \in \mathbb{Z}_{+}$ to prove that if $g(n)$ is a polynomial sequence of degree $\leq \bar{d}-t$, then $g(n)^{p(n)}$ is a polynomial sequence of degree $\leq\left(d_{k}-t+k c\right)_{k \in \mathbb{N}}$. If $c=0$ the polynomial p is constant, and the statement is a corollary of Theorem 1.12.

Let $c \geq 1$. The base of induction on t is established by passing to factors G / G_{k+1} for $k \in \mathbb{N}$, as in the proof of Proposition 1.14. W rite

$$
\begin{aligned}
D\left(g(n)^{p(n)}\right) & =g(n)^{-p(n)} g(n+1)^{p(n+1)} \\
& =g(n)^{-p(n)} g(n)^{p(n+1)} g(n)^{-p(n+1)} g(n+1)^{p(n+1)} \\
& =g(n)^{p(n+1)-p(n)}(D g(n))^{p(n+1)} .
\end{aligned}
$$

$p(n+1)-p(n)$ is a polynomial of degree $c-1$, so by the induction hypothesis the sequence $g(n)^{p(n+1)-p(n)}$ is a polynomial of degree \leq $\left(d_{k}-t+k(c-1)\right)_{k \in \mathbb{N}} \leq\left(d_{k}-t+k c-1\right)_{k \in \mathbb{N}} . \operatorname{Dg}(n)$ is a polynomial sequence of degree $\leq \bar{d}-(t+1)$, so by the induction hypothesis $(D g(n))^{p(n+1)}$ is a polynomial sequence of degree $\leq\left(d_{k}-(t+1)+\right.$ $k c)_{k \in \mathbb{N}} \leq\left(d_{k}-t+k c-1\right)_{k \in \mathbb{N}}$. By Theorem 1.12 their product $D\left(g(n)^{p(n)}\right)$ is also a polynomial of degree $\leq\left(d_{k}-t+k c-1\right)_{k \in \mathbb{N}}$, and by Proposition 1.7 the sequence $g(n)^{p(n)}$ is a polynomial of degree $\leq\left(d_{k}-t+k c\right)_{k \in \mathbb{N}}$.
1.16. Remark. Theorems 1.12 and 1.15 hold true if we substitute \mathbb{Z} for an arbitrary abelian group H and consider polynomial mappings $H \rightarrow G$ instead of polynomial sequences $\mathbb{Z} \rightarrow G$.

2. REPRESENTATION BY INFINITE SERIES

2.1. We keep the notation of Section 1. We will denote the group of polynomial sequences in G by $\wp G$. For a \mathbb{Z}_{*}-valued superadditive sequence \bar{d}, we will denote the group of polynomial sequences of degree
$\leq \bar{d}$ by $\wp_{\bar{d}} G$. The goal of this section is to represent polynomial sequences in the form of infinite products of elements of G raised to polynomial exponents.
2.2. Introduce on G the $\left\{G_{k}\right\}_{k \in \mathbb{N}}$-adic topology: in this topology the groups G_{k} for $k \in \mathbb{N}$ form a basis of neighbourhoods of $\mathbf{1}_{G}$. Now, a sequence $\left(x_{i}\right)$ in G converges to $x \in G, x_{i} \rightarrow x$ or $\lim _{i \rightarrow \infty} x_{i}=x$, if for any $k \in \mathbb{N}$ there is l such that $x^{-1} x_{i} \in G_{k}$ for all $i>l$.

Given a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ in G, we define $\prod_{i=1}^{\infty} x_{i}=\lim _{l \rightarrow \infty} \prod_{i=1}^{l} x_{i}$ if the limit exists.

Note that $\prod_{i=1}^{\infty} x_{i}$ may exist only if $x_{i} \rightarrow \mathbf{1}_{G}$; the converse is not true generally speaking. Besides, if the nilpotent residue $\bigcap_{k=1}^{\infty} G_{k}$ is nontrivial, the product $\prod_{i=1}^{\infty} x_{i}$ is not uniquely defined (the introduced topology is not Hausdorff in this case). One could avoid these troubles by passing to the completion of $G, G_{*}=\lim G / G_{k}$: for any sequence $\left(x_{i}\right)$ in G_{*} converging to $\mathbf{1}_{G_{*}}$, the product $\prod_{i=1}^{\infty} x_{i}$ exists and is unique. We however prefer to remain in G.
2.3. We define an integral polynomial as a polynomial with rational coefficients taking on integer values on the integers. The binomial coefficients $b_{k}(n)=\binom{n}{k}=[n(n-1) \cdots(n-k+1)] /[k(k-1) \cdots 1]$ for $k \in \mathbb{Z}_{+}$ form a natural basis for the module (over \mathbb{Z}) of integral polynomials: $b_{k}(n)$ is (the only) integral polynomial of degree k satisfying $b_{k}(0)=\cdots=$ $b_{k}(k-1)=0, b_{k}(k)=1$. Every integral polynomial $p(n)$ of degree $\leq d$ is uniquely determined by its values at any $d+1$ distinct points; we have, consequently,

$$
\begin{align*}
& p(n)=c_{0} b_{0}(n)+c_{1} b_{1}(n)+\cdots+c_{d} b_{d}(n) \\
& \quad \text { where } c_{0}=p(0), c_{k}=p(k)-\left(c_{0} b_{0}(k)+\cdots+c_{k-1} b_{k-1}(k)\right) \\
& \quad \text { for } k=1, \ldots, d \tag{2.1}
\end{align*}
$$

The difference operator $D p(n)=p(n+1)-p(n)$ maps the group of integral polynomials onto itself: the "primitive" P of an integral polynomial p, defined by $D P=p$ and say $P(0)=0$, is an integral polynomial as well. Indeed, $b_{k}=D b_{k+1}$ for all $k \in \mathbb{Z}_{+}$(to check this note that $D b_{k+1}(0)$ $=0$ for $n=0, \ldots, k-1$ and $D b_{k+1}(k)=1$).
2.4. We will now show that polynomial sequences in G are exactly (infinite) products of elements raised to integral polynomial exponents.

Theorem. Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ be a superadditive sequence, let a sequence g in G be given by a (converging) product,

$$
g(n)=\prod_{i=1}^{\infty} x_{i}^{p_{i}(n)} \quad \text { for } n \in \mathbb{Z}
$$

where, for $i \in \mathbb{N}, x_{i} \in G_{k_{i}}$ and p_{i} is an integral polynomial of degree $\leq d_{k_{i}}$. Then $g \in \wp_{\bar{d}} G$.
Proof. We have to show that, for every $k \in \mathbb{N}, D^{d_{k}+1} g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$. To do it, we may pass to G / G_{k+1}, that is assume that $G_{k+1}=\left\{\mathbf{1}_{G}\right\}$. Because $x_{i \rightarrow} \overrightarrow{\mathbf{1}}_{G}, g$ is then given by a finite product $g(n)=\prod_{i=1}^{l} x_{i}^{p_{i}(n)}$ for $n \in \overrightarrow{\mathbb{Z}}_{\text {, and }}^{\infty}$ by 1.6.1, $x_{i}^{p_{i}(n)}$ is a polynomial sequence of degree $\leq\left(-\infty_{1}, \ldots, \infty_{k_{i}-1}, d_{k_{i}}, d_{k_{i}}, \ldots\right) \leq \bar{d}$ for every $i=1, \ldots, l$. By Theorem 1.12, g is polynomial of degree $\leq \bar{d}$.

2.5. The converse theorem holds as well.

Theorem. Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ be a superadditive sequence, let $g \in \wp_{\bar{d}} G$. Then there exist a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ with $x_{i} \in G_{k_{i}}$, and a sequence of integral polynomials $\left(p_{i}\right)_{i=1}^{\infty}$ with $\operatorname{deg} p_{i} \leq d_{k_{i}}$ such that $g(n)=\prod_{i=1}^{\infty} x_{i}^{p_{i}(n)}$ for all $n \in \mathbb{Z}$. Moreover, if X is a subset of G such that for every $k \in \mathbb{N}$ the elements of X lying in G_{k} generate G_{k} / G_{k+1}, then x_{i} for all $i \in \mathbb{N}$ can b chosen from X.

Proof. We have to find elements $x_{1}, x_{2}, \ldots \in X$ and integral polynomials p_{1}, p_{2}, \ldots such that for every $k \in \mathbb{N}$ there is $l \in \mathbb{N}$ such that $x_{i} \in G_{k+1}$ for $i>l$, deg $p_{i} \leq d_{k}$ for $i \leq l$ and

$$
\begin{equation*}
\left(\prod_{i=1}^{l} x_{i}^{p_{i}(n)}\right)^{-1} g(n) \in G_{k+1} \quad \text { for all } n \in \mathbb{Z} \tag{2.2}
\end{equation*}
$$

We will do it using induction on k.
A ssume that we found elements $x_{i} \in X \cap G_{k_{i}}$ and polynomials p_{i} with $\operatorname{deg} p_{i} \leq d_{k_{i}}$ for $i=1, \ldots, j$ such that

$$
g^{\prime}(n)=\left(\prod_{i=1}^{j} x_{i}^{p_{i}(n)}\right)^{-1} g(n) \in G_{k} \quad \text { for all } n \in \mathbb{Z}
$$

By Theorem 1.12, $g^{\prime}(n)$ is a polynomial sequence of degree $\leq \bar{d}$, thus $D^{d_{k}+1} g^{\prime}(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$. Assume now that we can find $x_{j+1}, \ldots, x_{l} \in X \cap G_{k}$ and integral polynomials p_{j+1}, \ldots, p_{l} with deg $p_{i} \leq$ d_{k} for $i=j+1, \ldots, l$, such that $g^{\prime}(n) \cdot G_{k+1}=\prod_{i=j+1}^{l} x_{i}^{p_{i}(n)} \cdot G_{k+1}$ for all $n \in \mathbb{Z}$. Then we will have (2.2).
2.6. It follows that we may confine ourselves to the case of an abelian group, that is, it suffices to prove the following proposition:

Proposition. Let H be an abelian group, let a set $X \subseteq H$ generate H and let h be a sequence in H satisfying $D^{d+1} h(n)=\mathbf{1}_{H}$ for some $d \in \mathbb{Z}, d \geq-1$.

Then h can be represented in the form,

$$
h(n)=\prod_{i=1}^{s} y_{i}^{q_{i}(n)} \quad \text { for } n \in \mathbb{Z},
$$

where $y_{1}, \ldots, y_{s} \in X$ and q_{1}, \ldots, q_{s} are integral polynomials of degree $\leq d$. Indeed, applying this proposition to the abelian group $H=G_{k} / G_{k+1}$ and the sequence $h(n)=g^{\prime}(n) \cdot G_{k+1}$ in H we will find the required x_{j+1}, \ldots, x_{l} and p_{j+1}, \ldots, p_{l}.

Proof of Proposition. We will use induction on d. For $d=-1$ the statement is trivial; assume that it holds for $d-1$. Find $y_{1}, \ldots, y_{t} \in X$ and integral polynomials $q_{1}^{\prime}, \ldots, q_{t}^{\prime}$ of degree $\leq d-1$ such that $\operatorname{Dh}(n)=$ $\Pi_{i=1}^{t} y_{1}^{q_{i}^{\prime}(n)}$ for $n \in \mathbb{Z}$. Let q_{1}, \ldots, q_{t} be integral polynomials with $q_{i}(n+1)$ $-q_{i}(n)=q_{i}^{\prime}(n)$ for $n \in \mathbb{Z}$ (they exist, see 2.3). We may also assume that $q_{i}(0)=0$ for $i=1, \ldots, t$. R epresent $h(0)=y_{t+1} \cdots y_{s}$ with $y_{t+1}, \ldots, y_{s} \in$ X. Define

$$
\begin{equation*}
h^{\prime}(n)=\prod_{i=1}^{t} y_{i}^{q_{i}(n)} \prod_{i=t+1}^{s} y_{i} \quad \text { for } n \in \mathbb{Z} \tag{2.3}
\end{equation*}
$$

Then $h^{\prime}(0)=h(0)$ and

$$
\begin{aligned}
D h^{\prime}(n) & =h^{\prime}(n)^{-1} h^{\prime}(n+1)=\left(\prod_{i=1}^{t} y_{i}^{q_{i}(n)} \prod_{i=t+1}^{s} y_{i}\right)^{-1} \prod_{i=1}^{t} y_{i}^{q_{i}(n+1)} \prod_{i=t+1}^{s} y_{i} \\
& =\prod_{i=1}^{t} y_{i}^{q_{i}(n+1)-q_{i}(n)}=\prod_{i=1}^{t} y_{i}^{q_{i}^{\prime}(n)}=D h(n) \quad \text { for } n \in \mathbb{Z} .
\end{aligned}
$$

By Lemma 1.3, $h=h^{\prime}$ and so (2.3) is the desired representation of h.
2.7. In the proof of Theorem 2.5 the elements $x_{1}, x_{2}, x_{3}, \ldots$, participating in the product $g(n)=\prod_{i=1}^{\infty} x_{i}^{p_{i}(n)}$, are picked from successive members of the lower central series of G : say, $x_{1}, \ldots, x_{t_{1}} \in G_{1}, x_{t_{1}+1}, \ldots, x_{t_{2}} \in G_{2}$, and so on. This is not however necessary, because the proof works as well if one requires that x_{i} for $i \in \mathbb{N}$ occur in this product in accordance with any a priori chosen ordering.

Let us define such a product in the following way. Let S be a linearly ordered set, let $\left\{x_{s}\right\}_{s \in S}$ be a subset of G indexed by S. If S is finite, $S=\left(s_{1}, s_{2}, \ldots, s_{t}\right)$, we put $\prod_{s \in S} x_{s}=x_{s_{1}} x_{s_{2}} \cdots x_{s_{t}}$. If S is such that $S_{k}=$ $\left\{s \in S \mid x_{s} \notin G_{k+1}\right\}$ is finite for all $k \in \mathbb{N}$, we define $\Pi_{s \in S} x_{s}=$ $\lim _{k \rightarrow \infty} \prod_{s \in S_{k}} x_{s}$ if this limit exists.
Examples. If $S=(1,2, \ldots)$, then $\prod_{s \in s} x_{s}=\prod_{i=1}^{\infty} x_{i}$; both parts have sense only if $x_{i} \rightarrow \mathbf{1}_{G}$. If $S=(\ldots,-2,-1)$, then $\prod_{s \in S} x_{s}=\prod_{-\infty}^{i=-1} x_{i}$. If $S=\left(1,2, \ldots,-\overrightarrow{1}_{,}^{\infty}-2, \ldots\right)$, then $\prod_{s \in S} x_{s}=\prod_{i=1}^{\infty} x_{i} \prod_{i=1}^{\infty} x_{-i}$ (if these products are defined).

2.8. Now we can generalize Theorems 2.4 and 2.5.

Theorem. Let $\bar{d}=\left(d_{k}\right)_{k \in \mathbb{N}}$ be a superadditive sequence.
(a) Let S be a linearly ordered subset of G, for every $x \in S$ let $k_{x} \in \mathbb{N}$ be such that $x \in G_{k_{x}}$, let $\left\{p_{x}\right\}_{x \in S}$ be a family of integral polynomials with $\operatorname{deg} p_{x} \leq d_{k_{x}}$ for $x \in S$, and let a sequence $g(n)$ in G be given by $g(n)=$ $\Pi_{x \in S} x^{p_{x}(n)}$ for $n \in \mathbb{Z}$. Then $g \in \wp_{\bar{d}} G$.
(b) Let $g \in \wp_{G} G$, let X be a linearly ordered subset of G such that for every $k \in \mathbb{N}, X \cap G_{k}$ generates G_{k} / G_{k+1}. Then there is $S \subseteq X$ and a family $\left\{p_{x}\right\}_{x \in S}$ of integral polynomials with $\operatorname{deg} p_{x} \leq d_{k_{x}}$ for $x \in S$ (where again, $k_{x} \in \mathbb{N}$ is such that $x \in G_{k_{x}}$) such that $g(n)=\prod_{x \in S}^{x} x^{p_{x}(n)}$ for all $n \in \mathbb{Z}$.

Proof. (a) Fix $k \in \mathbb{N}$, let $S_{k}=S \backslash G_{k}$. S_{k} must be finite (otherwise $g(n)=\prod_{x \in S} x^{p_{x}(n)}$ has no sense), thus in G_{k} / G_{k+1} the sequence $g(n)$. G_{k+1} is represented by the finite product $\Pi_{x \in S_{k}} p^{p_{x}(n)}$, which belongs to $\wp_{d}\left(G / G_{k+1}\right)$ by Theorem 1.12. So, $D^{d_{k}+1} g(n) \cdot G_{k+1}=\mathbf{1}_{G / G_{k+1}}$, that is $D^{d_{k}+1} g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$.
(b) We use induction on $k \in \mathbb{N}$ to find a sequence of sets $R_{k} \subseteq X \cap$ G_{k} and families of integral polynomials $\left\{p_{x}\right\}_{x \in R_{k}}$ with deg $p_{x} \leq d_{k}$ for $x \in R_{k}$, such that for $S_{k}=R_{1} \cup \cdots \cup R_{k}$ one has

$$
\begin{equation*}
\left(\prod_{x \in S_{k}} x^{p_{x}(n)}\right)^{-1} g(n) \in G_{k+1} \quad \text { for } n \in \mathbb{Z} \tag{2.4}
\end{equation*}
$$

Then, for $S=\cup_{k=1}^{\infty} R_{k}$, we will have $g(n)=\prod_{x \in S} x^{p_{x}(n)}$ for all $n \in \mathbb{Z}$.
A ssume that R_{1}, \ldots, R_{k-1} and $\left\{p_{x}\right\}_{x \in R_{1}}, \ldots,\left\{p_{x}\right\}_{x \in R_{k-1}}$ were found: for $S_{k-1}=R_{1} \cup \cdots \cup R_{k-1}$ we have $g^{\prime}(n)=\left(\prod_{x \in S_{k-1}} x^{p_{x}(n)}\right)^{-1} g(n) \in G_{k}$ for $n \in \mathbb{Z}$. By Theorem 1.12, $g^{\prime} \in \wp_{\bar{d}} G$, so $D^{d_{k}+1} g^{\prime}(n) \in G_{k+1}$, that is $D^{d_{k}+1} g^{\prime}(n) \cdot G_{k+1}=\mathbf{1}_{G / G_{k+1}}$. for all $n \in \mathbb{Z}$. By Proposition 2.6, applied to the sequence $g^{\prime}(n) \cdot G_{k+1}$ in the abelian group G_{k} / G_{k+1}, there are $x_{1}, \ldots, x_{t} \in X \cap G_{k}$ and integral polynomials $p_{x_{1}}, \ldots, p_{x_{t}}$ of degree $\leq d_{k}$ such that

$$
g^{\prime}(n) \cdot G_{k+1}=\prod_{i=1}^{t} x_{i}^{p_{x_{i}}(n)} \cdot G_{k+1} \quad \text { for } n \in \mathbb{Z}
$$

Put $R_{k}=\left\{x_{1}, \ldots, x_{t}\right\}, S_{k}=S_{k-1} \cup R_{k}$. Because G_{k} / G_{k+1} is in the center of G / G_{k+1}, we have

$$
\prod_{x \in S_{k}} x^{p_{x}(n)} \cdot G_{k+1}=\prod_{x \in S_{k-1}} x^{p_{x}(n)} \prod_{x \in R_{k}} x^{p_{x}(n)} \cdot G_{k+1} \quad \text { for } n \in \mathbb{Z},
$$

thus,

$$
\begin{aligned}
& \left(\prod_{x \in S_{k}} x^{p_{x}(n)}\right)^{-1} g(n) \cdot G_{k+1} \\
& \quad=\left(\prod_{x \in R_{k}} x^{p_{x}(n)}\right)^{-1}\left(\prod_{x \in S_{k-1}} x^{p_{x}(n)}\right)^{-1} g(n) \cdot G_{k+1} \\
& \quad=\left(\prod_{x \in R_{k}} x^{p_{x}(n)}\right)^{-1} g^{\prime}(n) \cdot G_{k+1}=\mathbf{1}_{G / G_{k+1}} \quad \text { for } n \in \mathbb{Z} .
\end{aligned}
$$

It gives (2.4).
2.9. A s an application, let us derive from Theorem 2.8 the fact that "the multiplication in a nilpotent group is polynomial." Namely, let G be a finitely generated torsion free nilpotent group of class $\leq l$ (that is, let $G_{l+1}=\left\{\mathbf{1}_{G}\right\}$). All factors G_{k} / G_{k+1} for $k=1, \ldots, l$ are then finitely generated free abelian groups (see, for example, [2]). Let $X=\left(x_{1}, \ldots, x_{t}\right)$ be a linearly ordered subset of G such that $X \cap\left(G_{k} \backslash G_{k+1}\right)$ is a basis for G_{k} / G_{k+1} for all $k=1, \ldots, l$. Then every element $y \in G$ can be uniquely written in the form $y=\prod_{i=1}^{t} x_{i}^{a_{i}}$, where $a_{i} \in \mathbb{Z}$ for $i=1, \ldots, t$. Indeed, let it be so in G / G_{l} by induction: $y \cdot G_{l}=\prod_{x_{i} \notin G_{l}} x_{i}^{a_{i}} \cdot G_{l}$. Represent $y^{\prime}=$ $\left(\Pi_{x_{i} \notin G_{l}} x_{i}^{a_{i}}\right)^{-1} y \in G_{l}$ as $y^{\prime}=\prod_{x_{j} \in G_{l}} x_{j}^{x_{j} j}$. Then $y=\left(\prod_{x_{i} \notin G_{l}} x_{i}^{a_{i}}\right)$ $\left(\Pi_{x_{j} \in G_{l}} x_{j}^{a_{j}}\right)$, and because G_{l} is in the center of $G, y=\prod_{i=1}^{t} x_{i}^{a_{i}}$.

Proposition. Under the previous assumption

(a) There are polynomials P_{1}, \ldots, P_{t} of $2 t$ variables such that for any $y, z \in G$, if $y=\prod_{i=1}^{t} x_{i}^{a_{i}}, z=\prod_{i=1}^{t} x_{i}^{b_{i}}$, and $y z=\prod_{i=1}^{t} x_{i}^{c_{i}}$, then $c_{i}=$ $P_{i}\left(a_{1}, \ldots, a_{t}, b_{1}, \ldots, b_{t}\right)$ for $i=1, \ldots, t$.
(b) There are polynomials Q_{1}, \ldots, Q_{t} of $t+1$ variables such that for any $y \in G$ and any $b \in \mathbb{Z}$, if $y=\prod_{i=1}^{t} x_{i}^{a_{i}}$ and $y^{b}=\prod_{i=1}^{t} x_{i}^{c_{i}}$, then $c_{i}=$ $Q_{i}\left(a_{1}, \ldots, a_{t}, b\right)$ for $i=1, \ldots, t$.

Proof. (a) The product $y z=\prod_{i=1}^{t} x_{i}^{a_{i}} \prod_{i=1}^{t} x_{i}^{b_{i}}$ is a polynomial sequence of degree $\leq(1,2, \ldots, l)$ with respect to any of variables a_{1}, \ldots, b_{t} if the rest are fixed. By Theorem 2.8, in the unique representation $y z=\prod_{i=1}^{t} x_{i}^{c_{i}}$ the exponents c_{1}, \ldots, c_{t} are polynomials of degree $\leq l$ with respect to any of these variables. It remains to use the following fact:

Lemma. Let $F\left(u_{1}, \ldots, u_{s}\right)$ be a function on \mathbb{Z}^{s} such that F is a polynomial of degree $\leq l$ of every of its variables if the rest are fixed. Then F is a polynomial.
(N ote that the lemma does not hold if the degrees of the polynomials are not assumed to be uniformly bounded.)
(b) Similarly, $y^{b}=\left(\prod_{i=1}^{t} x_{i}^{a_{i}}\right)^{b}$ is a polynomial sequence of degree $\leq(1,2, \ldots, l)$ with respect to any of the variables a_{1}, \ldots, a_{t}, b if the rest are fixed. So by Theorem 2.8, in the (unique) representation $y^{b}=\prod_{i=1}^{t} x_{i}^{c_{i}}$ the exponents c_{1}, \ldots, c_{t} are polynomials of degree $\leq l$ with respect to any of these variables. By the foregoing lemma c_{1}, \ldots, c_{t} are polynomials.

3. THE GROUP OF POLYNOMIAL SEQUENCES OF DEGREE $\leq(1,2,3 \cdots)$

Let us turn now to a concrete group of polynomial sequences, the group $\wp_{(1,2,3, \ldots)} G$. By definition, $\wp_{(1,2,3, \ldots)} G$ consists of sequences g in G satisfying $D^{k+1} g(n) \in G_{k+1}$ for all $n \in \mathbb{Z}$ and $k \in \mathbb{N}$.
3.1. Proposition (See also [3]). Let S denote $\{0,1,2, \ldots\}$ with any linear ordering on it. Every $g \in \wp_{(1,2,3, \ldots)} G$ can be uniquely written in the form $g(n)=\prod_{k \in S} z_{k}^{\binom{n}{k}}$ with $z_{0} \in G$ and $z_{k} \in G_{k}$ for $k \in \mathbb{N}$.

If, in addition, $g(0)=g(1)=\cdots=g(l)=\mathbf{1}_{G}$, then $z_{0}=z_{1}=\cdots=z_{l}$ $=\mathbf{1}_{G}$.
3.2. We need the following simple fact:

Lemma. Let H be a group, let g be "a polynomial sequence in H of absolute degree $\leq d$," that is let $D^{d+1} h(n) \equiv \mathbf{1}_{H}$. Then h is completely defined by its values in $0,1, \ldots, d$: if h^{\prime} is another sequence in H with $D^{d+1} h(n) \equiv \mathbf{1}_{H}$ and $h^{\prime}(n)=h(n)$ for $n=0,1, \ldots, d$, then $h^{\prime}(n)=h(n)$ for all $n \in \mathbb{Z}$.

Proof. We use induction on d. For $d=-1$ the statement is trivial; let it be true for $d-1, d \geq 0$. Then we can apply it to $D h^{\prime}(n)$ and $D h(n)$: $D h^{\prime}(n)=h^{\prime}(n)^{-1} h^{\prime}(n+1)=h(n)^{-1} h(n+1)=D h(n)$ for $n=0,1, \ldots$, $d-1$, hence $D h^{\prime}$ coincides with $D h$. Because, in addition, $h^{\prime}(0)=h(0), h^{\prime}$ and h coincide by Lemma 1.3.

Proof of Proposition 3.1. We define elements z_{k} for $k \in \mathbb{Z}_{+}$recurrently: $z_{0}=g(0)$ and z_{k} is such that $g(k)=\prod_{i=0}^{k} z_{i}^{\left(k_{i}^{k}\right)}$) for $k=1,2, \ldots$ (because $\binom{k}{k}=1, z_{k}$ is uniquely defined; cf. (2.1)). We have only to check that

$$
\begin{equation*}
g_{k}(n)=\left(\prod_{\substack{i \in S \\ 0 \leq i \leq k}} z_{i}^{\binom{n}{i}}\right)^{-1} g(n) \in G_{k+1} \quad \text { for } n \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

for all k (" \leq " is used in the usual sense). Then, in particular,

$$
\prod_{\substack{i \in S \\ 0 \leq i \leq k}} z_{i}^{(k+1)} \cdot G_{k+1}=g(k+1) \cdot G_{k+1}=\prod_{\substack{i \in S \\ 0 \leq i \leq k+1}} z_{i}^{(k+1)} \cdot G_{k+1},
$$

 $n \in \mathbb{Z}$. The second statement of the proposition follows immediately.

We use induction on k. The statement is trivial for $k=0 ;$ fix $k \in \mathbb{N}$ and assume that $z_{i} \in G_{i}$ for $i \leq k$. Then $g_{k} \in \wp_{(1,2,3, \ldots)} G$ by Theorem 1.12, thus $D^{k+1} g_{k}(n) \in G_{k+1}$ for $n \in \mathbb{Z}$. But $g_{k}(0) \stackrel{\left(1, g_{k}\right.}{=}(1)=\cdots=g_{k}(k)=\mathbf{1}_{G}$ by construction, so by Lemma 3.2, applied to the sequence $g_{k}(n) \cdot G_{k+1}$, it is trivial in the group $G / G_{k+1}: g_{k}(n) \cdot G_{k+1}=\mathbf{1}_{G / G_{k+1}}$ for all $n \in \mathbb{Z}$. This gives (3.1).
3.3. We are now in position to obtain the promised generalization of Hall-Petresco's theorem.

Corollary. Let x_{1}, \ldots, x_{s} be elements of G where $x_{j} \in G_{k_{j}}$, and let p_{1}, \ldots, p_{s} be integral polynomials with deg $p_{j} \leq k_{j}$ for $j=1, \ldots, s$. Let S be the set of nonnegative integers with a fixed linear ordering. Then there are $z_{0} \in G$ and $z_{k} \in G_{k}$ for $k=1,2, \ldots$ such that

$$
\prod_{j=1}^{s} x_{j}^{p_{j}(n)}=\prod_{\substack{k \in S \\ 0 \leq k \leq n}} z_{k}^{(k)},
$$

for all $n \in \mathbb{Z}_{+}$. (If the ordering of S is standard, the last product is $\prod_{k=0}^{n} z_{k}^{\left.\left(\begin{array}{l}k\end{array}\right) \text {.) }\right) ~(1)}$
If, in addition, $p_{j}(0)=\cdots=p_{j}(l)=0$ for all $j=1, \ldots, s$, then

$$
\prod_{j=1}^{s} x_{j}^{p_{j}(n)}=\prod_{\substack{k \in S \\ l+1 \leq k \leq n}} z_{k}^{(k)},
$$

for all $n \in \mathbb{Z}_{+}$.
Proof. Indeed, $g(n)=\prod_{j=1}^{s} x_{j}^{p_{j}(n)} \in \wp_{(1,2,3, \ldots)} G$, so $g(n)=\prod_{k \in S} z_{k}^{\binom{n}{k}}$ for all $n \in \mathbb{Z}$ for suitable z_{0}, z_{1}, \ldots. But for $n \geq 0$ one has $\binom{n}{k} \neq 0$ only for $k=0, \ldots, n$.

If $p_{j}(0)=\cdots=p_{j}(l)=0$ for $j=1, \ldots, s$, then $g(0)=\cdots=g(l)=\mathbf{1}_{G}$ and thus $z_{0}=\cdots=z_{l}=\mathbf{1}_{G}$.
3.4. Remark. Considering polynomial mappings $\mathbb{Z}^{r} \rightarrow G$ instead of polynomial sequences $\mathbb{Z} \rightarrow G$, we easily obtain a generalization of the

D ark theorem (see, for example, [4]):
Theorem. Let x_{1}, \ldots, x_{s} be elements of G where $x_{j} \in G_{k_{j}}$, and let p_{1}, \ldots, p_{s} be polynomials $\mathbb{Z}^{r} \rightarrow \mathbb{Z}$ with $\operatorname{deg} p_{j} \leq k_{j}$ for $j=1, \ldots, s$. Fix a linear ordering on the set $\left(\mathbb{Z}_{+}\right)^{r}$. Then for every $\left(l_{1}, \ldots, l_{r}\right) \in\left(\mathbb{Z}_{+}\right)^{r}$ there exists $z_{l_{1}, \ldots, l_{r}} \in G_{l_{1}+\cdots+l_{r}}$ such that

$$
\prod_{j=1}^{s} x_{j}^{p_{j}\left(n_{1}, \ldots, n_{r}\right)}=\prod_{I} z_{l_{1}, \ldots, l_{r}}^{\left(\begin{array}{l}
n_{1} \tag{3.2}
\end{array}\right) \cdots\binom{n_{r}}{n_{r}}, ~}
$$

for all $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{Z}_{+}^{r}$, where $I=\left\{0 \leq l_{1} \leq n_{1}\right\} \times \cdots \times\left\{0 \leq l_{r} \leq n_{r}\right\}$, and the factors in the product on the right-hand side of (3.2) are multiplied in accordance with the ordering induced on I from $\left(\mathbb{Z}_{+}\right)^{r}$.
(In D ark's theorem, $\left[x^{n_{1}}, y^{n_{2}}\right]=\prod_{1 \leq l_{1} \leq n_{1}, 1 \leq l_{2} \leq n_{2}} z_{l_{1}, l_{2}}^{\left(\begin{array}{l}n_{1}\end{array}\right)\binom{n_{2}}{l_{2}} \text {, where the }}$ factors in the product are ordered first according to $n_{1}+n_{2}$ and then according to n_{1}.)

Sketch of the Proof for $r=2$. Fix $l_{1}, l_{2} \in \mathbb{Z}_{+}$, let $l=l_{1}+l_{2}$. Because $\left(\begin{array}{l}l_{1} l_{1}\end{array}\right)\left(l_{l_{2}}\right)=1$, the element $z_{l_{1}, l_{2}}$ is uniquely defined by (3.2). It is only to check that $z_{l_{1}, l_{2}} \in G_{l}$. Assume by induction that $z_{k_{1}, k_{2}} \in G_{k_{1}+k_{2}}$ for all $\left(k_{1}, k_{2}\right) \in\left(\mathbb{Z}_{+}\right)^{2}$ with $k_{1}+k_{2}<l$. Then the polynomial mapping $g: \mathbb{Z}^{2} \rightarrow$ G defined by

$$
g\left(n_{1}, n_{2}\right)=\left(\prod_{j=1}^{s} x_{j}^{p_{j}\left(n_{1}, n_{2}\right)}\right)^{-1} \prod_{\substack{\left(k_{1}, k_{2}\right) \in\left(\mathbb{Z}_{+}\right)^{2} \\ k_{1}+k_{2}<l}} z_{k_{1}, k_{2}}^{\binom{n_{1}}{1}\binom{n_{2}}{k_{2}}}
$$

is of degree $\leq(1,2,3, \ldots)$. So, $g\left(n_{1}, n_{2}\right) \cdot G_{l}$ is a polynomial mapping $\mathbb{Z}^{2} \rightarrow G / G_{l}$ of absolute degree $\leq l-1$, and thus it is determined by its values at the points $\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ with $n_{1}, n_{2} \geq 0, n_{1}+n_{2}<l$. Because
 $g\left(n_{1}, n_{2}\right)=\mathbf{1}_{G}$ for all such $\left(n_{1}, n_{2}\right)$. Hence, $g\left(n_{1}, n_{2}\right) \in G_{l}$ for all $n_{1}, n_{2} \in$ \mathbb{Z}^{2}; it implies $z_{l_{1}, l_{2}} \in G_{l}$.

ACKNOWLEDGMENTS

I thank H. Furstenberg for bringing this problem to my attention. I am thankful to Vitaly Bergelson for his advice and permanent support. In fact, the subject of this paper is closely related to our joint research on generalized polynomiality (see [1]). I thank R on K aridi for his comments on the preliminary version of this paper. I also thank the referee for many useful remarks and suggestions.

REFERENCES

1. V. Bergelson and A. Leibman, Set-polynomials and polynomial extension of H ales-J ewett theorem, submitted for publication.
2. M. Kargapolov and Ju. M erzljakov, "Fundamentals of the Theory of Groups," SpringerV erlag, New Y ork, H eidelberg, Berlin, 1979.
3. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. École Norm. Sup. (3) 71 (1954), 101-190.
4. D. S. Passman, "The A Igebraic Structure of Group Rings," Wiley, New Y ork, 1977.

[^0]: * E -mail address: leibman@ math.ohio-state.edu.

