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A simple description of jet cross-section ratios
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We compute the ratio of the inclusive jet cross-sections obtained with the same jet algorithm at
two different values of the jet radius. We perform a computation of that observable at NLO (O(α2

s ))
in perturbative QCD and compute non-perturbative corrections from soft-gluon emission. We discuss
predictions for RHIC and the LHC.
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1. Introduction

In this Letter, we are interested in computing the ratio of the
inclusive jet cross-section computed with the same jet algorithm
at two different values of R:

R(pt; R1, R2) =
dσ
dpt

(R = R1)

dσ
dpt

(R = R2)
. (1)

Our main objective is to show that the minimal effort required to
get a reliable prediction for R is to include O(α2

s ) perturbative
correction as well as (universal) non-perturbative power correc-
tions.

We shall first discuss the perturbative computation of R. This
is interesting per se since, as we will see below, instead of comput-
ing naively the ratio of the cross-sections computed at NLO, which
would formally correspond to a computation of R up to O(αs), it
is actually possible to obtain the O(α2

s ) corrections [1].1

Since jets are basic observables at the LHC, and both ATLAS and
CMS plan to use the anti-kt algorithm [3] with two different radii
(R = 0.4 and 0.6 for ATLAS, R = 0.5 and 0.7 for CMS), they could
in principle measure the ratio. Compared to the measurement of
the inclusive jet cross-section, the ratio would not have the un-
certainty on the luminosity measurement and would probably be
less sensitive to the jet energy scale. Below, we shall compare our
NLO QCD predictions with and without hadronisation corrections
to the ATLAS recent measurements [4] and make predictions for
the cross-section ratio.

E-mail address: gregory.soyez@cea.fr.
1 See also [2] for an experimental measurement and QCD computation of jet

cross-section ratios with different jet algorithms and a fixed R .
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Another situation in which the cross-section ratio is an inter-
esting observable is at RHIC where it can be measured both in
proton–proton and heavy-ion collisions.2 Due to the interaction
with the hot medium produced in heavy-ion collisions, one expects
the jet to loose energy and to be broadened. That would directly
translate into a decrease of the cross-section ratio (see e.g. [5] for a
computation with and without medium effects at O(αs) in QCD).
Here we shall show that, for the pp reference measurement, the
next order and hadronisation bring large corrections.

2. Perturbative expansion

Let us start with a perturbative QCD computation of the cross-
section ratio. Naively, since inclusive jet cross-sections are known
up to NLO accuracy (O(α3

s )), one would use3

R(pt; R1, R2) = σ NLO(pt; R1)

σ NLO(pt; R2)
, (2)

which is formally an O(αs) computation of R.
The interesting point is that, by making the perturbative expan-

sion explicit, R can actually be computed up to O(α2
s ). To see this,

consider the perturbative expansion of the jet cross-section:

σ(pt; R) = α2
s σ

(2)(pt) + α3
s σ

(3)(pt; R)

+ α4
s σ

(4)(pt; R) + O
(
α5

s

)
,

2 Similar considerations would hold for PbPb collisions at the LHC, with the extra
complication that the energy of the collision differs from the pp one.

3 For readability, we use σ(pt ; R) as a shorthand notation for the differential

cross-section dσ
dp (R).
t
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where we have taken into account the fact that the leading-order
contribution does not depend on R . The contribution σ (n)(pt; R)

at a given order αn
s receives contributions from tree diagrams with

n particles in the final state, up to (n − 2)-loop diagrams with
2 particles in the final state. Denoting by σ (n,p)(pt; R) the p-loop
contribution to σ (n)(pt; R), we have

σ(pt; R) = α2
s σ

(2,0)(pt) + α3
s

[
σ (3,0)(pt; R) + σ (3,1)(pt)

]
+ α4

s

[
σ (4,0)(pt; R) + σ (4,1)(pt; R) + σ (4,2)(pt)

]
+ O

(
α5

s

)
, (3)

where we have again used the fact that the contributions with only
2 particles in the final state do not depend on the jet radius R .

If we use (3) to expand the ratio R(R1, R2) in series of αs , we
obtain, up to corrections of order α3

s ,

R(pt; R1, R2) = 1 + αs
�σ(3,0)(pt; R1, R2)

σ (2)(pt)

+ α2
s
�σ(4,0)(pt; R1, R2) + �σ(4,1)(pt; R1, R2)

σ (2)(pt)

− α2
s
σ (3)(pt; R2)�σ (3,0)(pt; R1, R2)

[σ (2)(pt)]2
, (4)

with �σ(n,p)(pt; R1, R2) = σ (n,p)(pt; R1) − σ (n,p)(pt; R2).
The remarkable fact, that allows for the computation to be per-

formed at O(α2
s ), is that the two-loop contribution to the NNLO

jet cross-section, that prevents one from obtaining an NNLO com-
putation of the inclusive jet cross-section (e.g. using NLOJet++ [6]),
does not appear in the computation of the cross-section ratio.4

In what follows, the LO ratio will refer to (4) with the two first
terms kept — the O(αs) expansion, i.e. the first non-trivial order —,
while the NLO ratio will also incorporate the O(α2

s ) corrections
in (4).

Before proceeding with the discussion about non-perturbative
effects, it is interesting to comment a bit on Eq. (4). In the collinear
limit, the NLO (resp. NNLO) correction to the cross-section will
be proportional to αs log(1/R) (resp. α2

s log2(1/R)), which would
be the dominant correction at small jet radius. In the computa-
tion of the ratio, the O(αs) term only involves the cross-section
difference and will thus be proportional to log(R1/R2) while the
next order will involve log(R1/R2) log(1/R2). This means that for
R1 ∼ R2 � 1, the collinear contribution will mostly appear from
NLO onwards and we may thus expect large NLO corrections.

3. Non-perturbative corrections

As we shall see later when making explicit computations of
the ratio R, for small values of R , hadronisation corrections may
have a significant impact on the jet cross-section and thus on R.
One could in principle rely on Pythia [7] or Herwig [8] (or, bet-
ter, a combination of both) in order to estimate the correction
factor one has to apply to go from a parton-level cross section
to a hadron-level cross-section, i.e. to estimate hadronisation cor-
rections. Keeping in mind that we want to provide as simple a
description of the cross-section ratio as we can, we shall instead
give an analytic estimate of the hadronisation corrections. In [1],
hadronisation corrections are computed from soft-gluon emission
and the authors obtain that the effect of hadronisation is to shift
the pt of the jet by an average amount

〈δpt〉hadr = −2C R

R

2M

π
A(μI ). (5)

4 Note that it would contribute at the next order.
In that expression, C R if the Casimir factor which should be C F

for quark jets and C A for gluon jets, M is the Milan factor that
depends on the jet algorithm — it is universal [9], M ≈ 1.49, for
the anti-kt algorithm while, for the kt algorithm, one finds [10]
M ≈ 1.01 —, and A(μI ) carries all the non-perturbative depen-
dence. The latter can be rewritten5 as

A(μI ) = μI

π

[
α0(μI ) − αs(pt)

− β0

2π

(
log

(
pt

μI

)
+ K

β0
+ 1

)
α2

s (pt)

]
, (6)

where the average coupling in the infrared region α0(μI ) =
(1/μI )

∫ μI
0 αs(kt)dkt is frequently encountered in event-shape

studies (see e.g. [11]), β0 = (11C A −2n f )/3 and K = C A( 67
16 − π2

6 )−
5
9 n f .

Including the hadronisation corrections to the perturbative
cross-section can then be done using6

Khadr(pt; R) = σ(pt; R)

σpQCD(pt; R)
≈ σpQCD(pt − 〈δpt〉hadr; R)

σpQCD(pt; R)

≈ σLO(pt − 〈δpt〉hadr; R)

σLO(pt; R)
. (7)

For the first equality, we have neglected the dispersion in δpt (i.e.
assumed that the shift was always the average one) which would
correspond to higher power corrections that are not as well con-
trolled from LEP data. Approximating the full perturbative cross-
section by the leading-order expression in the second equality is
motivated by the fact that the computation of hadronisation cor-
rections from soft-gluon emission is done for the underlying 2 → 2
scattering i.e. from the leading-order process.

Finally, the cross-section ratio after taking into account the
hadronisation corrections is

R(pt; R1, R2) = Khadr(pt; R1)

Khadr(pt; R2)
RpQCD(pt; R1, R2), (8)

with RpQCD(pt; R1, R2) computed from Eq. (4).
Because of the 1/R behaviour of (5), we may also expect size-

able effects from the non-perturbative corrections at small R .
Note however that the factor of the 1/R term is rather small
(2C F A(μI ) ≈ 0.5 GeV), compared to the corresponding QCD cor-
rections that would typically scale like αs pt and so dominate at
moderate R and pt .

4. Comparison with experiments

In the following lines, we briefly discuss the perturbative com-
putation of R and the hadronisation corrections at two different
energies: RHIC (

√
s = 200 GeV) and the LHC (

√
s = 7 TeV).

As far as the perturbative part of the computation is concerned,
we have used NLOJet (v4.1.2) [6] for the computation of the dif-
ferent pieces in (4). We have considered the CTEQ6.6 NLO PDF set
[12] as well as the MSTW08 NLO and NNLO sets [13] though, for
brevity, we shall only show the CTEQ6.6 results in what follows.
The scale uncertainties have been obtained7 by varying indepen-
dently the renormalisation and factorisation scales from pt,jet to
pt,jet/2 and 2pt,jet.

5 At the 2-loop accuracy and in the MS scheme.
6 In practise, since quark and gluon-jets have a different pt shift due to hadroni-

sation, one should consider their contributions separately.
7 For both scales we compute a negative and a positive uncertainty. The renor-

malisation and factorisation scale uncertainties are then added in quadrature to
obtain the total uncertainty.
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Fig. 1. QCD predictions for the ratio R(pt ;0.2,0.4) at RHIC (
√

s = 200 GeV) for the anti-kt (left) and kt (right) jet algorithms. On the top panel, the solid lines correspond,
from top to bottom, to the LO QCD computation (green), to the NLO QCD ratio (red) and to the NLO QCD computation including hadronisation effects (blue). The uncertainties
due to the scale choice and, when relevant, hadronisation are shown as shaded bands on the top panel and the relative scale uncertainty is plotted on the bottom panel. For
comparison, we have also plotted in dashed lines the parton-level (red) and hadron-level (blue) predictions from Pythia. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this Letter.)
To compute the hadronisation corrections, the only parameter
we need8 is α0. As already mentioned, this can be extracted [11]
from event-shape distributions at LEP and we shall use the value
α0(μI ) = 0.503 with μI = 2 GeV, obtained from JADE data [14].
The uncertainty on the hadronisation corrections will be estimated
by varying the Milan factor (M = 1.49 for the anti-kt algorithm
and M = 1.01 for kt ) by the standard 20%.

Let us start by discussing the case of RHIC, where STAR is plan-
ning to measure [15] the ratio R(pt;0.2,0.4) for both the kt [16]
and anti-kt [3] algorithms. Though the ratio will be measured in
proton–proton and gold–gold collisions with the ultimate goal to
see jet-broadening effects due to interaction with the hot medium
produced in heavy-ion collisions, we just focus on the pp case
here.9 The result is presented in Fig. 1 for both algorithms. The first
message is that NLO corrections to R are substantial (∼ 0.1–0.15)
and, probably as a consequence, the scale uncertainty does not
decreases when going from LO to NLO. Though they are strictly
the same only at LO, the kt and anti-kt algorithms show a very
similar cross-section ratio also at NLO. Then, as a consequence of
the choice of rather small values of R , hadronisation effects are
also sizeable (∼ 0.15–0.2). In this case, since the Milan factor is
a bit larger for the anti-kt algorithm than for kt , the final ratio
tends to be a bit larger for the kt algorithm. Finally, Fig. 1 shows
that the NLO pQCD computation of R is in good agreement with
what is obtained from Pythia10 (v6.4) at parton-level (i.e. includ-
ing parton shower from initial and final-state radiation), and our

8 We will always consider large-enough pt so we can safely use n f = 5 in (6)
and, for consistency, we have used the running coupling provided together with the
PDF set.

9 See [5] for a LO description of R for pp and gold–gold collisions, incorporating
medium effects for the latter.
10 For Pythia simulations, the ratio is obtained by explicitly dividing the jet cross-

section computed with the two radii.
final prediction, including non-perturbative corrections is also in
good agreement with what Pythia predicts when hadronisation is
included.11

We now turn to the case of measurements at the LHC and,
more precisely, to the jet cross-section measured very recently at√

s = 7 TeV by the ATLAS Collaboration [4]. In Fig. 2 we have plot-
ted our predictions both for the jet cross-section (anti-kt algorithm
with R = 0.4) and the cross-section ratio R(pt; R1 = 0.4, R2 =
0.6). The jet cross-section is compared to the ATLAS measurements
and we see that, though the pure NLO QCD prediction (cyan band)
describes the data nicely, the inclusion of the non-perturbative
power corrections improves the description. Note also that the
non-perturbative corrections obtained in our approach are com-
patible with the numbers obtained from Pythia and Herwig and
quoted by ATLAS. If we now consider the cross-section ratio, see
the right plot in Fig. 2, we basically recover the main features al-
ready discussed in the case of RHIC. However, both the NLO QCD
corrections and the hadronisation corrections are reduced com-
pared to what we observed at RHIC. This is even more true for the
non-perturbative corrections at large pt which become very small.
This is likely due to two effects: first, the considered radii are
larger, reducing the effect of the collinear divergence in the NLO
QCD computation as well as the hadronisation corrections that be-
have like 1/R . Then, the inclusive jet cross-section is much less
steep at the LHC than at RHIC and thus a common pt shift would
have a larger impact at RHIC.

5. Conclusions

To summarise, we have discussed in this Letter the mini-
mal ingredients needed to get a reliable calculation of the ratio

11 The underlying-event corrections could also be taken into account both in our
computation and in the Pythia simulation but they have a very small impact on R.
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Fig. 2. Left: comparison of our inclusive jet cross-section computations with the ATLAS measurements. The ratio between the experimental values and the theory predictions
(NLO QCD including non-perturbative effects) is plotted; the yellow band represents the uncertainty on the theoretical prediction and the cyan band corresponds to the
NLO QCD prediction without hadronisation corrections. Right: predictions for the ratio R(pt ;0.4,0.6) for the anti-kt algorithm at, from top to bottom, LO, NLO, NLO with
hadronisation corrections. See Fig. 1 for conventions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
Letter.)
R(pt; R1, R2) of the pt -dependent inclusive jet cross-section com-
puted with the same jet algorithm at two different values, R1 and
R2, of the jet radius.

We have seen that by making an explicitly expansion in powers
of αs , we can compute R perturbatively at O(α2

s ), the NLO accu-
racy for that observable, that is one order higher than what we
would naively expect from the direct ratio of the cross-sections.
The explicit computation of R at NLO can be done e.g. using the
NLOJet++ event generator. Note that using techniques of [17] would
allow us to obtain an approximate NNLO calculation and further
test the convergence of the perturbative series.

Then, we have estimated the non-perturbative corrections to
the ratio. They are based on universal power corrections and the
only free parameter, α0, can be estimated from fits to event-shape
measurements at LEP.

Finally, we have seen that, in practise, both the O(α2
s ) terms

and the non-perturbative effects are numerically sizeable, except
for the hadronisation correction at large pt . In the case of the re-
cent jet measurements done by ATLAS, it would be interesting to
see if the computation of the ratio could benefit from reduced un-
certainties compared to the jet cross-section itself.

In the case of RHIC, the NLO and hadronisation corrections are
even larger. It is important to keep that in mind when performing
the same computation for heavy-ion collisions, in the presence of
the medium: the one-gluon-emission approximation is likely to be
insufficient. One has to include the next-order corrections as well
as non-perturbative effects.
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