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On Scale Embeddings of Graphs into Hypercubes
S. V. SHpeCcTOROV

We investigate graphs that are isometrically embeddable into the metric space {,.

1. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loops or multiple
edges. For graphs I’ and A a mapping ¢: V(I")— V(A) is called a scale embedding if
there is an integer A such that for any x, y € V(I') one has

da(@(x), p(y)) =AdAx, y),

where d, and d denote the usual path distances in A and I', respectively. If we want
to specify the value of A exactly, we speak about embeddings with scale A4, or
A-embeddings; 1-embeddings are also called isometric embeddings. In what follows we
investigate scale embeddings of graphs into hypercubes; i.e. A is supposed to be an
n-cube for some dimension nr, throughout. The paper was inspired by the following
question.

QuestioN. Is it true that a graph which is embeddable into a hypercube with an odd
scale is also 1-embeddable into a hypercube?

In what follows we give the affirmative answer to this question, but also develop a
kind of theory which covers both the cases of odd and even scale. The main result in
this theory is Theorem 2 below, but first we formulate the answer to the above
question.

Tueorem 1. If I' is embeddable into an n-cube with an odd scale A, then T is
1-embeddable into a k-cube, where k =[n/1].

THEOREM 2. Whenever I is a graph, scale embeddable into a hypercube, there is
another graph I" and a 1-embedding ¢ of T into I, such that:
(1) =1 x---x T, where each I, is isomorphic either to a complete graph, or 10 a
cocktail party graph, or to a halved cube;
(2) for any scale embedding v of T into a hypercube, there is a scale embedding ) of T’
into the same hypercube, such that vy = .

REMARK. In the assumption part of Theorem 2, I' has at least one scale embedding
for at least one scale. In the part (2) of the conclusion,  is any scale embedding of I
for any scale.

The relation between Theorems 1 and 2 is as follows. A hypercube is itself a direct
product of a number of complete graphs, each having two vertices. Only such factors
can appear in Theorem 2 when the scale is odd.

In [1] it was proved that a graph can be isometrically embedded into the metric space
!; (such graphs are called /;-graphs) iff it is scale embeddable into a hypercube. So one
can say that in this paper we are studying /,-graphs. Since this language is probably
more customary among specialists, we will use it for formulate the consequences of
Theorem 2.
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CoroLLARY 1. A graph is an l,-graph iff it is an isometric subgraph of a direct
product of cocktail party graphs and halved cubes.

CoroLLARY 2. The property of being l,-graph is recognizable in polynomial time.

An [;-graph is called [;-rigid if up to a natural equivalence it has only one isometric
embedding into a hypercube (see [3]). An application of Theorem 2 gives the following
criterion of i,-rigidity.

COROLLARY 3. An I,-graph Tis I,-rigid iff T is I,-rigid.

Since [ is a direct product graph, it is {,-rigid iff all its factors are [ -rigid. It is
equivalent to the condition that no factor is isomorphic to a complete graph with more
than 3 vertices, or to a cocktail party graph with more then 6 vertices (see [3]). In
particular, we have the following:

CorOLLARY 4. Every l,-rigid graph is an isometric subgraph of a hypercube, or a
halved cube. O

For an arbitrary {,-graph I', the minimal scale A, such that I' is A-embeddable into a
hypercube, can also be bounded.

CoroLLARY 5. If Iis an l-graph with v = 4 vertices then there exists A <v — 1, such
that I' is A-embeddable into a hypercube.

All the proofs given in this paper are clementary and rely only on very basic
definitions. It must be mentioned that there is a different method (see [2]) based on the
consideration of the L-polytope of the lattice defined by the embedding of the graph
into a euclidean space. This approach is applicable to a wider class of distance spaces.
In the latest version of [2] there is a result {Lemma 3.1) showing that the L-polytope
graph of a graph has properties similar to those of I". Also, our Corollary 1 appears in
[2] (as Theorem 3.6).

Another paper to be mentioned here is [5]. Since in Theorem 2 we embed I'in the
direct product I" as an isometric subgraph, the irredundant (for definitions, see [5])
part of I must be an isometric subgraph of the canonical direct product I'* constructed
in [5). Applying Theorem 2 we obtain that that isometric embedding is actually an
isomorphism (and I'* coincides with our intermediary direct product I'). We
formulate this as follows:

CoROLLARY 6. Let a: I'— I'* be the canonical embedding constructed in [5]. Then
for every scale embedding v of I' into a hypercube A there is a scale embedding ¢* of
I into A such that ¢ = Y™ a.

In the whole paper we are actually proving only Theorem 2, while Theorem 1 is
obtained as a by-product quite early in the proof. The proof of Theorem 2 proceeds in
two steps, which is just a trick to ease the understanding of what is happening. First, in
Section 3, we consider the case in which I' is already embedded in a hypercube, and
construct I" in there. In Section 4 we follow the construction from Section 3 and
demonstrate that it does not actually depend on the concrete embedding, so
establishing Theorem 2. All relevant definitions and preliminary results are given in
Section 2.
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2. DEFINITIONS AND PRELIMINARY RESULTS

The definition of a scale embedding was given in the introduction. Let us now recall
the definitions of the particular graphs mentioned there. The cocktail party graph K, .,
is a complete multipartite graph with & paéts, each of cardinality 2. It is directly by
definition that for each vertex in such a graph there is exactly one another vertex not
adjacent to the first one. In what follows these two vertices are called opposite to each
other.

The hypercube associated with dimension 7 is also known as the Hamming graph
H(n, 2) of words of length » in the alphabet of two letters. Another definition, given
below, is equivalent, but better fits the arguments in this paper. Let A be a set of n
elements. Then the vertices of the hypercube are all the subsets of A. Two subsets are
adjacent whenever their symmetric difference has cardinality 1. It easily follows that
the distance in the hypercube between any two subsets equals the cardinality of their
symmetric difference. The hypercube is bipartite, and the halved cube is just the graph
defined on one of the parts, where the adjacency relation is given by being distance 2
apart in the hypercube. It is a little bit more convenient to choose the part containing
the subsets of even cardinality, so we do that. If the dimension n of the hypercube is 2
or 3, then the corresponding halved cube is a complete graph with 2 and 4 vertices. If
n =4 then it is the cocktail party Kix,. n what follows we use the name ‘halved cube’
only for the case n=5. By definition the halved cube is 2-embedded into the
corresponding hypercube.

To simplify the notation the same letter A will be used to denote both the basic set
of n elements and the whole hypercube. Accordingly, we will use upper case letters to
denote vertices of a hypercube and write X ¢ A to abbreviate the statement that X is
such a veriex. All other graphs are considered sometimes abstractly, simply as graphs,
but sometimes as being embedded into a hypercube. This may concern even a
particular graph, and we will use the same convention to distinguish the two possible
contexts. If a graph is embedded in a hypercube, but only its own properties are
concerned, then the lower case letters serve to denote the vertices. On the other hand,
if we want to emphasize the fact that the vertices are actually subsets, then the
respective upper case letters arc used instead.

Now all the graphs are defined and this is the right moment for several observations
concerning scale embeddings. In Lemmas 2.1-2.5 it is assumed that x— X is a scale
embedding of a graph I'into a hypercube A. Then by definition

|XAY|= Ad(x, y),

where x and y are any two vertices of I', 4 is the scale and d is the path distance in I,

LemMMa 2.1. For any S c A, the mapping x — XAS also is a scale embedding of T,
having the same scale A. |

Two embeddings that can be obtained from one another, as in Lemma 2.1, are called
equivalent. We will consider embeddings up to this equivalence and, in particular, it is

always assumed that & is in the image of embedding. Let v throughout denote the
vertex such that V =,

LeEMMA 2.2.  Let A be the scale of the embedding x +— X. Then:
(1) For any x € V(I') one has that | X| = Ad(x, v) is an integer multiple of A.
(2) For any x,y e V(I') one has that | X NY|=A/2[d(x, v)+d(y, v)—d(x, y)] is an
integer multiple of A/2. a
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The following definition gives us something very similar to what is called a root in [2]
and [4]). Let x, y be adjacent in I'. Then the atom defined by the edge {x, y} is by
definition the set XAY. Clearly, an atom consists of exactly A elements, and also
different edges may define the same atom. The following lemma shows how an atom
may appear.

Lemma 2.3.  For adjacent x, y e V(I') either X c Y, or Y < X, or |X\Y|=|Y\X|=
Al2.

Proor. This follows from Lemma 2.2, since both |[X\¥| and |Y\X]| are integer
multiples of /2, while XAY = (X\Y) U (Y\X) has cardinality A. O

An atom is called proper if it is defined by an edge {x, y} suchthat XcYor Y c X.
In such a case we will always assume that X < Y, i.e. the corresponding proper atom
can be defined also as Y\X. Some more observations follow.

LemMma 2.4, If v=1xy, x,,...,x, =X Is a shortest path from v to x, then X is the
disjoint union of the proper atoms A, = X\X;_,, i=1,...,s.

Proor. The proof follows by definition, since V = . O

Lemma 2.5. If A is a proper atom and B is either a vertex, or another proper atom,
then |[ANB|=0, A/2 or A.

Proor. By definition A =Y\X, for two adjacent vertices x, y € V(I') such that
d(x,v)+1=d(y,v). If now B is the image of a vertex b then |[ANB|=|YN
B|—|X U B} is an integer multiple of A/2 by Lemma 2.2. The case in which B is a
proper atom is quite similar. O

At this point we already can prove our Theorem 1.

Proor oF THEOREM 1. If A is odd then all atoms are proper and, by Lemma 2.5, no
two different atoms have a non-trivial intersection. This, together with Lemma 2.4,
means that for any x € V(I') the subset X can be uniquely represented as a (disjoint)
union of atoms. Clearly, it gives us a 1-embedding of I into the hypercube defined by
the set of atoms, the cardinality of which is at most [r/4], n the cardinality of the set A.

O

If I,..., I are graphs then the direct product IT X - - - X I is the graph having
V() x---x V() as its vertex set, two vertices (x;,...,x;) and (y,...,¥)
adjacent iff there is an index i such that x; =y;, for j #i, and x; is adjacent to y,.

Lemma 2.6. Let I,...,I, be graphs embedded with the same scale into a
hypercube, each into an independent part of its basic set. Then the mapping

X, ...,x)=>XU---UX,
gives a natural scale embedding of I X - - - X I into the hypercube. O

The following lemma is a converse of Lemma 2.6. Observe that the factor I; can be
naturally identified with the subgraph in the direct product, induced by the vertices
(x,,...,x,), where x; =y;, for j#i, and x; is arbitrary. Here (y, . . ., ¥;) is any fixed
vertex. In what follows we take as such the vertex wv.
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LemMa 2.7. Let I X - - - X I be scale embedded into a hypercube. Suppose that the
factors I7’s are chosen, passing through v with V ={J. Then each I is embedded into an
independent subset of the basic set.

Proor. It suffices to consider the case s = 2. Let x be any vertex of I} and y be any
vertex of I;. Since v is the common vertex of I} and I3, we have d(x, y)=
d(x, v)+d(y, v). Now, by Lemma 2.2, one has [ X NY|=A4/2[d(x, v) +d(y, v)—
d(x, y)}=0. O

Now several lemmas follow about scale embeddings of the particular graphs
mentioned above.

Lemma 2.8. If a graph T, isomorphic to a cocktail party graph, is embedded with a
scale A into a hypercube A then the vertices of I cover all together exactly 24 elements of
the set A. Moreover, if any graph I has a scale embedding with this property, then it is
isomorphic to a subgraph of a cocktail party graph.

Proor. Recall that we assume that there is a vertex v e V(I') with V =(. Let x, y
be a pair of opposite vertices of I', such that x, y # v. Clearly, [X U Y|=24. If z is any
other vertex then |ZNX|=|ZUY|=4/2,since d{z, x)=d(z,y)=1. Hence Zc X U
Y.

The reverse statement is clear, since one can add to I’ all the complements of vertices
in that 2A-element set. ]

The following lemma claims that all scale embeddings of a halved cube can be
produced from its natural 2-embedding. Recall that the halved cube graph was defined
as a certain 2-embedded subgraph of a hypercube. In particular, each vertex x of the
halved cube has its original cardinality, which we will refer to as card(x). In the
following lemma we also suppose that card(v)=0. Clearly, we may suppose this
without loss of generality.

Lemma 2.9. If Iis a halved cube and x — X is a A-embedding of I into a hypercube
A, then there is a family of pairwise disjoint subsets of A, each or cardinality A(2, such
that X is a union of exactly card(x) of these subsets for any x € V(I'). If the vertices of T’
cover the whole of A then such a family is unique.

Proor, Recall that by definition vertices of I' are all even subsets of a certain set
{1,...,k}, k=5. Two subsets are adjacent whenever their symmetric difference has
cardinality 2. Since by assumption v = € V(I') is mapped to V = e V(4), it follows
that | X|= A.card(x}/2 for any x € V(I').

Fori=2,... kletx,;={i—1,i}eV(I). Clearly, all these vertices are adjacent to
v, and each x; is adjacent to x,_, and x,,,, and non-adjacent to all other x;’s. For
i=3,...,k let P=X\X,_,. Let AL=X;NX, and P,=X,\X;. Clearly, B’s are
pairwise disjoint subsets of cardinality A/2.

Now let x={s,t} be any other 2-element subset. If x is adjacent to x; and
non-adjacent to x;,, then, clearly, X » P,_,. Likewise, if x is adjacent to x, and
non-adjacent to x;_,, then X o B. Using these two tricks and the condition k = 5, it is
easy to prove in each case that X = F, U F,. Finally, f x = {s, ¢, r, .. ., f} is any vertex
of I' then, for y ={s, ¢t} and z={r, ..., f}, it follows from pairwise distances that Y
and Z are disjoint, and X =Y U Z. Hence each X is a union of an even number of P's.
The uniqueness, which is claimed in the lemma, follows from the observation that
every P, must belong to any such family. O
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Remark. It was pointed out by one of the referees that this lemma, claiming in fact
the /,-rigidity of the halved cube, has already appeared in [3].

The final statement of the section follows:

Lemma 2.10.  Let I be A-embedded into a hypercube A, and 2 be a subset of A. Let
I be the subgraph of I induced by all the vertices x with X = Q. Then:
(1) if I' is isomorphic to a complete graph or a cocktail party graph, then so is I'";
(2) if I is isomorphic to a halved cube, then I'' is either a halved cube, or a complete
graph K., s =1, 2, 4, or a cocktail party graph K.,.
In either case, I'' is scale embedded into A with the same scale A.

Proor. The proof easily follows from Lemmas 2.8 and 2.9. |

Remark. The strange formulation of claim (2) of Lemma 2.10 is due to our
decision to consider the halved cubes in small dimensions as ‘wrong’ ones.

3. THE AToM GRAPH

In this section we consider only subgraphs embedded with scale A in a fixed
hypercube A. Such a graph I' can be identified with its image; namely, with a subset
of the vertex set of A (equivalently, a set of subsets of the basic set A). On such a
family the adjacency (as in the original I') is to be defined by

X~Y & |XAY|=A

Moreover, the distance defined by this adjacency must possess the condition of
embedding:

d(X, Y) =|XAY|/A,

for any two subsets from the family. In this section we regard the subgraphs,
A-embedded in A, as such families, and for two I', I'" of them with I" = I’ we say that
" is an extension of I'. Clearly, in such a situation we have that I' is naturally
1-embedded into I"".

The main result of this section is the following:

ProposiTioN 3.1, Any graph I, scale embedded into A, possesses a unigue extension
I minimal with respect to the following conditions:
(1) F'=fx---xTI:
(2) I}, i=1,...,s, is isomorphic to a complete graph, cocktail party graph or halved
cube.

In order to prove Proposition 3.1 we develop some further theory related to the
notion of an atom. Throughout, we suppose that I'is A-embedded into A.

For a given I' let us define the atom graph A(I') as the graph defined on the set of
proper atoms of I" by the following: two proper atoms A and B are adjacent if
|4 N B|=A/2. By Lemma 2.5, distinct proper atoms are either adjacent, or disjoint.

Lemma 3.2. If I'" is gn extension of I then A(I') is a subgraph of A(I'"}). In
particular, each connected component of A(I') is contained in a connected component
of A(T"). O
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Let A be a connected component of A(I'} and  be the union of all proper
atoms—vertices of A. By definition of £ each proper atom of I'is either contained in,
or is disjoint of ©. We will need a more general statement.

LemMMA 3.3, For each atom A of I' (not necessarily . proper), either Ac Q, or
ANQ=.

Proor. By definition A = XAY for some adjacent vertices X and Y. By the above
remark we may restrict ourselves to the case in which A is not proper. By Lemma 2.3
one has |[X\Y|=A/2. By Lemma 2.4 both X and Y can be represented as disjoint
unions of proper atoms—X ={_f_; B, and Y=f_, C,. Let 8={B,,..., B,} and
€={C,, ..., C}. If e X\Y then there is an atom B € & such that a € B. It follows
from Lemma 2.5 that [B N Y} is an integer multiple of /2. Now |X\Y| = /2 implies
X\Y < B. Symmetrically, there is C € € such that YAX < C. Furthermore, since C;’s
are disjoint, each B;, which is not equal to some C;, has non-trivial intersections with
exactly two proper atoms C;s, unless B;=B, in which case B; has non-trivial
intersection with exactly one proper atom C,. Clearly, a symmetric statement holds if
we switch the roles of C’s and B’s.

This means that the subgraph in A(I") generated by all B,’s and all C/’s is a disjoint
union of isolated vertices, cycles and exactly one string. Clearly, the end vertices of
that string § are B and C. By definition, all proper atoms along § belong to one
connected component of A(I'). Now the statement of the lemma follows, since
AcBUC g

ForXeV(DletX=XNg

Lemma 3.4, The set {X | X e V(I)} forms a graph I embedded into A with the
scale A. Moreover, atoms (proper atoms) of I are just those atoms (proper atoms) of I’
which are contained in 8. In particular, A coincides with A(T').

ProoF. Let us define the adjacency on {X | X € V(I')} as in the beginning of the
section. With this definition it suffices to prove that for any X, Y e V(I') there is an
integer s such that [XAY|=As, and there is a path in I between X and Y, having
length 5. As in Lemma 2.4, XAY is the disjoint union of the atoms (not necessarily
proper) defined by the edges on a shortest path X =X,,,..., X, =Y from X to Y. If
X;_, and X, are consecutive vertices on that path, then by Lemma 3.3 the atom
X,_AX; is either contained in, or disjoint of £2. Let s be the number of those atoms
which are contained in Q. Then, clearly, |[XAY| = As and the path X, ..., X, with
repetitions omitted, is the desired path between X and Y, having length s.

Clearly, if an atom A = XAY is contained in £ then A = XAY, proving that (proper)
atoms of I" are also (proper) atoms of I". Now let A= XAY be any atom of I'. As
above, XAY is a disjoint union of atoms defined by the edges on a shortest path from
X to Y. Since by Lemma 2.5 each atom is either contained in £, or disjoint of it, one
has that A itself is an atom of I', proper if it is such in I |

The graph I" can be considered as a projection of I', defined by the subset Q (or
component A). Let A,, ..., A, be the full set of connected components of A(I'). Let
£,i=1, , ¥, be the part of the basic set of A, covered by atoms from V(A;), and
let I; be the above defined projection of I’ on the subset £, By Lemma 3.4,
A= A(T ), i= , . By Lemma 2.6 the projections I give a certain extension I’ of
I, which is simp]y the direct product of I}’s.
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Now let I" be a minimal extension of I" possessing (1) and (2) of Proposition 3.1. The
existence and uniqueness of I"is to be proved. Here we reduce the general situation to
the case in which A(I') is connected. By Lemma 2.7 we may assume that the factors I;
are embedded into independent parts of A. First we observe the following:

Lemma 3.5.  A(F) is a disjoint union of A(I}), i=1,...,5. O
Clearly, all A(f}) are connected. By Lemma 3.2 each A; is a subgraph of some A(f}).
LEMMA 3.6, If A, is a subgraph of A(f}), then any vertex of f] is contained in ..

Proor. The proof follows from Lemma 2.10, in view of the minimality of I O

It follows from Lemma 3.6 that Proposition 3.1 would be a consequence of the
following:

Prorosimion 3.7. If A=A(I') is connected then there exists exactly one minimal
extension I' of I isomorphic to a complete graph, a cocktail party graph or a halved
cube.

Before proving Proposition 3.7 we insert a lemma which helps to distinguish the
degenerate and non-degenerate cases in the proof.

LemMa 3.8. Suppose that a connected graph E is not a subgraph of a cocktail party
graph. Suppose, furthermore, that every vertex x € V(X) is represented by a vertex X of
the hypercube A in such a way that | X| = A for every x e V(Z), and for any x, y e V(E)
one has | X NY|=A4/2 or 0, depending on whether or not x and y are adjacent. Then
there are x,y e V(E) with d(x,y)=2, and a z e V(E) such that d(x,z)#1 and
d(y, z)=1

ProoE. Suppose, to the contrary, that, for x and y at distance 2 from each other
and z € V{=), the statements d(x, z) =1 and d(y, z) =1 imply each other. Let z be
any neighbour of x and y. Since X and Y are disjoint, one has Z < X UY. Now any
neighbour of z must be a neighbour of x or y; hence it must be a neighbour of both. By
connectivity all vertices of = are represented by subsets of the 2A-clement set YU Y,
Now it is easy to see that x — X is a scale embedding and hence, by Lemma 2.8, Zisa
subgraph of a cocktail party graph, a contradiction. O

ProoF oF ProposiTION 3.7. First we consider the degenerate case. If A is complete
then by Lemma 2.4 any vertex of I'is either V = {J, or a vertex of A. Hence I'is itself
complete and I" =TI If A now contains two proper atoms A and B at distance 2 from
each other (i.e. disjoint), but A is still a subgraph of a cocktail party graph, then
every other proper atom C is adjacent to both A and B, and hence Cc AU B. By
Lemma 2.4 the graph I'is situated within a 2A-element subset A U B, and, clearly, T,
which is in this case a cocktail party graph, consists of all the vertices of I'and all their
complements in A U B.

Now suppose that A is not a subgraph of a cocktail party graph. By Lemma 3.8 there
exist proper atoms A, C at distance 2 from each other, and a proper atom D, such that
D is disjoint of A and intersects C non-trivially. Let B be a proper atom which is
adjacent to both A and C.
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We will call halves the subsets of A of the following two kinds—X U Y and X\Y,
where X and Y are adjacent proper atoms. Clearly, each half has cardinality A/2. In
order to prove the lemma in the remaining case it suffices to show that different halves
are disjoint. Then, by connectivity of A, each proper atom is uniquely represented as a
pair of halves, and every vertex X is uniquely represented (by Lemma 2.4) as a disjoint
union of 2d(X, V) halves. This brings us directly to an isometric embedding of I' into
the halved cube defined by the set of halves.

We will prove the disjointness of the halves by induction. By connectivity we can
order the set {A,,..., A;} of proper atoms in such a way that each A, j#1, is
adjacent to at least one A, with s <<j. Then the subgraph of A, induced by the first j of
its vertices, is connected. We may also assume that A, =A, A,=B, A;=C and
As=D.

Let us start with j =4. Set H, = A\B, H,= AN B, H;=BN C and H,= C\B. Since
A is not adjacent to C, all these four halves are disjoint. Now if X = D N C coincides
with neither H;, nor H,, then 0<<|X N H;| < A/2. It means that B N D {(which must be
of cardinatity A/2, if non-empty) non-trivially intersects both halves H, and H; of B.
Since H, c A, one has that D is adjacent to A; a contradiction. We have proved that
X = H, or Hy and, hence, H; = D\C is disjoint of H,, H,, H; and H,.

Now let us suppose that all the halves defined by the first j — 1 vertices of A are
disjoint, j > 4. Let us denote the set of those halves by . Two halves X, Y € 3 will be
called reighbours if their union is one of the atoms A,, s <j. This clearly provides a
graph structure on 4 and, moreover, the graph  is connected since the subgraph in
A induced by {4, ..., A;_} is such.

By assumption A; is adjacent to some A;, with s <j. Let A, =X, UX,, X,, X, #.
Suppose that A; N A, is equal to neither X, nor X,. Then, clearly, |[4,N X,|= & and
|A; N X,| = B for some o and B, such that o, B >0 and o + B = A/2. More generally, if
Y, and Y; are two halves, which are neighbours, and [ANY|=aor fthen AV Y,| =8
or a, respectively. Now the connectivity of the graph # implies that for any
neighbours Y, Y, € # one has [AN Y| = o and |A; N Y| = B, or vice versa.

Now, it is easy to see that |AN(H,UH,UH,UH,UH,)|=2a+38 or 3a+28,
which is more than A in either case. The contradiction proves that A M A, is either X,
or X,. Hence A)\A, is either a half from &, or a new half which is, clearly, disjoint of
all halves from #. Induction implies that all halves are disjoint. This completes the
proof of Proposition 3.7, ]

As already mentioned, Proposition 3.1 is a consequence of Proposition 3.7 and
Lemma 3.6.

4. THE ABSTRACT CONSTRUCTION

In this section we present a sequence of constructions, depending only on the
internal features of I', which turn out to result in the same structures as the
embedding-dependent constructions from Section 3. Therefore in this section we keep
more or less parallel with Section 3, pointing out from time to time what our current
construction means in terms of that section. It must be stressed that we now consider
the e¢mbedding x—X as an ‘arbitrary’ embedding and check on it that our
constructions are correct. Throughout this section we assume that I is scale embeddable
into a hypercube, 1.¢. it has such an arbitrary embedding.

Let us choose an initial vertex v e V(I'). Replacing if necessary our arbitrary
embedding by an equivalent one, we may assume without loss that v— V =& holds.
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Proper atoms, the atom graph.  Let us define a function x Ny withx, y e ¥ = V(I') by
x Oy =ild(v, x) +d(v, y) — d(x, )].

Let € be the set of edges {y, z} of I', such that d{z, v) = d(y, v) + 1. Let us extend the
function N onto ¥ U & by

xN{y,z}=xNz—-xNy,

2in{y,z'y=z'"n{y, z} —y' 0 {y z}.

Here x, ¥, y', z and z’ are vertices of I', d(v, z) =d(v, y)+ 1 and d(v, z')=d{v, y') +
1,so that {y, z}, {y", z'} e &

Lemma 4.1, (1) Ifee€andxe VU & theneNx e {0,1/2, 1}.
(2) The relation on & defined by

e~¢ © eNe' =1

is an equivalence relation,
(3) Fore, e’ € € and x € V the values e N e’ and € Nx do not depend on the choice of e
and e’ within their equivalence classes.

Proor. Consider an arbitrary scale embedding and apply Lemmas 2.2 and 2.4. O

The set of equivalence classes on €, defined in Lemma 4.1, will be denoted by o,
Clearly, elements of & are in a natural bijection with the proper atoms from Section 3.
In view of Lemma 4.1 we will no longer distinguish edges within the equivalence
classes on ¢f; in particular, we now consider N as defined on 7" U .

The set of carries a structure of a graph defined by: a, b € o are adjacent iff
aNb=1{2. Let £ denote this graph as a whole and let %, . . ., %, be all its connected
components, The following is straightforward.

LemMa 4.2, The natural bijection between s§ and the set of proper atoms gives an
isomorphism of X and the atom graph A. In particular, r has the same meaning as in
Section 3 and, up to renumbering, X, is naturally isomorphic to A;, i=1,...,r. ]

The projections of I.  Now we are going to construct the graphs which correspond to
the projections I3, ..., I, of I

Let us decide for each edge {x, y} of I' (not necessarily from &) to which of r
‘components’ it belongs. This will be our analogue of the belonging of atoms to the
subsets £, given in Lemma 3.3. Letv=x,, ..., x,=xand v=y,,..., ¥, =y be any
shortest paths from v to y, respectively. Then every edge on either of these paths
belongs to € and hence defines an clement from . Let # be the subgraph of ¥
generated by all those elements of <.

LemMa 4.3. (1) Fis a disjoint union of a number of isolated vertices, a number of
cycles, and of exactly one string;
(2) The component ¥, to which the string belongs, depends only on the edge {x, y}
itself, but not on the chosen shortest paths.

Proor. See the proof of Lemma 3.3. )
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Now each edge in I' has a certain label on it, belonging to the set {1,...,r}. Foriin
this set, we say that two vertices x, y € V(I') are i-equivalent whenever x and y are
joined by a path, no edge on which has i as its label.

Lemma 4.4, Vertices x, y € V(I') are i-equivalent iff they map onto the same vertex
of I. In particular, the folding G of I over the i-equivalence relation is naturally
isomorphic to I;.

Proor. If an edge {x, y} has label j #1i, then the atom XAY is contained in €. In
particular, the projections of x and y into I; coincide. Now let vertices x, y € V(I') be
given, such that their images in I; coincide. Then we choose a shortest path
X=xg...,Xx =ybetween x and y and see that atoms X,_, AX; are contained in XAY,

Since the latter set intersects with £2; trivially, no edge on the path has label i. o

The set of natural morphisms from I'to ¢, i =1, ..., r, defines an embedding of I'

into ¢ X ---x %, which is clearly the same as the embedding of I into I'=1;
XX I.

Extending %, to 4. Now the last step is to embed each factor % into a certain graph
% isomorphic to either a complete graph, a cocktail party graph or a halved cube. As
in Section 3, we have degenerate and non-degenerate cases.

If 4, is a complete graph then we take 4 = . If % is not a complete graph, but is
still a subgraph of a cocktail party graph, then to obtain % we add an opposite for each
vertex of % which does not yet have it.

Now suppose that % is not a subgraph of a cocktail party graph. According to the
proof of Proposition 3.7, % is isometrically embeddable into a halved cube. Hence our
purpose is to reconstruct the set of what was called halves. For simplicity, let us
represent halves by the integers from {1, ..., N}, where N would be the number of
halves. Then reconstructing the halves means attaching to every vertex a of .% a pair
h{a) = {m, n}, with the meaning that a ‘consists’ of the mth and nth halves. Such an
attachment must possess the following conditions:

(1) The set 7, of the vertices a of %, for which m € h(a), generates a complete
subgraph of %, and every edge of Z belongs to such a subgraph.

(2) Every vertex belongs to exactly two #,'s; two sets #, and %; intersect each other
in at most one veriex.

The first statement simply means that two atoms, having a half in common, must be
adjacent, and vice versa. The second statement means that we attach pairs, and no pair
can repeat. Since 4, = I is 1-embeddable into a halved cube, there must be at least one
such attachment.

Lemma 4.5, If %, is not a subgraph of a cockeail party graph then, up to
renumbering, there exists exactly one family {3, } that possesses (1) and (2).

Proor. We repeat with certain variations the proof of Proposition 3.7. Let us order
the set of vertices ;= {a;,..., a;} of & in such a way that each g, is adjacent to at
least one vertex a, with kK <j. By Lemma 3.8 we may also assume that d(a,, a;) =2,
d(ay, a,) =1 and d(a,, a,) # 1. Set h(a,) = {1, 2}, h(a,) = {2, 3}, h(as) = {3, 4} and set
h(as) = {3, 5} or {4,5} depending on whether a, is adjacent, or non-adjacent to a,.
Clearly, it is the only way to attach pairs to a,, a,, a; and a,.
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Suppose that we have already uniquely defined the pairs /(g ) for each k£ <j and let
N;_, be the number of the halves defined so far. Let #,,(j — 1) denite the set of all a,
with & <j, such that m € h(a,). Now, what pair should be attached to 4;? Since 4; is
adjacent to at least one g, with k <j, the pair A(g;) cannot consist of two new halves.
Hence, h(a;))={m,n} or {m, N;_y+1}, where m,n<N,_;. Let & be the set of
neighbours of a; in {ay,...,a;_(}. In the first case ¥ = #,(j —1)U¥,(j—1) and,
moreover, #,,(j —1) and #,(j — 1) are disjoint. In the second case N =3, (j-1). It
remains to prove that there is only one way to represent & as #,,(j—1), or as a
disjoint union of #,,(j — 1) and #,(j — 1), where m, n run through {1,...,N,_}.

Let ‘+’ denote disjoint union and suppose for some pairwise different &, [, m and n
that one has either #,(j—D=#(—1), or #(-1)=3(—-1)+ 3, (j—1), or
#H(—- D+ H(G— =&, (j— 1)+ F,(j — 1). In cither case it is easy to see that such
an equality means that # forms a connected component of %; with at most 4 vertices,
Moreover, if {#| =4 then the generated subgraph is a 4-cycle This gives the desired
contradiction, since the subgraph generated by {a,, ..., a;,_,} is connected, contains at
least 4 vertices, and is not a 4-cycle. a

This lemma provides the means of recovering the set of halves and, moreover,
representing any proper atom of ¥ by a pair of halves. Now Lemma 2.4 provides an
obvious way to define a mapping from the vertex set of % into the even part of the
hypercube defined by the set of halves. Clearly, this even part is just our halved cube
%.

PrOOF OF THEOREM 2. By the above arguments, for any scale embedding v of I,
such that v is mapped onto &J, the ‘embedding-dependent’ graph I' is canonically

isomorphic to the graph =% x - - - X @,, and this gives us the embedding 1. In the
case yY(v)=V # we define ¥ as (WAV)AV where the shift @w— YAV and then
back is as in Lemma 2.1. O

In the above tricky proof if remains unclear why the graph %= I" does not depend
on the choice of the initial vertex v, whereas the given construction evidently depends
on it in many places. We have no option but to regard this as a property of graphs
that are scale embeddable into hypercubes.

Proor or CoroLLARY 1. Since a complete graph is a subgraph of, say, a cocktail
party graph, we need only two types of factors if we do not assume the direct product
graph to be the minimal possible. .|

Proor oF CorOLLARY 2. The above construction of the graph % can clearly be
performed in a polynomial time. The verification that the natural mapping from I"into
% is indeed a 1-embedding also requires a polynomial time. a

In order to give a proof of Corollary 3, we must first discuss the notion of /,-rigidity.
Our way of giving it will differ from that of [3], although of course it is completely
equivalent. It was mentioned above that rigidity means having only one scale
embedding up to some natural equivalence. It remains to define the equivalence. First
of all, every embedding x — X < A is equivalent by definition to the blown embedding,
which is obtained by substituting every element of A by a separate set of a fixed
cardinality k. Clearly, the scale of the blown embedding is equal to kA, where A is the
original scale. Now, given two scale embeddings x — X, c 4, and x — X, < A; of the
same graph I, we may assume, up to blowing, that the scales of the embeddings
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coincide. Also, up to adding redundant elements we may assume that A; and A, have
the same cardinality. In such a case, we call the two embeddings equivalent if there is
a bijection o between A; and A,, and a subset S ¢ A,, such that X, = o(X)AS for
every x € V(I).

Proor ofF CoroLLARY 3. Blowing of a graph I', embedded into a hypercube A, is
equally a blowing of its extension I (cf. Section 3). Recall that the graph I was defined
as the minimal extension of I'in A, having properties (1) and (2) from Proposition 3.1.
Let us say that [ is the closure of I' in A. Now suppose that x— X, c A, and
x—X,c A; are two equivalent embeddings with the same scale and the same
cardinality of A, and A,, and suppose that o and § establish the equivalence of these
two embeddings. Let [} denote the closure of (the image of) I'in A;, i=1,2. Then, by
minimality of I; and I3, we have that o and § also establish the equivalence of the two
embeddings of the abstractly defined graph %, so that the rigidity of T implies the
rigidity of 4. The reverse implication follows from Theorem 2(2). g

Proor oF CoroLLARY 5. The empty set, the point set of an n-dimensional affine
space over GF(2) and all the hyperplanes of that affine space give an embedding of the
cocktail party graph K,.., with scale 2"~'. This means that every graph K., is
embeddable with scale 2", where n is defined by k = 2" <2k.

Now consider an arbitrary /;-graph I By Theorem 2, the minimal scale for I' is
equal to the minimal scale for "=, x .-+ x [}. Consider a particular [}. If it is
isomorphic to a complete graph or a halved cube then it is scale embeddable with any
even scale. If [} = K., then, clearly, k < v, where v is the number of the vertices of I".
Now the above argument shows that every f; (and hence I’ itself) is embeddable with
the scale 2"~', where v — 12" <2(v — 1), provided that 27" =2 (i.e. v >3). a

Proor ofF CoroLLARY 6. According to [5], we must check that all edges of I; (same
as %) are equivalent under the equivalence relation 8, which is the transitive closure of
the relation @ defined by

{x,y}0{x", ¥’} © dx,x)+d(y, y)#dx,y)+d(y, x).
If I} is a subgraph of a cocktail party graph, then checking is straightforward.
Otherwise, I; is a subgraph of a halved cube and hence it is 2-embeddable in a
hypercube. Now for a 2-embedding it is easy to check that d(x, x') +d(y, y')#
d(x,y")+d(y, x’) iff the corresponding atoms intersect each other in exactly one

element. Since the atom graph of I is connected, we have that all proper atoms are

f-equivalent. Now Lemma 3.3 implies that all other atoms of [} lie in the same
equivalence class. O
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