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Abstract-A numerical method of calculating all of the polynomial coefficients for Wachspress’ rational 
finite element functions is presented. It requires only linear algebraic computations of matrix algebra 
and avoids the complicated constructions of geometric algebra used in the development of the rational 

elements. 

1. INTRODUCTION 

The rapid increase in the use of irregularly shaped finite elements has emphasized the inadequacy 
of simple polynomials to serve as basis functions to fit, interpolate, differentiate and integrate 
a function specified at various vertices, points on sides, and points interior to the elements. It 
is now becoming clear that higher-order approximations to functions over finite elements have 
the capacity to improve not only the appearance, but also the convergence properties of the 
approximations[ 11. Recent numerical applications of higher-order approximations give specific 
examples of these improvements[2]. Recently, a new set of basis functions was presented by 
Wachspress[3]. The functions are ratios of polynomials which fit specified nodal values, and 
attain a prescribed degree of approximation over each element and its boundaries. Adjacent 
elements have the same polynomial variation along common edges, so that global continuity 
is assured. The continuous, analytic basis functions are amenable to interpolation, differentiation 
and integration. They are available for elements from triangles through N-sided polygons and 
their generalization, elements having sides which are algebraic curves. Any desire degree of 
approximation may be achieved in two-, three- and even higher-dimensional space. 

Due to the manner in which these rational basis or wedge functions have been deduced 
from deep theorems of classical algebraic geometry, their construction tends to be heavily 
dependent on algebraic solutions to geometric problems. One may construct a unit wedge 
function for each node before one constructs the function that fits specified nodal values and 
has a prescribed degree of variation along the edges and over the element. This is essential for 
finite element application where nodal values are free parameters in a variational or Galarkin 
formulation. However, this is not essential for patchwork interpolation of data. 

An alternate construction of both the basis wedges and composite fitting functions that 
depends only on the indexed computations of linear algebra is presented here. These matrix 
computations are implemented using a digital computer and require no geometric constructions 
whatsoever. Furthermore, the computation can be used to construct the general wedge basis 
functions of Wachspress as well as more general fitting functions over the element. 

In Sec. 2, a few results from the theory of wedge construction will be described from the 
geometric point of view. It will be shown that a general interpolant over the element, represented 
as a linear combination of wedge functions times node values, has an alternate and useful linear- 
coefficient-polynomial-form that can be treated with the methods of conventional matrix algebra. 
In Sec. 3, a method for using linear algebra to solve for all of the unknown coefficients in the 
general function expression will be developed. This will be done in terms of specific polynomial 
fitting functions for the triangle, quadrilateral, etc. In Sec. 4 the theory for computation of the 
coefficients for up to degree-two fitting over polygons will be developed. In Sec. 5, comparisons 
with independent evaluations of several examples of basis functions will be presented and some 
of the computational difficulties encountered in the applications of the method introduced here 
will be presented. In Sec. 6, possible extensions of the method to elements with curved sides 
and to elements in three dimensions will be presented. 
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2. GEOMETRIC BACKGROUND 

On reading the discussion of Wachspress[3]. one observes that a rational function which 

is linear on all the edges and has zero value on all but one vertex of a convex polygon can be 
constructed. Given a polygon with N sides as seen in Fig. 1, one first proposes the degree-one 
wedge function for node i as the ratio of two polynomials: 

w,tx, y) = p,-,(.r, ~)iQ,~_~(x, y), (2.1) 

where the subscripts N- 2 and N - 3 indicate the maximal degrees of the polynomials 
P(x, y) and Q(x, y). In particular, Q,_,(x, y) is a polynomial which vanishes on a curve of 
maximal degree-(N - 3). For example, for N = 5, one has 

QN_3(x, y) = b. + b,x + bzy + 63x2 + b,y2 + bsxy. (2.2) 

In fact, the coefficients bi can be determined by the requirement that the curve Q,._&, y) = 0 

pass through all of the external intersection points (EIP’s), of the polygon (see Fig. 1). The 
polynomial PN_*(x, y) is the product of the N - 2, order-one forms which vanish on the N - 2 
polygon edges that do not contain point i. Note that the leading b. term will be 1 except for 
the case where an EIP is located at the origin of coordinates, in which case b, must be 0. 

If one defines the degree-one form for a line 1, 2 as 

x y 1 

Mx7 Y) = w,.,> = XI Yl 1 (2.3) 
x2 y, 1 

then 

PN-*(x9 Y) = tL+I.,c2) ... (Lv.I)t~I.‘) ... G-2.,-,). (2.4) 

For the five-sided polygon (or 5-gon), N - 2 = 3, one has 

pN_2(x, y) = aI + a2x + sjy + &x2 + a5y2 + a6xy 

+ 8,X3 + a*y3 + agx2y + a,“q2. 

It will also be of use to note the form, but not the details of the wedge for the ith node 
when the function is to be of degree two along each side as specified by the value of the function 
at an edge point as well as the comers. The function Q,,,_,(x, y) is the same for any degree of 
approximation. For the case of degree-two approximation over the N-sided polygon, the degree 
of P is N - 1. Thus for degree-two fitting one has 

W,tx, Y) = h-,(x, y)lQ,v-4x3 ?I). (2.5) 

Fig. I. A general N-sided polygon 
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It is tempting to assume that P,_,(x, y) might be made up of products of quadric surfaces 
passing through the points on the nonadjacent sides. This is unfortunately not the case. However, 
the lack of such a simple extension causes no hardship. For degree-R approximation over the 
polygon one has 

Wik Y) = PN+-R-2(x, yVQ,-3(x, y). (2.6) 

In order to be specific one can consider the degree-l wedge for the triangle in Fig. 2. The 
basis function for point 1 is 

W,(x, Y) = 
PI@, Y)Qo(x,, Y,) 

Qok yV’,(x,, Y,) 

L2.3k Y) 

= L2.3(x,. YI) 

x Y 1 xl Yl 1 
= x2 Yl 1 

I 

x2 Yl 1. (2.7) 

x3 Yl 1 x3 Yl 1 

The divisor has been chosen to normalize the wedge W,(x, y) to unity at the point (xl, y,). 
For the convex quadrilateral (Fig. 3) the general degree-one wedge will have the form 

WI& Y) = 

= 

f’2k Y) QI<XI, YI) 

Qlk Y) P2(x,, YI) 

a, + u2x + a3y + L&X2 + a5y2 + a,Xy 
(without normalization) 

(2.8) 

b,, + b,x + b2y 

For the degree-one pentagon one has 

P3(x, y) 
W;(x, y) = - = 

a, + *** u,Xy + -a* a,,_$ 

Qz(x, Y) b,, + blx + b,y + --a bgy’ 
(2.9) 

The number of terms in the general degree-N polynomial in x and y, such as P,,,(x, y) and 
Qdx, Y) is 

Dim P,(x, y) is = (N + l)(N + 2)/Z!. (2.10) 

If the polynomial has three independent variables (x, y, z) then 

Dim PN(x, y, z) = (N + l)(N + 2)(/V + 3)/3!. (2.11) 

One will find it useful to generalize the concept of the matrix operator of powers to treat 
polynomial systems of degree-N with K degrees of freedom, or dimensions. This matrix will 
give all of the powers of each independent variable in the degree-N polynomial in K dimensions. 

3 

Fig. 2. A triangle with degree-one variation. 
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2 

Fig. 3. A convex quadrilateral. 

The rows will contain all monomials of degree m in K variables, where m runs from 1 to N. 
See Table 1 for examples of this matrix [P, N, K]. In addition one will need to define the 
matrices Q, R and S: 

[Q, N, Kl = if’, N, Kl (2.12) 

with the leading row of zeros omitted, 

[R, N, K + l] = [P, N, K] (2.13) 

with an additional column of zeros added at the right, 

[S, N, K + 11 = [Q, N, Kl (2.14) 

with an additional column of ones added at the right. 

Note that whenever any of the matrices P, Q, R or S occur before another matrix as in 

[P, N, KI[Cl (2.15) 

it will be understood to mean 

if’, NT Kl k=y,K [Cl, (2.16) 

where the 7~~=,,~ indicates that the N tuples of powers in each row of the [P, N, K] matrix 

operate on the N tuples of the coordinates in the columns of the [C] matrix to form the product 
of powers of coordinates in the terms in the polynomial P,,Jx, y, ... K). 

One is now able to write Eq. (2.9) for the rational wedge for the 5-gon, using the [P] and 

[Q] matrices as 

ia, a2 

W(x y) = (2.17) 

1 + [h bz ... b,l[Q, 2, 

Wachspress points out that a general function over the polygon can be constructed based 
on the wedge functions for each node times the values of the dependent variable z at each node. 
This will take the form 

z(x, y) = {sum for i over all nodes} of z(x,, yi)W,(x, y) (2.18) 

provided that each wedge is normalized to 1 at its node point. Then, the denominator Q is the 
same for all wedges and the general function z(x, y) is 

~0, Y) = P.w+R-b, y)lQ,v-,k y). (2.19) 
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The coefficients of Q are determined by the requirement that the curve Q(x, y) pass through 
the EIP’s of the element. 

3. DEGREE-ONE ALGEBRAIC THEORY 

Rather than continue this geometric line of construction of the numerators, PN+T-Z(~, y) 
and the denominators Q,_,(x, y), the tools of linear algebra will be applied to the problem of 
evaluating the unknowns u, a2, . . , and b,, b2 . . . . If one has specified the value of the 

dependent variable z(x, y) at the N comer points of a nonreentrant polygon with N sides as 

shown in Fig. 1, then using Equation (2.6) one has the N equations 

4x;, YJ = PN-2(x,, yi)IQN_3(Xi, yi) for i = 1, 2, . . N. (3.1) 

In particular, for the quadrilateral, N = 4, one has 

z;(l + b,x; + bzy,) = a, + a2x, + -** a,x,y,. for i = 1, 2, 3 and 4. (3.2) 

Since there are eight unknowns a,, . . . u6, b,, b, and only four points, one selects one more 

point on each side and uses the requirement of linearity on the edges to interpolate a z value 
at each of four-side points for four more versions of Equation (3.2), for a total of eight equations 
in eight unknowns. 

One can observe that for the degree-one N-sided polygon the ratio PN-2(x, y)IQ~_~(x, y) 
could be of degree N - 2 along an edge if QN-Jx, y) were the constant QJx, y) or unity. A 
degree (N - 1) polynomial along a side can be determined by (n - 1) values along the side. 
By linear fitting along each side of the vertex, one guarantees that the ratio P,_ ?(x, y)/Q,+ 3(x. 
y) will be of degree-one and not N - 2. 

Returning to the degree-one quadrilateral, one can easily write the equation for the inter- 
polation along the sides in matrix form as 

XI x2 x3 x4 x5 x6 x7 x8 

Yl . . . . . . . . . Yll 
21 . . . . . . . . . Z8 1 

XI x3 x5 x7 

= YI -.- Y7 [ l[ 
1 12 % 

s2 1 t4 

s4 1 t6 1 7 z, ... z7 
s6 1 h 

(3.3) 

where si and ti are the fractional location of points along the sides 

s2 = (x2 - x,)/(x3 - x,) and tz = 1 - s? 

(3.4) 
sfj = (X8 - x7)/(x, - x7) and ts - 1 - s8. 

Then Equation (3.2) becomes 

(3.5) 
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Table 1. Matrix of powers of the polynomial f,,(x, .v ... K) 

K= 1 K=2 K=3 

N=l 

N=2 

N=3 
(N + 1)/l! 

lines 

0 0 

[ 1 I 0 
0 1 

2+0 

[ 1 

0 2 
I 1 

3+0 

[ 0 2 1 3 2 I I 
3 0 0 
0 3 0 
0 0 3 
I20 
2 1 0 
0 I 2 
0 2 I 
201 
I 0 2 
1 I I 

(N + l)(N + 2)(N + 3)/3! 
lines 

where the n of k = 1, 3 indicates that the triplets of powers in the power matrix operate on 
the triplets of x, y, z in the coordinate matrix to form the product terms in the polynomials in 
Equation (2.9). Note that on the LHS of Equation (3.5) the powers of zi are all zero and Z, 
values are not required, but they add a symmetry very useful to the next equation. Rearranging 
Equation (3.5) and renaming b, = - a7 and b2 = - a8 one will have 

0 0 0 
1 0 0 
0 1 0 
2 0 0 

x, x2 **- xg 

0 2 0 
II 

[ 1 Yl Yl ... Y8 
k= I.K 

I 1 0 
,?, z2 “* z8 

1 0 1 
0 I I_ 

= ]z, z2 *-- z,] (3.6) 

Making use of the [R] and [S] matrices described in Table I, one may reduce Eq. (3.6) to: 

(3.7) 

One now takes the generalized inverse[4], indicated by the matrix superscript I of the 

rectangular matrix formed by 

[ 

]R, 2, 31 [Cl 1 ]S,1,31 . 

Then one post multiplies Eq. (3.7) by the inverse, to solve for the [a] vector: 

(3.8) 

[ 

[R, 2, 31 [Cl ’ 
[aI = [zl [S, ,, 3, 1 . (3.9) 
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The generalized inverse is used here to allow for the use of more than the minimum number 

of interpolation points when desired. 
Once the (x, y, z) coordinates of four given points plus four points linearly interpolated 

around a quadrilateral are available, Equation (3.9) will allow one to use matrix algebra to 
solve for the eight coefficients in Wachspress’ rational finite element functions. This can be 
done for either the unit wedge functions or for the general function over the quadrilateral. 

In the general N-sided polygon with degree-one approximation one has 

where 

L = (N + l)(N + 2)/2 + N(N + 1)/2 - 1. (3.11) 

Here L is the sum of the number of unknowns in P (x, y) plus the unknowns in Q(x, y) [see 
Eq. (2. lo)]. The degree-one wedge for the N-sided polygon will be 

Ia, ... a,][R, N - 2. 21 ’ 

WAX, Y) = 
[I , Y 

]l - aJ+l ... a,][P, N - 3, 21 ’ [I Y 

where 

.I = (N - l)N/2! is the number of unknowns in P(x, y). 

In particular, for the triangle one has 

I* 

(3.12) 

(3.13) 

(3.14) 

For the degree-one quadrilateral using Eq. (3.11) and Table 1 one has 

(3.15) 
00000011 

Note that the matrix has been transposed for ease of presentation. For the degree-one pentagon 

one has 

(3.16) 
000000000011111 

One notes that the first ten columns in the [P, 3, 31 matrix are just the ten triplets of powers 
of the three variables (x, y, z) in P&c, y), the z’s are all zero. The last five columns are just 
the five powers of X, y, z in z*Q&, y). Note that the leading 1 in the polynomial Q2(x, y) 
appears on the RHS of Eq. (3.11). Furthermore, the 15 z values used are the five comer values 
of z plus two more values, linearly interpolated, on each side. 
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4. HIGHER DEGREE FITTING FUNCTIONS 

Using Eq. (2.6), degree-two fitting over a triangle, such as seen in Fig. 4, is of the form 

Ia, a2 ‘.f a+J[P, 2, 21 x6 
Y6 I 

= [z, Z? ... Z6] (4.1) 

and fitting is over three comer points plus three more side points, one per side, to specify the 
quadratic behavior along each edge. This gives the following set of linear equations for the six 
unknown coefficients: 

[a, a2 .*a a,][P, 2, 21 
[ 

X’ Xz **. 
Y, Y, *** 

;I 1 = [z, z1 .f* Zb] (4.2) 

or rearranging for compatibility with later cases: 

x, x2 *** X6 

-a. U6][R, 2, 31 Y, YI .** Y6 = [z, 22 a.* i,J 

[ 1 (4.3) 
z, x? ‘** z6 

where 

Solving for the [a] vector gives 

[a, a2 *-* a61 = fz, ... Z6] 

and reconstructing the wedge functions one has 

W,k Y) = 10, .*. u,][P, 2, 21 f . [I 

(4.4) 

(4.5) 

(4.6) 

If one goes to the degree-three approximation over a triangle as seen in Fig. 5 one has 

W,(x, Y) = PAX, y)lQ,(x, Y) = f’,b, Y) (4.7) 

Fig. 4. Degree-two fitting over a triangle. 
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and one finds that the vector [a] has (3 + 1)(3 + 2)/2!, or ten coefficients. From the previous 
arguements it can be seen that four points, including two comer points, are needed to govern 

a degree-three polynomial along each edge for a total of six edge and three corner points. The 
additional point must be off the triangle. With the ten points shown in Fig. 5 one can solve for 
the [a, s.0 alo] vector as 

and the reconstructed fitting function is 

wi(X, y) = [al[Pv 33 2l G . [I 

(4.8) 

(4.9) 

Turning to the quadrilateral with degree-two variation, as seen in Fig. 6, one has the general 
function of the form: 

Wib, Y) = Ps(x, yVQ,(x, y). (4. IO) 

The first task is to interpolate one more, independent, quadratically consistent point along each 

side so that the 10 coefficients of P&X, y) plus the two coefficients of Q,<x, y) can be specified 
by 12 node points around the quadrilateral. Simple degree-two fitting along a side, with coef- 
ficients q,, q3, q4 to three points on a side, gives 

is, q3 %I = [z, z3 z‘tl[[P, 2, 1110 s3 III’. (4.11) 

The q,‘s are numbered to reflect the points used to determine them. Note that s3, as before, is 
the ratio of the distance from point 1 to 3 divided by the distance 1 to 4. One must interpolate 
one additional point along the line 1, 3, 4, with sz as the fractional distance from 1 to 2. Then, 
using the quadratic polynomial coefficients from Equation (4.4) one has 

[%I = [4, q3 %l[Pv 2, Il[hl. 
= [ZI z3 z41[IP, 2, ]I[0 s3 lll’[P, 2, ll[s*l. 

41.2 

= 
[ZI z3 Z-J 93.2 . [I q4.2 

(4.12) 

Fig. 5. The degree-three triangle. 
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7 

Fig. 6. The degree-two quadrilateral. 

where 

= HP9 2, ll[O s3 lll’[P, 2, ll[s21. 

Thus one can interpolate the extra point as 

(4.13) 

(4.13) 

This can easily be extended to a single degree-two matrix interpolation for all 12 points from 
the eight given points. The degree-two interpolated values at extra points 2, 5, 8 and 11, one 
on each of the sides, are determined in a similar fashion and give the quadratic interpolation 

of Equation (4.15): 

X 

1 41.2 0 0 0 91.1 

0 q3.2 1 0 
0 q4.2 0 1 q4.5 0 0 

0 46.5 1 o 
0 q7.5 0 q7.x 0 0 

0 49.X 1 0 
0 910.8 0 1 4lO.ll 

0 412.11 

1 0 

cl 
1 

One can rewrite Eq. (4.10) for the degree-two quadrilateral in the form: 

f’dx, Y) = z * Q,k Y) (4.16) 

and thus in the form 

[aI a2 .-* a,21 = [z, 

X 

. (4.15) 

(4.17) 
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to,11 1 
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(-a,-11 3-2 (a *- 1) 

Fig. 7. A simple equilateral triangle 

As before, one can invert and solve for the twelve components of the [a] vector and then 
construct the fitting function 

[a, a2 *** a,,l]P, 3, 21 x 
W,(x, _v) = 

[I Y 
r-1 (4.18) 

11 - alI - a,zl[P, 1, 21 A 
11 Y 

The extension to order two functions over five- and six-sided polygons follows with no 
additional problems. 

5. NUMERICAL APPLICATIONS AND COMPARISONS 

In order to demonstrate the use of the method and validate the theory a series of numerical 
examples will be presented and comparisons made with the analytic-geometric constructions of 
the unit wedge functions for several of the elements presented in [3]. 

The first case considered is that of the centrally located equilateral triangle as shown in 
Fig. 7. For this case [with a = 2/SQRT(3)] one has for the wedge which is 1 at point 1: 

[a, a2 61 = [z, Z2 Z31 [‘“’ l9 31 [ii ;; ijj j] 

= [l 0 O] [[I 8 !] [; -% IE]1 

= [OS 0 OS] 

and the wedge for point 1 is 

(5.1) 

(5.2) 

This is the expected form shown in Fig. 8. 
The next case is that of the degree-two wedge over a triangle. The same triangle, Fig. 7, 

is used with three additional points, one at the midpoint of each side. For the wedge that is 
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t 

. 

Fig. 8. The degree-one wedge. 

unity at the first point one will have 

[a, az *** a,] 

[R, 2, 31 
= [z, z2 ... zs] 

x, x2 ... xg 

[ 1 YI Yl ... Y8 
z, z2 -.* zg 

0 al2 a 0 -a -al2 

=[l 0 0 0 0 O] 1 0 -1 -1 -1 0 10 000 0 11 = [O 0 0.5 0 0.5 01. (5.3) 

The general degree-two wedge for point 1 is, therefore, 

0 0 
1 0 

[O 

0 1 0 1 

Y) 01 

0 1 x 
W,(& = 2 II 2 0 t=;.l [I y 

0 2 
1 1 

= (y + y2)/2. (5.4) 

There are two interesting points to be made concerning the six-point, degree-two triangle. 

First, one does not have to add any quadratically consistent extra points along the sides, because 
the denominator, Q&X, y) is 1. Second, if one supplies a z vector with linear variation along 
each side (e.g. z goes from 1 to zero along side 1, 2 and along side 1, 3) then one finds 

h a2 ... as] = [I 0 0 0 0 O] lP7 27 31 r 
I- 

1 

’ 0 a/2 a 0 -a -al2 

x 1 0 -1 -1 -1 0 11 = [l 0 1 0 0 0]/2 (5.5) 

and one has, after constructing this quadratic fit to the linear wedge, 

w,(x v) = [l 0 l 0 O Ol t _ 2 

= (1 + y)/2. 

11 0 0 0 2 1 1 0 0 0 2 1 1 k=;.? [I x y 

(5.6) 
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as in Equation (5.3). One finds that the degree-one wedge is treated automatically as a subcase 
of the degree-two wedge in the case of a triangle and in fact for the general convex polygon. 

The next case considered is that of a simple degree-one function over a convex quadrilateral. 
The example is that of [3. p. 40, Fig. 2.71 and is shown in Fig. 9. The [a, ... ax] vector 
for the [z, I*. z8] vector which is nonzero at only the (0, 0) comer node is 

= [I 0.5 0 0 0 0 0 0.51 [S, 1. 31 

[ I 

L 

0 1 2 1.75 1.5 1 0.5 0.25 ’ 
0 0 0 0.5 1 0.875 0.75 0.375 . 1 (5.7) 
1 0.5 0 0 0 0 0 0.5 

Solving Equation (5.7) with a simple computer code, Ref. 5 gives 

W,(x, y) = (1 - 0.1x - 0.85~~ - 0.2~’ - 0.4~’ + 0.7@(1 + 0.4x + 1.35~). (5.8) 

If one starts with Wachspress’s equation for W,(x, y) below Fig. 2.7, pg. 40, one finds 

W,(x, y) = (5 + 2x - 8y)(4 - 2x - y)/(20 + 8x - 17~) 

= (20 - 2x - 27y - 4x2 - 8~2 + 14xy)l(20 + 8x - 17~). (5.9) 

This is easily shown to be identical to Equation (5.8). 
Next considered will be the degree-two wedges over the quadrilateral, in this case a trapezoid 

as shown in Fig. 6.4 of [3] and Fig. 10. 

As noted in Sec. 3, one must add two additional quadratically interpolated points between 
the other three on each side. First, interpolating quadratically along the side 1, 8, 4 one finds 

14, qr 4x1 = [I 0.5 OlI]P, 2, ll]O 0.5 111’ 

= [l -3 21. (5.10) 

Now calculating an interpolated z value at a point halfway between points 1 and 5 one finds 

%I = [l -3 2][P, 2, 1][0.75] = 0.375. (5.11) 

(1.5,1) 

(0.5,0.75) 

(0.25,0.375) 

!O,O) (1,O) (2,O) 

Note that the 4 side-node values are 
derived by linear interpolation. 

Fig. 9. A simple degree-one quadrilateral. 
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The zll and the z12 values will both be zero and zlo, halfway between points 4 and 8 will be 
calculated from 

ZIO = [I -3 2][P, 2, 1][0.25]. (5.12) 

In Fig. 10, the additional four-point locations are shown. 

The wedge for degree-two approximation, that is I at point 1 and C#I at the other 7 nodes 

will now be generated. The vector of fitting coefficients for this problem is 

[a, a2 .** a,J 
= [l 0 -0.125 0 0 0 0 0 0 -0.125 0] 

[R, 3, 31 -1 

x [ [S,1,3] [ -1 

-1 1 l-l 0 1 0 -1 0.5 1 0.5 

- 1.75 11 
’ 

1 2 -2 0 1.5 0 -1.5 -.5 1.25 -1 1 00 0 0 0 0 0 0.375 0 0 -.I25 = [-0.375 -0.125 0 0.375 0.16667 0.16667 0.125 0 -0.16667 -0.16667 -0.3333 01. 

(5.13) 

Thus one has 

w,(x, y) = (-0.375 - 0.125x + 0.375~’ .** -0/16667_ry?)/( I + 0.3333~). (5.14) 

Examination of Eq. 6.6 of [3] yields 

w,(x, y) = -3(1 - x)(x + 3 - 2y)(l + x - 2y/3)/(8(3 + x)). (5.15) 

shows that Q, = - 3 * 3 * l/(8 * 3) = -0.375. Similar agreement is obtained for the other 

coefficients. 
For z nonzero (= 1) at side-node 6 one interpolates with 

192 % q31 = 10 1 Ol[[p, 29 I][0 0.5 l]]’ 
= [O 4 -41. 

Interpolated values are calculated for the l/4 and 314 points using 

i.79 znl = [O 4 -4][P, 2, 1][0.25 0.751 

= [0.75 0.751. 

(5.16) 

(5.17) 

(1,2) 

(1,O) 

(l,-2) 

o indicate nodes with given values 
x indicate nodes with interpolated values 

Fig. IO. A degree-two quadrilateral. 
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It would seem that the stage is now set to solve for the ten coefficients that determine 

P3(x, y) and the two additional coefficients in the denominator Q,(x, y) of the degree-two wedge: 

W,(x, Y) = f,(x, y)lQ,(x, y) (5.18) 

over the quadrilateral of Fig. 10. However, if one tries to solve Equations (3.16) one finds that 
the general inverse of [A] times [A] is not equal to the identity matrix [I], and one must conclude 
that the problem is ill conditioned. It is known from determination of the 12 coefficients for 
the unit comer-wedge, Eq. (5.13), that a,, = -0.3333 and ui2 = 0. 

A simple resolution of this dilemma is obtained by reducing Q,(x, y) to (1 - a,,~) by the 
simple expedient of removing the eleventh line (1 0 1) from the power matrix and solving 

for [a] less u,~. A more complete resolution is obtained by the use of the previous comer-node 
solution to specify all of the unknown coefficients in Q,(x, y). Thus one can rephrase the 
problem as 

(5.19) 

One then only solves for a, through ulO. 

The basic flaw in the degree-one quadrilateral unit wedge for a lateral node is that nonzero 
information is given only along a single line in (x, y) space and this is not sufficient to determine 

the denominator Q,(x, y) which is the general equation of a line in (x, y) space. Taking the 
approach of excluding ur2 one has 

[a, a2 ... a,,] = [0.5 0.16667 -0.3333 -0.5 0 0 

-0.16667 0 0.3333 0 -0.33331. (5.20) 

These coefficients are in exact agreement with the terms of W&, y) of [3, p. 182, Eq. 6.61. 
It should be mentioned in passing that the method works equally well for the more general 
quadrilateral and is in no way restricted to the trapezoid. 

Wachspress points out that the theoretical key to resolving this dilemma is to require that 
Q(x, y) pass through all of the EIP’s for which the interpolation data do not yield double values 
for the interpolant. 

Two additional degree-one functions, over the plane pentagon and hexagon well be pre- 

sented as a conclusion to the plane figures. The degree-one function for a pentagon is given 

by 

W(x, y) = P,(x, YYQAx, Y). (5.21) 

Here the points are given on four comer plus two linearly interpolated points on each side. 
The four linearly related points along each side assure that the function P,(x, y)lQ,(x, y) will 
in fact reduce to a degree-one function along each side. 

Recalling the problem encountered with the quadrilateral when z values were nonzero along 
one line it is not surprising to find that the pentagon, which has a degree-two denominator, 
QZ(x, y), cannot be determined just by nonzero z values specified along only two lines. One 
may impose side conditions on Q(x~ y) which yield Q(al1 EIP’s) = 0 as suggested by Wachs- 
press. Alternatively one may specify Z, values that are nonzero and linear on three sides around 
the pentagon. A toothed set of Z’S works very well (since this results in double values at the 
five EIP’s) to determine all of the u,‘s including the a,, to u,~ which govern the denominator, 

Q:(x, y). For the general five-sided polygon one can evaluate the Q?(x, y) in this manner, and 
then evaluate the P3(x, y) coefficients for the particular set of five z values desired. For the 
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equilateral pentagon it was sufficient to restrict the denominator to have only four of the five 
possible terms in Q2(x, y), excluding any term except the x or _v squared terms. This is because 
the Qz(x, y) is uniquely determined by the circle containing the exterior intersection points. 
Thus one will have 

Qdx, y) = I - (x’ + y’)/(rq, (5.22) 

where r is the radius of the circle through the external intersection points. 
The hexagon is treated in exactly the same fashion with no further difficulties and seems 

to warrant no further comment. 
The degeneracy of the linear algebraic calculation of the fitting coefficients or the [a] 

vector that contains the coefficients of P N+T-2(~, y) and Q,,-J-r, y) in the expression 

Wik Y) = P,v+T-AX, y)lQ,v-d-x, y) (5.23) 

can be better understood if one considers a specific case, such as the degree-one quadrilateral 

with z values specified at the four vertices. The general equation for the z value at any point 

(x, Y) is 

PAX, Y) = zQ,(x, Y) (5.24) 

then 

a, + u2x + u3y + u4x2 + u5y2 + u6xy = z(1 - u-ix - u8y). (5.25) 

If z happens to have some simple functional dependence on x and or y, then one can solve 
the system only for certain combinations of coefficients. For example, if z = x, then one can 
only find (a, + a,) and (a6 + aa). In this case there is no multiplicity so one can choose 
a, = a, = 0. There are only six independent coefficients. 

One way out of this dilemma is to use a set of z values that are unlikely to belong to a 
simple function of (x, y). For example, one can use z values that are alternately + 1 and - 1 
at points around the polygon. This set may then be used to determine a full set of eight values 
for the [a] vector. For the extremely unlikely case of this + / - 1 choice leading to a single 
value at an EIP, and thus to a nonunique Q(x, y) one could likely use randomly selected values 
between + 1 and - 1 in place of the simple + / - 1 values at the nodes. 

Then one takes the two coefficients, u, and a,, which govern the denominator Qz(x, y) 
which is in turn governed by the N - 2 external intersection points which remain fixed and 
independent of z values used. After u, and a, are found using a set of + 1 or - 1 z values to 
calculate the [a] for a general set of z values one need only determine the six values, 

[a, a2 **- q,]. This can be done using 

[a, a2 ... U6] [“j *, 21 [;: ;; 1:: ::]1 = 

[I - a7 - u,][P, 1, 21 
[ 

X’ x2 ... x8 . 
yt YI ... Ys 1 

This can be solved by post multiplying by the general inverse of 

[“Y *, 2’ [;: ;; 1:: ;-]I. 

(5.27) 

The reconstruction of z(x, y) follows as before. The same procedure is followed for the 
pentagon, hexagon etc. 
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Two classes of problems remain that want for numerical investigation. The first is the 

polygon with one, or more, curved conic sides, called a polycon. Preliminary numerical in- 
vestigations indicate that the advantage of allowing a curved side on the element introduces 
(resolvable) theoretical and computational difficulties and such elements are recommended only 

where a rigorous representation of a curved boundary is required. 
The second really challenging problem is that of the construction of a three-dimensional 

element that is bounded by eight comers, roughly forming a rectangular parallelepiped, with 
edges that are straight lines and with faces that will be, in particular, quadric surfaces (hyper- 
boloids of one sheet). This “warped” parallelepiped occurs when one attempts to subdivide a 
three-dimensional space that has nonrectangular boundaries using points and straight lines rather 

than the more cumbersome planes. The surfaces may also be further warped by the relaxation 
of the location of grid points as seen in [7] to give reasonably sized and shaped elements while 
recognizing and avoiding the difficulty of maintaining plane surfaces during relaxation. From 
one point of view one can project any of these warped surfaces onto any convenient plane, 
roughly parallel to the surface. The surface is now the simple function 

c = Pz(x, y)lQ,(x, y) (6.1) 

in an (x, y) coordinate system in the plane of projection. From dn alternate view point, Wachs- 
press suggests that these surfaces may be closely related to the Steiner surfaces discussed by 
McLeod[8]. 
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