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SUMMARY

The axonal shafts of neurons contain bundled
microtubules, whereas extending growth cones
contain unbundled microtubule filaments, sug-
gesting that localized activation of microtu-
bule-associated proteins (MAP) at the transition
zone may bundle these filaments during axonal
growth. Dephosphorylation is thought to lead
to MAP activation, but specific molecular
pathways have remained elusive. We find that
Spinophilin, a Protein-phosphatase 1 (PP1) tar-
geting protein, is responsible for the dephos-
phorylation of the MAP Doublecortin (Dcx) Ser
297 selectively at the ‘‘wrist’’ of growing axons,
leading to activation. Loss of activity at the
‘‘wrist’’ is evident as an impaired microtubule
cytoskeleton along the shaft. These findings
suggest that spatially restricted adaptor-
specific MAP reactivation through dephos-
phorylation is important in organization of the
neuronal cytoskeleton.

INTRODUCTION

Growth cone features that are distinctive from those of the

axon shaft were noted first by Cajal (Ramón y Cajal, 1988).

The growth cone is the motile end of the axon, is enriched

in dynamic actin and microtubule (MT) components, and

determines the direction of axonal growth. It has been di-

vided into three regions: the peripheral domain containing

a dense meshwork of actin forming lamellipodia and filo-

podia, the transition domain where actin filaments anchor

into a loose MT network, and the central domain contain-

ing splayed MTs and organelles of varying size (Dent and

Gertler, 2003). Between the central domain and the axonal

shaft is a region surrounded by actin where splayed MTs
become bundled into dense parallel arrays (Dehmelt and

Halpain, 2004) that we refer to as the neuronal ‘‘wrist’’. De-

fects in the ‘‘wrist’’ domain would therefore be predicted

to result in defects in the organization of the MT cytoskel-

eton in the axonal shaft. The molecules that function at

these transition zones have not yet been clearly defined.

Among the candidates for mediating MT bundling is

Doublecortin (Dcx), a MAP with a role in MT stabilization

and bundling that has been localized to the growth cone

(Friocourt et al., 2003). Dcx was initially identified as the

causative gene for the human neuronal migration disorder

double cortex and X-linked lissencephaly (des Portes

et al., 1998), and is expressed by postmitotic neurons. It

consists of an N-terminal repeated tubulin binding domain

(R1 and R2) and a C-terminal serine-proline rich domain.

Deletion in mouse results in excessively branched axonal

shafts in migrating neurons (Kappeler et al., 2006; Koizumi

et al., 2006a), suggesting Dcx may be required for forma-

tion of stable MT.

Recent data has highlighted the important role that Dcx

phosphorylation plays in mediating MT interactions (Gda-

lyahu et al., 2004; Schaar et al., 2004; Tanaka et al.,

2004b). One kinase responsible for Dcx phosphorylation

is cyclin-dependent kinase 5 (Cdk5), a Serine/Threonine

(S/T) kinase primarily active in terminally differentiated

neurons (Ohshima et al., 1996). Cdk5 phosphorylation of

Dcx at serine 297 reduces its affinity for MTs and its ability

to polymerize tubulin (Tanaka et al., 2004b). The dynamic

nature of cytoskeletal reorganization underlying neurite

outgrowth and migration predicts that Dcx phosphoryla-

tion, like that of other MAPs, is tightly regulated by both

kinases and phosphatases. However, unlike tyrosine

kinases and phosphatases that are represented in the

mammalian genome in comparable numbers, the quantity

of S/T kinases far exceeds that of S/T phosphatases (Ceu-

lemans and Bollen, 2004). Thus, phosphatase diversity

only matches that of the kinases when the number of

phosphatase regulators is considered. Much of the data

concerning the role of S/T phosphatases for MAPs is
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based on results of pharmacological studies and thus po-

tential adaptor molecules that may regulate these interac-

tions have not been identified.

One such potential adaptor molecule with which Dcx

has been shown to interact is Spinophilin (Spn), an actin

binding protein with an established role in subcellular

targeting of Protein phosphatase 1 (PP1), an S/T phos-

phatase that controls many aspects of cellular physiology

(Allen et al., 1997). Spn is able to bind and bundle F-actin,

which is theorized to be important for regulating spine

morphology (Satoh et al., 1998). Consistent with these ob-

servations, Spn�/� mice exhibit abnormal spine number

and formation (Feng et al., 2000). Here, we tested the

hypothesis that Spn may function as an adaptor molecule

for PP1 to regulate the MAP activity of Dcx.

RESULTS

Impaired Axon Outgrowth in Dcx Mutant Brains

Corpus callosal hypoplasia is apparent in the MRIs of hu-

man males with DCX mutations (Figure 1A). Additionally,

published data indicates that Dcx expression is upregu-

lated in corpus callosal (CC) projection neurons during

periods of axonal growth in mice (Arlotta et al., 2005),

together suggesting a potential role in axonal extension

and/or stabilization. We therefore tested Dcx�/y mice for

alterations in axonal outgrowth by DiI labeling projections

when axons are extending in multiple regions of the brain.

Injection into the medial subcortical zone at E14.5 labeled

cortico-thalamic (CT) axons that extended to the cortico-

striatal (CS) boundary in wild-type (WT) mice (Figure 1B).

In Dcx�/y mice, however, none of the labeled axons

reached the CS boundary. By E15.5 these CT axons had

extended into the region of the striatum and thalamus in

WT mice, whereas only a fraction of these axons had

reached the CT boundary in Dcx�/y mice, and even fewer

had reached the striatum and thalamus (Figures 1C and

1D). By E16.5, these defects became less apparent, while

the corpus callosal axonal tract, which typically reaches

the medial extent of the telencephalon by this time,

showed a defect in axonal length (Figure 1E). This effect

on outgrowth did not appear to be secondary to impaired

neuronal migration, because Dcx knockout mice do not

display discernable defects in the positioning of neurons

(Corbo et al., 2002; Kappeler et al., 2006). Although by

the time of birth, these developmental delays had not re-

sulted in clear morphological defects, these findings sug-

gest a requirement for Dcx in timing of axonal outgrowth.

Dcx/Spn/PP1 Localization at the Wrist Suggests

Possible Involvement in Axonal Outgrowth

It had been shown that Dcx interacts with the PP1-adaptor

protein Spn, a multidomain protein with N-terminal actin

binding, PSD-95/Dig/ZO-1 homology (PDZ) and coiled-

coil (CC) domains (Tsukada et al., 2003), and our own

work confirmed these results (Figures S1 and S2 in the

Supplemental Data available with this article online). To

determine if this interaction might play a role in the Dcx�/y
580 Cell 129, 579–591, May 4, 2007 ª2007 Elsevier Inc.
Figure 1. Delayed Axonal Extension in Dcx�/y Brains

(A) Midline sagittal T1-weighted brain MRI from normal showed well-

formed CC and a male with deletion of DCX exon 7-8 showed severe

CC hypoplasia (arrows). Optic nerve (arrowhead), cerebellum (*), cortex (**).

(B) E14.5 DiI injected into medial subcortical region showed extensive

fibers in subcortical white matter (arrow), cortico-striatal (CS) bound-

ary (double arrows) and striatal-thalamus region (triple arrows). Mutant

showed minimal axonal extension from the injection.

(C) E15.5 DiI injection showed labeling of corticothalamic (CT) axons at

CS boundary (box 1) and striatal-thalamus region (box 2), whereas mu-

tant showed diminished labeling.

(D) High-power views.

(E) E16.5 DiI injection showed diminished axon extension of the CC

tract (arrowhead) in mutant. There was some catch-up extension of

CT tract by this age (arrow).
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axon growth phenotype, we assessed protein localization

in cultured cortical neurons at 1 day in vitro (DIV). At this

stage, neurites have a well-defined shaft capped by a

growth cone, but axonal/dendritic differentiation has not

yet occurred. Spn exhibited an unexpected highly distri-

bution at the transition zone between the growth cone

and axonal shaft, in the ‘‘wrist’’ region, while Dcx exhibited

a characteristic enrichment along the neurite tip and

around the cell body and the two showed overlapping dis-

tribution at the wrist (Figure 2A). PP1 showed ubiquitous

localization in these neurons, but interaction in a complex

with Dcx and Spn was confirmed by coimmunoprecipita-

tion (Figure S2A). We next assessed the distribution of

phospho-serine 297 Dcx (PSer297 Dcx) using a phos-

pho-specific antibody (Tanaka et al., 2004b) to the Cdk5

substrate site. PSer297 Dcx showed low but detectable

levels in the growth cone but was much reduced in the

wrist and the axonal shaft (Figure 2A). Thus Spn was en-

riched at the wrist, and PSer297 Dcx is largely excluded

from axonal shafts, consistent with a model in which

Spn/PP1 may mediate dephosphorylation of PSer297

Dcx at the wrist. The close association of the MT-bound

Dcx and the actin-bound Spn (Figure 2B) suggested that

the Dcx-Spn interaction may serve to coordinate signaling

between these cytoskeletal components at the wrist that

may in turn be important in axon outgrowth.

Dcx and Spn Cooperate in Hippocampal Lamination

and Corpus Callosum Formation

We next tested for a shared phenotype between the Dcx

and Spn knockout mice, to determine if the two genes

share similar roles in brain development. Dcx mutant

mice display a delamination of the CA3 region of the hip-

pocampus (Corbo et al., 2002). Previous literature indi-

cates a mild reduction in hippocampal size in Spn�/�

mice (Feng et al., 2000), so we examined Spn�/� hippo-

campal anatomy. Surprisingly, 100% of the Spn�/� mice

showed a similar mild delamination of the CA3 region (Fig-

ure 2C), which was similar in appearance to the Dcx�/y

mice. This data suggests that these genes may subserve

similar function in brain development.

We next examined the phenotype of P21 mice deficient

for both Dcx and Spn, to determine if there is functional re-

dundancy between these genes during development.

Thus we compared Spn�/�; Dcx�/y double-knockout

(DKO) mice with single knockout and WT mice. The hippo-

campal lamination phenotype was slightly more severe in

the DKO than was observed in either of the single knock-

outs (Figure 2C), and there was complete agenesis of the

corpus callosum (ACC), which was not observed in either

of the single knockouts. The ACC was accompanied by

Probst bundles, suggesting failed or delayed axonal

extension across the midline during embryogenesis. To

determine if this represented a more general disorder of

axonal growth, the anatomy of all four genotypes was

compared. We noted that the anterior commissure (AC),

a major midline decussation tract connecting long-dis-

tance reciprocal olfactory and orbital-frontal regions,
was hypoplastic in the DKO mouse, whereas it appeared

normal in both the single knockout mice (Figure 2C). To

exclude the possibility that these axonal phenotypes

were the result of degeneration rather than failed forma-

tion, mice were examined at P0, when these projections

have just completed decussation, and stained with the

axonal marker L1CAM. We found that the CC decussation

was absent even at this age in the DKO mouse (Figure 2C).

In order to be certain that this phenotype was not due to

spontaneous ACC observed in some mouse genetic

backgrounds, P0 offspring from twenty litters of Spn+/�;

Dcx+/� 3 Spn+/�; Dcx+/y matings were analyzed for these

phenotypes. From a total of 125 mice, 6 DKO mice were

identified, 5 of which displayed ACC and hypoplastic

AC, whereas none of the 119 mice with intermediate geno-

types showed these phenotypes in this genetic back-

ground (p < 0.001, Figure 2D). This data suggests that

Dcx and Spn cooperate to mediate long-distance axonal

growth in the CC and AC during development.

Spn and Dcx Are Required for MT Bundling

in Cortical Neurons

Having established partial functional redundancy between

Dcx and Spn in brain development, we next examined for

defects in the actin and MT cytoskeletons in cultured cor-

tical neurons at 1DIV from WT, Dcx�/�, Spn�/� and DKO

littermates. Neurons from all four genotypes were com-

pared in a blinded fashion following visualization of the

cytoskeleton. There were no notable differences in actin

staining among the four genotypes in either the growth

cone or axonal shaft, and MTs were usually observed in

close approximation with actin, extending into the growth

cone (Figure 3A). However, both Dcx�/� and Spn�/� neu-

rons showed a poorly organized axonal MT cytoskeleton

with failure to condense MTs into a single shaft. As a result

of splayed and unevenly spaced MTs, axonal shafts were

widened compared with WT. Neurons from DKO dis-

played an even broader leading process with apparently

more severe failure of MT bundling. This data suggests

that the axonal defects may result from impaired MT

bundling in the absence of these genes.

Abnormal Inter-MT Distance in the Absence

of Either Dcx or Spn

To further investigate the ultrastructural basis of this MT

phenotype, transmission electron microscopic (TEM) anal-

ysis of 1DIV neurons was performed from each of the four

genotypes. We noted in WT neurons that MTs were nearly

always well organized in the axonal shaft and showed

uniform orientation and a typical inter-MT spacing of 20–

30 nm (Figure 3B). The neurons from the Dcx�/y and

Spn�/� mice, however, showed a disordered MT array.

These MTs typically veered in oblique directions within

the shaft and showed nonuniform spacing. The neurons

from the DKO mice appeared even more severely disor-

dered, with frequent MT crossing observed, suggesting a

failure of bundling. To quantitate inter-MT distance (IMD),

we collected high-resolution images, traced MTs along



Figure 2. Spn and Dcx Share Protein Distribution and Cofunction during Brain Development

(A) Dcx exhibited enrichment along MTs at the wrist (double arrows), the axonal shaft (arrowhead), and cell body (double arrowheads), PP1 was

distributed diffusely, and Spn was enriched at the wrist (double arrows). PSer297 Dcx had highest expression in the growth cone (arrow) and cell

body (double arrowhead). PSer297 Dcx compared with total Dcx was mostly excluded from regions of Spn localization at the wrist (double arrow),

suggesting Spn may contribute to its dephosphorylation. The scale bar represents 10 mm.

(B) Dcx and Spn overlap in distribution with the actin and MT cytoskeletons at the wrist (double arrow) and filopodia (arrowheads).

(C) Dcx and Spn cooperate in axonal outgrowth of multiple long-distance projections. Both Spn�/� and Dcx�/y showed defective lamination of the

CA3 region (arrow), whereas Spn�/�; Dcx�/y (DKO) showed possibly worsened defect compared with single knockouts. The granule cell layer was

unaffected (arrowhead). The CC decussation was evident in all but the DKO, where it was replaced by Probst bundles (PB). The anterior commissure

(dashes) showed normal appearance in all but the DKO where it was hypoplastic. Midline indicated by arrowhead. At P0, decussating CC fibers

(stained with L1CAM, arrows) were visible in all but the DKO, where they terminated in Probst bundles (arrowheads).

(D) Expressivity of ACC and hypoplastic anterior commissure among offspring from 20 litters of double-heterozygous matings. Number of mice with

each phenotype over total of each genotype are listed. Note that none of the mice except the Spn�/�; Dcx�/� (DKO) showed ACC and hypoplastic

anterior commissure phenotype. Dcx�/� entries include both �/� females and �/y male null mice. * = p < 0.001, chi-square test.
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Figure 3. Disrupted Shaft MT Cytoskeleton in Dcx, Spn, and DKO Mutant Neurons Results in Excessively Branched Neurite

Phenotype

(A) WT showed condensed MTs in the shaft (arrowhead). Wrist (double arrow) and growth cone (arrow) are well-delineated from the cell body (dashed

circle = nucleus). In Dcx�/y or Spn�/� neurons, MTs were instead splayed (arrowhead), and as a result, the neurite shaft width was increased.

(B) Transmission electron microscopy showed parallel MT arrays that maintained relatively consistent spacing along the shafts in cultured cortical

neurons in WT littermates. This array was disrupted in both single knockouts and was more severe in the DKO. Bottom half (dashes) of each shows

line tracings depicting MTs. 80003.

(C) Binned inter-MT distance between nearest neighbor was significantly greater in mutants. n = 1499 total measurements, from 9 WT, 5 Dcx�/�,

4 Spn�/�, and 5 DKO neuronal shafts from two separate culture experiments. * = p < 0.05, chi-square contingency table.

(D) WT neurons typically displayed a single monopolar main process (arrow) with occasional 2� branches (double arrow) after 36 hr in culture. Both

Dcx�/y and Spn�/y neurons exhibited excessive 2� (double arrows) and 3� (triple arrows) branches from the primary neurite, as well as an increased

number of processes extending from the cell soma (arrowhead). This was most striking in DKO.

(E) Quantification of neurite branching. Branches from the main process (MP) were termed 2� MP, and branches from 2� MP were termed 3� MP.

Neurites extending from the soma were termed body processes (BP), and branches from the BP were termed 2� BP.

(F) WT cells typically had a single MP, with average number of 2� MP per cell less than 0.5. The branching and frequency of 3� MP was increased in

Dcx�/y, Spn�/� and DKO neurons. Furthermore, 2� BP were only noted in DKO neurons.

All error bars = SEM. * = p < 0.05, pairwise comparison, Student’s t test.
their entire visible length and measured nearest neighbor

distance at uniform 250 nm intervals along the entire length

of the visible neurite from at least 4 neurons of each geno-

type (for a total of over 300 IMD measurements from each

genotype). In WT neurons, there were very few locations

where MTs crossed paths, (indicated by an IMD < 20 nm)

whereas these were not infrequently encountered in both

single knockouts and the DKO (p < 0.05, Figure 3C). TEM

tomography was also performed from cultured neurons

from on each of the four genotypes, which showed frag-

mented and poorly aligned MTs from the single and DKO

neurons (Movies S1–S5). These results imply a failure to

bundle MTs in the absence of Dcx and Spn.
Defective MT Bundling Is Associated

with Excessively Branched Neurites

Failure to condense neurite MTs often leads to defects in

neuronal morphology at later stages of maturation (Szebe-

nyi et al., 1998). To test this, we analyzed morphology of

mutant neurons after 36 hr in culture, a time when neurites

have typically organized into stable thin processes. Strik-

ing defects in morphology were detected in neurons from

both single knockouts, with an increase in branching com-

plexity of the main process (MP) as well as an increase in

the number branches extending from the cell body (i.e.,

body processes (BP, Figure 3D). Quantification of the num-

ber of 2� and 3� branches from the main process as well as
Cell 129, 579–591, May 4, 2007 ª2007 Elsevier Inc. 583



Figure 4. Dcx/Spn Interaction Sufficient to Corecruit Actin and MT Cytoskeletons

Purified Spn and Dcx was sufficient to link phalloidin-stabilized actin and taxol-stabilized MTs.

(A and B) Spn added to actin led to production of filaments.

(C and D) Dcx added to tubulin led to asters of MTs.

(E–H) (E) Cytoskeletons alone showed no corecruitment, and neither was tubulin recruited to Spn-stabilized actin (F) or actin recruited to Dcx-stabi-

lized tubulin (G). However, Spn-stabilized actin and Dcx-stabilized MTs showed significant corecruitment of the two cytoskeletons ([H], and higher

power view of [H]). Repeated in triplicate.
the number of 1� and 2� body processes performed in

a blinded fashion demonstrated statistical evidence of ex-

cess of such branches (Figures 3E and 3F). DKO neurons

showed a further increase in the number of 2� BPs, which

were only rarely observed in either WT or Dcx�/� or Spn�/�

neurons. We conclude that Dcx and Spn cooperate for

maintenance of neuronal morphology and suppression of

excessive branching, which is likely a result of failure to

organize the MT cytoskeleton at the wrist.

Spn and Dcx Interaction Is Sufficient to Crosslink

Actin and MTs

We next tested the ability of purified Dcx and Spn to cor-

ecruit the actin and MT cytoskeletons in a cell-free assay.

Recombinant Spn was added to actin previously polymer-

ized with Alexa 488-labeled phalloidin, resulting in the

formation of F-actin filaments (Figure 4). Similarly, rhoda-

mine-conjugated purified tubulin (previously stabilized

with a low dose of taxol) was treated with recombinant
584 Cell 129, 579–591, May 4, 2007 ª2007 Elsevier Inc.
Dcx, which led to the formation of MT aster-like structures

from which MT bundles emanated. The combination of

labeled actin and tubulin showed no particular affinity for

one another, and neither did the addition of labeled tubulin

to Spn-stabilized actin nor did the addition of labeled actin

to Dcx-stabilized MTs. However, when Spn-stabilized

actin and Dcx-stabilized MTs were combined, there was

significant overlap of the two labeled cytoskeletal compo-

nents. This effect was not merely due to clumping of the

two cytoskeletons, because taxol/phalloidin stabilization

of these cytoskeletons did not lead to overlap. This data

suggests that the Dcx-Spn interaction is sufficient to

mediate crosslinking of the actin and MT cytoskeletons

in vitro.

PP1 Is Capable of Mediating Dephosphorylation

of PSer297 Dcx

Previous work has established that the kinase Cdk5

is in a complex with the phosphatase PP1 and Spn



Figure 5. Spn Required for PP1-Mediated Dephosphorylation

of PSer297 Dcx

(A) PP1 at high unit concentrations was capable of dephosphorylating

Dcx at PSer297, based on autoradiogram or immunoreactivity with

aPSer297 following [32P] incorporation. PP1 was a more specific phos-

phatase for the PSer297 site than CIP, resulting in nearly complete

dephosphorylation at all concentrations tested.

(B) Spn alone has no effect on [32P] retention or aPSer297 reactivity.

(C) Low levels of PP1 (53 lower than used in [A]) in the absence of Spn

had no effect on [32P] retention or aPSer297 reactivity but increasing

amounts of Spn promoted dephosphorylation of Dcx by PP1.

(D) PP1 and Cdk5 act inopposing fashions to modulate phosphorylation

state of Dcx Ser297 in cortical neurons. Cortical neuronswith increasing

roscovitine (inhibits Cdk5) or tautomycin (inhibits PP1) were analyzed by

Western with Dcx PSer297 and PThr321 antibodies. Roscovitine

blocked and tautomycin enhanced PSer297 reactivity but not PThr321.
(Agarwal-Mawal and Paudel, 2001), indicating that this

complex is well poised to mediate dynamic phosphoryla-

tion/dephosphorylation of substrates. We therefore tested

whether PP1 was capable of dephosphorylating the

Cdk5-mediated phosphorylation of Dcx Ser297. Re-

combinant Dcx was added to recombinant Cdk5/p25, re-

sulting in robust phosphorylation of Dcx at Ser297 based

both on [32P] autoradiogram and aPSer297 Dcx reactivity

(Figure 5A). The addition of the nonspecific calf intestinal

phosphatase (CIP) led to a reduction in both the autoradio-

gram signal and the reactivity with the aPSer297 Dcx. In-

creasing concentrations of recombinant PP1 were then

compared with CIP for the ability to dephosphorylate

this site. We noted a dose-dependent decrease in autora-

diogram signal and aPSer297 Dcx reactivity following PP1

treatment. We conclude that PP1 is capable of mediating

the dephosphorylation of PSer297 Dcx.

Spn Enhances PP1-Mediated Dephosphorylation

of PSer297 Dcx

Because Spn targets PP1 to phosphoproteins, we next

tested whether Spn was capable of enhancing the PP1-

mediated dephosphorylation of PSer297 Dcx. The addi-

tion of even high concentrations of Spn in the absence

of PP1 had no effect on PSer297 Dcx reactivity on Dcx

that had been previously phosphorylated with the Cdk5/

p25 kinase (Figure 5B). Next, PP1 concentration was

reduced to a level where it alone had no effect on the

phosphorylation state of Ser297 Dcx (Figure 5C), and

then increasing concentrations of Spn were added to

this mixture. We noted a Spn dose-dependent dephos-

phorylation of PSer297 Dcx, which was observed both in

autoradiogram and with the PSer297 Dcx antibody. We

conclude that Spn is capable of enhancing the PP1-medi-

ated dephosphorylation of PSer297 Dcx.

Modulation of PSer297-Specific Phosphorylation

by Cdk5 and PP1

The previous data suggests that the Spn-PP1 complex is

sufficient to mediate dephosphorylation of PSer297 Dcx.

Therefore, to address whether it is necessary, we applied

membrane-permeable roscovitine, a specific Cdk5 inhib-

itor (IC50 200 nM, versus >500 nM for cell cycle-related

Cdks tested (Meijer et al., 1997)) or tautomycin, a selective

PP1 inhibitor (IC50 1nM versus >10 nM for PP2A and other

phosphatases (MacKintosh and Klumpp, 1990)) to cul-

tured neurons. Subsequently, cells were lysed and ana-

lyzed by Western using a pan-Dcx antibody, a PSer297

Dcx-specific antibody and a PThr321 Dcx-specific anti-

body, the latter that recognizes a Jun kinase phosphoryla-

tion site (Gdalyahu et al., 2004). As roscovitine concentra-

tion was increased, there was progressively less reactivity

(E) Brain lysates from E16 littermates showed increased PSer297 reac-

tivity as Spn dosage was decreased.

(F) Quantification of PSer297 Dcx band intensity standardized to con-

trol shows a 4-fold increase in reactivity in Spn�/� versus Spn+/+.
Cell 129, 579–591, May 4, 2007 ª2007 Elsevier Inc. 585



of the aPSer297 Dcx, without notable change in either to-

tal Dcx or PThr321 Dcx reactivity (Figure 5D). Application

of tautomycin had the opposite effect, leading to an in-

crease in aPSer297 Dcx reactivity, without change in

either the total Dcx or PThr321 Dcx reactivity. We con-

clude that Cdk5 and PP1 reciprocally regulate the phos-

phorylation state of Ser297 Dcx.

PSer297 Dcx Is Excessively Phosphorylated

in the Absence of Spn

In order to determine if Spn is necessary for dephosphor-

ylation of PSer297 Dcx, we examined Spn�/�, Spn+/� and

Spn+/+ littermates for aPSer297 Dcx reactivity. Whole

brain lysates from E16 littermates were prepared, and

CIP was added to half of each sample as a nonspecific

phosphatase, and samples were then assayed for Spn,

Dcx, and PSer297 Dcx reactivity via Western analysis.

We found no notable differences in Dcx levels in any of

the genotypes. However, there was dosage-dependent

excessive phosphorylation of Ser297 Dcx in the Spn+/�

and Spn�/� brain lysates (Figure 5E). Reactivity was

4-fold higher in the �/� than +/+ brains based on quanti-

tative luminometry (Figure 5F). The data together suggests

that Spn-PP1 is necessary and sufficient for PSer297 Dcx

dephosphorylation.

PP1 Function Required for MT Bundling

during Neurite Growth

The identification of PP1 as part of the Dcx-Spn complex in

brain (Figure S2) prompted us to test PP1’s role in MT bun-

dling during neurite outgrowth using genetic knockdown.

PP1 consists of two regulatory subunits and a catalytic

subunit (PP1g), that directly associates with Spn (MacMil-

lan et al., 1999). We utilized a previously validated PP1g

siRNA and found a 6-fold reduction in protein expression

in culture N2A cells (Figure S3), suggesting that this siRNA

mediates robust knockdown of PP1g expression. Cortical

neurons from E13.5 WT mice underwent in utero electro-

poration with the PP1g siRNA and marker plasmid, iso-

lated at E14.5, then at 1 DIV were fixed and stained to visu-

alize the MT and actin cytoskeleton. We found that MTs

failed to bundle in the majority of PP1g siRNA expressing

cells (Figure 6A). This was quantitated by evaluating the

percentage of cells with the phenotype of splayed MT in

the primary neurite shaft. We found that approximately

85% of PP1g electroporated cells showed this phenotype

compared with approximately 25% of controls (p < 0.01,

Figure 6B). We conclude that PP1 catalytic activity is

required for bundling of MTs within the leading neurite.

MT Bundling Depends upon Association

of the Dcx-Spn-PP Complex

Because of the shared MT bundling phenotype observed

in Spn and Dcx knockout neurons, we hypothesized that

the interaction between these two proteins might be criti-

cal for MT bundling in neurites. Because Spn aa L649–

Q696 (part of the coiled-coil domain) constituted the

consensus Dcx binding domain (Figure S1A), we deleted
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these residues from Spn (SpnDCC), and found that this

construct failed to coimmunoprecipitate Dcx in cotrans-

fected 293T cells (Figure S1D). Therefore, EGFP-Spn

and EGFP-SpnDCC were tested for their ability to rescue

the MT bundling defect in Spn�/� neurons. Neurons from

E14 Spn�/� were electroporated with constructs encod-

ing either plasmid, then at 1DIV were stained for MTs

and EGFP, and scored for the bundling defect. The major-

ity of Spn�/� neurons with WT Spn showed a normalization

of the MT array. However, most neurons electroporated

with the SpnDCC showed persistent MT bundling defects

(Figure 6C). Quantification of the number of cells with ei-

ther bundled or splayed MTs in the leading neurite showed

rescue in 78% versus 25% with WT or mutant constructs,

respectively (Figure 6D, p < 0.01). We conclude that the

association between Spn and Dcx is required for MT bun-

dling. The EGFP-Spn4A (residues 457–460 KIKF) mutant

construct was similarly tested, which was previously

found to lack binding with PP1 (Tsukada et al., 2006), to

determine if it was capable of restoring MT bundling in

Spn�/� neurons. Quantification showed the majority of

cells electroporated with EGFP-Spn4A showed similar

persistent MT bundling defects (Figures 6C and 6D,

p < 0.01). We conclude that the interaction between

Spn, Dcx and PP1 is important for MT bundling in neurites.

Having demonstrated that the Spn/PP1 complex serves

to dephosphorylate PSer297Dcx, we next tested whether

Dcx phosphorylation mutants at the 297 site are capable

of rescuing the MT cytoskeletal defect in Dcx�/y neurons.

The Dcx297A mutant is incapable of phosphorylation at

this site, whereas the Dcx297D mutant mimics phosphor-

ylation at this site. We found that WT but neither mutant

showed a rescue of the splayed MT phenotype (Figure 6E).

Quantification of the percentage of cells with either bun-

dled or splayed MTs in the leading neurite showed rescue

in 82% versus 19% and 14% with WT, 297A or 297D

mutations, respectively (Figure 6F, p < 0.01). Together,

the data suggest that the interaction of Spn and Dcx as

well as the dynamic regulation of the S297 phosphoryla-

tion state of Dcx is necessary for maintenance of the MT

cytoskeleton during neurite outgrowth.

Spn-PP1-Mediated Dcx Dephosphorylation

Recovers MT Polymerizing Activity

PSer297 Dcx phosphorylation by Cdk5 results in a 60%

decrease in MT polymerization activity (Tanaka et al.,

2004b), and the data indicates that the Spn-PP1 complex

is necessary and sufficient for dephosphorylation at

this site. In order to test whether Spn-PP1-mediated

PSer297 Dcx dephosphorylation might result in reactiva-

tion of its MAP activity, we employed the turbidimetric

MT polymerization assay (Gleeson et al., 1999). Applica-

tion of recombinant Dcx to MAP-depleted brain-derived

purified tubulin resulted in robust polymerization (Fig-

ure 7A). We then added activated recombinant Cdk5/

p25 to phosphorylate Ser297 Dcx, and rezeroed the ab-

sorbance reading. There was a subsequent decrease in

the turbidity over the following time period, suggesting



Figure 6. Spn-PP1-Dcx Complex Required for MT Bundling during Neurite Outgrowth

(A) PP1g knockdown associated with failure of MT bundling and broadened primary neurite. (C) Spn�/� splayed MT phenotype is rescued by forced

expression of EGFP-tagged wild-type Spn, but not SpnDCC (lacks Dcx binding) or Spn4A (lacks PP1 binding). (E) Dcx�/y splayed MT phenotype is

rescued by forced expression of Dcx-RFP, but not by Dcx297A (unphosphorylatable) or Dcx297D (pseudophosphorylated) at the Spn-PP1 site. The

scale bar represents 5 mm. (B, D, and F) Significant difference in cells with bundled versus splayed MT neurite phenotype. Results averaged from two

experiments. All error bars = SEM. * = p < 0.01, Student t test.
that phosphorylation of Dcx by Cdk5 results in depolymer-

ization of MTs that had been previously polymerized with

Dcx. We then added roscovitine (to inactivate Cdk5), to-

gether with recombinant Spn-PP1, to dephosphorylate

PSer297 Dcx, and rezeroed the absorbance reading a

second time. An increase in the turbidity was once again
observed over the following time period, suggesting MT

repolymerization as a result of dephosphorylation of the

PSer297 Dcx site. We performed two controls for this ex-

periment. In the first, we concurrently added roscovitine

together with Cdk5/p25 to the reaction at the beginning

of the second incubation to block the kinase activity of
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Figure 7. Spn-PP1-Mediated Dephosphorylation Reinstates the Tubulin Polymerization Effect of Dcx

(A) Purified Dcx and tubulin shows robust increase in turbidity after 1000 s. Subsequently, addition of activated Cdk5/p25 to phosphorylate Ser297

resulted in a net decrease in turbidity over the next 2500 s. Subsequently, addition of roscovitine (to block Cdk5 activity) and Spn-PP1 (to dephos-

phorylate PSer297 Dcx) resulted in net increase in turbidity over the next 2500 s.

(B) Cdk5/p25 that was pretreated with roscovitine, or Spn-PP1 that was pretreated with tautomycin had no net effect on turbidity.

(C) Neither roscovitine nor tautomycin alone had any net effect on turbidity. Error bars = SEM from three trials.

(D) Cosedimentation analysis. The dephosphorylation of previously phosphorylated Dcx sites was associated with a reinstatement of Dcx MT poly-

merizing activity, and associated with an increased MT pellet weight. Averaged from two experiments.

(E) Model for the role of Dcx and Spn in MT organization during neurite extension. Spn is restricted to the wrist region, where it is complexed with PP1.

Spn mediates PP1 dephosphorylation of MT-bound PSer 297 Dcx. This leads to reactivation of Dcx, with subsequent MT crosslinking activity that is

necessary for MT bundling in the neurite shaft.
Cdk5. This resulted in little change in the overall turbidity of

the reaction (Figure 7B). We then added tautomycin con-

currently with the Spn-PP1 at the beginning of the third

incubation to block the phosphatase activity of PP1. Like-

wise, this resulted in little change in turbidity. Roscovitine

or tautomycin alone resulted in little change in turbidity

(Figure 7C).

Turbidity is affected by both MT polymerization and by

bundling/cross linking, and thus it was not possible to de-
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termine whether these Dcx regulators were altering the

organization of MT or leading to depolymerization. To ad-

dress this, we also performed cosedimentation experi-

ments, to determine the weight of the resultant MT pellet

at the end of these experiments. We found that the pellet

weight (which correlates to the mass of MTs) showed

changes that mirrored turbidity (Figure 7D). The data sug-

gests that dynamic phosphorylation and dephosphoryla-

tion can influence the effect of Dcx on MT polymerization.



DISCUSSION

Here, we present molecular and genetic data that supports

a model of MT bundling at the wrist region during neurite

extension. In this model, actin-associated Spn at the neu-

rite wrist enhances the PP1-mediated dephosphorylation

of Dcx, which reinstates Dcx’s microtubule associated ac-

tivities, allowing the orderly bundling of MTs into the neurite

shaft (Figure 7E). This model is supported by data indicat-

ing disordered MT bundling along the neurite shaft in

Spn�/� and Dcx�/y cultured neurons. In addition, similar

MT disorganization was observed along neurite processes

in PP1 siRNA treated cortical neurons. A requirement for

Spn in mediating Dcx dephosphorylation at S297 was ev-

ident in the increased levels of PSer297 Dcx in the Spn�/�

brain. MT bundling required the interaction of the Spn/

PP1/Dcx complex, as Spn and Dcx expression were capa-

ble of rescuing this splayed MT phenotype in respective

knockouts, but expression of mutants lacking the ability

to form this complex showed failure to rescue the pheno-

type. This data suggests that Spn is an important adaptor

molecule that spatially restricts PP1-mediated Dcx de-

phosphorylation during neurite outgrowth.

Genetic Requirements for Corpus Callosal

Development

We show delayed axon outgrowth in Dcx�/y brains, yet

these fibers eventually project to their correct location in

a fashion indistinguishable from WT, suggesting a time-

dependent defect in axon outgrowth. This delay may

enhance the susceptibility of Dcx�/y neurons to further ge-

netic perturbations, such as we observed in the DKO, and

has been previously demonstrated for dosage-dependent

interaction with Dclk1 (Koizumi et al., 2006b) and a strain

dependent effect of Dcx on CC development (Kappeler

et al., 2007). Spn has been shown to interact with both

Dcx and Dclk1 (Tsukada et al., 2003), therefore it is possi-

ble that the ACC observed in the DKO is due to absence of

both the Dclk1 or Dcx interaction with Spn. However,

since Spn�/� alone does not display ACC, it is likely that

Dcx has Spn-independent effects on CC development,

so that these axons are delayed but reach the midline

within the permissive window for decussation (Wahlsten

et al., 2006). The combined factors may play a role in the

variable expressivity of the ACC phenotype in humans

with Dcx mutations (Kappeler et al., 2007).

The Role of Dcx and Spn in Regulation

of Neurite Branching

Previous data has suggested a requirement for Dcx in re-

pressing the branching of neurites during migration in both

subventricular zone and medial ganglionic eminence neu-

rons (Kappeler et al., 2006; Koizumi et al., 2006a). This ex-

cessive branching was reminiscent of what we observed

in cultured primary Dcx�/� or Spn�/� neurons. Branching

is typically initiated at the growth cone and along the shaft

when MT splay apart, allowing shorter MT to invade the

nascent actin-rich branches (Kalil et al., 2000; Szebenyi
et al., 1998). It is likely that failure to maintain a bundled

MT cytoskeleton in the neurite shaft underlies the exces-

sive branching that we and others have observed.

Integrators of the Actin and MT Cytoskeleton

Much of the understanding of neurite outgrowth has

focused on the role of the actin or MT cytoskeleton inde-

pendently, and only recently has data emerged to suggest

how these two major cytoskeletal components may be co-

ordinated in this process (Dehmelt and Halpain, 2004).

This integration is presumably mediated by either single

molecules that contain both an actin- and MT-binding do-

main, or by pairs or complexes of molecules that together

contain these domains. Several cellular factors such as

Pod-1 contain modular actin and MT binding domains

and are themselves capable of crosslinking or integrating

the two cytoskeletons (Rothenberg et al., 2003). However,

there are few examples of molecular complexes that can

bridge between these cytoskeletal components. One

such example is the IQGAP1/CLIP-170 interaction, in

which activated Rac/CDC42 recruits IQGAP1, an actin

binding protein, with CLIP-170, a MT plus-end binding

protein, to form a tripartite complex for cellular polariza-

tion (Fukata et al., 2002).

The current data suggest that the Spn-Dcx interaction

may also mediate crosstalk between the actin and MT

cytoskeletons. Spn and Dcx display maximal overlap in

distribution in the proximal part of the growing neurite

tip, at the site of constriction of the neurite that follows

the broad growth cone. Dcx has a well-characterized

role in MT modulation (Taylor et al., 2000) and Spn not

only targets PP1 but is also capable of crosslinking F-actin

into bundles (Satoh et al., 1998). In vitro studies have

shown Dcx can bridge the actin and MT cytoskeletons

independent of Spn (Tsukada et al., 2005). We have also

observed that high concentrations of purified Dcx can

stabilize and bundle phalloidin labeled actin filaments,

however low concentrations of Dcx do not exhibit this ef-

fect, but can still crosslink the actin and MT cytoskeletons

in combination with Spn. It remains a possibility that Dcx

may have Spn-independent interactions with actin in vivo.

Genetic Evidence of MAP Reactivation

through Dephosphorylation

Axonal extension appears to consist of three basic events

occurring at the growth cone: protrusion, engorgement,

and consolidation (Dent and Gertler, 2003). In this model,

protrusion consists of extension of actin-based lamellipo-

dia and filopodia, which then serve as substrates for the

extension of MTs. Engorgement consists of movement

of vesicles and organelles, likely directed by MT-based

transport. Consolidation occurs as the proximal part of

the growth cone assumes a cylindrical shape, which prob-

ably relies on the bundling of loosely associated MTs.

However, little data has been provided to highlight the mo-

lecular mechanisms underlying the process. The data pre-

sented here suggests that the Dcx/Spn/PP1 interaction

may play a role in MT bundling during the consolidation
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step. We hypothesize that this effect is part of the molec-

ular machinery involved in the transition from splayed to

bundled MTs.

This is the first genetic demonstration to our knowledge

of specific adaptor molecules that are required for MAP

reactivation. This may be a general mechanism of re-

activation of MAPs. Both genetic and pharmacologic

evidence support a role for Spn in the PP1-mediated

dephosphorylation of Dcx. Spn is capable of enhancing

the PP1-mediated dephosphorylation of the PSer297 site

of Dcx. Spn�/� mice had dramatically increased levels of

PSer297 Dcx in developing brain. The phosphatases medi-

ating dephosphorylation of Dcx at other sites are not spe-

cifically known, although evidence suggests that PP2A

may serve to regulate the phosphorylation state of Ser47

(Schaar et al., 2004). Further identification of the specific

phosphatases and targeting subunits for Dcx and other

MAPs will require both biochemical and genetic evidence.

EXPERIMENTAL PROCEDURES

Kinase/Phosphatase Assay

Proteins were concentrated to 2 mg/ml and used as described (Niet-

hammer et al., 2000; Taylor et al., 2000). Spn, PP1 (Upstate), and

Dcx kinase reaction were incubated for 45 min at 37�C in PP1 buffer.

Animals

Spn animals were maintained in a mixed SvJ/129 background. Dcx an-

imals were maintained on a mixed 129/BlSwiss background. Animal

work was performed on littermates, and was carried out in compliance

with Institutional Animal Care and Use Committee approved protocols.

Approximately 0.2 ml of DiI (10% in DMF) was injected into the medial

subcortical region, and processed for visualization after 2 weeks.

Cortical Cultures

Cortical neurons were isolated and cultured as described (Zaman et al.,

1999). Tautomycin and Roscovitine (Calbiochem) were applied for 2 hr.

Electroporation

Isolated cortical neurons from littermates were electroporated with

a Nucleofector kit performed according to Mouse Neuron protocol

(Amaxa Inc.) with full-length pcDNA3 encoding Spn-GFP or SpnDCC

(DL649-Q696), or pcDNA3.1 encoding Dcx-RFP with specific muta-

tions (Tanaka et al., 2004b). E13.5 intraventricular injection of PP1g

siRNA (20uM, SCBT) with 1 mg/ml pGE2hrGFP (electroporation marker)

or other tagged constructs, with 0.01% Fast Green (USB, injection

marker) was performed as described (Tabata and Nakajima, 2001) us-

ing 7 mm tweezertrods (Harvard Apparatus). Cortical cultures were

generated 48hr post electroporation.

Microscopy

Fluorescent microscopy was performed essentially as described

(Tanaka et al., 2004a). We used rabbit anti-Spn (1:200, Upstate),

mouse anti-PP1 (1:50, SCBT), rabbit anti-Dcx (1:200, SCBT), rabbit

anti-PSer297 Dcx (1:50), rat anti-L1 (1:200, Chemicon). A branched

process was defined as longer than the diameter of the cell body

and was more than one cell-body distance from the tip of the main

process (to differentiate these from branched growth cone). Electron

microscopy was performed using a standard protocol (Yu and Baas,

1994), sectioned at 80 nM, stained with Sato’s lead solution, and

captured on a JEM-4000EX IV system. Inter MT distances were mea-

sured every 250 nm along the visible process length, with contingency

table analysis used for statistics.
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Actin/MT Crosslinking Assay

Crosslinking was performed as described (Rothenberg et al., 2003).

Lyophylized actin was resuspended in 103 KMEI buffer to 0.4 mg/ml,

and stabilized with 60 nM Alexa 488-phalloidin. Rhodamine-

tubulin:PCP tubulin (1:10) was diluted to 1 mg/ml in BRB80 with

0.5 mM taxol. Crosslinking was tested by combining actin and MT in

combinations of 0.75 mg/ml BSA, recombinant Dcx or Spn for

10 min, fixing in 0.1% glutaraldehyde/20% glycerol prior to imaging.

MT Turbidity and Cosedimentation Assay

MT polymerization assays were performed as previously described

(Gleeson et al., 1999; Taylor et al., 2000). After 10 min 3 mg of recombi-

nant Cdk5/p25 and 50 mM ATP were added to the Dcx reaction and dif-

fraction was zeroed. The reaction was allowed to proceed for 43 min at

which time 100 mM roscovitine, recombinant Spn (0.1 mg) and 0.001

units of PP1 were added. Diffraction was zeroed and the turbidity

was recorded for an additional 35 min. Tautomycin was used at 10 nM.

PCP-purified tubulin (100 mg) was incubated with recombinant Dcx

(10 mg) that was pretreated with 5 mg active or inactive (100 mM rosco-

vitine) Cdk5/p25 (30 min at 37�C) followed by 0.1 mg/0.001units active

or inactive (10 nM tautomycin) Spn/PP1 (20 min 37�C). The100 ml reac-

tion containing 13 G-PEM (80 mM Na Pipes, 0.5 mM MgCl2, 1.0 mM

EGTA, 1 mM GTP [pH 6.8]) and kinase buffer were pelleted at 37,000

rpm for 20 min at 37�C. The pellets were dried at room temperature

for 5 min before weighting.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, three figures, and five movies and can be

found with this article online at http://www.cell.com/cgi/content/full/

129/3/579/DC1/.

ACKNOWLEDGMENTS

We wish to thank Anthony Wynshaw-Boris and Christopher Walsh

for the Dcx knockout mouse; O. Reiner for the PThr321 Dcx antibody;

G. Eichle and A. Prokscha for the Spn4A construct; R. Tsien for shared

equipment; W. Dobyns for MRI expertise; and the UCSD Neuroscience

Microscopy Imaging Core for imaging advice. K. Siever and Y. Fang

contributed expertise. We thank J. Dixon, D. O’Leary, A. Ghosh,

R. Firtel, B. Zheng, and anonymous reviewers for suggestions. This

work was supported by the UCSD Genetics Training grant (to

S.L.B.), the Searle Scholars, the Merck Award in Developmental Dis-

abilities, the NINDS (to J.G.G.), and NIH grants P41 RR04050 and

R01 NS14718 (to M.H.E.).

Received: August 30, 2006

Revised: December 13, 2006

Accepted: March 13, 2007

Published: May 3, 2007

REFERENCES

Agarwal-Mawal, A., and Paudel, H.K. (2001). Neuronal Cdc2-like pro-

tein kinase (Cdk5/p25) is associated with protein phosphatase 1 and

phosphorylates inhibitor-2. J. Biol. Chem. 276, 23712–23718.

Allen, P.B., Ouimet, C.C., and Greengard, P. (1997). Spinophilin,

a novel protein phosphatase 1 binding protein localized to dendritic

spines. Proc. Natl. Acad. Sci. USA 94, 9956–9961.

Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., and

Macklis, J.D. (2005). Neuronal subtype-specific genes that control cor-

ticospinal motor neuron development in vivo. Neuron 45, 207–221.

Ceulemans, H., and Bollen, M. (2004). Functional diversity of protein

phosphatase-1, a cellular economizer and reset button. Physiol. Rev.

84, 1–39.

http://www.cell.com/cgi/content/full/129/3/579/DC1/
http://www.cell.com/cgi/content/full/129/3/579/DC1/


Corbo, J.C., Deuel, T.A., Long, J.M., LaPorte, P., Tsai, E., Wynshaw-

Boris, A., and Walsh, C.A. (2002). Doublecortin is required in mice for

lamination of the hippocampus but not the neocortex. J. Neurosci.

22, 7548–7557.

Dehmelt, L., and Halpain, S. (2004). Actin and microtubules in neurite

initiation: are MAPs the missing link? J. Neurobiol. 58, 18–33.

Dent, E.W., and Gertler, F.B. (2003). Cytoskeletal dynamics and trans-

port in growth cone motility and axon guidance. Neuron 40, 209–227.

des Portes, V., Pinard, J.M., Billuart, P., Vinet, M.C., Koulakoff, A.,

Carrie, A., Gelot, A., Dupuis, E., Motte, J., Berwald-Netter, Y., et al.

(1998). A novel CNS gene required for neuronal migration and involved

in X-linked subcortical laminar heterotopia and lissencephaly syn-

drome. Cell 92, 51–61.

Feng, J., Yan, Z., Ferreira, A., Tomizawa, K., Liauw, J.A., Zhuo, M.,

Allen, P.B., Ouimet, C.C., and Greengard, P. (2000). Spinophilin regu-

lates the formation and function of dendritic spines. Proc. Natl. Acad.

Sci. USA 97, 9287–9292.

Friocourt, G., Koulakoff, A., Chafey, P., Boucher, D., Fauchereau, F.,

Chelly, J., and Francis, F. (2003). Doublecortin functions at the extrem-

ities of growing neuronal processes. Cereb. Cortex 13, 620–626.

Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M.,

Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K.

(2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and

CLIP-170. Cell 109, 873–885.

Gdalyahu, A., Ghosh, I., Levy, T., Sapir, T., Sapoznik, S., Fishler, Y.,

Azoulai, D., and Reiner, O. (2004). DCX, a new mediator of the JNK

pathway. EMBO J. 23, 823–832.

Gleeson, J.G., Lin, P.T., Flanagan, L.A., and Walsh, C.A. (1999). Dou-

blecortin is a microtubule-associated protein and is expressed widely

by migrating neurons. Neuron 23, 257–271.

Kalil, K., Szebenyi, G., and Dent, E.W. (2000). Common mechanisms

underlying growth cone guidance and axon branching. J. Neurobiol.

44, 145–158.

Kappeler, C., Dhenain, M., Phan Dinh Tuy, F., Saillour, Y., Marty, S.,

Fallet-Bianco, C., Souville, I., Souil, E., Pinard, J.M., Meyer, G., et al.

(2007). Magnetic resonance imaging and histological studies of corpus

callosal and hippocampal abnormalities linked to doublecortin defi-

ciency. J. Comp. Neurol. 500, 239–254.

Kappeler, C., Saillour, Y., Baudoin, J.P., Tuy, F.P., Alvarez, C.,

Houbron, C., Gaspar, P., Hamard, G., Chelly, J., Metin, C., and Francis,

F. (2006). Branching and nucleokinesis defects in migrating interneu-

rons derived from doublecortin knockout mice. Hum. Mol. Genet. 15,

1387–1400.

Koizumi, H., Higginbotham, H., Poon, T., Tanaka, T., Brinkman, B.C.,

and Gleeson, J.G. (2006a). Doublecortin maintains bipolar shape and

nuclear translocation during migration in the adult forebrain. Nat.

Neurosci. 9, 779–786.

Koizumi, H., Tanaka, T., and Gleeson, J.G. (2006b). Doublecortin-like

kinase functions with doublecortin to mediate fiber tract decussation

and neuronal migration. Neuron 49, 55–66.

MacKintosh, C., and Klumpp, S. (1990). Tautomycin from the bacte-

rium Streptomyces verticillatus. Another potent and specific inhibitor

of protein phosphatases 1 and 2A. FEBS Lett. 277, 137–140.

MacMillan, L.B., Bass, M.A., Cheng, N., Howard, E.F., Tamura, M.,

Strack, S., Wadzinski, B.E., and Colbran, R.J. (1999). Brain actin-asso-

ciated protein phosphatase 1 holoenzymes containing spinophilin,

neurabin, and selected catalytic subunit isoforms. J. Biol. Chem.

274, 35845–35854.

Meijer, L., Borgne, A., Mulner, O., Chong, J.P., Blow, J.J., Inagaki, N.,

Inagaki, M., Delcros, J.G., and Moulinoux, J.P. (1997). Biochemical

and cellular effects of roscovitine, a potent and selective inhibitor of

the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem.

243, 527–536.
Niethammer, M., Smith, D.S., Ayala, R., Peng, J., Ko, J., Lee, M.S.,

Morabito, M., and Tsai, L.H. (2000). NUDEL is a novel Cdk5 substrate

that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–

711.

Ohshima, T., Ward, J.M., Huh, C.G., Longenecker, G., Veeranna, Pant,

H.C., Brady, R.O., Martin, L.J., and Kulkarni, A.B. (1996). Targeted

disruption of the cyclin-dependent kinase 5 gene results in abnormal

corticogenesis, neuronal pathology and perinatal death. Proc. Natl.

Acad. Sci. USA 93, 11173–11178.

Ramón y Cajal, S. (1988). Cajal on the cerebral cortex: An annotated

translation of the complete writings (New York: Oxford University

Press).

Rothenberg, M.E., Rogers, S.L., Vale, R.D., Jan, L.Y., and Jan, Y.N.

(2003). Drosophila pod-1 crosslinks both actin and microtubules and

controls the targeting of axons. Neuron 39, 779–791.

Satoh, A., Nakanishi, H., Obaishi, H., Wada, M., Takahashi, K., Satoh,

K., Hirao, K., Nishioka, H., Hata, Y., Mizoguchi, A., and Takai, Y. (1998).

Neurabin-II/spinophilin. An actin filament-binding protein with one pdz

domain localized at cadherin-based cell-cell adhesion sites. J. Biol.

Chem. 273, 3470–3475.

Schaar, B.T., Kinoshita, K., and McConnell, S.K. (2004). Doublecortin

microtubule affinity is regulated by a balance of kinase and phospha-

tase activity at the leading edge of migrating neurons. Neuron 41, 203–

213.

Szebenyi, G., Callaway, J.L., Dent, E.W., and Kalil, K. (1998). Interstitial

branches develop from active regions of the axon demarcated by the

primary growth cone during pausing behaviors. J. Neurosci. 18, 7930–

7940.

Tabata, H., and Nakajima, K. (2001). Efficient in utero gene transfer

system to the developing mouse brain using electroporation: visualiza-

tion of neuronal migration in the developing cortex. Neuroscience 103,

865–872.

Tanaka, T., Serneo, F.F., Higgins, C., Gambello, M.J., Wynshaw-Boris,

A., and Gleeson, J.G. (2004a). Lis1 and doublecortin function with

dynein to mediate coupling of the nucleus to the centrosome in neuro-

nal migration. J. Cell Biol. 165, 709–721.

Tanaka, T., Serneo, F.F., Tseng, H.C., Kulkarni, A.B., Tsai, L.H., and

Gleeson, J.G. (2004b). Cdk5 phosphorylation of doublecortin ser297

regulates its effect on neuronal migration. Neuron 41, 215–227.

Taylor, K.R., Holzer, A.K., Bazan, J.F., Walsh, C.A., and Gleeson, J.G.

(2000). Patient mutations in doublecortin define a repeated tubulin-

binding domain. J. Biol. Chem. 275, 34442–34450.

Tsukada, M., Prokscha, A., and Eichele, G. (2006). Neurabin II medi-

ates doublecortin-dephosphorylation on actin filaments. Biochem.

Biophys. Res. Commun. 343, 839–847.

Tsukada, M., Prokscha, A., Oldekamp, J., and Eichele, G. (2003).

Identification of neurabin II as a novel doublecortin interacting protein.

Mech. Dev. 120, 1033–1043.

Tsukada, M., Prokscha, A., Ungewickell, E., and Eichele, G. (2005).

Doublecortin association with actin filaments is regulated by neurabin

II. J. Biol. Chem. 280, 11361–11368.

Wahlsten, D., Bishop, K.M., and Ozaki, H.S. (2006). Recombinant

inbreeding in mice reveals thresholds in embryonic corpus callosum

development. Genes Brain Behav. 5, 170–188.

Yu, W., and Baas, P.W. (1994). Changes in microtubule number and

length during axon differentiation. J. Neurosci. 14, 2818–2829.

Zaman, K., Ryu, H., Hall, D., O’Donovan, K., Lin, K.I., Miller, M.P.,

Marquis, J.C., Baraban, J.M., Semenza, G.L., and Ratan, R.R.

(1999). Protection from oxidative stress-induced apoptosis in cortical

neuronal cultures by iron chelators is associated with enhanced DNA

binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased

expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin.

J. Neurosci. 19, 9821–9830.
Cell 129, 579–591, May 4, 2007 ª2007 Elsevier Inc. 591


	Spinophilin Facilitates Dephosphorylation of Doublecortin by PP1 to Mediate Microtubule Bundling at the Axonal Wrist
	Introduction
	Results
	Impaired Axon Outgrowth in Dcx Mutant Brains
	Dcx/Spn/PP1 Localization at the Wrist Suggests Possible Involvement in Axonal Outgrowth
	Dcx and Spn Cooperate in Hippocampal Lamination and Corpus Callosum Formation
	Spn and Dcx Are Required for MT Bundling in Cortical Neurons
	Abnormal Inter-MT Distance in the Absence of Either Dcx or Spn
	Defective MT Bundling Is Associated with Excessively Branched Neurites
	Spn and Dcx Interaction Is Sufficient to Crosslink Actin and MTs
	PP1 Is Capable of Mediating Dephosphorylation of PSer297 Dcx
	Spn Enhances PP1-Mediated Dephosphorylation of PSer297 Dcx
	Modulation of PSer297-Specific Phosphorylation by Cdk5 and PP1
	PSer297 Dcx Is Excessively Phosphorylated in the Absence of Spn
	PP1 Function Required for MT Bundling during Neurite Growth
	MT Bundling Depends upon Association of the Dcx-Spn-PP Complex
	Spn-PP1-Mediated Dcx Dephosphorylation Recovers MT Polymerizing Activity

	Discussion
	Genetic Requirements for Corpus Callosal Development
	The Role of Dcx and Spn in Regulation of Neurite Branching
	Integrators of the Actin and MT Cytoskeleton
	Genetic Evidence of MAP Reactivation through Dephosphorylation

	Experimental Procedures
	Kinase/Phosphatase Assay
	Animals
	Cortical Cultures
	Electroporation
	Microscopy
	Actin/MT Crosslinking Assay
	MT Turbidity and Cosedimentation Assay

	Supplemental Data
	Acknowledgments
	References


