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Abstract 

We show that the posets of shuffles introduced by Greene in 1988 are flag symmetric, and 
we describe a permutation action of the symmetric group on the maximal chains which is local 
and yields a representation of the symmetric group whose character has Frobenius characteristic 
closely related to the flag symmetric function. A key tool is provided by a new labeling of the 
maximal chains of a poset of shuffles. This labeling and the structure of the orbits of maximal 
chains under the local action lead to combinatorial derivations of enumerative properties obtained 
originally by Greene. As a further consequence, a natural notion of type of shuffles emerges and 
the monoid of multiplicative functions on the poset of shuffles is described in terms of operations 
on power series. The main results concerning the flag symmetric function and the local action 
on the maximal chains of a poset of shuffles are obtained from new general results regarding 
chain labelings of posets. (~) 1999 Elsevier Science B.V. All rights reserved 
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O. Introduction 

In [16], Stanley initiated an investigation of  posets which involve two algebraic 

objects related to the order structure o f  the poset - -  a certain symmetric function (flag 

symmetric function) and a certain associated representation o f  the symmetric group. In 

Section 1 we give precise definitions and summarize the results o f  [16] that will be 

used later in this paper. Briefly, [16] is concerned with classes o f  posets whose order 

* Corresponding author. E-mail: rstan@math.mit.edu. 
1 This work was carded out during the authors' visit to MSRI on the occasion of  the Special Year Program 
in Combinatorics. The MSRI support is gratefully acknowledged. 
2 Partially supported by NSF grant DMS-9500714. 

0012-365X/99/$ - see front matter (~) 1999 Elsevier Science B.V. All rights reserved 
PII: S 0 0 1 2 - 3 6 5 X ( 9 8 ) 0 0 3 8  1-1 



370 R. Simion, R.P. Stanley~Discrete Mathematics 204 (1999) 369-396 

structure leads to a symmetric function derived from the enumeration of rank-selected 
chains, and which turns out to be the Frobenius characteristic of a representation of 
the symmetric group, of degree equal to the number of maximal chains of the poset; 
moreover, this representation can be realized via an action of the symmetric group on 
the maximal chains of  the poset, under which each adjacent transposition t~i = (i, i + 1 ) 
acts on chains locally, that is, modifying at most the chain element of rank i. 

The goal of this paper is to add a new infinite family of posets to the examples 
appearing in [16,17], namely, the posets of shuffles introduced and investigated by 
Greene [8]. In the process, several general results emerge. In Section 1 we give the 
necessary background on locally rank-symmetric posets affording a local action of 
the symmetric group (based on [16]). Section 2 contains the necessary preliminaries 
concerning the posets of  shuffles (i.e., shuffles of subwords of two given words). In 
Section 3 we give a new labeling of the posets of  shuffles and establish its properties 
which are instrumental in the remainder of the paper. In Section 4 we describe a 
local action of  the symmetric group on the maximal chains of a poset of shuffles, 
such that the Frobenius characteristic for the corresponding representation character 
is (essentially) the flag symmetric function. The desired results regarding the posets 
of shuffles follow from more general results motivated by the properties of  the new 
labeling of these posets. Section 5 is devoted to the enumeration of shuffles according 
to a natural notion of  type. As a consequence we describe the monoid of multiplicative 
functions on the poset of shuffles in terms of operations on power series. 

As a by-product of the present investigation of the posets of shuffles, we obtain 
alternative, purely combinatorial, derivations of enumerative results obtained in [8]. 
The present work parallels that of  [17] regarding the lattice of  noncrossing partitions, 
thus adding to previously known structural analogies between the posets of noncrossing 
partitions and those of shuffles. It is hoped that this work will facilitate the development 
of a systematic general theory of the posets with a local group action concordant with 
the flag symmetric function. 

1. PreUmin~tries 

Let P be a finite poset with a minimum element 0, and a maximum element ]. 
Throughout this paper, we will consider only such posets that are ranked, that is, there 
exists a function p :P -~ Z such that p(()) -- 0 and p(t ')  = p(t)  + 1 whenever t~ t '  (the 
notation t~ t '  means that t is covered by t', i.e., t < t' and there is no element u E P 
such that t < u < f l ) .  

Let p ( P ) : = p ( 1 ) = n .  For SC_[n - 1], where I n -  1]:--{1,2 . . . . .  n - 1}, let 0¢p(S) 
denote the number of rank-selected chains in P whose elements (other than 0 and 1) 
have rank set equal to S. Thus, 

up(S) := #{ () < h < t2 < " "  < tls I < 1: (P(h) ,  p(t2) . . . . .  p(tls I )} = S}. 
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Fig. 1. The poset of  shuffles W21. 

The function ~e: 2 [n-l] ---, Z is the flag f-vector of P. It contains information equivalent 
to that of the f lag h-vector tip whose values are given by 

• (S ) :=  ~ (--1)IS-TI~tp(T) for all SC_ [ n -  1]. (1) 
TC_S 

For example, writing Ctp(tl . . . . .  tk) for cte({h . . . . .  tk}) and similarly for tip, the poset 
of Fig. 1 has ~ (0 )=1 ,~(1 )=~(2)=5 ,  ~(1,2)=12, and f l (0)=l ,  t i (1)=ti(2)=4,  
fl(1,2)=3. The poset of Fig. 2 has ~ (0)=1 ,~(1)=~(3)=2 ,  ~(2)=3, ~(1,2)= 
¢t(1,3)=ct(2,3)=4, ~(1,2,3)=6, and ti(0)= 1, t i (1)=ti(3)= 1, ti(2)=2, ti(1,2)= 
ti(2,3)=0, f l (1,3)=l ,  t i( l ,2,3)=0. 

The flag f -  and h-vectors appear in numerous contexts in algebraic and geometric 
combinatorics; for instance, the values t ip(S) have topological significance related to 
the order complex of the rank-selected subposet Ps := { I), i } tA {t E P: p(t)  E S}  (see, 
e.g., [15, Section 3.12] for additional information and references). 

Consider now the formal power series 

Fe(x ) := Fe(Xl,X2 . . . .  ) = ~ ..P(h )~p(t2)--p(t, ) ~n--p(tk) 
"~1 "~2 " " ""~k+ 1 " 

6<~tl <~t2 <<.... <~tk < i 

This definition was suggested for investigation by Richard Ehrenborg [4] and is one 
of the central objects in [16] and in this paper. Alternatively, 

Fe(x)  = ~ .  t ip(S).  ~ x~:xS~ - ' '  ' '  xn-~*,,+l • (2) 
S C In-- 1] I ~<il <i2 < "'" <ik+l 

S={sl <sz<"-<Sk} 
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> 
Fig. 2. A flag symmetric poset which is not locally rank-symmetric. 

It is easy to see that the series Fp(x) is homogeneous of degree n and that it is 

a quasisymmetric function, that is, for every sequence nl,n2 . . . . .  nm of exponents, 
the monomials x~,'x~ 2 . - .  xT~ and xT'xT~...x7E appear with equal coefficients whenever 

il < i2 < . . .  <im and j l  <j2 < ' "  <jm. Through a simple counting argument and using 
relation (1), the series Fp(x)  can also be rewritten as 

Fe(x)= ~ ~e(S) Ls,,(x), (3) 
S C_[n-I] 

where the Ls, ,(x)  are Gessel's quasisyrnmetric functions 

Ls, ~ (x ) := ~ xi, xi= " " xi., 
1~il <~i2 <~... <~i~ 
ij<i/+l ifjCS 

which constitute a basis for the (2"-l-dimensional) space of quasisymmetric functions 

of degree n (for more on quasisymmetric functions and symmetric functions we refer 
the interested reader to [12,13]). 

A first question discussed in [16] is that of  conditions under which Fp(x)  is actually 

a symmetric function, in which case we refer to Fp(x) as the f la9-symmetric function 

o f  P and to P as aflag-symmetric poset. An  immediate necessary condition is that P be 
rank symmetric (i.e., #{t CP: p ( t ) = r }  = # { t  EP:  p ( t ) = n - r }  for every 0 ~< r ~< n). A 
necessary and sufficient condition can be deduced readily from (2) [16, Corollary 1.2]. 
Namely, for every S C_ [n - 1] the value of ~p(S) depends only on the (multi)set of  
differences sl - 0,s2 - sl . . . . .  sk - Sk- l ,n  -- sk and not on their ordering. I f  this is the 
case, then the symmetric function Fp(x) can be expressed in terms of the basis of 
monomial symmetric functions {m;.(x)};.~n as 

Fp(x) = ~-~p(2)m~.(x), (4) 
2F-n 
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where 2 ~- n denotes a partition 2=(21>~22>~.. .>~2/>0) of n, and c~p(2):= 
~p({2],2~ +22 . . . . .  2! + 42 + . . .  +2 / - t } ) .  

For example, the earlier calculation of the flag f-vector of the poset of Fig. 2 
shows that it is flag symmetric, with flag-symmetric function Fe(x)= m4(x)+2m31 (x)+ 
3mzz(x) + 4m211(x) + 6mllll(X). 

The following sufficient condition for Fp(x) to be a symmetric function introduces 
the class of locally rank-symmetric posets. This condition is not necessary for flag 
symmetry, as shown by the poset of Fig. 2, but it is necessary and sufficient for every 
interval of P to be flag-symmetric. 

Proposition 1.1 (Stanley [16, Theorem 1.4]). Let P be a ranked poset with 6 and i. 
I f  P is locally rank symmetric, i.e., if every interval in P is a rank symmetric 
(sub)poset, then Fe(x) is a symmetric function. 

Locally rank-symmetric posets turn out to be a rich source of examples yielding flag- 
symmetric functions. The examples of flag-symmetric posets provided in [16] include 
products of chains (shown to be the only flag-symmetric distributive lattices, and iden- 
tical to the class of locally rank-symmetric distributive lattices), and Hall lattices (a 
'q-analogue' of a product of chains), as well as a discussion of some other classes of 
posets. If Fe(x) is a symmetric function, homogeneous of degree n, and if it turns out 
to be Schur positive (i.e., its expression in terms of the Schur functions basis has non- 
negative coefficients only), then it follows from the general theory of representations 
and symmetric functions that it is the Frobenius characteristic 

ch(O) := Z ~(2) p;.(x) (5) 
Z2 ,:.F-n 

of a character ~ of the symmetric group Sn. In the preceding display line, 2 runs 
over all partitions of n, ~k(2) is the value of ~b on the conjugacy class of type 2, 
z;=l/(212z. . .ml!m2! . . .)  with mi being the multiplicity of i as a part of 2, and 
p;,(x) is the power symmetric function indexed by 2 (that is, p~(x)= p;.l(x)p).2(x)... 
with p j (x ) :=~  + x~ + . . . ) .  It is known that when the Frobenius characteristic of 
a character q, of Sn is expanded in terms of Schur functions {s;~(x)};.~-,, then the 
coefficient of s;(x) is the multiplicity with which the irreducible character )~;~ of S, 
occurs in ~k. Thus, Fp(x) describes a representation of S,, whose degree ~k(l") can be 
recovered as the coefficient of ml, in Fp(x). In view of (4), the degree of ~k is tee(l"), 
the number of maximal chains in P. 

The preceding discussion suggests seeking a natural action of Sn on the complex 
vector space C~//(P) with the set J / ( P )  of maximal chains in P as a basis, giving rise 
to a representation of Sn with character qJ as in (5). Of particular interest would be a 
local action with this property (defined in [16] and motivated by the notion of local 
stationary algebra appearing in [18]); that is, an action such that for every adjacent 
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transposition ai = (i, i + 1) and every maximal chain m of P we have 

Cmm'm', 
m'EC.g(P) 

with nonzero coefficient Cmm' only if m' differs from m at most in the element of rank i. 
Following [16], we call such an action 9ood. Good actions of the symmetric group 
are discussed in [16] in the case of posets whose rank-two intervals are isomorphic to 
C3 or C2 x C2 (where Ci denotes an/-element chain), and for posets whose rank-three 
intervals are isomorphic to Ca or C3 × C2 or C2 × C2 × C2. These results are based on 
work of David Grabiner [7]. Another illustration in [16] gives a local action of  the 
Hecke algebra of S, on Cdc'(B,(q)), where B,(q) denotes the lattice of subspaces of  an 
n-dimensional vector space over GFq. In [17] a good action is exhibited for the lattice 
of  noncrossing partitions. To these classes of  examples this paper adds the posets of  
shuffles. 

We note that related results were recently obtained by Patricia Hersh [10] (gener- 
alizing the local Sn-action on noncrossing partitions), and Jonathan Farley and Stefan 
Schmidt [5] (generalizing the work of  Grabiner [7]). 

2. Flag symmetry of the posets of shuffles 

Let d =  {al,a2 .... ,am) and X =  {X1,X 2 . . . . .  XN} be two (finite) disjoint sets which 
we will call the lower and the upper alphabets, respectively. Consider the collection of 
shuffles over ~ and ~r, that is, words w = wlw2.. .wk with distinct letters from d tAX 
satisfying the shuffle property: the subset of letters belonging to each alphabet appears 
in increasing order of  the letter subscripts in the appropriate alphabet. For instance, 
if M = 4  and N = 3 ,  then w=x2ala3x3 is a shuffle word, but w=alx2a2aaxl is not a 
shuffle word. Note that the empty word 0 is a shuffle word. 

The poser of shuffles WMN consists of  the shuffle words over alphabets ,~ and 
with # ~ = M  and # W = N  with the order relation given by w<w I iff w' is obtained 
from w either by deleting a letter belonging to d or by inserting (in an allowable 
position) a letter belonging to W. In particular, O=ala2 .o.aM and I=XlX2...XN. 
Fig. 1 shows the Hasse diagram of W21. Clearly, WON and WMo are isomorphic to the 
boolean lattices of rank N and M, respectively. We will write {w} for the set of letters 
of a shuffle word w. 

Greene [8] investigated the posets of shuffles, whose definition was motivated by 
an idealized model considered in mathematical biology. The results established in [8] 
include structural properties of  WeN (e.g., WMN is a ranked poset; it admits a decom- 
position into symmetrically embedded boolean lattices and, hence, a symmetric chain 
decomposition; WeN is an EL-shellable poset), as well as expressions for key invariants 
of  WMN (the zeta polynomial, the number of  maximal chains, the M6bius function, the 
mak generating function, the characteristic polynomial). Two of the formulas in [8] 
will arise later in this paper. 
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Proposition 2.1 (Greene [8, Theorem 3.4]). The number of maximal chains in WMN 
is given by 

C ~ t N = ( M + N ) , Z ( M )  ( N ) j - - ; .  (6) 

k>~0 

The M6bius function of WMN is 

IAMN=IAWMN(6, i) --~- ( - - l  ) M+N ( M ~ I N ) .  (7) 

We now turn to the interval structure of  the posets of  shuffles. 

Lemma 2.2. Every #~terval in a poset of shuffles is isomorphic to a product of posets 
of shuffles. 

Proof. Let [u,w] be an arbitrary interval in WMN , and write U = U l U 2 . . . U r ,  

w = wl w2...  ws. Let uit ui2 ... ui, and wj, wj2 ... wi, be the subwords of  u and w, 
respectively, formed by the letters common to the two words. Because u<w, 
the shuffle property implies uip =w+ for each p = 1,2 . . . .  , t. Moreover, the remaining 
letters of  u belong to the alphabet d and the remaining letters of  w belong to the 
alphabet Y'. Therefore the interval [u, w] is isomorphic to the product of  the posers of  

shuffles W i p _ i p _ , _ l , j p _ j p _ l _  1 for p =  1,2 . . . . .  t +  1, where we set io =Jo  = 0 ,  it+l = r +  1 
and jt+l = s + 1. [ ]  

For example, if  u = a2x3a4a5alox6x8 and v =XlX2X3Xsalox6xsxlOXll in W10,~5, then 
r ~- 7, s = 9 and there are t = 4 letters common to the two words. These form the word 

x 3 a l o X 6 X 8  ~-U2U5U6U 7 = V3V5V6V 7 SO we have [u,v]___ W12 × W21 × Woo × Woo × W02 

m12 )< W21 X mo2. 

Remark 2.3. Of  course, factors of  the form Woo are singleton posets and can be dis- 
carded from the product, and W/0 -~ Woi ~ Bi, the boolean lattice with i atoms. Using the 

notation from the proof of  Lemma 2.2, we will write [u,w]~_¢ lip wip-i,,_~-l.+-+ ~-l, 
the canonical isomorphism type of the interval [u, w]. The notion of canonical isomor- 
phism type of an interval will be used in Section 5. 

Proposition 2.4. For every M,N>~O, the poset of shuffles WMN is locally rank- 
symmetric. 

Proof. Since the posets of  shuffles are rank symmetric [8, Corollary 4.9] and since the 

product of  posets preserves rank symmetry, Lemma 2.2 implies that every interval in 
W.~tU is rank symmetric. [] 

It therefore follows from Proposition 1.1 [16, Theorem 1.4] that each poset of  shuffles 
WMN has a flag-symmetric function FMN =FA4N(X):= FW~,N(X). An explicit expression 
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f o r  FMN Can be obtained by extending Greene's notion of d -  and X-maximal chains in 
WMN [8] to ~ -  and X-maximal chains in rank-selected subposets of WMN. An argument 
similar to Greene's yields a recurrence relation for the numbers ~w.N(2), which in turn 
implies that 

FMN = FM-I,Nel + FM, N-Iel  -- FM-I,N-Ie2 -- FM--I,N-I P2, ( 8 )  

leading to 

1 (9) 
E FMNuMvN = (1 - uel)(1 - vel) -- uve2' 

M,N >~O 

where ej = ~l.<i, <t2<...<~jxi, xi: .. .x!,, the j th elementary symmetric function in vari- 

ables xl,x2 . . . . .  and p2 = ~ x  2. Consequently, 

F M N = Z  ( M ) ( N )  . (10) 
k>~O 

For example, the calculation of the flag f-vector of Wzl done in Section 1 gives 
Fzl(x)=m3(x) + 5mzl(x) + 12mill(X). Since e~(x)=m3(x) + 3mz1(x) + 6mill(x) and 
e2(x)el(x) = m21(x) + 3mill(x), we have F21(x)= e~(x) + 2e2(x)el(x). 

We omit the details of this argument. Instead, we will obtain expression (10) for 
the flag-symmetric function of a poset of shuffles as a consequence (Corollary 4.5) of 
a general result (Theorem 4.4) concerning chain labelings of flag-symmetric posets. 

3. A labeling for posets of shufHes 

To describe an action of SM+N o n  the maximal chains of WMN , it would be natural 
to resort to a labeling of the chains and have the symmetric group act on the chains 
by acting on their label sequences simply by permuting coordinates. The poset WMN is 
already known to be EL-shellable [8], through the labeling of each covering relation 
u<w by the unique letter in the symmetric difference of the sets of letters {u} and 
{w}, and with the ordering a~ <a2 < .." <aM <Xl < x 2 " "  <XN for the labels. Under 
this labeling each maximal chain is labeled by a permutation in SM+N. However, this 
does not serve well the goal of describing an SM+N action on the maximal chains. A 
similar situation occurred in [17], where the standard EL-labeling of the noncrossing 
partition lattice was not suitable for describing a local action of the symmetric group 
on the maximal chains, and a new EL-labeling was produced for this purpose. Here 
too, we will define a new labeling for a poset of shuffles which lends itself naturally 
to the description of the desired local action of SM+N. 

By a labeling we mean a map A : d e ( P ) ~ L  n, written 

A(c) = (AI (c), A2(c) . . . . .  An(c)), 

where n is the length of the maximal chains of P, and L is a totally ordered set. The 
labeling of interest in the present paper is a C-labeling, that is, for every maximal 
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chain c =  ( O = w ° < w l <  . . .  < w n =  ]) and every r C In], the label At (c )  depends only 
on the initial subchain ( 6 = w ° < w l <  . . .  <w~). I f  the label At (e )  depends only on the 

covering w r-1 <w r, and not on the maximal chain c itself, then A is an E-labeling. 

Three properties of  labelings will play a role in this paper: the R*-, R-, and S-labeling 

properties. A C-labeling A is an R*-labeling if every chain of  the form 

(6 = w°<wl < . .-  <w r < u )  

has a unique completion by coveting relations 

(6 = w°<wl < . . .  <wr <w r+l < . . .  <w s = u) 

such that 

Ar+l (c )<Ar+2(c )<  . . .  <As(c),  

where c is any maximal chain beginning 6 = w ° < w l <  . . .  <w s. (By the definition of  

C-labeling, the remaining elements of  c do not affect the labels Ai(e)  for 1 <<.i<~s.) 

In the same setting as for an R*-labeling, the requirement for an R-labeling is the 
existence of  a unique weakly increasing completion of the chain: 

A~+l(e) < Ar+z(e) <<. " "  <<. As(e).  

A labeling A of  the maximal chains of  a poset is an S-labeling if  it is one-to-one and if 

for every maximal chain c = (6 = w ° < w l <  . . .  < w " =  i) and for every rank i E [ n -  1] 
such that Ai(e)  ~ Ai+l(e), there is a unique chain e ~ = ( 6 = w ° < w l  < • .. < w i - l  <ti< 

w~+l< . . .  < w n =  i) differing from e only at rank i, with the following property: the 

label sequence A(e ' )  differs from A(e)  only in that A i ( e ' ) = A i + l ( e )  and Ai+l (e ' )=  

Ai( c ). 
We now turn to the definition of a labeling A for the poset of  shuffles, and then show 

that it has the properties R* and S. In the next section we will see the implications of  
an RS- or R'S-labeling with regard to a local action on the poset. 

To each maximal chain c =  (6 = w ° < w l <  . . .  <wM+N = ]) in WMN we give a label 

sequence 

A(c)  = (A1(c), A2(c) . . . . .  AM+N(C)), 

by assigning a label from ~¢ U ~ to each coveting relation on c. In defining A we 
distinguish three types of  coveting relations, (x), (xa), and (a), as follows: 
(X) wi<~.W i+l with W i+l obtained from w i by inserting a letter xk E Y" in a position 

consistent with the shuffle property; then we set Ai+l (e )=xk .  
(xa) w i < w  ~+1 with w i of  the form w i =  uxkamV and w i+1 = uxkv, where this is the first 

deletion along e, starting from 6, of  a letter (necessarily belonging to ~¢) located 
immediately after xk; then we set Ai+l(e):Xk. 

(a) w i < w  ~+1 with w i+l obtained from w ~ by deleting a letter aj E ~¢, and this deletion 
is not of type (xa); then we set A i + l ( e ) = a j .  

Fig. 3 shows the labeling A of four of  the maximal chains in W21. 
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al  al 

Fig. 3. The labeling A on four of the maximal chains of W21. 

Lemma 3.1. The labeling A is injective on the maximal chains of  WMN, for all 
M,N. lts range consists of  the (multi)permutations of all multisets of  the form 
A U 2 X U ( X -  X), where A C_ d ,  X c_ X, 1.41 + IYl =M,  and 2X denotes the multi- 
set consisting of two copies of  each element of X. 

Proof. From the definition of  A it is clear that all letters in X appear in the label 

sequence of any maximal chain c and that for every aj E • which does not appear in 

the label sequence, there is an xk 6 X which appears twice. Thus, the label sequence 
of every maximal chain c is of  the claimed form. 

Conversely, we claim that given a multipermutation cr ofA U 2XU ( X - X )  for some 
A and X as in the statement of  the lemma, there is a unique maximal chain in WMN 
having label sequence A(c)= ~. Indeed, first note that if A = d and X = 0 (that is, 

is a permutation of ~ U X),  then only coverings of  type (a) and (x) are possible. 
Thus, starting from 6 = W °, a dictates a sequence of deletions of  letters from ~ and 

insertions of  letters from X, each insertion being made in the rightmost possible posi- 

tion. This determines a unique maximal chain c as desired. For example, for W23, the 
permutation tr=a2x3xlalx2 determines the chain c=(6=ala2~al~alx3~alxlx3~ 
X1X3 "~XIX2X3 = ]). 

Next, suppose that d -  A={ai~,ai2 .. . . .  aik} and X={xj,,xj2 . . . . .  xjk}, for some 
l~k<<.min{M,N), where i 1< i 2<  . . .  <ik and j l < j 2 <  " "  <jk.  Observe that the 
shuffle condition implies that if  the pairs Xm, ap and xn, aq are involved in coverings of  
type (xa), then m ~ n  and p ~ q ,  and m<n if and only if p<q. Therefore, in the 
multipermutation tr, the second occurrence of xj, must correspond to a covering of 
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type (xa) involving the pair o f  letters Xjr,air , for each r = 1 . . . . .  k. The first occurrence 

o f  x jr in a is forced to correspond to the insertion o f  x jr immediately in front o f  air, 
and for each xt fIX, its unique occurrence in tr forces the insertion o f  xt in the right- 

most position possible to the left o f  air and/or X jr, if j r  = min{s > t: xs E X}  (if this 

set is empty, then xt is inserted in the rightmost position possible). As in the preced- 

ing case, a unique maximal chain c is determined by cr. For example, for W45, let 

t~=X3xsa2x4X2XlX2X4a4. The coverings o f  type (xa) must involve the pairs x2,al and 

x4, a3. From a we reconstruct the chain 

O=ala2a3a4(ala2x3a3a4(ala2x3a3a4x5~alx3a3a4x5 

~alx3x4a3a4xs.~-.x2alx3x4a3a4x5.~-.XlX2alx3x4a3a4x5 

xix2x3x4a3a4x5.~)flX2X3x4a4xs.~-.xIx2x3x4x5 ~ 1. [] 

The behavior o f  A on intervals o f  rank two can be easily described. 

Lemma 3.2. For every rank-two interval in a poset of  shuffles WMN, the labeling A 
conforms to one of the following cases: 

(1) I f  a rank-two interval is isomorphic to C2 × C2, then its two chains Cl and c2 
have label sequences of the form A(cl ) = (ll ,  12) and A(c2) = (12, li ), where ll and 12 
are distinct letters from ~ tA~. 

(2) I f  a rank-two interval is isomorphic to H3, then its three chains Vt,y2 and ~3 
have label sequences of the form A(~q ) = (xj, l), A(V2) = (l, xj), and A(y3) = (xj,xj), 
for suitable letters xj E ~ and l E ~¢ U (Sf - {xj}). 

Proof.  Each rank-two interval o f  a poset o f  shuffles has either 4 or 5 elements. That is, 

each rank-two interval is isomorphic either to C2 x C2 or to the lat t ice/I3 o f  partitions 

o f  a 3-element set. Specifically, an interval o f  rank 2 is o f  one o f  the following forms: 

(i) [uamvanw, uvw] or [uvw, UXpVXqW], for some shuffle words u,v,w; or [UamVW, 
UVXpW] or [UVamW, UXpVW], for some words u,v,w with v ~ 0 .  By Lemma 2.2, these 

intervals are isomorphic to W10 x W10, W01 × W01, or Wl0 x W01, all o f  which are 

isomorphic to C2 × C2. 

(ii) [UapV, uxmv] for some words u, v. Such an interval is isomorphic to Wtl ~-/-/3. 

The definition o f  the chain labeling A and the two possible structures o f  the intervals 

o f  rank 2 yield the two cases in the desired conclusion. [] 

Proposition 3.3. The labeling A is an S-labeling of  the poset of  shuffles. 

Proof. This follows immediately from Lemmas 3.1 and 3.2. [] 

Proposition 3.4. Consider the ordering al <a2 < .- • <aM <Xl <X2 < • • • "(XN on the 
union of  the two alphabets. Then the labeling A is an R*-labeling of  the poset of  

shuffles. 
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Proof. Let O=wO<~wI<~. "'" <~.wr'<v be a chain in WMN. Let B be the set of pairs of 
letters xjs, ais which occur as consecutive letters in w r and such that ais f~ {v}. By the 
definition of A, every covering along any w~-v-chain where such an ais is removed will 
be a covering of type (xa). Thus, consider the wr-v-chain obtained by first deleting, in 
increasing order of their indices, the letters in ( ~ ¢ -  B)A ({w~}-{v}); then inserting, 
also in increasing order of the indices, every xt E {v} -{wr} ,  and deleting each letter 
ais EB after the insertion of xt E { v } - { w  r} if and only if t<A.  The label sequence 
of this chain is clearly strictly increasing. Since any other label sequence with distinct 
entries is a permutation of the same set of labels ( d  - B) tO Y', this is the only strictly 
increasingly labeled wr-v-chain. [] 

Remark 3.5. The reader familiar with the theory of shellable posets may be interested 
in the observation that the labelin9 A readily gives rise to a CL-labeling of WMN 
(in the sense of [1,2]). Indeed, the unique strictly increasing 0-u-chain guaranteed 
by the preceding result can be taken as the 'root' of each interval [u,v], and the 
labeling A* defined by A*(u<v)= (A(u<v),M + N -  p(u)) is a CL-labeling valued 
in ((~¢t_JSf) × [M + N ] )  M+N, under lexicographic order on ( d U X )  × [M +N] .  

Remark 3.6. The proof of Proposition 3.4 shows that the R*-labeling A has a stronger 
property: the unique increasingly labeled extension of a chain 0=w°<wl< . . .  < w r <  v 
depends only on w r and v. We will write 7(w r, v) to denote this chain. 

The remainder of this section is devoted to enumerative consequences of the label- 
ing A, yielding combinatorial proofs of results from [8]. We begin with a bijective 
proof of the local rank symmetry of the posers of shuffles (an inductive proof was 
given in Proposition 2.4). In particular, this is a bijective proof of the rank symmetry 
of a poset of shuffles. An alternative bijective proof of the rank symmetry of WMN is 
implicit in the symmetric chain decomposition which appears in [8]. 

Corollary 3.7. For every two elements u < w in a poset of  shuffles WMN, there is a 
bijection between the elements of  rank p(u) + i and the elements of  rank p(w) - i in 
the interval [u, w]. 

Proof. Let vE[u,w] be an element of rank p(u )+  i. Consider the maximal chain 
c(u, v,w) formed by concatenating 7(0,u), y(u, v), 7(v,w), and ~,(w, i). Let c'(u,v,w) 
be the unique maximal chain whose label sequence is the concatenation of A(y(0, u)), 
A(y(v, w)), A(y(u, v)), and A(y(w, i)). Define ~p(v) to be the element of rank p(w) - i 
on the chain c'(u, v, w). It is easy to see (from the definition and injectivity of A) that 
c'(u, v,w) contains the elements u and w and that q~ establishes a bijection between 
the rank-(p(u) + i) and the rank-(p(w) - i) elements in the interval [u, w]. [] 

Corollary 3.8. The number of  elements of  the poset WMN is equal to 

E, >o (D 
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Proof. We may count the increasingly labeled chains y(0, w) since they are in bijection 
with the elements w E WMN. For a prescribed number k~>0 of coverings of type (xa), 
the set of labels along such a chain is determined by the choice of k pairs from ~¢ × Y" 
for the coverings of type (xa), and an arbitrary subset of the complement in d tA Y" 
of the letters chosen for the k pairs. [] 

Lemma 3.1 yields readily the number of maximal chains in a poset of shuffles, giving 
a more direct derivation of  formula (6) due to Greene. 

Corollary 3.9. The number of  maximal chains in the poset o f  shuffles WMN is 

k~>0 

Proof. By Lemma 3.1, we can count the maximal chains in WMN by counting the 
possible label sequences A(c). For each value k ~>0, the kth term in the sum gives the 
number of multipermutations A(c) in which k letters of X appear with multiplicity 2, 
while k of the letters of ~t do not occur in a. [] 

From the R*-labeling A we can recover formula (7) for the M6bius function of a 
poset of shuffles, which was obtained in [8] using an EL-labeling as well as through 
an alternative computation. 

Corollary 3.10. The MObius function of  the poset o f  shuffles WMN is 9iven by 

#~(~tN( (), I )=(--1)M+N ( M M N ) .  

Proof. By the general theory of [2], the M6bius function is ( - 1  )M+N times the num- 

ber of maximal chains to which the R*-labeling A assigns weakly decreasing label 
sequences. From Lemma 3.1 it follows that such chains have label sequences of the 
form 

A(c) = (XjN+,,XjN+,_ , . . . . .  Xj~, aiM_,, aiM_,_~ . . . . .  ai, ) 

for some 0~< k ~ min{M,N}, where iM-k >iM-k-1 > "'" >il and ju+k >~ju+k-I >7 
"'" ~>jl with k nonconsecutive equalities. Therefore, the decreasingly labeled maxi- 
mal chains correspond bijectively to the selections of M - k  letters from ~ and k 
letters from 5V for some k. It is an easy exercise to show that the number of such 
selections is (M~tN) yielding the desired formula for the MObius function. [] 
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4. A local action of the symmetric group 

We begin with two general results which imply that the posets of shuffles have a 
local action of  the symmetric group and establish the relation between the Frobenius 
characteristic of the corresponding character and the flag-symmetric function of the 
poset. 

Theorem 4.1. Suppose P is a finite ranked poset of  rank n, with 6 and 1. I f  P has 
an S-labelin 9 A, then the action of Sn on labels by permutin9 coordinates induces a 
local (permutation) action on the maximal chains of  P. 

Proof. Let A(c)= (Al . . . . .  An) be the label of a maximal chain c, and let 1 ~< i<~n- I. 
The adjacent transposition O" i = ( i ,  i +  1 ) acts on A(c) by interchanging Ai and Ai+l. By 
definition of S-labeling, there is a unique maximal chain c t such that A(c ~) = ai. A(c). 
Since the ai's generate S,, we get an action of Sn on the set of  labels of maximal 
chains, and hence on JC(P). Moreover, this action is local by the definition of an 
S-labeling. [] 

Observation 4.2. (a) Suppose Sn acts on the maximal chains of  a labeled poset P of 
rank n by permuting the coordinates of the labels. Then each orbit of  maximal chains 
consists of the chains labeled by the permutations of  a multiset, and the Frobenius 
characteristic of  the Sn-action is ~v~,N(v)h~,, where N(v) denotes the number of 
orbits of maximal chains which are labeled by the permutations of  a multiset of type 
v (i.e., vl, v2 . . . .  are the multiplicities of the distinct elements of  the multiset). 

(b) A special case is when the maximal chains in each orbit form a subposet isomor- 
phic to a product of chains, C~,~+l ×C~,2+1 × . - . .  It is not hard to show that this is the 
case for the posets of shuffles and the action discussed here, as well as for the lattice 
of noncrossing partitions discussed in [17]. Thus, in addition to admitting a partition of 
the elements into boolean lattices (as shown in [8] for poset of  shuffles and in [14] for 
the noncrossing partition lattice), these posets also admit a partition of their maximal 
chains into products of chains. Fig. 4 shows the orbits of maximal chains in W21. In 
general, in WMN, each orbit of maximal chains is isomorphic to a product of chains of 
the form C3 k × C~ +N-2k. 

Observations 4.2 is generalized by the following result. 

Theorem 4.3. Suppose that P is a ranked poset (with 0 and 1) of  rank n with a 
local S,-action. 

(a) Let cEde(P) .  Then the stabilizer stab(c) of  c is a Youngsuboroup 
SB~ ×$82 × " "  ×SBk of  S,, where Tc = {BI,B2 . . . . .  Bk} is a partition of  n. 

(b) I f  ~b is the character of  the Sn-action, then ch(~,) is h-positive, i.e., 
ch(~b) = ~.~_, avhv, where av >10. 

(c) l f  ch(~b) = hv for some v ~- n, then P ~- Cv,+l ×C~,2+l × " ". 
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E: 

Ixlala21 

Labels al, a2, x I Labels al, xl, x 1 Labels a2, Xl, x 1 

Fig. 4. The orbits of maximal chains in W21. 

Proof.  (a) Let 0 C stab(c), and let i be the least element o f  [n] for which 0 - 1 ( i )  = j > i .  

We claim that ( i , j ) E  stab(c). Let (i1,i2 . . . . .  i~) be the cycle o f  0 containing i, where 

il = i  and i r = j .  Let Tl,Z2 . . . . .  Zs be the remaining cycles o f  0. Then (multiplying 

right-to-left) 

0 = z s " "  z2 Z l (i3, i2)(i4, i3 ) " "  ( i t ,  i r -1  )(il, i t )  

= "Cs " • " "~2"Cl (i3, i2 )(i4, i3 ) " "  ( i r ,  i r - 1  )~Tir-1 °'i,.-2 " ' '  O'i 1 +10"il O'il +1 ' ' "  O'ir--20"#--I. 

O1) 

Note that only one factor o f  the last product above moves i i ,  namely, tri~ . Let t 

be the element o f  c o f  rank i. It follows from the definition o f  local action that t 

is also an element o f  the chain c '  = ai2 • • • t r i r - 2 a i r - I  • c .  Let s be the element o f  the 

chain c "  = tri, ai2 • • • t r i r -  l • c of  rank i. Then again by definition o f  local action, s is an 
element o f  the chain O. c (since the factors to the left o f  ai,  in (11) can be written as 

products of  a p ' s  with p > i). Since O. c -- c, we have s = t. Thus tri, • c '  = c ' ,  so we can 

remove the factor ai~ from the product (11) and still get a permutation O' E stab(c). 

But 

O' = "~s  " " ' " C 2 " C 1  (i3, i2 ) ' "  ( i t - 1 ,  i r - 2  )(ir, i t -  1 ) 

= O ( i ~ , g ) .  

Hence ( h , i r ) E  stab(c), as claimed. It follows by induction on i (as defined above) that 
if  for any a, b E [n] we have O(a)  = b ,  then (a, b) E stab(c). From this it is clear that 

stab(c) is a Young subgroup of  &. 
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(b) By (a), the Sn-action on de(P),  when restricted to an orbit C E JC(P)/Sn, is 

equivalent to the action of Sn on the set Sn/&, of  cosets of  some Young subgroup 

Sv=&.,xSv2x . . . ,  where v=ve ~- n. If  ~k" is the character of  this action of Sn on 
Sn/S~,, then ch(~r)=h~.. Hence 

ch(~) = ~ hvc. 
(~ E .#(P)/S, 

(c) Let M be the multiset {lV',2 '2 . . . .  }. The action of Sn on the set Sm of permu- 

tations of  M obtained by permuting coordinates is equivalent to the natural action 

of Sn on Sn/Sv. Hence by (a) there is an Sn-equivariant bijection p:  J I ( P ) ~ S M .  
Let t EP, say rank( t )=k ,  and let c be a maximal chain of  P containing t. Let 

p(c) = a = a I a 2  ' " an E aM. Let b = b l b 2  " ' "  bn E Sm have the property that {a  l, a2 . . . . .  ak } 

= {bl,b2 . . . . .  bk} (as multisets), so also {ak+l . . . . .  an) = {bk+l . . . . .  bn}. Since a can be 
transformed to b by adjacent transpositions all different from ak, it follows from the 

definition of local action that the chain c / E J / ( P )  satisfying p(c I) = b contains t. Hence 

for any submultiset N C_ M, we can define tN to be the unique element of  P for which 
there exists c E ~t '(P) containing tN and such that N is equal to the first k = rank(tN) el- 
ements of  p(c). We thus have a well-defined surjection T:BM---~P, r (N)= tN, where Be 
is the lattice of  submultisets of  M ordered by inclusion. Since Be  ~- Cv~ +l× C,.2+1 × '" ", 
it suffices to show that z is a poset isomorphism. 

By construction, z is order preserving (i.e., N C_N' ~ z(N)<,%z(NP)), and the in- 

duced map z : Jl(Bm ) ~ ~g(P) is injective. Since #dg(Bm ) = #~g(P) = n!/vl ! v2!... ,  
it follows that z: J/C(BM) ~ JC(P) is a bijection. Suppose that N,N'  EB~t with N # N '  
and z ( N ) = z ( N ' ) .  Let cl be a maximal chain of  the interval [0,N] Of BM, and c2 a 

maximal chain of [N',M]. Then ~(Cl Uc2) is a maximal chain of  P not belonging to 
z(~/(BM)), contradicting the surjectivity of  z:J/g(BM)---+dg(P). Thus z is injective on 
BM. Since BM and P have the same number of maximal chains and z is injective, it 

is easy to see that z must be an isomorphism. [] 

Theorem 4.4. Suppose P is a flag-symmetric poset of  rank n with flag-symmetric 
function Fp and having an S-labelin9 A. Let ~k be the character of  the action of  Sn 
on C ~ / ( P )  induced from the Sn-action on labels. 

(a) I f  A is an RS-labeling then Fp = ch( f f )=  hv for some partition v of  n, and 

P~- Cv,+l xCv2+l  X • . .. 

(b) I f  A is an R'S-labeling, then ch(~k)= ogFp, where 09 is the standard involution 
on symmetric functions [12, p. 21]. Hence Fp is an e-positive symmetric function. 

Proof. (a) Let V = (?i . . . . .  Vr) E Pf, with 71 + • • • + Vr = n. For a finite multiset M, let 
~//7(M) denote the collection of all sequences x = (M1 . . . . .  Mf) of  (nonempty) multisets 

Mi such that #M/=  7i and U Mi = M. Let 

q/7(A) = U q/~.(M), 
M 
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where M ranges over all distinct multisets M={ A 1  . . . . .  An} of  entries of labels 
A(c ) =  (A1 . . . . .  A,)  of maximal chains of P. For each lr = (M1 . . . . .  Mr) E qly(A), it fol- 
lows from the definition of  RS-labeling that there is a unique chain t(zr)= 
( 0 = to < tl < . . .  < tl = 1 ) of P with the following properties: 

(i) p( t i ) -  p(ti-i)=Yi for l~<i~<~, and 
(ii) if c is the unique completion of t to a maximal chain of P whose label 

A(c) = (At , . . . ,  A~) satisfies 

A1 ~< " "  ~<A~.,,AT~+t ~< " "  ~<A~,I+~, 2 . . . . .  A~.,+...+~.~_,+I ~< ' "  ~<A,, (12) 

then Mi = {A~l+...+~_~+t,...,AT~+...v~}. The map rr ~ t(n) is a bijection from qgT(A) to 
the set of all chains of P whose elements have ranks 0, ~L, 71+Y2,..., Yl+"  '+y~-l ,  n. 
Hence 

Fp = ~ 7p(2)m~ = ~ #ql~(A).m2. 
2~n 2~n 

(13) 

Let v=type(M),  i.e., v ~- n and the part multiplicities of M (in weakly decreasing 
order) are vl, v2,.... It is well-known (equivalent to [12, (6.7)(ii)]) that 

#ql ~(M) . m;. =hr.  (14) 
21-n 

Let .~e(A) be the collection of all multisets M = {A1 . . . . .  An} of entries of a maximal 
chain label of P. Summing (14) over all M E .~e;. and comparing with (13) gives 

Fp = ~ htype(M). 
M C L,V(A) 

Since the action of  Sn by permuting coordinates of permutations of multiset of type v 
has Frobenius characteristic hv, we get Fe = ch(~,). 

Since there is a unique weakly increasing maximal chain of P from 0 to i 
(equivalently, since ~e(0)=  1), we get Fp = hv for some v ~- n. 

It now follows from Theorem 4.3(c) that P ~  C~+1 ×C~2+I × . . . .  
(b) The argument is parallel to (a), except that the inequalities ~< of (12) become 

strict inequalities < .  Hence q/~.(M) is replaced by the collection ~ ( M )  of sequences 
rc = (M1 . . . . .  M/) of sets, rather than multisets, so (14) becomes 

#~V;.(M) • m;. = ev. 
21-n 

Since oger =hv, we get Fe = co(ch(q/)). [] 

Expression (10) for the flag-symmetric function FWMN, follows now immediately 
from the general Theorem 4.4(b). 

Corollary 4.5. The action of SM÷N on the label sequences of the maximal chains 
in the poset of shuffles WMN induces a local action on the poset. The Frobenius 
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characteristic for the character ~ of the correspondin 9 representation of  SM+N and 
the flao-symmetric function of WMN are related by 

N k M+N-2k 

In the remainder of  this section we make comments regarding the preceding results 

and discuss other possible directions for generalizations. 

Remark 4.6. Theorems 4.1 and 4.4 apply to posets which are products of chains and 

also to the lattice of  noncrossing partitions. The corresponding conclusions are estab- 

lished directly in [16,17]. 

Remark 4.7. The power series Fp(x) may be viewed in a broader context. For a func- 

tion q~ in the incidence algebra (see, e.g., [15, Section 3.6]) of  a ranked poset P, 
define 

ap(tp, S) = ~ ~p(O, tl)qg(fi,t2)'''cp(tk, i), 
O=to<tl<"'<tk< i 

where the sum ranges over the chains in P whose rank support is the set S ___ [n - 1], 
and n is the rank of P. Now define 

FP(~D'X) : = E 0~p(q), S ) .  E xi,S' xi2S2--SI'" .X.n--Sk/k+l * 

s_c[.-l] 1 ~<il <i2 < '"<ik+I 
S {Sl<S2<...<Sk} 

Note that Fe(~p, x) is a quasisymmetric function, homogeneous of  degree n. In particular, 

if q~ = (, the zeta function of P (i.e., ((u, v) = 1 if u ~< v, and ((u, v) = 0 otherwise), we 
recover ~e((,S)= ~p(S) and Fp((,x) is the function Fp(x) of (2). We intend to pursue 

this generalization elsewhere, mentioning here only one result - -  the next proposition. 
We note that the same result holds for an arbitrary invertible element ~o from the 

incidence algebra of  P and its inverse. Here we present a direct proof for the special 
case q~ = ( and ~o - l =  # which is the instance occurring in the context of  this paper. 

Proposition 4.8. Let P be a ranked poset of  rank n, having elements 0 and 1. I f  
and ~ are, as usual the zeta function and the M6bius function of  P, then 

Fp(#,x)=(-1)'~Fp((,x),  

where co is the involution on quasisymmetric functions defined by coLs,,(x)=L~,,(x), 
with S denotino the complement of  S in [ n -  1]. 

Proof. Using (3) and then (1), we have 

coFp((,x) = co ~ fle(S)Ls,,(x) =- 
sc_[.-l] 

~ (-1)IS-TIo~P(T)L~,n(X). 
S C[n-1] TCS 
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Using Hall's theorem (e.g., [15, Proposition 3.8.5]), the sum over T evaluates to 
(-1)lSl- l#ps(6,  1). Next, using Baclawski's theorem for the M6bius function of a 
subposet (see [9, formula (7.2)]), the sum over T can be expressed as 

(_l)lSl-1 ~ 
k~0  (}<tl<t2< . . .<tk< i 

in P~ 

( -  1 )k/t( O, tl )/~(tl, t2) - • • kt(tk, i ). 

(When k = 0, the chain 6 < 1 gives the term/~( 0, ]).) By grouping the chains in P~ 
according to their rank support, U c_ S, we obtain 

o~Fe(~,x)=(-1)" ~2 ~p(u,U). ~ (-1)l~-UIL~,,(x). 
U C [ n -  1] S D U 

Finally, by the definition of Lv,,(x) and an inclusion-exclusion argument, the inner sum 
,,~xU2_u~ n-~j where U = { u l < u z <  . . .  <uj}. over S is equal t o  E l < ~ i l < i 2 < . . . < i j x i l  i2 "" "xi i+t  , 

Thus, ogFp(( ,x)=(-1)nFp(#,x)  as claimed. [] 

Since to restricted to symmetric functions agrees with the standard involution co, 
the expressions for the characteristic ch(~k) from Theorem 4.4 can be restated as (a) 
ch(~k)=Fp((,x)=hv when P is RS-labeled, and (b) ch(~k) = ( -1 )nFp(# ,x )  when P is 
R'S-labeled. 

Remark 4.9. The SM+s-action of  Corollary 4.5 is a permutation action on the maximal 
chains of WMN, for which each orbit consists of those maximal chains whose label 
sequence A(c) is a permutation of the same multiset of letters. Thus, the explanation 
of formula (6) for the maximal chains of WMN provided in the proof of Corollary 3.9 
amounts to counting the maximal chains according to their orbit, and grouping the 
orbits according to the type 2kl g+s-z* of the multiset of  the chain labels. 

Remark 4.10. An S-labeling does not ensure that each orbit of  maximal chains is 
isomorphic to a product of  chains. 

The poset shown in Fig. 5, suggested to us by Barcelo, has a local action induced 
from the action of $4 on the labels, but the orbit of  chains labeled by the multiset 1122 
is not a product of chains. In fact, no product of chains other than the trivial one, C5, 
occurs as a subposet of rank four in this poset. 

Remark 4.11. The converse of  Theorem 4.1 does not hold. That is, a chain label- 
ing such that the action of Sn on labels induces a local action is not necessarily an 
S-labeling. 

The poset P shown in Fig. 6(a) has a labeling of its maximal chains which, although 
not injective, gives rise to an $3 local action on the maximal chains of P. The orbits 
are four copies of C2 × C3, each labeled in the standard way with the multiset a, b, b. 
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Fig. 5. A poset with an S-labeling and an orbit of  maximal chains which is not a product of  chains. 

a b b c 

~ 8 

(a) (b) 

Fig. 6. Non-injective labelings. (a) The action on labels induces a local action. (b) The action on labels 
does not induce a local action. 

On the other hand, the noninjective labeling of Fig. 6(b) does not produce an $3 action 
on the maximal chains (e.g., o'1o'20"1(6~-,A~-~<~ i ) #  a2trla2(6<A<B< i)). 

Finally, we give a local condition which characterizes labeled posets with a local 
action induced from the action on labels. This, of course, can be seen to apply to the 
earlier examples. 

Theorem 4.12. Le t  P be a finite ranked poset  o f  rank n, having a 0 and 1, and with 

a labeling A o f  its maximal  chains. For a maximal  chain c = ( 6 = to<tl <. . .<tn = 1 ) 
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and a rank iE{1,2  . . . . .  n - 2 } ,  let z : = ( O = t o ~ t t ~ ' " ~ t i - t )  and let O:=(ti+2 ~. 
t;+3 4. . .  ~tn = i). A local action is induced from the S,-action on labels if and only 
if A satisfies the following condition for every maximal chain c and every value of 
i E ( 1 ,2  . . . . .  n - 2 } :  

The length-three chains 6 from ti-1 to ti+2 with labels induced by restricting A(z60) 
can be partitioned so that 

(a) each class is isomorphic to C2 x C2 × C2 or C3 x C2 or C4, and 
(b) the labeling in each class coincides with the standard labeling of a product of 

chains by join-irreducibles. 

Proof. The conditions (a) and (b) on A imply readily the Coxeter relations for Sn, 
showing that the local action is well-defined. Conversely, within each orbit of chains 6, 
the local action fixes the chains labeled aaa, so these form classes isomorphic to Ca; 
a chain 6 labeled with aba is mapped under the local action to chains with the same z 
and 0 and label sequences aab and baa, structured as a copy of C 2 >( C 3 and forming 
a class as claimed; similarly, a chain 6 labeled as abc is mapped by the subgroup 
generated by ai and o'i+ 1 to six chains forming a copy of C2 × C2 x C2, with labels as 
claimed. [] 

5. MultipHcative functions on the poset of shuffles 

Consider now the poset W ~  whose elements are the shuffles of finite words using 
the lower alphabet ~ ={al ,a2  . . . .  } and the upper alphabet & r  ={xl,x2 . . . .  }. The 
comparability relation is as in the case of finite alphabets. A multiplicative function on 
W ~  is a function f defined on the intervals in W ~  for which ~0 = 1 and which 
has the property that if [u, v] -~c 1-[i,j Wi; 'j then f(u,  v)= l'[ij fjo, where we write f j  
for the value of f on an interval canonically isomorphic to W/j (see Remark 2.3). 

Let f and 9 be two multiplicative functions on W ~ ,  and let 

F = F ( x , y ) =  ~ f j x i y  j, 
i,j>~O 

G = G ( x , y ) =  ~ gijxiy j, 
i,j>~O 

F* G = ( F *  G)(x,y)= ~ ( f  * g)ijxiy j, 
i,j>~o 

where f ,  g denotes convolution in the incidence algebra I ( W ~ ) .  The main result 
of this section, Theorem 5.2, shows how to express F ,  G in terms of F and G, and 
hence 'determines' the monoid of multiplicative functions on W ~ .  

We begin by establishing an expression for the number of elements w E WMN of a 
given type ((aij),(bij)), that is, such that [0,w] -~c 1-]i,j W/7~J and [w, i] ~c 1-Ii.j W/i~ 'j. 
Note that the canonical isomorphism (Remark 2.3) implies that 1 + ~ ibij = ~ aii 
and 1 + ~ jai! = ~ b 0, and we can recover from the type of a word w the values 
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m := #({w} fq ~¢) = ~i , j  i(aij + bij) and n := #({w} N ~ )  = ~i , j j (a i j  + bij). Also, the 
type of w E WMN determines M and N, so the enumeration of shuffle words by type 

can be done in Wo~.  

Proposition 5.1. Let (aij ) and (bij ) be nonnegative integers such that 

~:= ~ a / j -  ~ b q E { 1 , O , - 1 }  
i,j i,j 

j~o i¢o 

Set 

m = ~ i(aij + bij), n = ~ j ( a i j  + bij), 
l,J t,J 

= ~,J, bij. and r ~ i.j. aij, and s = ~,+o 
j4o 

Then the number o f  elements w E  W ~  whose type is ((aij),(bij)) is given by 

( r n + l )  n+l  
, , +  ..... ( ) ,,.,bij,... 

( 2 - e 2  ) (m+,) (,+l) 

1 

i f  w ¢ O  ( i .e . , r+s  > 0), 

i f  w = O  (i .e . ,r=s=O).  

ProoL Each wE W ~ -  {0} is of the form ULUL.. .  UL, or L U L U . . . L U ,  or L U . . .  
LUL, or UL. . .  ULU, where each U is a nonempty factor whose letters are from the 
upper alphabet, and each L is a nonempty factor whose letters are from the lower 
alphabet. I f  the type of w is ((a(/), (bij)) then, for each j~> 1, the number of  U-factors 

of  length j is ~ i  aij and, for each i >/1, the number of  L-factors of  length i in w is 
equal to Y'~q bij. The alternation of nonempty L- and U-factors imposes the condition 

E ( 1,0, - 1 } appearing in the hypothesis. To construct a word w of the prescribed type, 

we begin by deciding the length of each U- and L-factor. The number of  possibilities 
is the number of  (multi)permutations of  the nonzero lengths, so that U- and L-factors 

alternate: 

( r ) (  
aol,aoz,. . . ,all,al2,. . ,  blo, b20,...,bll,b21,... 

where, following Garsia [6] (see also [11]), if p is a proposition then we write ;((p) = 1 
if p is true, and X(P) = 0 if p is false. To complete the construction of w, we need 

to choose the location of the Wi0's and W0j's required by entries aio and boj in the 
type of w. A factor W/0 in the canonical product for [6, w] must arise between two 
successive lower alphabet letters of w, or in front of  the first L-factor if  w begins 
with an L-factor, or after the last L-factor if w ends with an L-factor. Therefore such 
a factor W/0 occurs in one of  m - s + 1 - s positions. Similarly, a factor W0j in the 
canonical product for [w, 1] can arise from any of n -  r +  1 + e  positions (between two 
successive letters from the upper alphabet, in front of  the first U-factor if w begins 
with a U-factor, or after the last U-factor if  w ends with a U-factor). In conclusion, 
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the word w can be completed in 

( m - s + l - a  ) ( n - r + l + a  ) 

alo, a20 . . . . .  m - s + l - a - - Y ' ~ i a i o  b01,b02 . . . . .  n - r + l + e - Y ' ~ j b o j  

ways. 

The remainder o f  the proof is a calculation. After multiplying (15) by the preceding 

expression, the relations r - s = 5, 1 + ~ ibij = ~ aij, and 1 + ~ jaij = ~ bij allow 

some simplifications. For example, m -  s + 1 - e -  ~ i  aio = m + 1 - r -  ~ i  aio = ~-~i ibij + 
1 - (r + ~ia io)=O.  Similarly, n - r + 1 + e - ~']jboj = 0 .  

The first case in the conclusion of  the proposition now follows from a simple ma- 

nipulation with binomial coefficients. The case w = 0 is trivial, so the proof  is com- 

plete. [] 

T h e o r e m  5.2. Let Fo = F(x, O ), Go = G(0,y) ,  and 

F(x, y)  = F(x, Goy), 

G(x, y)  = G(Fox, y). 

Then 

1 1 1 1 
- -  + - -  ( 1 6 )  

F * G FGo FoG FoGo 

Proof.  For fixed r, s, m, n ~> 0 write 

H f~ij g~yx~ i(a~i+bi,)yZj(aii+b~,) 

Qr.s,m,, = Z (HaijI)(Hbij!)  , 

where the sum ranges over all aij and bij satisfying 

y~ au ----r, y~ b~ = s, 
j4o i~o 

~-~ib U =m, y'~ja U = n ,  

m + l = ) - ~ ' ~ a  U, n + l = ~ b  U. 

By Proposition 5.1, the convolution F * G is given by 

F *  G = ( F  . G ) - l  + ( 2 ( F .  G ) 0 -  FoGo) + (F . G)t, 

where 

(F  * G ) - I  = ~ k! (k + 1)! (m - k)! (n + 1 - k)! Qk+l,k,m,,, 
k,m,n 

(F * G)o = ~ k! 2 (m + 1 - k)! (n + 1 - k)! Qk, k,m,n, 
k,m,n 

(F*G) I  = ~ ( k ÷  1 ) !k I (m + 1 - k ) ! ( n  --k)!Qk, k+l,m,~. 
k,m,n 
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If M is a monomial then write [M] Q for the coefficient of M in the power series Q. 
We first consider (F • G)0. We have 

(F * G)o = Z k!2 (m+l-k)!  (n+l-k)!  [qm+lrn+lsmtnukv k] 
k, rtl, n 

~--~ rlj#o( qtJu fjxi yj)auHi(qfoxi) ~° IL¢o(rsivgijxi yJ) bu I-Ij(rooj yJ) b°j 
~u,bu (1-I aij!)(I-[ bij!) 

= Z k!2 (m+l-k)! (n+l--k)![qm+lrn+lsmtnukv k] 
k,m,n 

XH(z(qtJuZ(Js~O)fjxiyj)aii~(i,j a6>~O ~ )'a~i>~O (FsivZ(i~O)gijxiyj)b'J~bij' ) 

= Z k!z (m+l-k)! (n+l-k)!  
k,m,n 
× [ qm+lrn+lsmtnukvk] H exp(qtJuZ(J#°)fjxi yj+rsivz(i#O)gijxi yj) 

i,j 
= Z k!2 (m+l-k)!  (n+l-k)!  

k,m,n 
x [qm+Jrn+lsmtnukv Ic] exp ~ (qtJu)~(J~O)fijxiyJwrsivz(i~O)gi/xiyj) 

i,j 
= Z k!2(m+l-k)! (n+l-k)!  

k,m.n 
× [smt.ukvk] (~-~i,j tJuZ(J#O)fjxiyj) m+l . (~i,j sivZ(i40)gijxiyj)n+l 

(m+l)! (n+l)! 
( ) ( ?  ~m+l--k 

k!Z(m+l-k)!(n+l-k)!r m..1 m+l i 
= Z  ~ t s ' ]  k f o x )  

k,m,n 

× Z f j t J x ,  y J n+lk k~i 9°jyj ) ZOijS'x'Ys 

\j ' jo " "' \ ,¢o I 

{ ~m+l--k . f ~.+l--k 
-- ~umt"st,~S, ox' ) ZfjtJxiY; t,~oo, y') 

k . . . .  \ , ' jo  
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= Z fio xi gOj YJ 
k 

× Z [ s m t  "1 Z f j t J x i y  j gijsixiy j 

m,n j~oi'J ~k i~ jO 

" ( ~ f o  xi' (~j goJYJ~ 

= Z 0 xi goj YJ 
k 

× ~r gOr yr f j , x i y j  

r" )k 
' 

fso x s gijx' y J 

Note that 

got Y~ = Go 
v 

and 

zJ f j x i y  j =F(x, yz) - Fo, 
i,j 

j#o 

and similarly for F0 and G(xz, y) - Go. Hence 

(F * G)o = FoGo" Z FokGok j i k GofjX Y F~gijxi y k 
k 

FoGo 
1 &-&)(C-Go)" 

FoGo 

Exactly analogous reasoning applies to (F,G)_ 1 and (F*G)I. For instance, (F,G)_ 1 
can be written 

(F * G)-1 

= ~_~ k!(k + 1)!(m - k)!(n + 1 - k)![qm+lr"+lsmtnUk+lV k] 
k,m,n 

× Z 1-Ij¢o (qtJufjxiyj)a'JI-[i (qfoxi)a'°l-[i¢o (rs~vg,jx~y/)b'JI]j (rgojYJ) b°j 
a~/,b,j (1-[ aij! )(1-[ bij! ) 
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Reasoning as above yields 

(F  - Fo)Go 

( F . G ) _ 1  - (F  - F o ) ( G  - Go)" 
1 -  

FoGo 

Similarly (or by symmetry), 

Fo((~ - Go) 
( F * G ) I  = (JO - F o ) ( 0  - Go)" 

1 -  
FoGo 

From this we easily obtain 

1 1 1 1 1 

F • G - (F  * G) - I  + (2(F • G)o - FoGo) + (F  * G)I - FGo + FoG FoGo' 

as desked. [] 

E x a m p l e  5.3. In general it seems difficult to understand the operation F • G. It is 
not even obvious from (16) that • is associative! A special case for which F * G  

can be explicitly evaluated is the following. Let al ,b l  . . . . .  ak,bk be real numbers (or 
indeterminates). Then it is straightforward to prove from Theorem 5.2 by induction 
on k that 

1 1 
, . . . ,  

(1 - alx)(1 - b l y )  (1 - akx)(1 - bky)  

I 
= 1 - (~-~ ai)x - (~~ b i )y  + (~-~ (al + a2 + . . .  -q- ai)bi)xy" (17) 

For instance, if ( denotes the zeta function of  Wo~o~ (whose value is 1 on every interval 
of  W ~ ) ,  then 

• • 1 

~ ( i jx 'yJ '= ( 1  - - X ) ( 1  - -  y)" 
i . j  

Hence the left-hand side of  (17) becomes the generating function for (k, whose value 
at W,j is the number Zij(k)  of  k-element multichains 6=t0~<tl  ~<.. .  ~<tk-- ] in W//y. 
Equivalently, Z/j(k) is the value o f  the zeta polynomial of  Wij at k [15]. We obtain 
from (17) that 

Z ZiJ(k)x iYJ= 1 
i,j 1 - k x  - k y  - (k~l)xy'  

a result of  Greene [8]. 

R e m a r k  5.4. The identity (17) can be deduced purely combinatorially. 

The left-hand side provides a refinement of  the flag f -vec to r  in the sense that the 
coefficient o f  ill'J1 i21~J2 al ~1 a2~'2 ' "'xmy n, where m = i l  + i2 + . . .  and n = j l  + j2 + " ", is 
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the number of multichains 6~-to<<.ti <<.... <<.tin+.--1 <tm+n= ] in Win. such that tr-I 
and tr differ by ir letters from the alphabet d and by jr  letters from the alphabet 
:Y. The right-hand side of  (17) can be interpreted as the generating function for the 
language ~ over the alphabet {al,a2 . . . . .  bl,b2 . . . .  } consisting of the words in which 
there is no occurrence of a letter a~ immediately followed by a letter bl with k ~< l. 
(This follows directly through a simple sign-reversing-involution argument or from the 
general theory of  Cartier and Foata [3].) The number of such words formed with the 
multiset of letters alill~Jl~,l a2i2BJ2y2 " " "' where m = i  1 + i2 + " "  and n = j l  + j 2  + " " ,  is 
the coefficient of " hJ, ,,'2 t, J2 .. xm yn at ~t "2 '12 " on the right-hand side of (17). For example, the 
coefficient of a2blb2xZy 2 is 2, accounting for the words blb2alaL and b2blalal in £~. 

Now each word wE L# consisting of m ai ' s  and n b i ' s  determines a shuffle-word 
s(w) in Wren by placing the alphabet ~¢ in the positions of the ai's and the alphabet Y" 
in the positions of the bi's. For example, w=a2b3b3ala3bsbib2a3 gives rise to the 
shuffle word s ( w ) =  alXlX2a2a3x3x4x5a4 ill W45. Of course, w ~ s is not a one-to-one 
map. 

Given a word w E ~ ,  we construct a unique multichain t (w) in Wmn by starting with 
to = 6 and obtaining tr+l from t~ by removing the letters appearing in s(w) in those 
positions where a~ occurs in w, and inserting the letters appearing in s(w) in those 
positions where br occurs in s(w). For instance, the word w from the preceding exam- 

ple yields t (w)  = ( 0 =- to <tl  <t2 <t3 = t4 <t5 = ]), where to =ala2a3a4, tl = ala3x4a4, 

t2 = a3x4x5a4, t3 = t4 = x ix2x4x5,  t5 ~- x lx2x3x4x5.  

Recall from Section 3 that there is a unique order in which the ir deletions and jr 
insertions can be performed such that t,+l is reached from tr via the A-increasing 
chain 7(tr, tr+l ). The condition defining the words w E £~a ensures that each insertion 
of a letter from Y" is made in the leffmost position permitted by the shuffle word 
s(w), thus not multiply-counting chains which involve covering relations of the type 
(xa). From these observations it follows that w ~ t(w) is a bijection, completing a 
combinatorial proof of (17). 
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