DISCRETE

 MATHEMATICS
Flag-symmetry of the poset of shuffles and a local action of the symmetric group

Rodica Simion ${ }^{\text {a, }}$, Richard P. Stanley ${ }^{\text {b, }, ~, 1,2}$
${ }^{\text {a }}$ Department of Mathematics, The George Washington University, Washington, DC 20052, USA
${ }^{\text {b }}$ Department of Mathematics 2-375, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 10 September 1997; revised 2 March 1998; accepted 3 August 1998

Abstract

We show that the posets of shuffles introduced by Greene in 1988 are flag symmetric, and we describe a permutation action of the symmetric group on the maximal chains which is local and yields a representation of the symmetric group whose character has Frobenius characteristic closely related to the flag symmetric function. A key tool is provided by a new labeling of the maximal chains of a poset of shuffles. This labeling and the structure of the orbits of maximal chains under the local action lead to combinatorial derivations of enumerative properties obtained originally by Greene. As a further consequence, a natural notion of type of shuffles emerges and the monoid of multiplicative functions on the poset of shuffles is described in terms of operations on power series. The main results concerning the flag symmetric function and the local action on the maximal chains of a poset of shuffles are obtained from new general results regarding chain labelings of posets. © 1999 Elsevier Science B.V. All rights reserved

Keywords: Shuffle poset; Flag f-vector; Flag h-vector; Flag symmetry; CL-labeling

0. Introduction

In [16], Stanley initiated an investigation of posets which involve two algebraic objects related to the order structure of the poset - a certain symmetric function (flag symmetric function) and a certain associated representation of the symmetric group. In Section 1 we give precise definitions and summarize the results of [16] that will be used later in this paper. Briefly, [16] is concerned with classes of posets whose order

[^0]structure leads to a symmetric function derived from the enumeration of rank-selected chains, and which turns out to be the Frobenius characteristic of a representation of the symmetric group, of degree equal to the number of maximal chains of the poset; moreover, this representation can be realized via an action of the symmetric group on the maximal chains of the poset, under which each adjacent transposition $\sigma_{i}=(i, i+1)$ acts on chains locally, that is, modifying at most the chain element of rank i.

The goal of this paper is to add a new infinite family of posets to the examples appearing in [16,17], namely, the posets of shuffles introduced and investigated by Greene [8]. In the process, several general results emerge. In Section 1 we give the necessary background on locally rank-symmetric posets affording a local action of the symmetric group (based on [16]). Section 2 contains the necessary preliminaries concerning the posets of shuffles (i.e., shuffles of subwords of two given words). In Section 3 we give a new labeling of the posets of shuffles and establish its properties which are instrumental in the remainder of the paper. In Section 4 we describe a local action of the symmetric group on the maximal chains of a poset of shuffles, such that the Frobenius characteristic for the corresponding representation character is (essentially) the flag symmetric function. The desired results regarding the posets of shuffles follow from more general results motivated by the properties of the new labeling of these posets. Section 5 is devoted to the enumeration of shuffles according to a natural notion of type. As a consequence we describe the monoid of multiplicative functions on the poset of shuffles in terms of operations on power series.

As a by-product of the present investigation of the posets of shuffles, we obtain alternative, purely combinatorial, derivations of enumerative results obtained in [8]. The present work parallels that of [17] regarding the lattice of noncrossing partitions, thus adding to previously known structural analogies between the posets of noncrossing partitions and those of shuffles. It is hoped that this work will facilitate the development of a systematic general theory of the posets with a local group action concordant with the flag symmetric function.

1. Preliminaries

Let P be a finite poset with a minimum element $\hat{0}$, and a maximum element $\hat{1}$. Throughout this paper, we will consider only such posets that are ranked, that is, there exists a function $\rho: P \rightarrow \mathbf{Z}$ such that $\rho(\hat{0})=0$ and $\rho\left(t^{\prime}\right)=\rho(t)+1$ whenever $t \lessdot t^{\prime}$ (the notation $t \lessdot t^{\prime}$ means that t is covered by t^{\prime}, i.e., $t<t^{\prime}$ and there is no element $u \in P$ such that $t<u<t^{\prime}$).

Let $\rho(P):=\rho(\hat{1})=n$. For $S \subseteq[n-1]$, where $[n-1]:=\{1,2, \ldots, n-1\}$, let $\alpha_{P}(S)$ denote the number of rank-selected chains in P whose elements (other than $\hat{0}$ and $\hat{1}$) have rank set equal to S. Thus,

$$
\alpha_{P}(S):=\#\left\{\hat{0}<t_{1}<t_{2}<\cdots<t_{|S|}<\hat{1}:\left\{\rho\left(t_{1}\right), \rho\left(t_{2}\right), \ldots, \rho\left(t_{|S|}\right)\right\}=S\right\} .
$$

Fig. 1. The poset of shuffles W_{21}.

The function $\alpha_{p}: 2^{[n-1]} \rightarrow \mathbf{Z}$ is the flag f-vector of P. It contains information equivalent to that of the flag h-vector β_{P} whose values are given by

$$
\begin{equation*}
\beta_{P}(S):=\sum_{T \subseteq S}(-1)^{|S-T|} \alpha_{P(T)} \quad \text { for all } S \subseteq[n-1] . \tag{1}
\end{equation*}
$$

For example, writing $\alpha_{P}\left(t_{1}, \ldots, t_{k}\right)$ for $\alpha_{P}\left(\left\{t_{1}, \ldots, t_{k}\right\}\right)$ and similarly for β_{P}, the poset of Fig. 1 has $\alpha(\emptyset)=1, \alpha(1)=\alpha(2)=5, \alpha(1,2)=12$, and $\beta(\emptyset)=1, \beta(1)=\beta(2)=4$, $\beta(1,2)=3$. The poset of Fig. 2 has $\alpha(\emptyset)=1, \alpha(1)=\alpha(3)=2, \alpha(2)=3, \alpha(1,2)=$ $\alpha(1,3)=\alpha(2,3)=4, \alpha(1,2,3)=6$, and $\beta(\emptyset)=1, \beta(1)=\beta(3)=1, \beta(2)=2, \beta(1,2)=$ $\beta(2,3)=0, \beta(1,3)=1, \beta(1,2,3)=0$.

The flag f - and h-vectors appear in numerous contexts in algebraic and geometric combinatorics; for instance, the values $\beta_{P}(S)$ have topological significance related to the order complex of the rank-selected subposet $P_{S}:=\{\hat{0}, \hat{1}\} \cup\{t \in P: \rho(t) \in S\}$ (see, e.g., [15, Section 3.12] for additional information and references).

Consider now the formal power series

$$
F_{P}(x):=F_{P}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\hat{0} \leqslant t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{k}<1} x_{1}^{\rho\left(t_{1}\right)} x_{2}^{\rho\left(t_{2}\right)-\rho\left(t_{1}\right)} \cdots x_{k+1}^{n-\rho\left(t_{k}\right)} .
$$

This definition was suggested for investigation by Richard Ehrenborg [4] and is one of the central objects in [16] and in this paper. Alternatively,

$$
\begin{equation*}
F_{P}(x)=\sum_{\substack{s \subseteq[n-1] \\ s=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\}}} \alpha_{P}(S) \cdot \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k+1}} x_{i_{1}}^{s_{1} x_{i_{2}}^{s_{2}-s_{1}} \cdots x_{i_{k+1}}^{n-s_{k}} .} \tag{2}
\end{equation*}
$$

Fig. 2. A flag symmetric poset which is not locally rank-symmetric.

It is easy to see that the series $F_{P}(x)$ is homogeneous of degree n and that it is a quasisymmetric function, that is, for every sequence $n_{1}, n_{2}, \ldots, n_{m}$ of exponents, the monomials $x_{i_{1}}^{n_{1}} x_{i_{2}}^{n_{2}} \cdots x_{i_{m}}^{n_{m}}$ and $x_{j_{1}}^{n_{1}} x_{j_{2}}^{n_{2}} \cdots x_{j_{m}}^{n_{m}}$ appear with equal coefficients whenever $i_{1}<i_{2}<\cdots<i_{m}$ and $j_{1}<j_{2}<\cdots<j_{m}$. Through a simple counting argument and using relation (1), the series $F_{P}(x)$ can also be rewritten as

$$
\begin{equation*}
F_{P}(x)=\sum_{S \subseteq[n-1]} \beta_{P}(S) L_{S, n}(x), \tag{3}
\end{equation*}
$$

where the $L_{S, n}(x)$ are Gessel's quasisymmetric functions

$$
L_{S, n}(x):=\sum_{\substack{1 \leqslant i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{n} \\ i_{j}<i_{j+1}}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

which constitute a basis for the (2^{n-1}-dimensional) space of quasisymmetric functions of degree n (for more on quasisymmetric functions and symmetric functions we refer the interested reader to $[12,13]$).

A first question discussed in [16] is that of conditions under which $F_{P}(x)$ is actually a symmetric function, in which case we refer to $F_{P}(x)$ as the flag-symmetric function of P and to P as a flag-symmetric poset. An immediate necessary condition is that P be rank symmetric (i.e., $\#\{t \in P: \rho(t)=r\}=\#\{t \in P: \rho(t)=n-r\}$ for every $0 \leqslant r \leqslant n$). A necessary and sufficient condition can be deduced readily from (2) [16, Corollary 1.2]. Namely, for every $S \subseteq[n-1]$ the value of $\alpha_{P}(S)$ depends only on the (multi)set of differences $s_{1}-0, s_{2}-s_{1}, \ldots, s_{k}-s_{k-1}, n-s_{k}$ and not on their ordering. If this is the case, then the symmetric function $F_{P}(x)$ can be expressed in terms of the basis of monomial symmetric functions $\left\{m_{\lambda}(x)\right\}_{\nmid \vdash n}$ as

$$
\begin{equation*}
F_{P}(x)=\sum_{i-n} \alpha_{P}(\lambda) m_{\lambda}(x), \tag{4}
\end{equation*}
$$

where $\lambda \vdash n$ denotes a partition $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{l}>0\right)$ of n, and $\alpha_{P}(\lambda):=$ $\alpha_{P}\left(\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots, \lambda_{1}+\lambda_{2}+\cdots+\lambda_{l-1}\right\}\right)$.

For example, the earlier calculation of the flag f-vector of the poset of Fig. 2 shows that it is flag symmetric, with flag-symmetric function $F_{P}(x)=m_{4}(x)+2 m_{31}(x)+$ $3 m_{22}(x)+4 m_{211}(x)+6 m_{1111}(x)$.

The following sufficient condition for $F_{P}(x)$ to be a symmetric function introduces the class of locally rank-symmetric posets. This condition is not necessary for flag symmetry, as shown by the poset of Fig. 2, but it is necessary and sufficient for every interval of P to be flag-symmetric.

Proposition 1.1 (Stanley [16, Theorem 1.4]). Let P be a ranked poset with $\hat{0}$ and $\hat{1}$. If P is locally rank symmetric, i.e., if every interval in P is a rank symmetric (sub)poset, then $F_{P}(x)$ is a symmetric function.

Locally rank-symmetric posets turn out to be a rich source of examples yielding flagsymmetric functions. The examples of flag-symmetric posets provided in [16] include products of chains (shown to be the only flag-symmetric distributive lattices, and identical to the class of locally rank-symmetric distributive lattices), and Hall lattices (a ' q-analogue' of a product of chains), as well as a discussion of some other classes of posets. If $F_{P}(x)$ is a symmetric function, homogeneous of degree n, and if it turns out to be Schur positive (i.e., its expression in terms of the Schur functions basis has nonnegative coefficients only), then it follows from the general theory of representations and symmetric functions that it is the Frobenius characteristic

$$
\begin{equation*}
\operatorname{ch}(\psi):=\sum_{i \vdash n} \frac{\psi(\lambda)}{z_{\lambda}} p_{\lambda}(x) \tag{5}
\end{equation*}
$$

of a character ψ of the symmetric group S_{n}. In the preceding display line, λ runs over all partitions of $n, \psi(\lambda)$ is the value of ψ on the conjugacy class of type λ, $z_{\lambda}=1 /\left(\lambda_{1} \lambda_{2} \cdots m_{1}!m_{2}!\cdots\right)$ with m_{i} being the multiplicity of i as a part of λ, and $p_{\lambda}(x)$ is the power symmetric function indexed by λ (that is, $p_{\lambda}(x)=p_{\lambda_{1}}(x) p_{\lambda_{2}}(x) \cdots$ with $\left.p_{j}(x):=x_{1}^{j}+x_{2}^{j}+\cdots\right)$. It is known that when the Frobenius characteristic of a character ψ of S_{n} is expanded in terms of Schur functions $\left\{s_{i}(x)\right\}_{1 \vdash n}$, then the coefficient of $s_{\lambda}(x)$ is the multiplicity with which the irreducible character χ^{λ} of S_{n} occurs in ψ. Thus, $F_{P}(x)$ describes a representation of S_{n}, whose degree $\psi\left(1^{n}\right)$ can be recovered as the coefficient of $m_{1^{n}}$ in $F_{P}(x)$. In view of (4), the degree of ψ is $\alpha_{P}\left(1^{n}\right)$, the number of maximal chains in P.

The preceding discussion suggests seeking a natural action of S_{n} on the complex vector space $\mathbf{C} \mathscr{M}(P)$ with the set $\mathscr{M}(P)$ of maximal chains in P as a basis, giving rise to a representation of S_{n} with character ψ as in (5). Of particular interest would be a local action with this property (defined in [16] and motivated by the notion of local stationary algebra appearing in [18]); that is, an action such that for every adjacent
transposition $\sigma_{i}=(i, i+1)$ and every maximal chain m of P we have

$$
\sigma_{i}(m)=\sum_{m^{\prime} \in \mathbf{C} \cdot k(P)} c_{m m^{\prime}} m^{\prime}
$$

with nonzero coefficient $c_{m m^{\prime}}$ only if m^{\prime} differs from m at most in the element of rank i. Following [16], we call such an action good. Good actions of the symmetric group are discussed in [16] in the case of posets whose rank-two intervals are isomorphic to C_{3} or $C_{2} \times C_{2}$ (where C_{i} denotes an i-element chain), and for posets whose rank-three intervals are isomorphic to C_{4} or $C_{3} \times C_{2}$ or $C_{2} \times C_{2} \times C_{2}$. These results are based on work of David Grabiner [7]. Another illustration in [16] gives a local action of the Hecke algebra of S_{n} on $\mathbf{C} \mathscr{M}\left(B_{n}(q)\right)$, where $B_{n}(q)$ denotes the lattice of subspaces of an n-dimensional vector space over $G F_{q}$. In [17] a good action is exhibited for the lattice of noncrossing partitions. To these classes of examples this paper adds the posets of shuffles.

We note that related results were recently obtained by Patricia Hersh [10] (generalizing the local S_{n}-action on noncrossing partitions), and Jonathan Farley and Stefan Schmidt [5] (generalizing the work of Grabiner [7]).

2. Flag symmetry of the posets of shuffles

Let $\mathscr{A}=\left\{a_{1}, a_{2}, \ldots, a_{M}\right\}$ and $\mathscr{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ be two (finite) disjoint sets which we will call the lower and the upper alphabets, respectively. Consider the collection of shuffles over \mathscr{A} and \mathscr{X}, that is, words $w=w_{1} w_{2} \cdots w_{k}$ with distinct letters from $\mathscr{A} \cup \mathscr{X}$ satisfying the shuffle property: the subset of letters belonging to each alphabet appears in increasing order of the letter subscripts in the appropriate alphabet. For instance, if $M=4$ and $N=3$, then $w=x_{2} a_{1} a_{3} x_{3}$ is a shuffle word, but $w=a_{1} x_{2} a_{2} a_{3} x_{1}$ is not a shuffle word. Note that the empty word \emptyset is a shuffle word.

The poset of shuffles $W_{M N}$ consists of the shuffle words over alphabets \mathscr{A} and \mathscr{X} with $\# \mathscr{A}=M$ and $\# \mathscr{X}=N$ with the order relation given by $w \lessdot w^{\prime}$ iff w^{\prime} is obtained from w either by deleting a letter belonging to \mathscr{A} or by inserting (in an allowable position) a letter belonging to x. In particular, $\hat{0}=a_{1} a_{2} \cdots a_{M}$ and $\hat{1}=x_{1} x_{2} \cdots x_{N}$. Fig. 1 shows the Hasse diagram of W_{21}. Clearly, $W_{0 N}$ and $W_{M 0}$ are isomorphic to the boolean lattices of rank N and M, respectively. We will write $\{w\}$ for the set of letters of a shuffle word w.

Greene [8] investigated the posets of shuffles, whose definition was motivated by an idealized model considered in mathematical biology. The results established in [8] include structural properties of $W_{M N}$ (e.g., $W_{M N}$ is a ranked poset; it admits a decomposition into symmetrically embedded boolean lattices and, hence, a symmetric chain decomposition; $W_{M N}$ is an EL-shellable poset), as well as expressions for key invariants of $W_{M N}$ (the zeta polynomial, the number of maximal chains, the Möbius function, the rank generating function, the characteristic polynomial). Two of the formulas in [8] will arise later in this paper.

Proposition 2.1 (Greene [8, Theorem 3.4]). The number of maximal chains in $W_{M N}$ is given by

$$
\begin{equation*}
C_{M N}=(M+N)!\sum_{k \geqslant 0}\binom{M}{k}\binom{N}{k} \frac{1}{2^{k}} . \tag{6}
\end{equation*}
$$

The Möbius function of $W_{M N}$ is

$$
\begin{equation*}
\mu_{M N}=\mu_{W_{M N}}(\hat{0}, \hat{1})=(-1)^{M+N}\binom{M+N}{M} \tag{7}
\end{equation*}
$$

We now turn to the interval structure of the posets of shuffles.
Lemma 2.2. Every interval in a poset of shuffes is isomorphic to a product of posets of shuffles.

Proof. Let $[u, w]$ be an arbitrary interval in $W_{M N}$, and write $u=u_{1} u_{2} \ldots u_{r}$, $w=w_{1} w_{2} \ldots w_{s}$. Let $u_{i_{1}} u_{i_{2}} \ldots u_{i_{t}}$ and $w_{j_{1}} w_{j_{2}} \ldots w_{j_{1}}$ be the subwords of u and w, respectively, formed by the letters common to the two words. Because $u<w$, the shuffle property implies $u_{i_{p}}=w_{j_{p}}$ for each $p=1,2, \ldots, t$. Moreover, the remaining letters of u belong to the alphabet \mathscr{A} and the remaining letters of w belong to the alphabet \mathscr{X}. Therefore the interval $[u, w]$ is isomorphic to the product of the posets of shuffles $W_{i_{p}-i_{p-1}-1, j_{p}-j_{p-1}-1}$ for $p=1,2, \ldots, t+1$, where we set $i_{0}=j_{0}=0, i_{t+1}=r+1$ and $j_{t+1}=s+1$.

For example, if $u=a_{2} x_{3} a_{4} a_{5} a_{10} x_{6} x_{8}$ and $v=x_{1} x_{2} x_{3} x_{5} a_{10} x_{6} x_{8} x_{10} x_{11}$ in $W_{10,15}$, then $r=7, s=9$ and there are $t=4$ letters common to the two words. These form the word $x_{3} a_{10} x_{6} x_{8}=u_{2} u_{5} u_{6} u_{7}=v_{3} v_{5} v_{6} v_{7}$ so we have $[u, v] \simeq W_{12} \times W_{21} \times W_{00} \times W_{00} \times W_{02} \simeq$ $W_{12} \times W_{21} \times W_{02}$.

Remark 2.3. Of course, factors of the form W_{00} are singleton posets and can be discarded from the product, and $W_{i 0} \simeq W_{0 i} \simeq B_{i}$, the boolean lattice with i atoms. Using the notation from the proof of Lemma 2.2, we will write $[u, w] \simeq_{\mathbf{c}} \prod_{p} W_{i_{p}-i_{p-1}-1, j_{p}-j_{p-1}-1}$, the canonical isomorphism type of the interval $[u, w]$. The notion of canonical isomorphism type of an interval will be used in Section 5.

Proposition 2.4. For every $M, N \geqslant 0$, the poset of shuffles $W_{M N}$ is locally ranksymmetric.

Proof. Since the posets of shuffles are rank symmetric [8, Corollary 4.9] and since the product of posets preserves rank symmetry, Lemma 2.2 implies that every interval in $W_{M N}$ is rank symmetric.

It therefore follows from Proposition 1.1 [16, Theorem 1.4] that each poset of shuffles $W_{M N}$ has a flag-symmetric function $F_{M N}=F_{M N}(x):=F_{W_{M N}}(x)$. An explicit expression
for $F_{M N}$ can be obtained by extending Greene's notion of \mathscr{A} - and \mathscr{X}-maximal chains in $W_{M N}[8]$ to \mathscr{A} - and \mathscr{X}-maximal chains in rank-selected subposets of $W_{M N}$. An argument similar to Greene's yields a recurrence relation for the numbers $\alpha_{W_{M N}}(\lambda)$, which in turn implies that

$$
\begin{equation*}
F_{M N}=F_{M-1, N} e_{1}+F_{M, N-1} e_{1}-F_{M-1, N-1} e_{2}-F_{M-1, N-1} p_{2}, \tag{8}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\sum_{M, N \geqslant 0} F_{M N} u^{M} v^{N}=\frac{1}{\left(1-u e_{1}\right)\left(1-v e_{1}\right)-u v e_{2}}, \tag{9}
\end{equation*}
$$

where $e_{j}=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{j}} x_{i_{1}} x_{i_{2}} \ldots x_{i j}$, the j th elementary symmetric function in variables x_{1}, x_{2}, \ldots, and $p_{2}=\sum x_{i}^{2}$. Consequently,

$$
\begin{equation*}
F_{M N}=\sum_{k \geqslant 0}\binom{M}{k}\binom{N}{k} e_{2}^{k} e_{1}^{M+N-2 k} \tag{10}
\end{equation*}
$$

For example, the calculation of the flag f-vector of W_{21} done in Section 1 gives $F_{21}(x)=m_{3}(x)+5 m_{21}(x)+12 m_{111}(x)$. Since $e_{1}^{3}(x)=m_{3}(x)+3 m_{21}(x)+6 m_{111}(x)$ and $e_{2}(x) e_{1}(x)=m_{21}(x)+3 m_{111}(x)$, we have $F_{21}(x)=e_{1}^{3}(x)+2 e_{2}(x) e_{1}(x)$.

We omit the details of this argument. Instead, we will obtain expression (10) for the flag-symmetric function of a poset of shuffles as a consequence (Corollary 4.5) of a general result (Theorem 4.4) concerning chain labelings of flag-symmetric posets.

3. A labeling for posets of shuffles

To describe an action of S_{M+N} on the maximal chains of $W_{M N}$, it would be natural to resort to a labeling of the chains and have the symmetric group act on the chains by acting on their label sequences simply by permuting coordinates. The poset $W_{M N}$ is already known to be EL-shellable [8], through the labeling of each covering relation $u \lessdot w$ by the unique letter in the symmetric difference of the sets of letters $\{u\}$ and $\{w\}$, and with the ordering $a_{1}<a_{2}<\cdots<a_{M}<x_{1}<x_{2} \cdots<x_{N}$ for the labels. Under this labeling each maximal chain is labeled by a permutation in S_{M+N}. However, this does not serve well the goal of describing an S_{M+N} action on the maximal chains. A similar situation occurred in [17], where the standard EL-labeling of the noncrossing partition lattice was not suitable for describing a local action of the symmetric group on the maximal chains, and a new EL-labeling was produced for this purpose. Here too, we will define a new labeling for a poset of shuffles which lends itself naturally to the description of the desired local action of S_{M+N}.
By a labeling we mean a map $\Lambda: \mathscr{M}(P) \rightarrow L^{n}$, written

$$
\Lambda(c)=\left(\Lambda_{1}(c), \Lambda_{2}(c), \ldots, \Lambda_{n}(c)\right),
$$

where n is the length of the maximal chains of P, and L is a totally ordered set. The labeling of interest in the present paper is a C-labeling, that is, for every maximal
chain $c=\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{n}=\hat{1}\right)$ and every $r \in[n]$, the label $\Lambda_{r}(c)$ depends only on the initial subchain $\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{r}\right)$. If the label $\Lambda_{r}(c)$ depends only on the covering $w^{r-1}<w^{r}$, and not on the maximal chain c itself, then A is an E-labeling.

Three properties of labelings will play a role in this paper: the $R^{*}-, R$-, and S-labeling properties. A C-labeling Λ is an R^{*}-labeling if every chain of the form

$$
\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{r}<u\right)
$$

has a unique completion by covering relations

$$
\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{r} \lessdot w^{r+1} \lessdot \cdots \lessdot w^{s}=u\right)
$$

such that

$$
\Lambda_{r+1}(c)<\Lambda_{r+2}(c)<\cdots<\Lambda_{s}(c)
$$

where c is any maximal chain beginning $\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{5}$. (By the definition of C-labeling, the remaining elements of c do not affect the labels $\Lambda_{i}(c)$ for $1 \leqslant i \leqslant s$.) In the same setting as for an R^{*}-labeling, the requirement for an R-labeling is the existence of a unique weakly increasing completion of the chain:

$$
\Lambda_{r+1}(c) \leqslant \Lambda_{r+2}(c) \leqslant \cdots \leqslant \Lambda_{s}(c) .
$$

A labeling Λ of the maximal chains of a poset is an S-labeling if it is one-to-one and if for every maximal chain $c=\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{n}=\hat{1}\right)$ and for every rank $i \in[n-1]$ such that $\Lambda_{i}(c) \neq \Lambda_{i+1}(c)$, there is a unique chain $c^{\prime}=\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{i-1} \lessdot t^{i} \lessdot\right.$ $w^{i+1} \lessdot \cdots \lessdot w^{n}=\hat{1}$) differing from c only at rank i, with the following property: the label sequence $\Lambda\left(c^{\prime}\right)$ differs from $\Lambda(c)$ only in that $\Lambda_{i}\left(c^{\prime}\right)=\Lambda_{i+1}(c)$ and $\Lambda_{i+1}\left(c^{\prime}\right)=$ $\Lambda_{i}(c)$.

We now turn to the definition of a labeling A for the poset of shuffles, and then show that it has the properties R^{*} and S. In the next section we will see the implications of an $R S$ - or $R^{*} S$-labeling with regard to a local action on the poset.

To each maximal chain $c=\left(\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{M+N}=\hat{1}\right)$ in $W_{M N}$ we give a label sequence

$$
\Lambda(c)=\left(\Lambda_{1}(c), \Lambda_{2}(c), \ldots, \Lambda_{M+N}(c)\right),
$$

by assigning a label from $\mathscr{A} \cup \mathscr{X}$ to each covering relation on c. In defining Λ we distinguish three types of covering relations, $(x),(x a)$, and (a), as follows:
(x) $w^{i} \lessdot w^{i+1}$ with w^{i+1} obtained from w^{i} by inserting a letter $x_{k} \in \mathscr{X}$ in a position consistent with the shuffle property; then we set $\Lambda_{i+1}(c)=x_{k}$.
($x a$) $w^{i} \lessdot w^{i+1}$ with w^{i} of the form $w^{i}=u x_{k} a_{m} v$ and $w^{i+1}=u x_{k} v$, where this is the first deletion along c, starting from $\hat{0}$, of a letter (necessarily belonging to \mathscr{A}) located immediately after x_{k}; then we set $\Lambda_{i+1}(c)=x_{k}$.
(a) $w^{i} \lessdot w^{i+1}$ with w^{i+1} obtained from w^{i} by deleting a letter $a_{j} \in \mathscr{A}$, and this deletion is not of type ($x a$); then we set $\Lambda_{i+1}(c)=a_{j}$.
Fig. 3 shows the labeling Λ of four of the maximal chains in W_{21}.

Fig. 3. The labeling Λ on four of the maximal chains of W_{21}.

Lemma 3.1. The labeling Λ is injective on the maximal chains of $W_{M N}$, for all M,N. Its range consists of the (multi)permutations of all multisets of the form $A \cup 2 X \cup(\mathscr{X}-X)$, where $A \subseteq \mathscr{A}, X \subseteq \mathscr{X},|A|+|X|=M$, and $2 X$ denotes the multiset consisting of two copies of each element of X.

Proof. From the definition of Λ it is clear that all letters in \mathscr{X} appear in the label sequence of any maximal chain c and that for every $a_{j} \in \mathscr{A}$ which does not appear in the label sequence, there is an $x_{k} \in \mathscr{X}$ which appears twice. Thus, the label sequence of every maximal chain c is of the claimed form.

Conversely, we claim that given a multipermutation σ of $A \cup 2 X \cup(X-X)$ for some A and X as in the statement of the lemma, there is a unique maximal chain in $W_{M N}$ having label sequence $\Lambda(c)=\sigma$. Indeed, first note that if $A=\mathscr{A}$ and $X=\emptyset$ (that is, σ is a permutation of $\mathscr{A} \cup \mathscr{X}$), then only coverings of type (a) and (x) are possible. Thus, starting from $\hat{0}=W^{0}, \sigma$ dictates a sequence of deletions of letters from \mathscr{A} and insertions of letters from \mathscr{X}, each insertion being made in the rightmost possible position. This determines a unique maximal chain c as desired. For example, for W_{23}, the permutation $\sigma=a_{2} x_{3} x_{1} a_{1} x_{2}$ determines the chain $c=\left(\hat{0}=a_{1} a_{2} \lessdot a_{1} \lessdot a_{1} x_{3} \lessdot a_{1} x_{1} x_{3} \lessdot\right.$ $\left.x_{1} x_{3} \lessdot x_{1} x_{2} x_{3}=\hat{1}\right)$.

Next, suppose that $\mathscr{A}-A=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}$ and $X=\left\{x_{j_{1}}, x_{j_{2}}, \ldots, x_{j_{k}}\right\}$, for some $1 \leqslant k \leqslant \min \{M, N\}$, where $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$. Observe that the shuffle condition implies that if the pairs x_{m}, a_{p} and x_{n}, a_{q} are involved in coverings of type ($x a$), then $m \neq n$ and $p \neq q$, and $m<n$ if and only if $p<q$. Therefore, in the multipermutation σ, the second occurrence of $x_{j_{r}}$ must correspond to a covering of
type ($x a$) involving the pair of letters $x_{j_{r}}, a_{i r}$, for each $r=1, \ldots, k$. The first occurrence of $x_{j_{r}}$ in σ is forced to correspond to the insertion of $x_{j_{r}}$ immediately in front of $a_{i_{r}}$, and for each $x_{t} \notin X$, its unique occurrence in σ forces the insertion of x_{t} in the rightmost position possible to the left of $a_{i_{r}}$ and/or $x_{j_{r}}$, if $j_{r}=\min \left\{s>t: x_{s} \in X\right\}$ (if this set is empty, then x_{t} is inserted in the rightmost position possible). As in the preceding case, a unique maximal chain c is determined by σ. For example, for W_{45}, let $\sigma=x_{3} x_{5} a_{2} x_{4} x_{2} x_{1} x_{2} x_{4} a_{4}$. The coverings of type ($x a$) must involve the pairs x_{2}, a_{1} and x_{4}, a_{3}. From σ we reconstruct the chain

$$
\begin{aligned}
\hat{0} & =a_{1} a_{2} a_{3} a_{4} \lessdot a_{1} a_{2} x_{3} a_{3} a_{4} \lessdot a_{1} a_{2} x_{3} a_{3} a_{4} x_{5} \lessdot a_{1} x_{3} a_{3} a_{4} x_{5} \\
& \lessdot a_{1} x_{3} x_{4} a_{3} a_{4} x_{5} \lessdot x_{2} a_{1} x_{3} x_{4} a_{3} a_{4} x_{5} \lessdot x_{1} x_{2} a_{1} x_{3} x_{4} a_{3} a_{4} x_{5} \\
& \lessdot x_{1} x_{2} x_{3} x_{4} a_{3} a_{4} x_{5} \lessdot x_{1} x_{2} x_{3} x_{4} a_{4} x_{5} \lessdot x_{1} x_{2} x_{3} x_{4} x_{5}=\hat{1} .
\end{aligned}
$$

The behavior of Λ on intervals of rank two can be easily described.
Lemma 3.2. For every rank-two interval in a poset of shuffles $W_{M N}$, the labeling Λ conforms to one of the following cases:
(1) If a rank-two interval is isomorphic to $C_{2} \times C_{2}$, then its two chains c_{1} and c_{2} have label sequences of the form $\Lambda\left(c_{1}\right)=\left(l_{1}, l_{2}\right)$ and $\Lambda\left(c_{2}\right)=\left(l_{2}, l_{1}\right)$, where l_{1} and l_{2} are distinct letters from $\mathscr{A} \cup \mathscr{X}$.
(2) If a rank-two interval is isomorphic to Π_{3}, then its three chains γ_{1}, γ_{2} and γ_{3} have label sequences of the form $\Lambda\left(\gamma_{1}\right)=\left(x_{j}, l\right), \Lambda\left(\gamma_{2}\right)=\left(l, x_{j}\right)$, and $\Lambda\left(\gamma_{3}\right)=\left(x_{j}, x_{j}\right)$, for suitable letters $x_{j} \in \mathscr{X}$ and $l \in \mathscr{A} \cup\left(\mathscr{X}-\left\{x_{j}\right\}\right)$.

Proof. Each rank-two interval of a poset of shuffles has either 4 or 5 elements. That is, each rank-two interval is isomorphic either to $C_{2} \times C_{2}$ or to the lattice Π_{3} of partitions of a 3-element set. Specifically, an interval of rank 2 is of one of the following forms:
(i) $\left[u a_{m} v a_{n} w, u v w\right]$ or $\left[u v w, u x_{p} v x_{q} w\right]$, for some shuffle words u, v, w; or [$u a_{m} v w$, $u v x_{p} w$] or [$u v a_{m} w, u x_{p} v w$], for some words u, v, w with $v \neq \emptyset$. By Lemma 2.2, these intervals are isomorphic to $W_{10} \times W_{10}, W_{01} \times W_{01}$, or $W_{10} \times W_{01}$, all of which are isomorphic to $C_{2} \times C_{2}$.
(ii) $\left[u a_{p} v, u x_{m} v\right]$ for some words u, v. Such an interval is isomorphic to $W_{11} \simeq \Pi_{3}$.

The definition of the chain labeling Λ and the two possible structures of the intervals of rank 2 yield the two cases in the desired conclusion.

Proposition 3.3. The labeling Λ is an S-labeling of the poset of shuffles.
Proof. This follows immediately from Lemmas 3.1 and 3.2.
Proposition 3.4. Consider the ordering $a_{1}<a_{2}<\cdots<a_{M}<x_{1}<x_{2}<\cdots<x_{N}$ on the union of the two alphabets. Then the labeling Λ is an R^{*}-labeling of the poset of shuffles.

Proof. Let $\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{r}<v$ be a chain in $W_{M N}$. Let B be the set of pairs of letters $x_{j_{s}}, a_{i_{s}}$ which occur as consecutive letters in w^{r} and such that $a_{i_{s}} \notin\{v\}$. By the definition of Λ, every covering along any $w^{r}-v$-chain where such an $a_{i s}$ is removed will be a covering of type ($x a$). Thus, consider the $w^{r}-v$-chain obtained by first deleting, in increasing order of their indices, the letters in $(\mathscr{A}-B) \cap\left(\left\{w^{r}\right\}-\{v\}\right)$; then inserting, also in increasing order of the indices, every $x_{t} \in\{v\}-\left\{w^{r}\right\}$, and deleting each letter $a_{i_{s}} \in B$ after the insertion of $x_{t} \in\{v\}-\left\{w^{r}\right\}$ if and only if $t<j_{s}$. The label sequence of this chain is clearly strictly increasing. Since any other label sequence with distinct entries is a permutation of the same set of labels $(\mathscr{A}-B) \cup \mathscr{X}$, this is the only strictly increasingly labeled $w^{r}-v$-chain.

Remark 3.5. The reader familiar with the theory of shellable posets may be interested in the observation that the labeling 1 readily gives rise to a CL-labeling of $W_{M N}$ (in the sense of $[1,2]$). Indeed, the unique strictly increasing $\hat{0}-u$-chain guaranteed by the preceding result can be taken as the 'root' of each interval $[u, v]$, and the labeling Λ^{*} defined by $\Lambda^{*}(u \lessdot v)=(\Lambda(u \lessdot v), M+N-\rho(u))$ is a CL-labeling valued in $((\mathscr{A} \cup \mathscr{X}) \times[M+N])^{M+N}$, under lexicographic order on $(\mathscr{A} \cup \mathscr{X}) \times[M+N]$.

Remark 3.6. The proof of Proposition 3.4 shows that the R^{*}-labeling Λ has a stronger property: the unique increasingly labeled extension of a chain $\hat{0}=w^{0} \lessdot w^{1} \lessdot \cdots \lessdot w^{r}<v$ depends only on w^{r} and v. We will write $\gamma\left(w^{r}, v\right)$ to denote this chain.

The remainder of this section is devoted to enumerative consequences of the labeling Λ, yielding combinatorial proofs of results from [8]. We begin with a bijective proof of the local rank symmetry of the posets of shuffles (an inductive proof was given in Proposition 2.4). In particular, this is a bijective proof of the rank symmetry of a poset of shuffles. An alternative bijective proof of the rank symmetry of $W_{M N}$ is implicit in the symmetric chain decomposition which appears in [8].

Corollary 3.7. For every two elements $u<w$ in a poset of shuffes $W_{M N}$, there is a bijection between the elements of rank $\rho(u)+i$ and the elements of rank $\rho(w)-i$ in the interval $[u, w]$.

Proof. Let $v \in[u, w]$ be an element of rank $\rho(u)+i$. Consider the maximal chain $c(u, v, w)$ formed by concatenating $\gamma(\hat{0}, u), \gamma(u, v), \gamma(v, w)$, and $\gamma(w, \hat{1})$. Let $c^{\prime}(u, v, w)$ be the unique maximal chain whose label sequence is the concatenation of $\Lambda(\gamma(\hat{0}, u))$, $\Lambda(\gamma(v, w)), \Lambda(\gamma(u, v))$, and $\Lambda(\gamma(w, \hat{1}))$. Define $\varphi(v)$ to be the element of rank $\rho(w)-i$ on the chain $c^{\prime}(u, v, w)$. It is easy to see (from the definition and injectivity of Λ) that $c^{\prime}(u, v, w)$ contains the elements u and w and that φ establishes a bijection between the rank- $(\rho(u)+i)$ and the rank- $(\rho(w)-i)$ elements in the interval $[u, w]$.

Corollary 3.8. The number of elements of the poset $W_{M N}$ is equal to $\sum_{k \geqslant 0}\binom{M}{k}\binom{N}{k} 2^{M+N-2 k}$.

Proof. We may count the increasingly labeled chains $\gamma(\hat{0}, w)$ since they are in bijection with the elements $w \in W_{M N}$. For a prescribed number $k \geqslant 0$ of coverings of type ($x a$), the set of labels along such a chain is determined by the choice of k pairs from $\mathscr{A} \times \mathscr{X}$ for the coverings of type ($x a$), and an arbitrary subset of the complement in $\mathscr{A} \cup \mathscr{X}$ of the letters chosen for the k pairs.

Lemma 3.1 yields readily the number of maximal chains in a poset of shuffles, giving a more direct derivation of formula (6) due to Greene.

Corollary 3.9. The number of maximal chains in the poset of shuffes $W_{M N}$ is

$$
C_{M N}=\sum_{k \geqslant 0}\binom{M}{k}\binom{N}{k} \frac{(M+N)!}{2^{k}} .
$$

Proof. By Lemma 3.1, we can count the maximal chains in $W_{M N}$ by counting the possible label sequences $\Lambda(c)$. For each value $k \geqslant 0$, the k th term in the sum gives the number of multipermutations $\Lambda(c)$ in which k letters of \mathscr{X} appear with multiplicity 2 , while k of the letters of \mathscr{A} do not occur in σ.

From the R^{*}-labeling Λ we can recover formula (7) for the Möbius function of a poset of shuffles, which was obtained in [8] using an EL-labeling as well as through an alternative computation.

Corollary 3.10. The Möbius function of the poset of shuffles $W_{M N}$ is given by

$$
\mu_{W_{M \mathrm{~N}}}(\hat{0}, \hat{1})=(-1)^{M+N}\binom{M+N}{M} .
$$

Proof. By the general theory of [2], the Möbius function is $(-1)^{M+N}$ times the number of maximal chains to which the R^{*}-labeling Λ assigns weakly decreasing label sequences. From Lemma 3.1 it follows that such chains have label sequences of the form

$$
\Lambda(c)=\left(x_{j_{N+k}}, x_{j_{N+k-1}}, \ldots, x_{j_{1}}, a_{i_{M-k}}, a_{i_{M-k-1}}, \ldots, a_{i_{1}}\right)
$$

for some $0 \leqslant k \leqslant \min \{M, N\}$, where $i_{M-k}>i_{M-k-1}>\cdots>i_{1}$ and $j_{N+k} \geqslant j_{N+k-1} \geqslant$ $\cdots \geqslant j_{1}$ with k nonconsecutive equalities. Therefore, the decreasingly labeled maximal chains correspond bijectively to the selections of $M-k$ letters from \mathscr{A} and k letters from \mathscr{X} for some k. It is an easy exercise to show that the number of such selections is $\left(\begin{array}{c}M+N\end{array}\right)$ yielding the desired formula for the Möbius function.

4. A local action of the symmetric group

We begin with two general results which imply that the posets of shuffles have a local action of the symmetric group and establish the relation between the Frobenius characteristic of the corresponding character and the flag-symmetric function of the poset.

Theorem 4.1. Suppose P is a finite ranked poset of rank n, with $\hat{0}$ and $\hat{1}$. If P has an S-labeling Λ, then the action of S_{n} on labels by permuting coordinates induces a local (permutation) action on the maximal chains of P.

Proof. Let $\Lambda(c)=\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ be the label of a maximal chain c, and let $1 \leqslant i \leqslant n-1$. The adjacent transposition $\sigma_{i}=(i, i+1)$ acts on $\Lambda(c)$ by interchanging Λ_{i} and Λ_{i+1}. By definition of S-labeling, there is a unique maximal chain c^{\prime} such that $\Lambda\left(c^{\prime}\right)=\sigma_{i} \cdot \Lambda(c)$. Since the σ_{i} 's generate S_{n}, we get an action of S_{n} on the set of labels of maximal chains, and hence on $\mathscr{M}(P)$. Moreover, this action is local by the definition of an S-labeling.

Observation 4.2. (a) Suppose S_{n} acts on the maximal chains of a labeled poset P of rank n by permuting the coordinates of the labels. Then each orbit of maximal chains consists of the chains labeled by the permutations of a multiset, and the Frobenius characteristic of the S_{n}-action is $\sum_{v \vdash n} N(v) h_{v}$, where $N(v)$ denotes the number of orbits of maximal chains which are labeled by the permutations of a multiset of type v (i.e., v_{1}, v_{2}, \ldots are the multiplicities of the distinct elements of the multiset).
(b) A special case is when the maximal chains in each orbit form a subposet isomorphic to a product of chains, $C_{v_{1}+1} \times C_{v_{2}+1} \times \cdots$. It is not hard to show that this is the case for the posets of shuffles and the action discussed here, as well as for the lattice of noncrossing partitions discussed in [17]. Thus, in addition to admitting a partition of the elements into boolean lattices (as shown in [8] for poset of shuffles and in [14] for the noncrossing partition lattice), these posets also admit a partition of their maximal chains into products of chains. Fig. 4 shows the orbits of maximal chains in W_{21}. In general, in $W_{M N}$, each orbit of maximal chains is isomorphic to a product of chains of the form $C_{3}^{k} \times C_{2}^{M+N-2 k}$.

Observations 4.2 is generalized by the following result.
Theorem 4.3. Suppose that P is a ranked poset (with $\hat{0}$ and $\hat{1}$) of rank n with a local S_{n}-action.
(a) Let $c \in \mathscr{M}(P)$. Then the stabilizer $\operatorname{stab}(c)$ of c is a Young subgroup $S_{B_{1}} \times S_{B_{2}} \times \cdots \times S_{B_{k}}$ of S_{n}, where $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of n.
(b) If ψ is the character of the S_{n}-action, then $\operatorname{ch}(\psi)$ is h-positive, i.e., $\operatorname{ch}(\psi)=\sum_{v \vdash n} a_{v} h_{v}$, where $a_{v} \geqslant 0$.
(c) If $\operatorname{ch}(\psi)=h_{v}$ for some $v \vdash n$, then $P \simeq C_{v_{1}+1} \times C_{v_{2}+1} \times \cdots$.

Fig. 4. The orbits of maximal chains in W_{21}.

Proof. (a) Let $\theta \in \operatorname{stab}(c)$, and let i be the least element of $[n]$ for which $\theta^{-1}(i)=j>i$. We claim that $(i, j) \in \operatorname{stab}(c)$. Let $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ be the cycle of θ containing i, where $i_{1}=i$ and $i_{r}=j$. Let $\tau_{1}, \tau_{2}, \ldots, \tau_{s}$ be the remaining cycles of θ. Then (multiplying right-to-left)

$$
\begin{align*}
\theta & =\tau_{s} \cdots \tau_{2} \tau_{1}\left(i_{3}, i_{2}\right)\left(i_{4}, i_{3}\right) \cdots\left(i_{r}, i_{r-1}\right)\left(i_{1}, i_{r}\right) \\
& =\tau_{s} \cdots \tau_{2} \tau_{1}\left(i_{3}, i_{2}\right)\left(i_{4}, i_{3}\right) \cdots\left(i_{r}, i_{r-1}\right) \sigma_{i_{r}-1} \sigma_{i_{r}-2} \cdots \sigma_{i_{1}+1} \sigma_{i_{1}} \sigma_{i_{1}+1} \cdots \sigma_{i_{r}-2} \sigma_{i_{r}-1} \tag{11}
\end{align*}
$$

Note that only one factor of the last product above moves i_{1}, namely, $\sigma_{i_{1}}$. Let t be the element of c of rank i. It follows from the definition of local action that t is also an element of the chain $c^{\prime}=\sigma_{i_{2}} \cdots \sigma_{i_{r}-2} \sigma_{i_{r}-1} \cdot c$. Let s be the element of the chain $c^{\prime \prime}=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{r}-1} \cdot c$ of rank i. Then again by definition of local action, s is an element of the chain $\theta \cdot c$ (since the factors to the left of $\sigma_{i_{1}}$ in (11) can be written as products of σ_{p} 's with $p>i$). Since $\theta \cdot c=c$, we have $s=t$. Thus $\sigma_{i_{1}} \cdot c^{\prime}=c^{\prime}$, so we can remove the factor $\sigma_{i_{1}}$ from the product (11) and still get a permutation $\theta^{\prime} \in \operatorname{stab}(c)$. But

$$
\begin{aligned}
\theta^{\prime} & =\tau_{s} \cdots \tau_{2} \tau_{1}\left(i_{3}, i_{2}\right) \cdots\left(i_{r-1}, i_{r-2}\right)\left(i_{r}, i_{r-1}\right) \\
& =\theta\left(i_{1}, i_{r}\right) .
\end{aligned}
$$

Hence $\left(i_{1}, i_{r}\right) \in \operatorname{stab}(c)$, as claimed. It follows by induction on i (as defined above) that if for any $a, b \in[n]$ we have $\theta(a)=b$, then $(a, b) \in \operatorname{stab}(c)$. From this it is clear that $\operatorname{stab}(c)$ is a Young subgroup of S_{n}.
(b) By (a), the S_{n}-action on $\mathscr{M}(P)$, when restricted to an orbit $\mathcal{O} \in \mathscr{M}(P) / S_{n}$, is equivalent to the action of S_{n} on the set S_{n} / S_{v} of cosets of some Young subgroup $S_{v}=S_{v_{1}} \times S_{v_{2}} \times \cdots$, where $v=v_{\mathbb{C}}+n$. If ψ^{v} is the character of this action of S_{n} on S_{n} / S_{v}, then $\operatorname{ch}\left(\psi^{v}\right)=h_{r}$. Hence

$$
\operatorname{ch}(\psi)=\sum_{c \in \mathbb{H}(P) / S_{n}} h_{v_{c}} .
$$

(c) Let M be the multiset $\left\{1^{v_{1}}, 2^{1_{2}}, \ldots\right\}$. The action of S_{n} on the set S_{M} of permutations of M obtained by permuting coordinates is equivalent to the natural action of S_{n} on S_{n} / S_{v}. Hence by (a) there is an S_{n}-equivariant bijection $\rho: \mathscr{M}(P) \rightarrow S_{M}$. Let $t \in P$, say $\operatorname{rank}(t)=k$, and let c be a maximal chain of P containing t. Let $\rho(c)=a=a_{1} a_{2} \cdots a_{n} \in S_{M}$. Let $b=b_{1} b_{2} \cdots b_{n} \in S_{M}$ have the property that $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ $=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ (as multisets), so also $\left\{a_{k+1}, \ldots, a_{n}\right\}=\left\{b_{k+1}, \ldots, b_{n}\right\}$. Since a can be transformed to b by adjacent transpositions all different from σ_{k}, it follows from the definition of local action that the chain $c^{\prime} \in \mathscr{M}(P)$ satisfying $\rho\left(c^{\prime}\right)=b$ contains t. Hence for any submultiset $N \subseteq M$, we can define t_{N} to be the unique element of P for which there exists $c \in \mathscr{M}(P)$ containing t_{N} and such that N is equal to the first $k=\operatorname{rank}\left(t_{N}\right)$ elements of $\rho(c)$. We thus have a well-defined surjection $\tau: B_{M} \rightarrow P, \tau(N)=t_{N}$, where B_{M} is the lattice of submultisets of M ordered by inclusion. Since $B_{M} \simeq C_{v_{1}+1} \times C_{v_{2}+1} \times \cdots$, it suffices to show that τ is a poset isomorphism.

By construction, τ is order preserving (i.e., $N \subseteq N^{\prime} \Rightarrow \tau(N) \leqslant \tau\left(N^{\prime}\right)$), and the induced map $\tau: \mathscr{M}\left(B_{M}\right) \rightarrow \mathscr{M}(P)$ is injective. Since $\# \mathscr{M}\left(B_{M}\right)=\# \mathscr{M}(P)=n!/ v_{1}!v_{2}!\cdots$, it follows that $\tau: \mathscr{M}\left(B_{M}\right) \rightarrow \mathscr{M}(P)$ is a bijection. Suppose that $N, N^{\prime} \in B_{M}$ with $N \neq N^{\prime}$ and $\tau(N)=\tau\left(N^{\prime}\right)$. Let c_{1} be a maximal chain of the interval $[\emptyset, N]$ of B_{M}, and c_{2} a maximal chain of $\left[N^{\prime}, M\right]$. Then $\tau\left(c_{1} \cup c_{2}\right)$ is a maximal chain of P not belonging to $\tau\left(\mathscr{M}\left(B_{M}\right)\right)$, contradicting the surjectivity of $\tau: \mathscr{M}\left(B_{M}\right) \rightarrow \mathscr{M}(P)$. Thus τ is injective on B_{M}. Since B_{M} and P have the same number of maximal chains and τ is injective, it is easy to see that τ must be an isomorphism.

Theorem 4.4. Suppose P is a flag-symmetric poset of rank n with flag-symmetric function F_{P} and having an S-labeling Λ. Let ψ be the character of the action of S_{n} on $\mathbf{C} \mathscr{M}(P)$ induced from the S_{n}-action on labels.
(a) If Λ is an RS-labeling then $F_{P}=\operatorname{ch}(\psi)=h_{v}$ for some partition v of n, and $P \simeq C_{v_{1}+1} \times C_{v_{2}+1} \times \cdots$.
(b) If Λ is an $R^{*} S$-labeling, then $\operatorname{ch}(\psi)=\omega F_{P}$, where ω is the standard involution on symmetric functions [12, p. 21]. Hence F_{P} is an e-positive symmetric function.

Proof. (a) Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{f}\right) \in \mathbf{P}^{\prime}$, with $\gamma_{1}+\cdots+\gamma_{f}=n$. For a finite multiset M, let $\mathscr{U}_{\gamma}(M)$ denote the collection of all sequences $\pi=\left(M_{1}, \ldots, M_{\ell}\right)$ of (nonempty) multisets M_{i} such that $\# M_{i}=\gamma_{i}$ and $\cup M_{i}=M$. Let

$$
\mathscr{U}_{\because}(\Lambda)=\bigcup_{M} \mathscr{U}_{\gamma}(M),
$$

where M ranges over all distinct multisets $M=\left\{\Lambda_{1}, \ldots, \Lambda_{n}\right\}$ of entries of labels $\Lambda(c)=\left(\Lambda_{1}, \ldots, \Lambda_{n}\right)$ of maximal chains of P. For each $\pi=\left(M_{1}, \ldots, M_{\ell}\right) \in \mathscr{U}_{\gamma}(\Lambda)$, it follows from the definition of $R S$-labeling that there is a unique chain $t(\pi)=$ ($\hat{0}=t_{0}<t_{1}<\cdots<t_{\ell}=\hat{1}$) of P with the following properties:
(i) $\rho\left(t_{i}\right)-\rho\left(t_{i-1}\right)=\gamma_{i}$ for $1 \leqslant i \leqslant \ell$, and
(ii) if c is the unique completion of t to a maximal chain of P whose label $\Lambda(c)=\left(\Lambda_{1}, \ldots, \Lambda_{\ell}\right)$ satisfies

$$
\begin{equation*}
\Lambda_{1} \leqslant \cdots \leqslant \Lambda_{\gamma_{1}}, \Lambda_{\gamma_{1}+1} \leqslant \cdots \leqslant \Lambda_{\gamma_{1}+\gamma_{2}}, \ldots, \Lambda_{\gamma_{1}+\cdots+\gamma_{-1}+1} \leqslant \cdots \leqslant \Lambda_{n} \tag{12}
\end{equation*}
$$

then $M_{i}=\left\{\Lambda_{\gamma_{1}+\cdots+\gamma_{i-1}+1}, \ldots, \Lambda_{\gamma_{1}+\cdots \gamma_{i}}\right\}$. The map $\pi \mapsto t(\pi)$ is a bijection from $\mathscr{U}_{\gamma}(\Lambda)$ to the set of all chains of P whose elements have ranks $0, \gamma_{1}, \gamma_{1}+\gamma_{2}, \ldots, \gamma_{1}+\cdots+\gamma_{t-1}, n$. Hence

$$
\begin{equation*}
F_{P}=\sum_{\lambda \vdash n} \alpha_{P}(\lambda) m_{\lambda}=\sum_{\lambda \vdash n} \# \mathscr{U}_{\lambda}(\Lambda) \cdot m_{\lambda} . \tag{13}
\end{equation*}
$$

Let $v=\operatorname{type}(M)$, i.e., $v \vdash n$ and the part multiplicities of M (in weakly decreasing order) are v_{1}, v_{2}, \ldots. It is well-known (equivalent to [12, (6.7)(ii)]) that

$$
\begin{equation*}
\sum_{\lambda \mid n} \# \mathscr{U}_{\lambda}(M) \cdot m_{\lambda}=h_{\varphi} . \tag{14}
\end{equation*}
$$

Let $\mathscr{L}(\Lambda)$ be the collection of all multisets $M=\left\{\Lambda_{1}, \ldots, \Lambda_{n}\right\}$ of entries of a maximal chain label of P. Summing (14) over all $M \in \mathscr{L}_{\lambda}$ and comparing with (13) gives

$$
F_{P}=\sum_{M \in \mathscr{L}(A)} h_{\mathrm{type}(M)}
$$

Since the action of S_{n} by permuting coordinates of permutations of multiset of type v has Frobenius characteristic h_{v}, we get $F_{P}=\operatorname{ch}(\psi)$.

Since there is a unique weakly increasing maximal chain of P from $\hat{0}$ to $\hat{1}$ (equivalently, since $\alpha_{P}(\emptyset)=1$), we get $F_{P}=h_{v}$ for some $v \vdash n$.

It now follows from Theorem 4.3(c) that $P \simeq C_{v_{1}+1} \times C_{v_{2}+1} \times \cdots$.
(b) The argument is parallel to (a), except that the inequalities \leqslant of (12) become strict inequalities <. Hence $\mathscr{U}_{\gamma}(M)$ is replaced by the collection $\mathscr{V}_{\gamma}(M)$ of sequences $\pi=\left(M_{1}, \ldots, M_{\ell}\right)$ of sets, rather than multisets, so (14) becomes

$$
\sum_{\lambda \vdash n} \# \mathscr{V}_{\lambda}(M) \cdot m_{\lambda}=e_{v} .
$$

Since $\omega e_{v}=h_{v}$, we get $F_{P}=\omega(\operatorname{ch}(\psi))$.
Expression (10) for the flag-symmetric function $F_{W_{S N}}$, follows now immediately from the general Theorem 4.4(b).

Corollary 4.5. The action of S_{M+N} on the label sequences of the maximal chains in the poset of shuffles $W_{M N}$ induces a local action on the poset. The Frobenius
characteristic for the character ψ of the corresponding representation of S_{M+N} and the flag-symmetric function of $W_{M N}$ are related by

$$
\operatorname{ch}(\psi)=\sum_{k \geqslant 0}\binom{M}{k}\binom{N}{k} h_{2}^{k}(x) h_{1}^{M+N-2 k}(x)=\omega F_{W_{M N}}(x) .
$$

In the remainder of this section we make comments regarding the preceding results and discuss other possible directions for generalizations.

Remark 4.6. Theorems 4.1 and 4.4 apply to posets which are products of chains and also to the lattice of noncrossing partitions. The corresponding conclusions are established directly in $[16,17]$.

Remark 4.7. The power series $F_{P}(x)$ may be viewed in a broader context. For a function φ in the incidence algebra (see, e.g., [15, Section 3.6]) of a ranked poset P, define

$$
\alpha_{P}(\varphi, S)=\sum_{\hat{0}=t_{0}<t_{1}<\cdots<t_{k}<\hat{1}} \varphi\left(\hat{0}, t_{1}\right) \varphi\left(t_{1}, t_{2}\right) \cdots \varphi\left(t_{k}, \hat{1}\right),
$$

where the sum ranges over the chains in P whose rank support is the set $S \subseteq[n-1]$, and n is the rank of P. Now define

$$
F_{P}(\varphi, x):=\sum_{\substack{s=\{n-1] \\ s=\left\{s_{1}<s_{2}<\cdots<s_{k}\right\}}} \alpha_{P}(\varphi, S) . \sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{k+1}} x_{i_{1}}^{s_{1}} x_{i_{2}}^{s_{2}-s_{1}} \cdots x_{i_{k+1}}^{n-s_{k}} .
$$

Note that $F_{P}(\varphi, x)$ is a quasisymmetric function, homogeneous of degree n. In particular, if $\varphi=\zeta$, the zeta function of P (i.e., $\zeta(u, v)=1$ if $u \leqslant v$, and $\zeta(u, v)=0$ otherwise), we recover $\alpha_{P}(\zeta, S)=\alpha_{P}(S)$ and $F_{P}(\zeta, x)$ is the function $F_{P}(x)$ of (2). We intend to pursue this generalization elsewhere, mentioning here only one result - the next proposition. We note that the same result holds for an arbitrary invertible element φ from the incidence algebra of P and its inverse. Here we present a direct proof for the special case $\varphi=\zeta$ and $\varphi^{-1}=\mu$ which is the instance occurring in the context of this paper.

Proposition 4.8. Let P be a ranked poset of rank n, having elements $\hat{0}$ and $\hat{1}$. If ζ and μ are, as usual, the zeta function and the Möbius function of P, then

$$
F_{P}(\mu, x)=(-1)^{n} \omega F_{P}(\zeta, x)
$$

where ω is the involution on quasisymmetric functions defined by $\omega L_{S, n}(x)=L_{\bar{S}, n}(x)$, with \bar{S} denoting the complement of S in $[n-1]$.

Proof. Using (3) and then (1), we have

$$
\omega F_{P}(\zeta, x)=\omega \sum_{S \subseteq[n-1]} \beta_{P}(S) L_{S, n}(x)=\sum_{S \subseteq[n-1]} \sum_{T \subseteq S}(-1)^{|S-T|} \alpha_{P}(T) L_{\bar{s}, n}(x) .
$$

Using Hall's theorem (e.g., [15, Proposition 3.8.5]), the sum over T evaluates to $(-1)^{|S|-1} \mu_{P_{s}}(\hat{0}, \hat{1})$. Next, using Baclawski's theorem for the Möbius function of a subposet (see [9, formula (7.2)]), the sum over T can be expressed as

$$
(-1)^{|S|-1} \sum_{k \geqslant 0} \sum_{\substack{0<t_{1}<2_{2}<\ldots<t_{i}<i \\ \text { in } P_{s}}}(-1)^{k} \mu\left(\hat{0}, t_{1}\right) \mu\left(t_{1}, t_{2}\right) \cdots \mu\left(t_{k}, \hat{1}\right) .
$$

(When $k=0$, the chain $\hat{0}<\hat{1}$ gives the term $\mu(\hat{0}, \hat{1})$.) By grouping the chains in $P_{\bar{S}}$ according to their rank support, $U \subseteq \bar{S}$, we obtain

$$
\omega F_{P}(\zeta, x)=(-1)^{n} \sum_{U \subseteq[n-1]} \alpha_{P}(\mu, U) \cdot \sum_{\bar{s} \supseteq U}(-1)^{|\bar{S}-U|} L_{\bar{S}, n}(x) .
$$

Finally, by the definition of $L_{V, n}(x)$ and an inclusion-exclusion argument, the inner sum over \bar{S} is equal to $\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{j}} x_{i_{1}}^{u_{1}} u_{i_{2}}^{u_{2}-u_{1}} \cdots x_{i_{j+1}}^{n-u_{j}}$, where $U=\left\{u_{1}<u_{2}<\cdots<u_{j}\right\}$. Thus, $\omega F_{P}(\zeta, x)=(-1)^{n} F_{P}(\mu, x)$ as claimed.

Since ω restricted to symmetric functions agrees with the standard involution ω, the expressions for the characteristic $\operatorname{ch}(\psi)$ from Theorem 4.4 can be restated as (a) $\operatorname{ch}(\psi)=F_{P}(\zeta, x)=h_{v}$ when P is $R S$-labeled, and (b) $\operatorname{ch}(\psi)=(-1)^{n} F_{P}(\mu, x)$ when P is $R^{*} S$-labeled.

Remark 4.9. The S_{M+N}-action of Corollary 4.5 is a permutation action on the maximal chains of $W_{M N}$, for which each orbit consists of those maximal chains whose label sequence $\Lambda(c)$ is a permutation of the same multiset of letters. Thus, the explanation of formula (6) for the maximal chains of $W_{M N}$ provided in the proof of Corollary 3.9 amounts to counting the maximal chains according to their orbit, and grouping the orbits according to the type $2^{k} 1^{M+N-2 k}$ of the multiset of the chain labels.

Remark 4.10. An S-labeling does not ensure that each orbit of maximal chains is isomorphic to a product of chains.

The poset shown in Fig. 5, suggested to us by Barcelo, has a local action induced from the action of S_{4} on the labels, but the orbit of chains labeled by the multiset 1122 is not a product of chains. In fact, no product of chains other than the trivial one, C_{5}, occurs as a subposet of rank four in this poset.

Remark 4.11. The converse of Theorem 4.1 does not hold. That is, a chain labeling such that the action of S_{n} on labels induces a local action is not necessarily an S-labeling.

The poset P shown in Fig. 6(a) has a labeling of its maximal chains which, although not injective, gives rise to an S_{3} local action on the maximal chains of P. The orbits are four copies of $C_{2} \times C_{3}$, each labeled in the standard way with the multiset a, b, b.

Fig. 5. A poset with an S-labeling and an orbit of maximal chains which is not a product of chains.

Fig. 6. Non-injective labelings. (a) The action on labels induces a local action. (b) The action on labels does not induce a local action.

On the other hand, the noninjective labeling of Fig. 6(b) does not produce an S_{3} action on the maximal chains (e.g., $\left.\sigma_{1} \sigma_{2} \sigma_{1}(\hat{0} \lessdot A \lessdot B \lessdot \hat{1}) \neq \sigma_{2} \sigma_{1} \sigma_{2}(\hat{0} \lessdot A \lessdot B \lessdot \hat{1})\right)$.

Finally, we give a local condition which characterizes labeled posets with a local action induced from the action on labels. This, of course, can be seen to apply to the earlier examples.

Theorem 4.12. Let P be a finite ranked poset of rank n, having $a \hat{0}$ and $\hat{1}$, and with a labeling Λ of its maximal chains. For a maximal chain $c=\left(\hat{0}=t_{0} \lessdot t_{1} \lessdot \cdots \lessdot t_{n}=\hat{1}\right)$
and a rank $i \in\{1,2, \ldots, n-2\}$, let $\tau:=\left(\hat{0}=t_{0} \lessdot t_{1} \lessdot \cdots \lessdot t_{i-1}\right)$ and let $\theta:=\left(t_{i+2} \lessdot\right.$ $t_{i+3} \lessdot \cdots \lessdot t_{n}=\hat{1}$). A local action is induced from the S_{n}-action on labels if and only if Λ satisfies the following condition for every maximal chain c and every value of $i \in\{1,2, \ldots, n-2\}$:

The length-three chains δ from t_{i-1} to t_{i+2} with labels induced by restricting $\Lambda(\tau \delta \theta)$ can be partitioned so that
(a) each class is isomorphic to $C_{2} \times C_{2} \times C_{2}$ or $C_{3} \times C_{2}$ or C_{4}, and
(b) the labeling in each class coincides with the standard labeling of a product of chains by join-irreducibles.

Proof. The conditions (a) and (b) on Λ imply readily the Coxeter relations for S_{n}, showing that the local action is well-defined. Conversely, within each orbit of chains δ, the local action fixes the chains labeled aaa, so these form classes isomorphic to C_{4}; a chain δ labeled with $a b a$ is mapped under the local action to chains with the same τ and θ and label sequences $a a b$ and baa, structured as a copy of $C_{2} \times C_{3}$ and forming a class as claimed; similarly, a chain δ labeled as $a b c$ is mapped by the subgroup generated by σ_{i} and σ_{i+1} to six chains forming a copy of $C_{2} \times C_{2} \times C_{2}$, with labels as claimed.

5. Multiplicative functions on the poset of shuffles

Consider now the poset $W_{\infty \infty}$ whose elements are the shuffles of finite words using the lower alphabet $\mathscr{A}_{\infty}=\left\{a_{1}, a_{2}, \ldots\right\}$ and the upper alphabet $\mathscr{X}_{\infty}=\left\{x_{1}, x_{2}, \ldots\right\}$. The comparability relation is as in the case of finite alphabets. A multiplicative function on $W_{\infty \infty}$ is a function f defined on the intervals in $W_{\infty \infty}$ for which $f_{00}=1$ and which has the property that if $[u, v] \simeq_{c} \prod_{i, j} W_{i j}^{c_{i j}}$ then $f(u, v)=\prod_{i j} f_{i j}^{c_{i j}}$, where we write $f_{i j}$ for the value of f on an interval canonically isomorphic to $W_{i j}$ (see Remark 2.3).

Let f and g be two multiplicative functions on $W_{\infty \infty}$, and let

$$
\begin{aligned}
& F=F(x, y)=\sum_{i, j \geqslant 0} f_{i j} x^{i} y^{j}, \\
& G=G(x, y)=\sum_{i, j \geqslant 0} g_{i j} x^{i} y^{j}, \\
& F * G=(F * G)(x, y)=\sum_{i, j \geqslant 0}(f * g)_{i j} x^{i} y^{j},
\end{aligned}
$$

where $f * g$ denotes convolution in the incidence algebra $I\left(W_{\infty \infty}\right)$. The main result of this section, Theorem 5.2, shows how to express $F * G$ in terms of F and G, and hence 'determines' the monoid of multiplicative functions on $W_{\infty \infty}$.

We begin by establishing an expression for the number of elements $w \in W_{M N}$ of a given type $\left(\left(a_{i j}\right),\left(b_{i j}\right)\right)$, that is, such that $[\hat{0}, w] \simeq_{c} \prod_{i, j} W_{i j}^{a_{i j}}$ and $[w, \hat{1}] \simeq_{c} \prod_{i, j} W_{i j}^{b_{i j}}$. Note that the canonical isomorphism (Remark 2.3) implies that $1+\sum i b_{i j}=\sum a_{i j}$ and $1+\sum j a_{i j}=\sum b_{i j}$, and we can recover from the type of a word w the values
$m:=\#(\{w\} \cap \mathscr{A})=\sum_{i, j} i\left(a_{i j}+b_{i j}\right)$ and $n:=\#(\{w\} \cap \mathscr{X})=\sum_{i, j} j\left(a_{i j}+b_{i j}\right)$. Also, the type of $w \in W_{M N}$ determines M and N, so the enumeration of shuffle words by type can be done in $W_{\infty \infty}$.

Proposition 5.1. Let ($a_{i j}$) and $\left(b_{i j}\right)$ be nonnegative integers such that

$$
\varepsilon:=\sum_{\substack{i, j \\ j \neq 0}} a_{i j}-\sum_{\substack{i, j \\ i \neq 0}} b_{i j} \in\{1,0,-1\}
$$

Set

$$
m=\sum_{i, j} i\left(a_{i j}+b_{i j}\right), \quad n=\sum_{i, j} j\left(a_{i j}+b_{i j}\right),
$$

and $r=\sum_{\substack{i \neq 0}} a_{i j}$, and $s=\sum_{\substack{i \neq 0}} b_{i j}$.
Then the number of elements $w \in W_{\infty \infty}$ whose type is $\left(\left(a_{i j}\right),\left(b_{i j}\right)\right)$ is given by

$$
\begin{cases}\left(2-\varepsilon^{2}\right) \frac{\binom{m+1}{\ldots, a_{j}, \ldots}\left(\begin{array}{c}
n+\ldots b_{i, \ldots}
\end{array}\right)}{\binom{m+1}{r}\binom{n+1}{s}} & \text { if } w \neq \emptyset(i . e ., r+s>0), \\
1 & \text { if } w=\emptyset(\text { i.e., } r=s=0) .\end{cases}
$$

Proof. Each $w \in W_{\infty \infty}-\{\emptyset\}$ is of the form $U L U L \cdots U L$, or $L U L U \cdots L U$, or $L U \cdots$ $L U L$, or $U L \cdots U L U$, where each U is a nonempty factor whose letters are from the upper alphabet, and each L is a nonempty factor whose letters are from the lower alphabet. If the type of w is $\left(\left(a_{i j}\right),\left(b_{i j}\right)\right)$ then, for each $j \geqslant 1$, the number of U-factors of length j is $\sum_{i} a_{i j}$ and, for each $i \geqslant 1$, the number of L-factors of length i in w is equal to $\sum_{j} b_{i j}$. The alternation of nonempty L - and U-factors imposes the condition $\varepsilon \in\{1,0,-1\}$ appearing in the hypothesis. To construct a word w of the prescribed type, we begin by deciding the length of each U - and L-factor. The number of possibilities is the number of (multi)permutations of the nonzero lengths, so that U - and L-factors alternate:

$$
\begin{equation*}
\binom{r}{a_{01}, a_{02}, \ldots, a_{11}, a_{12}, \ldots}\binom{s}{b_{10}, b_{20}, \ldots, b_{11}, b_{21}, \ldots}(1+\chi(\varepsilon=0)), \tag{15}
\end{equation*}
$$

where, following Garsia [6] (see also [11]), if p is a proposition then we write $\chi(p)=1$ if p is true, and $\chi(p)=0$ if p is false. To complete the construction of w, we need to choose the location of the $W_{i 0}$'s and $W_{0 j}$'s required by entries $a_{i 0}$ and $b_{0 j}$ in the type of w. A factor $W_{i 0}$ in the canonical product for $[\hat{0}, w]$ must arise between two successive lower alphabet letters of w, or in front of the first L-factor if w begins with an L-factor, or after the last L-factor if w ends with an L-factor. Therefore such a factor $W_{i 0}$ occurs in one of $m-s+1-\varepsilon$ positions. Similarly, a factor $W_{0 j}$ in the canonical product for [w, î] can arise from any of $n-r+1+\varepsilon$ positions (between two successive letters from the upper alphabet, in front of the first U-factor if w begins with a U-factor, or after the last U-factor if w ends with a U-factor). In conclusion,
the word w can be completed in

$$
\binom{m-s+1-\varepsilon}{a_{10}, a_{20}, \ldots, m-s+1-\varepsilon-\sum_{i} a_{i 0}}\binom{n-r+1+\varepsilon}{b_{01}, b_{02}, \ldots, n-r+1+\varepsilon-\sum_{j} b_{0 j}}
$$

ways.
The remainder of the proof is a calculation. After multiplying (15) by the preceding expression, the relations $r-s=\varepsilon, 1+\sum i b_{i j}=\sum a_{i j}$, and $1+\sum j a_{i j}=\sum b_{i j}$ allow some simplifications. For example, $m-s+1-\varepsilon-\sum_{i} a_{i 0}=m+1-r-\sum_{i} a_{i 0}=\sum_{i} i b_{i j}+$ $1-\left(r+\sum_{i} a_{i 0}\right)=0$. Similarly, $n-r+1+\varepsilon-\sum_{j} b_{0 j}=0$.

The first case in the conclusion of the proposition now follows from a simple manipulation with binomial coefficients. The case $w=\emptyset$ is trivial, so the proof is complete.

Theorem 5.2. Let $F_{0}=F(x, 0), G_{0}=G(0, y)$, and

$$
\begin{aligned}
& \tilde{F}(x, y)=F\left(x, G_{0} y\right) \\
& \tilde{G}(x, y)=G\left(F_{0} x, y\right)
\end{aligned}
$$

Then

$$
\begin{equation*}
\frac{1}{F * G}=\frac{1}{\tilde{F} G_{0}}+\frac{1}{F_{0} \tilde{G}}-\frac{1}{F_{0} G_{0}} \tag{16}
\end{equation*}
$$

Proof. For fixed $r, s, m, n \geqslant 0$ write

$$
Q_{r s, m, n}=\sum \frac{\Pi f_{i j}^{a_{j j}} b_{i j}^{b_{i j}} x^{\sum i\left(a_{u}+b_{i j}\right) y^{\sum j\left(a_{i j}+b_{i j}\right)}}}{\left(\prod a_{i j}!\right)\left(\prod b_{i j}!\right)}
$$

where the sum ranges over all $a_{i j}$ and $b_{i j}$ satisfying

$$
\begin{aligned}
& \sum_{j \neq 0} a_{i j}=r, \quad \sum_{i \neq 0} b_{i j}=s, \\
& \sum i b_{i j}=m, \quad \sum j a_{i j}=n \\
& m+1=\sum a_{i j}, \quad n+1=\sum b_{i j} .
\end{aligned}
$$

By Proposition 5.1, the convolution $F * G$ is given by

$$
F * G=(F * G)_{-1}+\left(2(F * G)_{0}-F_{0} G_{0}\right)+(F * G)_{1},
$$

where

$$
\begin{aligned}
& (F * G)_{-1}=\sum_{k, m, n} k!(k+1)!(m-k)!(n+1-k)!Q_{k+1, k, m, n}, \\
& (F * G)_{0}=\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)!Q_{k, k, m, n}, \\
& (F * G)_{1}=\sum_{k, m, n}(k+1)!k!(m+1-k)!(n-k)!Q_{k, k+1, m, n} .
\end{aligned}
$$

If M is a monomial then write $[M] \mathrm{Q}$ for the coefficient of M in the power series Q. We first consider $(F * G)_{0}$. We have

$$
\begin{aligned}
& (F * G)_{0}=\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)!\left[q^{m+1} r^{n+1} s^{m} t^{n} u^{k} v^{k}\right] \\
& \sum_{a_{i j}, b_{i j}} \frac{\prod_{j \neq 0}\left(q t^{j} u f_{i j} x^{i} y^{j}\right)^{a_{i j}} \prod_{i}\left(q f_{i 0} x^{i}\right)^{a_{i 0}} \prod_{i \neq 0}\left(r s^{i} v g_{i j} x^{i} y^{j}\right)^{b_{i j}} \prod_{j}\left(r g_{0 j} y^{j}\right)^{b_{0 j}}}{\left(\prod a_{i j}!\right)\left(\prod_{i j}!\right)} \\
& =\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)!\left[q^{m+1} r^{n+1} s^{m} t^{n} u^{k} v^{k}\right] \\
& \times \prod_{i, j}\left(\sum_{a_{i j} \geqslant 0} \frac{\left(q t^{j} u^{\chi(i \neq 0)} f_{i j} x^{i} y^{j}\right)^{a_{i j}}}{a_{i j}!}\right) \cdot\left(\sum_{a_{i j} \geqslant 0} \frac{\left(r s^{i} v^{\chi(i \neq 0)} g_{i j} x^{i} y^{j}\right)^{b_{j j}}}{b_{i j}!}\right) \\
& =\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)! \\
& \times\left[q^{m+1} r^{n+1} s^{m} t^{n} u^{k} v^{k}\right] \prod_{i, j} \exp \left(q t^{j} u^{\chi(j \neq 0)} f_{i j} x^{i} y^{j}+r s^{i} v^{\chi(i \neq 0)} g_{i j} x^{i} y^{j}\right) \\
& =\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)! \\
& \times\left[q^{m+1} r^{n+1} s^{m} t^{n} u^{k} v^{k}\right] \exp \sum_{i, j}\left(q t^{j} u^{\chi(j \neq 0)} f_{i j} x^{i} y^{j}+r s^{i} v^{\chi(i \neq 0)} g_{i j} x^{i} y^{j}\right) \\
& =\sum_{k, m, n} k!^{2}(m+1-k)!(n+1-k)! \\
& \times\left[s^{m} t^{n} u^{k} v^{k}\right] \frac{\left(\sum_{i, j} t^{j} u^{\chi(j \neq 0)} f_{i j} x^{i} y^{j}\right)^{m+1}}{(m+1)!} \cdot \frac{\left(\sum_{i, j} s^{i} v^{\chi(i \neq 0)} g_{i j} x^{i} y^{j}\right)^{n+1}}{(n+1)!} \\
& =\sum_{k, m, n} \frac{k!^{2}(m+1-k)!(n+1-k)!}{(m+1)!(n+1)!}\left[s^{m} t^{n}\right]\binom{m+1}{k}\left(\sum_{i} f_{i 0} x^{i}\right)^{m+1-k} \\
& \times\left(\sum_{\substack{i, j \\
j \neq 0}} f_{i j} t^{j} x^{i} y^{j}\right)^{k}\binom{n+1}{k}\left(\sum_{i} g_{0 j} y^{j}\right)^{n+1-k}\left(\sum_{\substack{i, j \\
i \neq 0}} g_{i j}{ }^{j} x^{i} y^{j}\right)^{k} \\
& =\sum_{k, m, n}\left[s^{m} t^{n}\right]\left(\sum_{i} f_{i 0} x^{i}\right)^{m+1-k}\left(\sum_{\substack{i, j \\
j \neq 0}} f_{i j} t^{j} x^{i} y^{j}\right)^{k}\left(\sum_{i} g_{0 j} y^{j}\right)^{n+1-k} \\
& \times\left(\sum_{\substack{i, j \\
i \neq 0}} g_{i j} s^{i} x^{i} y^{j}\right)^{k}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{k}\left(\sum_{i} f_{i 0} x^{i}\right)^{1-k}\left(\sum_{j} g_{0 j} y^{j}\right)^{1-k} \\
& \times \sum_{m, n}\left[s^{m} t^{n}\right]\left(\sum_{\substack{i, j \\
j \neq 0}} f_{i j} t^{j} x^{i} y^{j}\right)^{k}\left(\sum_{\substack{i, j \\
i \neq 0}} g_{i j} s^{i} x^{i} y^{j}\right)^{k} \\
& \cdot\left(\sum_{i} f_{i 0} x^{i}\right)^{m}\left(\sum_{j} g_{0 j} y^{j}\right)^{n} \\
= & \sum_{k}\left(\sum_{i} f_{i 0} x^{i}\right)^{1-k}\left(\sum_{j} g_{0 j} y^{j}\right)^{1-k} \\
& \times\left(\sum_{\substack{i, j \\
j \neq 0}}\left(\sum_{r} g_{0 r} y^{r}\right)^{j} f_{i j}, x^{i} y^{j}\right)^{k}\left(\sum_{\substack{i, j \\
i \neq 0}}\left(\sum_{s} f_{s 0} x^{s}\right)^{i} g_{i j} x^{i} y^{j}\right)^{k}
\end{aligned}
$$

Note that

$$
\sum_{r} g_{0 r} y^{r}=G_{0}
$$

and

$$
\sum_{\substack{i, j \\ j \neq 0}} z^{j} f_{i j} x^{i} y^{j}=F(x, y z)-F_{0}
$$

and similarly for F_{0} and $G(x z, y)-G_{0}$. Hence

$$
\begin{aligned}
(F * G)_{0} & =F_{0} G_{0} \cdot \sum_{k} F_{0}^{-k} G_{0}^{-k}\left(\sum_{\substack{i, j \\
j \neq 0}} G_{0}^{j} f_{i j} x^{i} y^{k}\right)^{k}\left(\sum_{\substack{i, j \\
i \neq 0}} F_{0}^{i} g_{i j} x^{i} y^{k}\right)^{k} \\
& =\frac{F_{0} G_{0}}{1-\frac{\left(\tilde{F}-F_{0}\right)\left(\tilde{G}-G_{0}\right)}{F_{0} G_{0}}} .
\end{aligned}
$$

Exactly analogous reasoning applies to $(F * G)_{-1}$ and $(F * G)_{1}$. For instance, $(F * G)_{-1}$ can be written

$$
\begin{aligned}
& (F * G)_{-1} \\
& \quad=\sum_{k, m, n} k!(k+1)!(m-k)!(n+1-k)!\left[q^{m+1} r^{n+1} s^{m} t^{n} u^{k+1} v^{k}\right] \\
& \quad \times \sum_{a_{i j}, b_{i j}} \frac{\prod_{j \neq 0}\left(q t^{j} u f_{i j} x^{i} y^{j}\right)^{a_{i j}} \prod_{i}\left(q f_{i 0} x^{i}\right)^{a_{0}} \prod_{i \neq 0}\left(r s^{i} v g_{i j} x^{i} y^{j}\right)^{b_{i j}} \prod_{j}\left(r g_{0 j} y^{j}\right)^{b_{0 j}}}{\left(\prod a_{i j}!\right)\left(\prod b_{i j}!\right)}
\end{aligned}
$$

Reasoning as above yields

$$
(F * G)_{-1}=\frac{\left(\tilde{F}-F_{0}\right) G_{0}}{1-\frac{\left(\tilde{F}-F_{0}\right)\left(\tilde{G}-G_{0}\right)}{F_{0} G_{0}}} .
$$

Similarly (or by symmetry),

$$
(F * G)_{1}=\frac{F_{0}\left(\tilde{G}-G_{0}\right)}{1-\frac{\left(\tilde{F}-F_{0}\right)\left(\tilde{G}-G_{0}\right)}{F_{0} G_{0}}} .
$$

From this we easily obtain

$$
\frac{1}{F * G}=\frac{1}{(F * G)_{-1}+\left(2(F * G)_{0}-F_{0} G_{0}\right)+(F * G)_{1}}=\frac{1}{\tilde{F} G_{0}}+\frac{1}{F_{0} \tilde{G}}-\frac{1}{F_{0} G_{0}},
$$

as desired.
Example 5.3. In general it seems difficult to understand the operation $F * G$. It is not even obvious from (16) that $*$ is associative! A special case for which $F * G$ can be explicitly evaluated is the following. Let $a_{1}, b_{1}, \ldots, a_{k}, b_{k}$ be real numbers (or indeterminates). Then it is straightforward to prove from Theorem 5.2 by induction on k that

$$
\begin{align*}
& \frac{1}{\left(1-a_{1} x\right)\left(1-b_{1} y\right)} * \cdots * \frac{1}{\left(1-a_{k} x\right)\left(1-b_{k} y\right)} \\
& \quad=\frac{1}{1-\left(\sum a_{i}\right) x-\left(\sum b_{i}\right) y+\left(\sum\left(a_{1}+a_{2}+\cdots+a_{i}\right) b_{i}\right) x y} . \tag{17}
\end{align*}
$$

For instance, if ζ denotes the zeta function of $W_{\infty \infty}$ (whose value is 1 on every interval of $W_{\infty \infty}$), then

$$
\sum_{i, j} \zeta_{i j} x^{i} y^{j}=\frac{1}{(1-x)(1-y)}
$$

Hence the left-hand side of (17) becomes the generating function for ζ^{k}, whose value at $W_{i j}$ is the number $Z_{i j}(k)$ of k-element multichains $\hat{0}=t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{k}=\hat{1}$ in $W_{i j}$. Equivalently, $Z_{i j}(k)$ is the value of the zeta polynomial of $W_{i j}$ at k [15]. We obtain from (17) that

$$
\sum_{i, j} Z_{i j}(k) x^{i} y^{j}=\frac{1}{1-k x-k y-\binom{k+1}{2} x y},
$$

a result of Greene [8].
Remark 5.4. The identity (17) can be deduced purely combinatorially.
The left-hand side provides a refinement of the flag f-vector in the sense that the coefficient of $a_{1}^{i_{1}} b_{1}^{j_{1}} a_{2}^{i_{2}} b_{2}^{j_{2}} \cdots x^{m} y^{n}$, where $m=i_{1}+i_{2}+\cdots$ and $n=j_{1}+j_{2}+\cdots$, is
the number of multichains $\hat{0}=t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{m+n-1}<t_{m+n}=\hat{1}$ in $W_{m n}$ such that t_{r-1} and t_{r} differ by i_{r} letters from the alphabet \mathscr{A} and by j_{r} letters from the alphabet \mathscr{X}. The right-hand side of (17) can be interpreted as the generating function for the language \mathscr{L} over the alphabet $\left\{a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots\right\}$ consisting of the words in which there is no occurrence of a letter a_{k} immediately followed by a letter b_{l} with $k \leqslant l$. (This follows directly through a simple sign-reversing-involution argument or from the general theory of Cartier and Foata [3].) The number of such words formed with the multiset of letters $a_{1}^{i_{1}} b_{1}^{j_{1}} a_{2}^{i_{2}} b_{2}^{j_{2}} \cdots$, where $m=i_{1}+i_{2}+\cdots$ and $n=j_{1}+j_{2}+\cdots$, is the coefficient of $a_{1}^{i_{1}} b_{1}^{j_{1}} a_{2}^{i_{2}} b_{2}^{j_{2}} \cdots x^{m} y^{n}$ on the right-hand side of (17). For example, the coefficient of $a_{1}^{2} b_{1} b_{2} x^{2} y^{2}$ is 2 , accounting for the words $b_{1} b_{2} a_{1} a_{1}$ and $b_{2} b_{1} a_{1} a_{1}$ in \mathscr{L}.

Now each word $w \in \mathscr{L}$ consisting of $m a_{i}$'s and $n b_{i}$'s determines a shuffle-word $s(w)$ in $W_{m n}$ by placing the alphabet \mathscr{A} in the positions of the a_{i} 's and the alphabet \mathscr{X} in the positions of the b_{i} 's. For example, $w=a_{2} b_{3} b_{3} a_{1} a_{3} b_{5} b_{1} b_{2} a_{3}$ gives rise to the shuffle word $s(w)=a_{1} x_{1} x_{2} a_{2} a_{3} x_{3} x_{4} x_{5} a_{4}$ in W_{45}. Of course, $w \rightarrow s$ is not a one-to-one map.

Given a word $w \in \mathscr{L}$, we construct a unique multichain $t(w)$ in $W_{m n}$ by starting with $t_{0}=\hat{0}$ and obtaining t_{r+1} from t_{r} by removing the letters appearing in $s(w)$ in those positions where a_{r} occurs in w, and inserting the letters appearing in $s(w)$ in those positions where b_{r} occurs in $s(w)$. For instance, the word w from the preceding example yields $t(w)=\left(\hat{0}=t_{0}<t_{1}<t_{2}<t_{3}=t_{4}<t_{5}=\hat{1}\right)$, where $t_{0}=a_{1} a_{2} a_{3} a_{4}, t_{1}=a_{1} a_{3} x_{4} a_{4}$, $t_{2}=a_{3} x_{4} x_{5} a_{4}, t_{3}=t_{4}=x_{1} x_{2} x_{4} x_{5}, t_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}$.

Recall from Section 3 that there is a unique order in which the i_{r} deletions and j_{r} insertions can be performed such that t_{r+1} is reached from t_{r} via the Λ-increasing chain $\gamma\left(t_{r}, t_{r+1}\right)$. The condition defining the words $w \in \mathscr{L}$ ensures that each insertion of a letter from X is made in the leftmost position permitted by the shuffle word $s(w)$, thus not multiply-counting chains which involve covering relations of the type $(x a)$. From these observations it follows that $w \rightarrow t(w)$ is a bijection, completing a combinatorial proof of (17).

References

[1] A. Björner, A. Garsia, R. Stanley, An introduction to Cohen-Macaulay partially ordered sets, in: I. Rival (Ed.), Ordered Sets. NATO Adv. Study Inst. Ser. C: Math. Phys. Sci. Reidel, Dordrecht, 1982, pp. 583-615.
[2] A. Björner, M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983) 323-341.
[3] P. Cartier, D. Foata, Problèmes Combinatoires de Commutation et Réarrangements, Lecture Notes in Mathematics, vol. 85, Springer, Berlin, 1969.
[4] R. Ehrenborg, Posets and Hopf algebras, Adv. Math. 119 (1996) 1-25.
[5] J. Farley, S. Schmidt, Posets that locally resemble distributive lattices: an extension of Stanley's theorem, J. Combin. Theory Ser. A, to appear.
[6] A. Garsia, On the 'maj' and 'inv' q-analogues of Eulerian polynomials, Linear and Multilinear Algebra 8 (1979) 21-34.
[7] D.J. Grabiner, Posets in which every interval is a product of chains, and natural local actions of the symmetric group, Discrete Math. 199 (1999) 77-84.
[8] C. Greene, Posets of shuffles, J. Combin. Theory Ser. A 47 (1988) 191-206.
[9] C. Greene, The Möbius function of a partially ordered set, in: I. Rival (Ed.), Ordered Sets. NATO Adv. Study Inst. Ser. C: Math. Phys. Sci. Reidel, Dordrecht, 1982, pp. 555-581.
[10] P. Hersh, personal communication.
[11] D. Knuth, Two notes on notation, Amer. Math. Monthly 99 (1992) 403-422.
[12] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, Oxford, 1995.
[13] C. Reutenauer, Free Lie Algebras, Oxford University Press, New York, 1993.
[14] R. Simion, D. Ullman, On the structure of the lattice of non-crossing partitions, Discrete Math. 98 (1991) 193-206.
[15] R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth \& Brooks/Cole, Monterey, CA, 1986; second printing, Cambridge University Press, Cambridge, 1997.
[16] R. Stanley, Flag-symmetric and locally rank-symmetric partially ordered sets, Electron. J. Combin. 3 R6 (1996) 22pp.
[17] R. Stanley, Parking functions and noncrossing partitions, Electron. J. Combin. 4 R20 (1997).
[18] A. M. Vershik, Local stationary algebras, Amer. Math. Soc. Transl. (2) 148 (1991) 1-13; translated from Proc. 1st Siberian Winter School as Algebra and Analysis, Kemerovo, 1988.

[^0]: * Corresponding author. E-mail: rstan@math.mit.edu.
 ${ }^{1}$ This work was carried out during the authors' visit to MSRI on the occasion of the Special Year Program in Combinatorics. The MSRI support is gratefully acknowledged.
 ${ }^{2}$ Partially supported by NSF grant DMS-9500714.

