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I. TNTR~DUCTI~N 

Although Krull domains have been an interesting subject in com- 
mutative ring theory, not many characterizations of Krull domains are 
known compared to those of Priifer domains. However, it is known that 
every proper divisorial ideal of a Krull domain R is a u-product of prime 
ideals of R; i.e., every proper divisorial ideal I of R can be expressed in the 
form I = (P, P,), for some prime ideals P, , . . . . P, of R. In 1968, 
S. Tramel [22] proved that the converse of the above fact is true. (In fact, 
he proved a stronger result: If every proper principal ideal of a domain R is 
a u-product of prime ideals, then R is a Krull domain.) This was also 
proved by Nishimura [lS] under the additional condition that the 
expression I = (P, P,)r is unique. As Levitz showed in [ 171, by Tramel’s 
result, we can easily solve Aubert’s problem [6], obtaining in fact a 
stronger result. If every proper principal ideal of a domain R is a r-product 
of prime ideals of R, then R is a Krull domain. 

In this paper we give a new characterization of a Krull domain: If every 
nonzero prime ideal of a domain R contains a t-invertible prime ideal, then 
R is a Krull domain. (Note that this is the corresponding part for Krull 
domains to the well-known fact about unique factorization domains 
(UFD): If every nonzero prime ideal of a domain R contains a nonzero 
principal prime ideal, then R is a UFD.) Then using this result, we can 
easily prove that the following statements are equivalent. (Recall that R is a 
z-domain if every principal ideal of R can be written as a product of prime 
ideals.) 

(1) R is a UFD (resp., n-domain, Krull domain). 

(2) Every t-ideal is principal (resp., invertible, t-invertible). 
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(3) Every prime t-ideal is principal (resp., invertible, t-invertible). 
(4) Every minimal prime ideal of a nonzero principal ideal is prin- 

cipal (resp., invertible, t-invertible). 
(5) Every nonzero prime ideal contains a nonzero principal (resp., 

invertible, t-invertible) prime ideal. 
(6) Every proper t-ideal is a t-product of principal (resp. invertible, 

r-invertible) prime ideals. 
(7) Every proper principal ideal is a f-product of principal (resp., 

invertible, r-invertible) prime ideals. 

Note that in order to get the corresponding statements for n-domains 
(resp., Krull domains), we just replace the term ‘ideals’ by ‘t-ideals’ and the 
descriptive adjective ‘principal’ by ‘invertible’ (resp., ‘t-invertible’) in the 
corresponding statements for UFDs. 

It is obvious that every minimal prime ideal of a UFD (resp., n-domain, 
Krull domain) is principal (resp., invertible, r-invertible). However, it will 
be shown that the converse is not true. But if we add the condition that R 
satisfies Krull’s principal ideal theorem (Every minimal prime of a nonzero 
principal ideal is a minimal prime ideal), then we can show that R is a 
Krull domain. In addition to these results, we give several new charac- 
terizations of n-domains. In particular, it will be shown that R is a 
n-domain if and only if R is a finite conductor Mori domain such that 
((a) n (b))((c) n (d)) = (ac) n (ad) n (bc) n (bd) for all elements a, b, c, d of 
R. Throughout this paper R will be an integral domain with quotient field 
K. The term ‘finitely generated will be abbreviated to ‘f.g.’ For the 
undefined terms and notation, the reader is referred to [14], [9], and 
C161. 

II. PRELIMINARY RESULTS 

The reader is reminded that throughout this paper R will be an integral 
domain with quotient field K. An R-submodule A of K is called a fractional 
ideal of R if dA E R for some nonzero element d of R. 9(R) will denote the 
set of nonzero fractional ideals of R. For A E F(R), the u-operation is 
defined by A,=(/‘))’ where A-'={xEKIxAER~. The t-operation is 
defined by A,=~{(A,),IA,E~(R), A,EA, and A, is finitely generated). 
A E F(R) is called a divisorial ideal or a u-ideal (resp., t-ideal) if A, = A 
(resp., A, = A). A domain R is called a Mori domain if it satisfies the 
ascending chain condition (ACC) on divisorial ideals of R. A maximal 
divisorial ideal (maximal t-ideal) of a domain R is a proper divisorial ideal 
(proper r-ideal) of R which is maximal among proper divisorial ideals 
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(proper r-ideals) of R. We denote the set of maximal divisorial ideals 
(maximal t-ideals) of R by D,(R) (t-Max(R)). By Zorn’s Lemma, it is easy 
to see that t-Max(R) # 4, while D,(R) can be an empty set. But if R is a 
Mori domain, then D,(R) # 4. Specifically, in a Mori domain, every 
proper v-ideal is contained in a maximal u-ideal. 

We collect for ease of reference the following well-known results. 

THEOREM 2.1. Let R be an integral domain. 

(1) The following are equivalent. 

(a) R is a Mori domain. 

(b) For every nonzero ideal I of R, there exists a Eg. ideal I,, E I 
such that Z, = (I,),. 

(c) If F,?Fz?F,? ... is a descending sequence of fractional 
v-ideals such that fizz, F,, # 0, then n;= 1 F, = F,,, for some m. 

(2) Let P be a divisorial prime ideal of a Mori domain R. Then 
P=(a:b)forsomea,bER, where(a:b)={xERIxbE(a)}. 

(3) Let I be an integral v-ideal of a Mori domain R. Then 

(a) If I is a maximal divisorial ideal of R, then I is a prime ideal. 

(b) There are only finitely many maximal v-ideals containing I. 

(4) Let S be a multiplicatively closed subset of a Mori domain R. Let I 
be a nonzero Eg. ideal of R. Then (I,), = (I,),. 

(5) If S is a multiplicatively closed subset of a Mori domain R, then 
R, is a Mori domain, 

Proof (1) Use I, Theo&me 1 from [20]. (2) Use II, Theo&me 1 from 
[21]. (3) These statements follow from Proposition 2.1 and Proposi- 
tion 2.2, respectively, of [24]. (4) This result is well known and easily 
follows from (1) and Lemma 4 of [23]. (5) This is [ 19, Corollary 33. 

A nonzero ideal I of R is said to be t-invertible if (II- ‘), = R. We prove 
the analogous result to [9, Theorem 7.61 for t-invertible prime ideals, 
which will be used in Section IV. We denote the multiplicatively closed 
subset {f E R[X] 1 f #O and (A/), = R} of R[X] by N,. 

THEOREM 2.2. Let P be a t-invertible prime ideal of an integral domain R 
such that P, # R. Then 

(1) P is a finite type divisorial ideal. 

(2) W”)LJ,“_ 1 is the set of all P-primary ideals of R. 

(3) Suppose that fi,“=, P” # 0. Then (nF=, P”), is a prime ideal of R. 
Moreover (fir=, P”),= n:=, (P”),. 

(4) If A is a t-invertible ideal of R properly containing P, then A, = R. 
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Proof: ( 1) Let P be a t-invertible prime ideal of R. For an ideal I of R, 
I’ will denote the ideal Z[X],,. So R’= R[X],,. By [14, Corollary 2.51, 
P’ is invertible. And P” is a prime ideal of R’ since P, #R, i.e., P[X] n 
N, = 4. Since P’ is invertible, P’ = (P’), = (P,)’ by [ 14, Proposition 2.21. 
Hence P = P’ n R = (P,)’ n R = P, by [ 14, Proposition 2.81. The first of 
the above equalities follows from the fact that P’ is a prime ideal of R’. 
Thus P is a divisorial ideal, and P is of finite type since P is t-invertible 
[ 13, Chapter I, Section 4, Theorem 81. Thus (1) is proved. 

(2) Let Q be a P-primary ideal of R. Then Q[X],, is a P[X],,-primary 
ideal of R[X].,. By [9, Theorem 7.61, Q’= (P’)k for some k~ N, since P’ 
is invertible. Since (P’)k is invertible, (Y)” is a v-ideal. Hence (P’)” = 
(( P’)k), = ((P“)“), = (( Pk)“)‘, where the last equality follows from [ 14, 
Proposition 2.21. Now Q = Qe n R since Q[X] is a P[X]-primary ideal 
such that P[X] n N, = c$. Hence Q = Qe n R = (P’)” n R = (( Pk),)’ n R = 
( Pk)t,, where the last equality follows from [ 14, Proposition 2.81. Thus Q = 
(P”),, for some k E N. We complete the proof of (2) by showing that each 
(P”), is a P-primary ideal. By [9, Theorem 7.61, (P”)’ is a P-primary 
ideal. Hence (Pk), = ( Pk)” n R is a P’ n R-primary ideal. Hence (Pk), is a 
P-primary ideal. 

(3) Assume that @= i Pk #O. Then nk(P’)k #O. Hence nk (P’)” is a 
u-ideal since it is an intersection of u-ideals. It is easy to see that nk (P’)k = 
((nk Pk)v)e, i.e., nk (Pk[x]~,) = (nk P”), [x]~“. And ok (p)” iS a prime 
ideal of R’ by [9, Theorem 7.61. Hence (nk P”), = ((nk Pk),)’ n R = 
nk (P’)k n R is a prime ideal of R. Moreover ok (P”)‘= nk ((P”),)‘. So 
(( fi P”),,)’ = nk ((P”),)‘. Hence, contradicting back to R, we get 
(nk Pk), = nk (P”)” by [ 14, Propositon 2.81. 

(4) Let A be a t-invertible ideal of R properly containing P. Then 
A’ 3 P’ are invertible ideals of R’. By [9, Theorem 7.61, either A’ = P’ or 
A’ = R’. We will show that A’ # P’ so that A’= R’. Suppose A’ = P’. Then 
A G A’ n R = P’ n R = P, which contradicts P & A. Therefore A’ = R’, i.e., 
A,= R. 

III. KRULL DOMAINS 

A domain R is called a Krull domain if R has a nonempty collection of 
prime ideals {P,} such that R = 0 R,, each R, is a principal ideal 
domain (PID), and every nonzero element of R is contained in only finitely 
many P,s. 

It is well known that a domain R is completely integrally closed if and 
only if every nonzero ideal is u-invertible, i.e., (AA p’)U = R for any nonzero 
ideal A of R ([9, 34.31). Recall that a domain R is a Priifer u-multiplication 
domain (PVMD) if every nonzero f.g. ideal is r-invertible, i.e., (AA -I), = R 
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for every nonzero f.g. ideal A of R. A domain R is an essential domain if 
R= f-lPEn R, where A c Spec(R) and each R,, PEA, is a valuation 
domain. A domain R is called a u-domain if [A, :K A,] = R for every non- 
zero Eg. ideal A of R, where K is the quotient field of R. 

LEMMA 3.1. An essential domain is a v-domain. 

Proof Let R= nPEn R,, where A s Spec(R) and each R,, PEA, is a 
valuation domain. Let A be a nonzero finitely generated ideal of R. Let x E 
[A, :K A,]. Then xA, G A,. Now for each PEA, x(A,,)~G (A,)p. Hence 
x((A,)~), E (@dp),. BY Cf4, Lemma W2)1, (API, = ((AJpL. Hence 
((A,)p), is a principal ideal since R, is a valuation domain. So XE R,. So 
XE nPE,, Rp= R. Therefore [A, :K A,,] = R and hence R is a v-domain. 

In the class of Mori domains, some subclasses of domains are identical 
with the class of Krull domains. 

THEOREM 3.2. The following are equivalent for an integral domain R. 

(1) R is a Krull domain. 

(2) R is a completely integrally closed Mori domain. 

(3) R is a PVMD and R is a Mori domain. 

(4) R is an essential Mori domain. 

(5) R is a v-domain and R is a Mori domain. 

Proof: (1) = (2). This is [7, Theorem 3.61. 
(2) * (3). Let A be a f.g. nonzero ideal of R. Then (AA - l)u = R since R 

is completely integrally closed. Hence (AA-‘), = R since R is a Mori 
domain. Hence R is a PVMD. 

(3) + (4). Every PVMD is an essential domain by [ 14, Theorem 3.31 or 
by [ 11, Proposition 4 and Theorem 51. 

(4) * (5). This implication follows from Lemma 3.1. 

(5) * (2). Let A be a nonzero ideal of R. Then by Theorem 2.1( 1 ), A, = 
(A,), for some f.g. ideal A, # 0 of R since R is a Mori domain. Now 
[A, :K A,] = [(A,), :K (A,),] = R since R is a v-domain. Hence by [9, 
Theorem 34.31, R is completely integrally closed. 

(2) = (1). By [14, Proposition 2.8(3)] or by [ll, Proposition 41, R = 
f-? R,, MEA where A = t-Max(R). Since R is a Mori domain, t-Max(R) = 
D,(R). And the intersection is locally finite by Theorem 2.1(3). Each R, is 
a Mori domain by Theorem 2.1(5). By [ll, Theorem 51, R,,, is a valuation 
domain since R is a PVMD by the implication (2) +. (3). Hence each R,, 
ME D,(R), is a Mori valuation domain, i.e., a PID. Hence R is a Krull 
domain. 
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Remark. The implication (2) * (1) in the previous theorem can be 
found in [7, Corollary 3.133. But we proved this noting that a completely 
integrally closed Mori domain is a Mori PVMD. 

To prove the main result of this section, we need a couple of lemmata. 

LEMMA 3.3. Let R be an integral domain. If every nonzero prime ideal of 
R contains a t-invertible prime ideal, then there exists a nonempty collection 
A of minimal prime ideals of R such that R = opt,, R, and each R,, P E A, 
is a PID. 

Proof Let M be a maximal t-ideal of R. Let Q = P, be a nonzero 
prime ideal of R,,,, where P is a nonzero prime ideal of R. Then by 
assumption, P contains a t-invertible prime ideal P’. But PIM is a principal 
(prime) ideal by [ 14, Corollary 2.71. Thus Q = P, contains the nonzero 
principal prime ideal Pa. Hence every nonzero prime ideal of R,,,, contains 
a principal prime ideal, hence R, is a UFD. Let n,={P~Spec(R)l 
P E X”‘(R) and P E M}, where X”‘(R) is the set of minimal prime ideals of 
R. Then X”‘(R,)={P,,,\PEA,}. Hence A,#$. Now R, is a Krull 
domain since it is a UFD. Hence as we showed in the proof of 
Theorem 3.2, 

RM= n (R.M)Q= f-l (RM)Q= $,,RP. P~ti’)RR,d PEAM 
By [ 14, Proposition 2.8(3)], R = nMEr R,, where Z= t-Max(R). Hence 
R=n PEU,,MRP, and U,+,~,,.,CX(‘)(R). 

Let Z, I,, . . . . I, be nonzero ideals of R. If I= (I, . . I,),, then Z is called the 
t-product of I,, . . . . I,. 

LEMMA 3.4. Zf every nonzero prime ideal of a domain R contains a 
t-invertible prime ideal, then every proper principal ideal of R is a t-product 
of prime ideals of R. 

Proof: Let S be the set of all nonzero non-units of D = R[X] Nv ideals 
generated by which are products of principal prime ideals of D. We will 
show that S contains every nonzero non-unit of R. Suppose not and let a 
be a nonzero non-unit of R such that a $ S. Since S v {units of D} is a 
saturated set of D which does not contain a, aD n S = $. So there exists a 
prime ideal Q of D such that Q 1 aD and Q n S = 4. By assumption, Q n R 
contains a t-invertible prime ideal, say P. By [ 14, Corollary 2.5 and 
Theorem 2.141, PD is principal, say PD = fD for some f tz D. Now 
f E PD G Q c P\S, which contradicts f E S. Hence S contains all nonzero 
non-units of R. So if II is a nonzero non-unit of R, then aD = Q, . . . Qn for 
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some principal prime ideals Q,, . . . . Q, of D. By assumption, for each 
1 <k <n, Qk n R contains a r-invertible prime ideal of R, say P,. Then 
P, D is a principal prime ideal by the previous argument. So P, D c Qk 
implies Pk D = Qk. So aD=Q1...Q,=P,D,..P,D=(P,...P,)D. By 
[14, Corollary 2.3(3)], aD = (aD), = ((P, ... P,)D), = (P, . ..P.),D. Now 
aR = (P, . . P,), by [ 14, Proposition 2.8(l)]. Thus every proper principal 
ideal of R is a t-product of prime ideals of R. 

THEOREM 3.5. If every nonzero prime ideal of a domain R contains a 
t-invertible prime ideal, then R is a Krull domain. 

Proof: By Lemma 3.3, R = nPE,, R, for a collection /i of minimal 
prime ideals of R and each R,, P E A, is a PID. It remains to show that 
every nonzero nonunit element a of R is contained in only finitely many Ps 
in A By Lemma 3.4, (a) = (P, . . . P,), for some prime ideals P,, . . . . P, of R. 
Let P be a minimal prime of (a). Then P2(P1...P,),~P,...P,. So P 
contains some Pi and hence by the minimality of P, P = Pi. Hence there are 
only finitely many minimal primes of (a). Since /1 is a collection of minimal 
prime ideals of R, the conclusion easily follows. 

Now we characterize Krull domains in terms of t-invertibility. In the 
next theorem, the implications (1) j (2) =E. . . 3 (7) are almost trivial, and 
the only seemingly nontrivial implication (7) * (1) will follow from the 
previous theorem. 

THEOREM 3.6. The following are equivalent for a domain R. 

(1) R is a Krull domain. 

(2) Every t-ideal is t-invertible. 

(3) Every nonzero ideal is t-invertible. 

(4) Every nonzero prime ideal is t-invertible. 

(5) Every prime t-ideal is t-invertible. 

(6) Every minimal prime ideal of a nonzero principal ideal is t-inver- 
tible. 

(7) Every nonzero prime ideal contains a t-invertible prime ideal. 

Proof: (1) = (2). By Theorem 3.2, R is a completely integrally closed 
Mori domain. Hence (AA p’)U = R for every nonzero ideal A of R. There- 
fore (AA ~ ’ ), = R since R is a Mori domain. 

(2) = (3) =+ (4) * (5). This is clear. 
(5) =F- (6). This follows from [12, Proposition 1.11. 
(6) * (7). Let P be a nonzero prime ideal of R. Let a E P\O. There exists 
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a prime ideal P’ c P minimal over (a). Hence P contains a t-invertible 
prime ideal. 

(7) + (1). This follows from Theorem 3.5. 

It is well known that every Krull domain satisfies Krull’s principal ideal 
theorem and that every minimal prime ideal is t-invertible. In Theorem 3.6, 
we proved the converse. Thus we isolate this result as Theorem 3.7, which 
will enable us to prove many famous facts about Krull domains and 
n-domains as well as several new results. 

THEOREM 3.7. The following are equivalent for a domain R. 

(1) R is a Krull domain. 

(2) R satisfies Krull’s principal ideal theorem and every minimal prime 
ideal is t-invertible. 

(3) Every minimal prime ideal of a nonzero principal ideal is t-inver- 
tible. 

Proof. (1) => (2). This is well known. 
(2) * (3). This is clear. 
(3) * (1). This follows from Theorem 3.6. 

The next lemma for the single variable case is known [S, Theorem 2.23. 
In this paper, we do not need the multi-variable case. However, for future 
application, we prove it for the multi-variable case. We will use the 
methods introduced in [14]. 

LEMMA 3.8. Let {X,} be a set of indeterminates over a domain R and let 
N,= {~ER[{X,}]I(,~~),=R}. ZfR is a Krull domain, then R[{X,}],, is 
a principal ideal domain. 

Proof. Suppose R is a Krull domain. By Theorem 3.2, R is a PVMD. 
So every nonzero ideal J of R [ {X, } ] Nv is of the form .Z = ZR [ (X, } ] ,,+, for 
some nonzero ideal Z of R by [ 14, Theorem 3.11. Since R is completely 
integrally closed by Theorem 3.2, (II-‘), = R. In a Mori domain, the 
v-operation is the same as the t-operation. So (ZZ-‘)l = R, which implies 
that Z is t-invertible. Hence by [14, Corollary 2.5 and Theorem 2.141, 
.Z = ZR[ { X, } ] Nu is principal and therefore R[ {X,} ] ,,," is a PID. 

Now we characterize Krull domains in terms of t-products of prime 
ideals. 

THEOREM 3.9. The following are equivalent for a domain R. 

(1) R is a Krull domain. 
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(2) Every proper principal ideal is a t-product of (t-invertible) prime 
ideals. 

(3) Every proper t-ideal is a t-product of (t-invertible) prime ideals. 

(4) Every proper t-invertible t-ideal is a t-product of (t-invertible) 
prime ideals. 

Proof (1) =S (3). Let R be a Krull domain. By Lemma 3.8, R[X],, is a 
PID. Let I be a proper t-ideal of R. Then ZR[X] ,,,” = Q, . . Q,,, where 
Qi , . . . . Qn are principal prime ideals of R[X],, since ZR[X] Nu is a proper 
ideal of the PID RCA’] NL.. Since R is a PVMD, every ideal of R[X],, is 
extended from R by [14, Theorem 3.11. Let Qi= PiR[X],,, where P, is 
an ideal of R. Now ZR[x],,=Ql...Qn=P,R[x]Nr;...PnRIX]N,;= 
(PI . ..P.)[X],,,. Hence by [14, Lemma 3.131, Z=Z,= (P, . ..P.),. 

(3) =S (4) =S (2). This is obvious. 
(2) =S (1). Let P be a nonzero prime ideal of R. Choose a E P\(O). By 

assumption (a) = (P, ‘. P,), for some prime ideals P,, . . . . P,. Then 
P, . . P, c P implies that some P, E P. Now P, is t-invertible since it is a 
t-factor of the t-invertible ideal (a). Thus every nonzero prime ideal of R 
contains a t-invertible prime ideal. Hence by Theorem 3.5, R is a Krull 
domain. 

Remark. The implication (2) * (1) in the previous Theorem 6.8 was 
proved by several authors; for example, see [17], [18], and [22]. But our 
proof is based on the new result Theorem 3.5. 

A domain R is said to be t-locally UFD if R, is a UFD for each 
ME t-Max(R). 

THEOREM 3.10. The following are equivalent for a domain R. 

(1) R is a Cull domain. 

(2) R is a t-locally UFD and every minimal prime ideal is a finite type 
t-ideal. 

Proof: (1) * (2). This is clear. 
(2) + (1). Let a be a nonzero nonunit of R. Let P be a prime ideal 

minimal over (a). Then by [12, Proposition 1.11, P is a t-ideal. Hence P is 
contained in a maximal t-ideal M. Then P, is a minimal prime of (a), in 
the UFD R,. Hence P,,, is a principal (prime) ideal. For a maximal t-ideal 
M of R such that P @ M, P, = Rw. Hence in any case P, is a principal 
ideal for every maximal t-ideal M. Hence by [ 14, Corollary 2.71, P is 
t-invertible since P is a finite type t-ideal. Then the conclusion follows from 
Theorem 3.6(6). 
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Iv. n-DOMAINS 

An integral domain R is defined to be a n-domain if each proper 
principal ideal is a finite product of prime ideals. In this section, we extend 
the results in Section III to n-domains. 

THEOREM 4.1. The following are equivalent .for a domain R. 

(1) R is a rc-domain. 

(2) Every nonzero prime ideal contains an invertible prime ideal. 

(3) Every proper t-ideal is a finite product of (invertible) prime ideals. 

(4) Every proper invertible ideal is a finite product of prime ideals. 

Proof ( 1) = (2). Let P # 0 be a prime ideal of R. Choose a E P\O. Since 
R is a n-domain, (a) = P, . P, where the Pjs are prime ideals of R. Now 
P, . P, G P, hence some P, c P. And it is clear that Pi is invertible since it 
is a factor of the invertible ideal (a). 

(2) = (3). Suppose every nonzero prime ideal contains an invertible 
prime ideal. Then by Theorem 3.6, R is a Krull domain, and hence if I is a 
proper t-ideal of R, then I= (P, . P,), for some t-invertible prime ideals 
P,, . . . . P, by Theorem 3.9. By the given assumption, each Pi contains some 
invertible prime ideal P:. We may assume that (P,), # R for any i by 
discarding the P,s with (P,), = R from I= (P, ... P,),, since If R. Then by 
Theorem 2.2(4), P, = Pi. Thus P, is invertible for every i = 1, . . . . n. Hence 
the ideal P, . . . P, is invertible. Therefore I= (P, . . . P,), = P, P, and 
every Pi is invertible. 

(3) + (4) * (1). This is clear. 

THEOREM 4.2. The following are equivalent for a domain R. 

(1) R is a rt-domain. 

(2) Every minimal prime of a nonzero principal ideal is invertible. 

Proof ( 1) * (2). Let P be minimal over (a) # 0. Then by [ 12, 
Proposition 1.11, P is a t-ideal. Hence by Theorem 4.1(3), P is invertible. 

(2) * (1). Let P be a nonzero prime ideal of R. Let a E P\O. Then there 
exists a prime ideal P’ E P which is minimal over (a). This implication now 
follows from Theorem 4.1. 

We prove the rc-domain version of Theorem 3.7. 

COROLLARY 4.3. The following are equivalent for a domain R. 

(1) R is a x-domain. 
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(2) R satisfies Krull’s principal ideal theorem and the minimal prime 
ideals are invertible. 

ProojI (1) * (2). Let R be a n-domain. Let P be a minimal prime ideal. 
By Theorem 4.2, P is invertible. Hence by Theorem 3.7(3), R is a Krull 
domain and therefore R satisfies Krull’s principal ideal theorem by 
Theorem 3.7(2). 

(2) * (1). Let P be a minimal prime ideal of a nonzero principal ideal. 
By (2) P is invertible. Hence R is a n-domain by Theorem 4.2. 

THEOREM 4.4. The following are equivalent for a domain R. 

(1) R is a x-domain. 

(2) Every t-ideal is invertible. 

(3) R is a Mori domain and every divisorial ideal is invertible. 

(4) R is a Mori domain and every divisorial prime ideal is invertible. 

(5) Every prime t-ideal is invertible. 

Proof: (1) 3 (2). This follows from Theorem 4.1(3). 
(2) * (3). It suffices to show that R is a Mori domain. Let {Zm}aGn be an 

ascending chain of integral t-ideals of R. Then I = UorE ,, I, is a t-ideal of R. 
Since I is invertible, it is f.g. Hence the chain stops, and so R satisfies ACC 
on t-ideals. Hence R satisfies ACC on v-ideals and therefore R is a Mori 
domain. 

The implications (3) 3 (4) + (5) are clear. 
(5) = (1). Let P be a prime ideal minimal over a nonzero principal ideal. 

Then P is a t-ideal by [ 12, Proposition 1.11 and hence P is invertible. 
Therefore R is a n-domain by Theorem 4.2. 

V. MORE X-DOMAINS 

A domain is a generalized GCD domain (G-GCD domain) if the inter- 
section of any two invertible ideals is invertible. 

For G-GCD domains, the reader is referred to [2]. A domain R is called 
a pseudo-Dedekind domain (resp., pseudo-principal domain) if every 
v-ideal of R is invertible (resp., principal). In [3], it is shown that R is a 
pseudo-Dedekind domain o (AB))’ = A-‘BP’ for all A, BE S(R)- R 
is completely integrally closed and the v-ideals of R are closed under 
the usual ideal product. A domain R is called a *-domain if 
(Cl?= 1 (aj))(f7~= 1 lb,))= fli,j(a;bj) f or all finite subsets {a,}, {b,} of R. We 
will show that in the class of Mori domains, many subclasses of domains 
are identical with the class of n-domains. 
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THEOREM 5.1. The following statements are equivalent for a Mori 
domain R. 

(1) R is a *-domain. 

(2) R is a pseudo-Dedekind domain. 

(3) R is a G-GCD domain. 

(4) R is a locally GCD domain. 

(5) R is a locally UFD domain. 

(6) R is a locally pseudo-Dedekind domain. 

(7) R is a locally pseudo-principal domain. 

(8) Every divisorial ideal is locally principal. 

(9) R is a x-domain. 

Proof (1) == (2). Suppose that R is a *-domain and let A, B be 
divisorial ideals of R. Since R is a Mori domain, A = I, and B = J, for some 
f.g. ideals Z, J of R. Now (AB) ~ ’ = (I,J,)- ’ = (ZJ) ~ ’ = I-‘J-- ’ since R is a 
*-domain. Thus (FIB))’ = I-‘J-l = (I,)-‘(J,))’ =A -‘B-l. So R is a 
pseudo-Dedekind domain by [3, Corollary 2.51. 

(2)* (3). This follows from the fact that the intersection of two 
divisorial ideals is a divisorial ideal. 

(3) * (4). This follows from [2, Corollary 11. 
(4) = (5). Suppose that R is a locally GCD domain. Since R is a Mori 

domain, R, is a Mori domain for each maximal ideal M by 
Theorem 2.1(5). Thus R, is a Mori GCD domain and therefore R, is a 
UFD since any Mori domain satisfies the ascending chain condition on 
principal ideals. 

The implications (5) * (6) * (7) are clear. 
(7) * (8). Suppose that R is a locally pseudo-principal domain and let M 

be a maximal ideal of R. Let I be a divisorial ideal. Since R is a Mori 
domain, I,,,, is a divisorial ideal of R, by Theorem 2.1(4), and hence I, is 
principal by assumption. Therefore Z is locally principal. 

(8) 3 (9). Suppose that every divisorial ideal of R is locally principal. Let 
Z be a divisorial ideal of R. Then Z is of finite type since R is a Mori 
domain. So Z is invertible by [ 1, Theorem 2.11, and hence every divisorial 
ideal of R is invertible, which implies that R is a n-domain by Theorem 4.4. 

The implication (9) = (2) follows from the implication (1) + (3) of 
Theorem 4.4. 

(2) * (1 ). This is clear. 

In [4], it was proved that if R is a Noetherian domain satisfying 
((a) n (h))” = (a)” n (6)” for all a and b of R and some n > 1 depending on 
a and h, then R is a Krull domain. An appropriate change of the proof of 
[4, Theorem 3.21 will give us the following theorem. 
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An integral domain is called a finite conductor (FC) domain if the inter- 
section of two principal ideals is finitely generated. 

THEOREM 5.2. Let R he a FC Mori domain satisfying ((a) n (b))” = 
(a)” n (b)” for all a, b E R and some n > 1 depending on a and b; then R is a 
Krull domain. 

ProoJ Let M be a maximal divisorial ideal of R. It is easy to see that 
R, is a FC Mori domain satisfying ((a) n (b))“= (a)“n (b)” for all 
a, b E R, and some n > 1 depending on a and b. If we show that R, is a 
PID, then it will follow that R = nMtDmtRJ R,,, is a Krull domain since the 
intersection is locally finite by Theorem 2.1(3). Thus we assume that 
(R, M) is a quasi-local domain whose maximal ideal M is a divisorial ideal. 
By Theorem 2.1(2), M = (a : 6) for some a, b E R. Since M # R, b # 0. 
So (a: b)=b-‘((a)n(b)). There exists n> 1 such that ((a)n(b))“= 
(aY n (b)“, and then (a : b)” = (a” : b”) by the previous observation. 
Since R is a FC domain, M = (a : b) is f.g. So by Nakayama’s Lemma, 
M” 0 M”-‘. Choose r~M’~‘\M~ so that rEM”~‘E(a”~‘:b”-‘) but 
r$(a”:b”)=M”. Then rbn~‘=sa+’ for some SER, so rb”=sanplb. But 
r $ (a” : b”), so sa” ~ ’ b 4 (a”) and hence sb I$ (a). Thus s # (a : b) = M, so that 
S is a unit. Hence Mn~l~(a)“~‘:(b)“~‘=(s~~‘rb”~‘):(b)”~’= 
(rb”-‘) : (b”-‘) = (r). Thus M”+’ c(r) and hence M”-’ = (r) since 
rE M”-‘. Now M is invertible, so M is principal since R is quasi-local. 
Moreover Mk # Mk + ’ for any k > 1 since M is invertible. By 
Theorem 2.1(l), nF=, Mk = 0. Hence we conclude that R is a PID. 

COROLLARY 5.3. For a FC Mori domain R, the following are equivalent. 

( 1) R is a Dedekind domain. 

(2) (A n B)” = A” n B” for all ideals A and B of R and all n > 1. 

(3) (A n B)” = A” n B” for all ideals A and B of R and some n > 1. 

Proof. It is clear that (1) =z- (2) and (2) * (3). 
(3) * ( 1). By Theorem 5.2, R is a Krull domain. So R is integrally closed. 

By [lo], R is a Priifer domain. Hence R is a Dedekind doamin since it is a 
Mori Priifer domain. 

COROLLARY 5.4. The following are equivalent. 

(1) R is a n-domain. 

(2) R is a FC Mori domain such that ((a)n (b))((c)n (d)) = (ac)n 
(ad) n (bc) n (bd) for all a, 6, c, d of R. 

Proof (1) => (2). Every n-domain is a FC Mori domain by (1) = (3) of 
Theorem 4.4. The conclusion now follows from (9) * (1) of Theorem 5.1. 
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(2) =j (1). By [4, Theorem 3.81 it s&ices to show that R is a Krull 
domain. Since R is a Mori domain, it suffices to prove that R, is a DVR 
for each maximal divisorial ideal M of R since the representation 
R=n ,,,, E D,(Rj R,,,, is locally finite by Theorem 2.1(3). If R satisfies the con- 
ditions in (2) then so does R,. So we may assume that (R, M) is a quasi- 
local domain whose maximal ideal A4 is divisorial. Now M= (h:a) for 
some a, b E R by Theorem 2.1(2). As in the proof [4, Corollary 3.93, we can 
show that M2 = (b”:a’). Then by the proof of Theorem 5.2, R is a Krull 
domain. 

VI. A COUNTEREXAMPLE 

In Sections III and IV, we showed that a domain R is a UFD (resp., 
n-domain, Krull domain) if (and only if) R satisfies Krull’s principal ideal 
theorem and every minimal prime of a proper principal ideal is principal 
(resp., invertible, t-invertible). In this section we will show that the above 
result does not hold without the condition that R satisfies Krull’s principal 
ideal theorem. Thus let us consider the following statement: If every 
minimal prime of a proper principal ideal of a domain R is principal (resp., 
inverible, t-invertible), then R is a UFD (resp., n-domain, Krull domain). 
Since there exists a non-Krull domain which does not have a minimal 
prime ideal (for example, see Exercise 8 on p. 221 in [9]), we will consider 
the nontrivial case when R has a minimal prime ideal and every minimal 
prime ideal of R is principal, invertible, or t-invertible. 

THEOREM 6.1. Let (V, M) be a valuation domain which does not have a 
minimal prime ideal (for example, see Exercise 8 on p. 221 in [9]). Let 
R= VIXIT where T= V[X]\(M[X]u(X)). Then 

(1) R is a BPzout domain. 

(2) R is not a Krull domain. 

(3) R has a minimal prime ideal and every minimal prime ideal of R is 
principal. 

Proqf: Let M, = M[X]. and M, = (X),. Clearly Max(R) = (M,, M2j. 
So R = RM, n R,, = V(X) n R[X],,,. Here V(X) = V[X],,,,. Obviously, 
N-W,,, = KCXl.~x,\cx, is a valuation domain. By [S, Lemma 2 and 
Theorem 41, V(X) is a valuation domain. Hence by [ 16, Theorem 1071, R 
is a Btzout domain. 

(2) To show that R is not a Krull domain, we claim that R is not a 
Mori domain. For otherwise, R is a UFD since it is a GCD domain with 
ACC on principal ideals. Now V(X) = RM, is a UFD. Hence V(X) is a 
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UFD valuation domain, i.e., a DVR. So V is a DVR, which contradicts 
that T/ does not have a minimal prime ideal. 

(3) Since xR,, is a minimal prime ideal of R,, = VIXlc,,, XR is a 
minimal prime ideal of R, whence the first conclusion follows. Let P, = P, 
be a minimal prime ideal of R where P is a minimal prime ideal of V[X]. 
Now PG M[X] or PG (X). Suppose PG M[X). Then P= Po[X] for 
some prime ideal P, of V by [ 14, Corollary 3.163. Since P is a minimal 
prime ideal of R, P, is a minimal prime ideal of V. This contradicts that V 
does not have a minimal prime ideal. So P E (X). Since (X) is a minimal 
prime idel of V[X], P = (X). Hence P, = P, is principal. 

Remark. An example which is similar to the one above was used in 
[ 151 to construct a counterexample to Sheldon’s conjecture. There we used 
the multi-variable case while we use a single variable in this paper. 
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