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Abstract

Using the generalized Lipatov–Altarelli–Parisi–Dokshitzer equations for the two-parton distribution functions we
numerically that the dynamical correlations contribute to these functions quite a lot in comparison with the fac
components. At the scale of CDF hard process (∼ 5 GeV) this contribution to the double gluon–gluon distribution is nea
10% and increases right up to 30% at the LHC scale (∼ 100 GeV) for the longitudinal momentum fractionsx � 0.1 accessible
to these measurements. For the finite longitudinal momentum fractionsx ∼ 0.2–0.4 the correlations are large right up to 90
in accordance with the predicted QCD asymptotic behaviour.
 2004 Elsevier B.V.
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Recent CDF measurements[1] of the inclusive
cross section for double parton scattering have p
vided new and complementary information on t
structure of the proton and possible parton–parton
relations. Both the absolute rate for the double p
ton process and any dynamics that correlations m
introduce are therefore of interest. The possibility o
observing two separate hard collisions has been
posed since long[2,3], and from that has also de
veloped in a number of works[4–11]. The Tevatron
and specially LHC allow us to obtain huge data sa
ples of these multiple interactions and to answe
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many challenging questions of yet poorly-understo
aspects of QCD. A brief review of the current sit
ation and some progress in the modeling accoun
correlated flavour, colour, longitudinal and transve
momentum distributions can be found in Ref.[12].
Multiple interactions require an ansatz for the str
ture of the incoming beams, i.e., correlations betw
the constituent partons. As a simple ansatz, usu
the two-parton distributions are supposed to be
product of two single-parton distributions times a m
mentum conserving phase space factor. In recent p
[13] it has been shown that this hypothesis is in so
contradiction with the leading logarithm approxim
tion of perturbative QCD (in the framework of whic
a parton model, as a matter of fact, was establishe
the quantum field theories[14–16]). Namely, the two-
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parton distribution functions being the product of tw
single distributions at some reference scale becom
be dynamically correlated at any different scale o
hard process. The value of these correlations in c
parison with the factorized components is the m
purpose of this Letter.

In order to be clear and to introduce the denotati
let us recall that, for instance, the differential cross s
tion for the four-jet process (due to the simultaneo
interaction of two parton pairs) is given by[6,7]

(1)dσ =
∑
q/g

dσ12dσ34

σeff
Dp(x1, x3)Dp̄(x2, x4),

wheredσij stands for the two-jet cross section. The
mensional factorσeff in the denominator represents t
total inelastic cross section which is an estimate of
size of the hadron,σeff � 2πr2

p (the factor 2 is intro-
duced due to the identity of the two parton process
With the effective cross section measured by C
(σeff)CDF = (14.5± 1.7+1.7

−2.3) mb[1], one can estimat
the transverse sizerp � 0.5 fm, which is too small in
comparison with the proton radiusRp extracted from
ep elastic scattering experiments. The relatively sm
value of(σeff)CDF with respect to the naive expectatio
2πR2

p was, in fact, considered[9,10] as evidence o
nontrivial correlation effects in transverse space. B
apart from these correlations, the longitudinal mom
tum correlations can also exist and they were inv
tigated in Ref.[13]. The factorization ansatz is ju
applied to the two-parton distributions incoming
Eq. (1):

(2)

Dp(xi, xj ) = Dp

(
xi,Q

2)Dp

(
xj ,Q

2)(1− xi − xj ),

whereDp(xi,Q
2) are the single quark/gluon mome

tum distributions at the scaleQ2 (determined by a har
process).

However many parton distribution functions satis
the generalized Lipatov–Altarelli–Parisi–Dokshitz
evolution equations derived for the first time
Refs.[17,18]as well as single parton distributions s
isfy more known and cited Altarelli–Parisi equatio
[15,16,19]. Under certain initial conditions these ge
eralized equations lead to solutions, which are id
tical with the jet calculus rules proposed origina
for multiparton fragmentation functions by Konish
Ukawa–Veneziano[20] and are in some contradictio
with the factorization hypothesis(2). Here one should
note that at the parton level this is the strict asser
within the leading logarithm approximation.

After introducing the natural dimensionless va
able

t = 1

2πb
ln

[
1+ g2(µ2)

4π
b ln

(
Q2

µ2

)]

= 1

2πb
ln

[ ln
(

Q2

Λ2
QCD

)
ln

(
µ2

Λ2
QCD

)
]
,

b = 33− 2nf

12π
in QCD,

where g(µ2) is the running coupling constant
the reference scaleµ2, nf is the number of active
flavours,ΛQCD is the dimensional QCD parameter, t
Altarelli–Parisi equations read[15,16,19]

(3)
dD

j
i (x, t)

dt
=

∑
j ′

1∫
x

dx ′

x ′ D
j ′
i (x ′, t)Pj ′→j

(
x

x ′

)
.

They describe the scaling violation of the part
distributionsDj

i (x, t) inside a dressed quark or gluo
(i, j = q/g).

We will not write the kernelsP explicitly and de-
rive the generalized equations for two-parton distri
tionsD

j1j2
i (x1, x2, t), representing the probability th

in a dressed constituenti one finds two bare parton
of typesj1 andj2 with the given longitudinal momen
tum fractionsx1 and x2 (referring to[13,15–19]for
details), we give only their solutions via the convo
tion of single distributions[17,18]

D
j1j2
i (x1, x2, t)

=
∑

j ′j ′
1j

′
2

t∫
0

dt ′
1−x2∫
x1

dz1

z1

1−z1∫
x2

dz2

z2

× D
j ′
i (z1 + z2, t

′) 1

z1 + z2
Pj ′→j ′

1j
′
2

(
z1

z1 + z2

)

(4)× D
j1
j ′
1

(
x1

z1
, t − t ′

)
D

j2
j ′
2

(
x2

z2
, t − t ′

)
.

This convolution coincides with the jet calculus rul
[20] as mentioned above and is the generalizatio
the well-known Gribov–Lipatov relation installed fo
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single functions[14,16] (the distribution of bare par
tons inside a dressed constituent is identical to the
tribution of dressed constituents in the fragmentat
of a bare parton in the leading logarithm approxim
tion). The solution(4) shows that the distribution o
partons iscorrelated in the leading logarithm approx
imation:

(5)D
j1j2
i (x1, x2, t) �= D

j1
i (x1, t)D

j2
i (x2, t).

Of course, it is interesting to find out the ph
nomenological issue of this parton level conside
tion. This can be done within the well-known fa
torization of soft and hard stages (physics of sh
and long distances)[21]. As a resultEq. (3) de-
scribe the evolution of parton distributions in a hadr
with t (Q2), if one replaces the indexi by index h

only. However, the initial conditions for new equ
tions at t = 0 (Q2 = µ2) are unknown a priori and
must be introduced phenomenologically or must
extracted from experiments or some models dea
with physics of long distances [at the parton lev
D

j
i (x, t = 0) = δij δ(x − 1); D

j1j2
i (x1, x2, t = 0) = 0].

Nevertheless the solution of the generalized Lipat
Altarelli–Parisi–Dokshitzer evolution equations wi
the given initial condition may be written as before vi
the convolution of single distributions[13,18]

D
j1j2
h (x1, x2, t)

= D
j1j2
h(QCD)(x1, x2, t)

+
∑
j ′
1j

′
2

1−x2∫
x1

dz1

z1

1−z1∫
x2

dz2

z2
D

j ′
1j

′
2

h (z1, z2,0)

(6)× D
j1
j ′
1

(
x1

z1
, t

)
D

j2
j ′
2

(
x2

z2
, t

)
,

where

D
j1j2
h(QCD)

(x1, x2, t)

=
∑

j ′j ′
1j

′
2

t∫
0

dt ′
1−x2∫
x1

dz1

z1

1−z1∫
x2

dz2

z2

× D
j ′
h (z1 + z2, t

′) 1

z1 + z2
Pj ′→j ′

1j ′
2

(
z1

z1 + z2

)

(7)× D
j1
j ′
1

(
x1

z1
, t − t ′

)
D

j2
j ′
2

(
x2

z2
, t − t ′

)

are the dynamically correlated distributions given
perturbative QCD (compare(4) with (7)).

The reckoning for the unsolved confinement pro
lem (physics of long distances) is the unkno
nonperturbative two-parton correlation functi

D
j ′
1j ′

2
h (z1, z2,0) at some scaleµ2. One can suppos

that this function is the product of two single-part
distributions times a momentum conserving facto
this scaleµ2:

D
j1j2
h (z1, z2,0)

(8)= D
j1
h (z1,0)D

j2
h (z2,0)θ(1− z1 − z2).

Then

D
j1j2
h (x1, x2, t)

= D
j1j2
h(QCD)(x1, x2, t) + θ(1− x1 − x2)

×
(

D
j1
h (x1, t)D

j2
h (x2, t)

+
∑
j ′
1j

′
2

1∫
x1

dz1

z1

1∫
x2

dz2

z2
D

j ′
1

h (z1,0)D
j ′
2

h (z2,0)

× D
j1
j ′
1

(
x1

z1
, t

)
D

j2
j ′
2

(
x2

z2
, t

)

(9)× [
θ(1− z1 − z2) − 1

])
,

where

(10)D
j
h(x, t) =

∑
j ′

1∫
x

dz

z
D

j ′
h (z,0)D

j

j ′

(
x

z
, t

)

is the solution of Eq. (3) with the given initial
condition D

j
h(x,0) for parton distributions inside

hadron expressed via distributions at the parton lev
This result(9) shows that if the two-parton distr

butions are factorized at some scaleµ2, then the evo-
lution violates this factorizationinevitably at any dif-
ferent scale (Q2 �= µ2), apart from the violation due t
the kinematic correlations induced by the moment
conservation (given byθ functions).1

1 This is the analogue of the momentum conserving phase s
factor inEq. (2).
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For a practical employment it is interesting to kno
the degree of this violation. Partly this problem w
investigated theoretically in Refs.[18,23] and for the
two-particle correlations of fragmentation functio
in Ref. [24]. That technique is based on the Mel
transformation of distribution functions as

(11)M
j

h(n, t) =
1∫

0

dx xnD
j

h(x, t).

After that the integrodifferential equations(3) become
systems of ordinary linear-differential equations
first order with constant coefficients and can be sol
explicitly [18,23]. In order to obtain the distribution
in x representation an inverse Mellin transformat
must be performed

(12)D
j
h(x, t) =

∫
dn

2πi
x−nM

j
h(n, t),

where the integration runs along the imaginary a
to the right from alln singularities. This can be don
numerically. However the asymptotic behaviour c
be estimated. Namely, with the growth oft (Q2) the
first term inEq. (6)becomesdominant2 for finite x1
andx2 [23]. Thus the two-parton distribution function
“forget” the initial conditions unknown a priori and th
correlations perturbatively calculated appear.

The asymptotic prediction “teaches” us a tendenc
only and tells nothing about the values ofx1, x2, t (Q

2)

beginning from which the correlations are significa
(the more so since the asymptotic behaviour ta
place over the double logarithm dimensionless v
able t as a function ofQ2). Naturally numerical esti
mations can give an answer to this specific quest
We do it using the CTEQ fit[22] for single distrib-
utions as an input inEq. (7). The nonperturbative ini
tial conditionsDj

h(x,0) are specified in a parametrize
form at a fixed low-energy scaleQ0 = µ = 1.3 GeV.
The particular function forms and the value ofQ0 are
not crucial for the CTEQ global analysis at the flexib

2 Such domination is the mathematical consequence of
relation between the maximum eigenvaluesλ(n) in the moments
representation (after Mellin transformation):λ(n1 + n2) > λ(n1) +
λ(n2) in QCD at the largen1, n2 (finite x1, x2), becauseλ(n) ∼
− ln(n),n � 1.
enough parametrization, which reads[25]

(13)

xD
j
p(x,0) = A

j

0x
A

j

1(1− x)A
j

2eA
j

3x
(
1+ eA

j

4x
)Aj

5 .

The independent parametersA
j

0, A
j

1, A
j

2, A
j

3, A
j

4, A
j

5
for parton flavour combinationsuv ≡ u − ū, dv ≡ d −
d̄ , g andū + d̄ are given in Appendix A of Ref.[25].
To distinguish thēu andd̄ distributions the ratiōd/ū

is parametrized as a sum of two terms:

Dd̄
p(x,0)/Dū

p(x,0)

(14)= A0x
A1(1− x)A2 + (1+ A3x)(1− x)A4

with the coefficientsA0, A1, A2, A3, A4 again from
Ref. [25]. The initial conditions for strange quarks a
assumed:

Ds̄
p(x,0) = Ds

p(x,0) = 0.2
(
Dū

p(x,0) + Dd̄
p(x,0)

)
.

The parton distribution functionsDj
p(x, t) at all

higher Q(t) are determined from the input initia
conditionsD

j
p(x,0) by the Altarelli–Parisi evolution

equations. The CTEQ Evolution package[26] was
used and adapted by us in order to obtain num
cally single distributionsDj

i (x, t) at all t and at the
parton level also. We fixed the fundamental param
ter of perturbative QCD,ΛQCD = 0.281 GeV, that
is in accordance with the strong coupling constan
αs(MZ) � 0.2, at theZ resonance in one-loop ap
proximation. Only the light quarksu,d, s (nf = 3) are
taken into account in the evolution equations and
treated as massless, as usual. After that the triple
tegral(7) was calculated numerically for three valu
of Q = 5,100,250 GeV as a function ofx = x1 = x2.
To be specific we considered the double gluon–gl
distribution function in the proton. In this case on
the kernelPg→gg can be taken into account as g
ing the main contribution to the perturbative doub
gluon–gluon distribution. The remnant terms of su
in Eq. (7) are relatively small and can only increa
the effect under consideration because they are p
tive.

The results of numerical calculations are presen
onFig. 1for the ratio

R(x, t) = (
D

gg

p(QCD)(x1, x2, t)

(15)

× [
D

g
p(x1, t)D

g
p(x2, t)(1− x1 − x2)

2]−1)∣∣
x1=x2=x

.
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a
Fig. 1. The ratio of perturbative QCD correlations to the factorized component for the double gluon–gluon distribution in the proton as
function ofx = x1 = x2 for three values ofQ = 5 (solid), 100 (dashed), 250 (dash-dotted) GeV.
ving

he
the
ro
d
of

e

ns
-

ser-

n 2

er-

te
ri-
f

ale
ns
e fi-

me

ifi-
c-
r
a-

n–
thly

em

in
Here one should note that the momentum conser
phase space factor(1 − x1 − x2)

2 is introduced in
Eq. (15) instead of(1 − x1 − x2) usually used. The
reason is simple: this factor was introduced inEq. (2),
generally speaking, “by hand” in order to “save” t
momentum conservation law, i.e., in order to make
product of two single distributions is equal to ze
smoothly atx1 + x2 = 1. However the generalize
QCD evolution equations demand higher power
(1 − x1 − x2) at x1 + x2 → 1: only the phase spac
integrals inEqs. (6) and (7)give

1−x2∫
x1

dz1

1−z1∫
x2

dz2 = (1− x1 − x2)
2/2.

In fact this power must depend ont increasing with
its growth as this takes place for single distributio
at x → 1 [16,27]. The asymptotic behaviour of two
particle fragmentation functions atx1 + x2 → 1 was
investigated, for instance, in Ref.[28] with the similar
result. Our numerical calculations support this as
tion also: the power of(1 − x1 − x2) for the pertur-
bative QCD gluon–gluon correlations is higher tha
and increases witht (Q) as one can see fromFig. 1.
However the introduced factor(1 − x1 − x2)

2 has not
an influence practically on the ratio under consid
ation in the region of smallx1, x2. And namely this
region, in which multiple interactions can contribu
to the cross section visibly, is interesting from expe
mental point of view.Fig. 1 shows that at the scale o
CDF hard process (∼ 5 GeV) the ratio(15) is nearly
10% and increases right up to 30% at the LHC sc
(∼ 100 GeV) for the longitudinal momentum fractio
x � 0.1 accessible to these measurements. For th
nite longitudinal momentum fractionsx ∼ 0.2–0.4 the
correlations are large right up to 90%. They beco
important in more and morex region with the growth
of t in accordance with the predicted QCD asymptotic
behaviour.

The correlation effect is strengthened insign
cantly (up to 2%) for the longitudinal momentum fra
tions x � 0.1 when starting from the slightly lowe
valueQ0 = 1 GeV (early used by CTEQ Collabor
tion). We conclude also thatR(x, t) → const atx → 0
most likely, calculating this ratio (� 0.1) at xmin =
10−4.

Seemingly the correction to the double gluo
gluon distributions at the CDF scale can be smoo
absorbed by uncertainties in theσeff increasing the
transverse effective sizerp by a such way. But this
augmentation is still not enough to solve a probl
of the relatively small value ofrp with respect to the
proton radius without nontrivial correlation effects
transverse space[9,10].
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In summary, the numerical estimations show t
the leading logarithm perturbative QCD correlatio
are quite comparable with the factorized distributions
With increasing a number of observable multiple c
lisions (statistic) the more precise calculations of th
cross section (beyond the factorization hypothe
will be needed also. In order to obtain the more d
icate their characteristics (distributions over various
kinematic variables) it is desirable to implement t
QCD evolution of two-parton distribution functions
some Monte Carlo event generator as this was don
single distributions within, for instance, PYTHIA[29].
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