
On a Fully Abstract Model for a Quantum

Linear Functional Language

(Extended Abstract)

Peter Selinger1 ,2

Dalhousie University, Halifax, Nova Scotia, Canada

Benôıt Valiron3

University of Ottawa, Ottawa, Ontario, Canada

Abstract

This paper studies the linear fragment of the programing language for quantum computation with classical
control described in [4]. We sketch the language, and discuss equivalence of terms. We also describe a fully
abstract denotational semantics based on completely positive maps.

Keywords: Quantum computing, functional programming, linear lambda calculus, higher order,
semantics.

1 Introduction

This work studies a linear functional programming language for quantum compu-

tation with classical control, derived from the language in [4].

The first denotational semantics of a quantum programming language was given

by the first author in [3], for the quantum flowchart language QFC. The semantics

given there was compositional and took place in a category of superoperators, which

are special completely positive maps. However, the language lacked a crucial feature

found in functional programming languages, namely, the notion of higher-order

functions.

1 Research supported by NSERC.
2 Email: selinger@mathstat.dal.ca
3 Email: bvali087@uottawa.ca

Electronic Notes in Theoretical Computer Science 210 (2008) 123–137

1571-0661 © 2008 Peter Selinger. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.022
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82346737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:selinger@mathstat.dal.ca
mailto:bvali087@uottawa.ca
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

In [4], we sought to address this omission by introducing a typed lambda cal-

culus for quantum computation. This language resembles QFC in that it combines

quantum and classical data types with classical control features, but it also includes

lambda abstractions and therefore function closures. The problem of deciding the

duplicability of data was solved syntactically, by giving a type system that distin-

guishes duplicable and non-duplicable types. The quantum lambda calculus pos-

sesses a reduction semantics, but no denotational semantics has been given for it so

far.

In this paper, we study the restriction of the quantum lambda calculus to the

purely linear case. This means we study the fragment of the language where each

value, classical and quantum, must be used exactly once. The linear quantum

lambda calculus differs from its nonlinear cousin in that it is less sensitive to the

evaluation order of terms. We give a denotational semantics for this language in

a category of completely positive maps, and we show that it is fully abstract with

respect to the operational semantics.

The question of finding a denotational semantics for the full quantum lambda

calculus is still open, but we hope that this work is a step in that direction.

The plan of the paper is as follows. First we briefly describe the language and

the type system. Then we develop an operational semantics for it, and we define

a notion of equivalence of terms. Finally we build a denotational semantics for the

language, and we show the full abstraction result.

2 A linear lambda-calculus for quantum computation

In [4], we have defined an operational semantics for a lambda calculus for quantum

computation with classical control. Here, we study the purely linear fragment of

this language. We begin by re-adapting the definitions and results from this earlier

paper for the linear setting.

2.1 Terms and Programs

Definition 2.1 The linear quantum lambda calculus has the following terms:

M,N,P ::= x | MN | λx.M | if M then N else P | 0 | 1 | new | meas | U |

∗ | 〈M,N〉 | let 〈x, y〉 = M in N | let ∗ = M in N | Ω.

Here 0 and 1 are the Booleans constants, new and meas are operations that create

and measure a quantum bit, respectively, U ranges over a given family of unitary

operations, and Ω is a non-terminating term. We follow Barendregt’s convention

for identifying terms up to α-equivalence [1]. The set of free variables of a term M

is written FV (M). We also sometimes use the shorthand notation 〈M1, . . . ,Mn〉 =

〈M1, 〈M2, . . . 〉〉. In the following, we often write c for an arbitrary constant of the

language, i.e., 0, 1, meas , new , U , or ∗.

The set of types is defined by

A,B ::= bit | qbit | A � B | � | A ⊗ B.

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137124

x : A � x : A
(ax 1)

� c : Ac
(ax 2)

Γ1 � P : bit Γ2 � M : A Γ2 � N : A
Γ1,Γ2 � if P then M else N : A

(if)

Γ1 � M : A � B Γ2 � N : A
Γ1,Γ2 � MN : B

(app)
Δ, x : A � M : B

Δ � λx.M : A � B
(λ)

Γ1 � M1 : A1 Γ2 � M2 : A2

Γ1,Γ2 � 〈M1,M2〉 : A1 ⊗ A2
(⊗.I)

� ∗ : �
(�.I)

Δ � Ω : A
(Ω)

Γ1 � M : A1 ⊗ A2 Γ2, x1:A1, x2:A2 � N : A

Γ1,Γ2 � let 〈x1, x2〉 = M in N : A
(⊗.E)

Γ1 � M : � Γ2 � N : A
Γ1,Γ2 � let ∗ = M in N : A

(�.E)

Table 1
Typing rules for the linear quantum lambda calculus

Note that, unlike the language of [4], there is no type constructor !A. We use

the same shortcut for the product type as we did for the product term, to define

A ⊗ . . . ⊗ A. To each constant term c, we associate a fixed type Ac, namely meas :

qbit � bit , 0, 1 : bit , new : bit � qbit , ∗ : � and U : qbit⊗n � qbit⊗n. A typing

judgement is a triple Δ � M : A, where Δ is a list of distinct typed variables called

a typing context, M is a term, and A is a type. We say that a typing judgement is

valid if it follows from the typing rules given in Table 1.

Although this language is intended to manipulate quantum information, no con-

stants of type qbit are provided in the definition of lambda-terms. Indeed, while

it would be possible to allow constant qubit expressions such as α|0〉 + β|1〉, such

a notation would not lend itself to expressing entangled states. Instead, we intro-

duce the concept of a quantum array and a linking function to express terms with

embedded quantum data.

Definition 2.2 A quantum closure is a triple [Q,L,M] where Q is a normalized

vector in ⊗n
i=1C

2, for some n � 0, L is a bijective function from a set |L| of term

variables to {0, . . . , n− 1}, and M is a term. Q is called a quantum array, and L is

called a linking function. We write |Q| = n. If L(xi) = i, we will sometimes write L

as the ordered list |x1 · · · xn〉. The idea is that the variable xi is bound in the term

M to qubit number L(xi) of the state Q. We also call the pair (Q,L) a quantum

context.

We extend the notion of α-equivalence to quantum closures:

[Q, |x · · · y · · · z〉,M] =α [Q, |x · · · y′ · · · z〉,M [y′/y]]

if y′ �∈ FV (M) ∪ {x, . . . , y, . . . , z}.

Definition 2.3 A quantum closure [Q,L,M] is well-typed (or valid) of type A

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 125

[Q,L,Ω] →ω
1 [Q,L,Ω] [Q,L, (λx.M)V] →β

1 [Q,L,M [V/x]]

[Q,L, let 〈x1, x2〉 = 〈V1, V2〉 in N] →let
1 [Q,L,N [V1/x1, V2/x2]]

[Q,L, let ∗ = ∗ inN] →let∗
1 [Q,L,N]

[Q,L, if 0 then M else N] →
if 0
1 [Q,L,N]

[Q,L, if 1 then M else N] →
if 1
1 [Q,L,M]

[Q,L,N] →κ
p [Q′, L′, N ′]

[Q,L,MN] →κ
p [Q′, L′,MN ′]

[Q,L,M1] →
κ
p [Q′, L′,M ′

1]

[Q,L, 〈M1,M2〉] →
κ
p [Q′, L′, 〈M ′

1,M2〉]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L,MV] →κ
p [Q′, L′,M ′V]

[Q,L,M2] →
κ
p [Q′, L′,M ′

2]

[Q,L, 〈V1,M2〉] →
κ
p [Q′, L′, 〈V1,M

′
2〉]

[Q,L,P] →κ
p [Q′, L′, P ′]

[Q,L, if P then M else N] →κ
p [Q′, L′, if P ′ then M else N]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L, let 〈x1, x2〉 = M in N] →κ
p [Q′, L′, let 〈x1, x2〉 = M ′ in N]

[Q,L,M] →κ
p [Q′, L′,M ′]

[Q,L, let ∗ = M in N] →κ
p [Q′, L′, let ∗ = M ′ in N]

Table 2
Reduction rules for the quantum lambda calculus

in the typing context Γ, written Γ � [Q,L,M] : A, if |L| ∩ |Γ| = ∅, FV (M) \
|Γ| ⊆ |L|, and Γ,x1:qbit , . . . , xk:qbit � M : A is a valid typing judgement, where

{x1, . . . , xk} = FV (M) \ |Γ|.

A well-typed quantum closure is closed if |Γ| = ∅, and a closed well-typed

quantum closure is also called a program.

3 Operational semantics

3.1 Small step semantics

The language contains a probabilistic operation: the measurement. This probabilis-

tic operation forces us to choose a reduction strategy.

Definition 3.1 We define the call-by-value reduction strategy for the linear quan-

tum lambda calculus by structural induction. For this purpose we need the notion

of a value. We define a value term to be of the form V,W ::= x | c | λx.M | 〈V,W 〉.
A value program is a program of the form [Q,L, V], where V is a value term. The

rules for the reduction are an adaptation of the ones found in [4].

We set the rules to be the “classical” ones found in Table 2, plus the following

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137126

“quantum” rules. In the first two rules, let Q =
∑

j Q0
j ⊗ αj |0〉 ⊗ Q̃0

j +
∑

j Q1
j ⊗

βj |1〉 ⊗ Q̃1
j , where Qb

j ∈ C
2i−1

and Q̃b
j ∈ C

2n−i

.

[Q, |x1 · · · xn〉,meas xi] →
m0

|α|2
[
∑

j Q0
j ⊗ Q̃0

j , |x1 · · · xi−1xi+1 · · · xn〉, 0],

[Q, |x1 · · · xn〉,meas xi] →
m1

|α|2
[
∑

j Q1
j ⊗ Q̃1

j , |x1 · · · xi−1xi+1 · · · xn〉, 1].

If w is a fresh term variable not yet in use:

[Q, |x1 · · · xn〉,new 0] →n0
1 [Q ⊗ |0〉, |x1 · · · xnw〉, w],

[Q, |x1 · · · xn〉,new 1] →n1
1 [Q ⊗ |1〉, |x1 · · · xnw〉, w].

If Q′ is the result of applying U to the quantum bits L(x1), . . . , L(xn) in Q:

[Q,L,U〈x1, . . . , xn〉] →
U
1 [Q′, L, 〈x1, . . . , xn〉].

Note that since we want a linear language, we modified the measurement rule

from [4] by deleting the quantum bit measured from the quantum array.

Lemma 3.2 (Substitution) If Δ, x : A � M : B and if Γ � N : A then Δ,Γ �

M [N/x] : B is a valid typing judgement.

Note that, in the non-linear case, the Substitution Lemma only holds when

N = V is a value. However, in the linear calculus considered here, it holds for

general N .

Theorem 3.3 (Safety properties) If P is a valid program of type A, either it is

a value or P →ρ P ′, with P ′ a valid program of type A.

Proof. The proof is an adaptation of the proof of Theorems 1 and 2 in [4]. ��

The language being linear, the reduction has a strong relation on the length of

the terms.

Definition 3.4 Let l(M) be the length of a term M , defined recursively as l(x) =

l(c) = l(Ω) = 1, l(λx.M) = l(M) + 1, l(let 〈x, y〉 = M in N) = l(M) + l(N) + 1,

l(if P then M else N) = l(P) + max (l(M), l(N)), l(MN) = l(〈M,N〉) = l(M) +

l(N) + 1.

Lemma 3.5 If x ∈ FV (M), then l(M [N/x]) = l(M) + l(N) − 1.

Lemma 3.6 If [Q,L,M] →x
ρ [Q′, L′,M ′], then either x �= ω and l(M ′) < l(M) or

x = ω and l(M ′) = l(M). In the latter case, [Q,L,M] = [Q′, L′,M ′].

Definition 3.7 A program [Q,L,M] that reduces with a ω-rule is called a fixed

point.

Theorem 3.8 (Strong Normalization) If P = [Q,L,M] is a valid program, P

reduces to a value or to a fixed point in at most l(M) steps.

Proof. Follows from Lemma 3.6. ��

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 127

3.2 Quantum context and reduction

When describing the reduction rules, we carefully separated the quantum context

from the lambda-term. In this subsection we show that the precise order of quantum

bits in the quantum array does not matter.

Definition 3.9 If σ is a permutation of {1, . . . , n}, we extend σ to N with σ(j) =

j for j > n, and we define σ̄ to be the corresponding permutation of quantum

bits σ̄|x1 · · · xn · · · xn+k〉 = |xσ(1) · · · xσ(n)xn+1 · · · xn+k〉. We say that (Q1, L1) is

σ-equivalent to (Q2, L2) if Q1 and Q2 have the same size, Q2 = σ̄(Q1) and L2 =

σ−1 ◦L1. We write (Q1, L1) =α
σ (Q2, L2). We define an equivalence relation called

alpha-equivalence on quantum contexts by (Q1, L1) =α (Q2, L2) if there exists a σ

such that (Q1, L1) =α
σ (Q2, L2).

The alpha-equivalence is sound with respect to the semantics:

Lemma 3.10 If [Q,L,M] →p [Q′, L′,M ′] then [σ̄Q, σL,M] →p [σ̄Q′, σL′,M ′].

3.3 Reduction to values

In the reduction process, what we are really seeking is the final result of the com-

putation. In this section we explicate the relation of programs to values.

Definition 3.11 We informally recall a notion defined in [4]: If X is the set of

closed valid programs and U the set of values, let probU : X × U → [0, 1] be the

map probU (P, V) that returns the total probability for a program P to end up on

the value V in zero or more steps. This function is called the big-step reduction.

We also define the small-step reduction operation prob : X × X → [0, 1]: for

closed programs P,P ′, we define prob(P,P ′) = p if there is a single-step probabilistic

reduction P →p P ′, prob(V, V) = 1 if V is a value program, and prob(P,P ′) = 0 in

all other cases. Note that for all well-typed P ,
∑

P ′∈X prob(P,P ′) = 1.

Definition 3.12 If P is a closed well-typed program of type bit , and b ∈ {0, 1},
we define (P ⇓ b) =

∑
V ∈Ub

prob ′(P, V), where Ub is the set of valid programs with

term the value b. We say that P evaluates to b with probability P ⇓ b.

Definition 3.13 We define a formal probability distribution of quantum closures to

be Γ �
∑

i ρi[Qi, Li,Mi] : A, where each Γ � [Qi, Li,Mi] : A is valid and
∑

ρi � 1.

The distribution is said to be closed if |Γ| = ∅.

Lemma 3.14 Given a set Z, let CZ be the set of probability distributions over

it. The small-step reduction prob : X × X → [0, 1] can be curried to a

map prob ′ : CX → CX: prob ′(
∑

i αiPi) =
∑

i αi

∑
P ′∈X prob(Pi, P

′)P ′. Simi-

larly, probU : X × U → [0, 1] can be curried to a map prob ′U : CX → CU :

prob ′U (
∑

i αiPi) =
∑

i αiprobU (Pi, V)V . The definition of P ⇓ b can be extended

in the same way to probability distributions of programs.

Lemma 3.15 If � P : A is valid, so is � prob ′P : A and � prob ′UP : A.

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137128

Due to the strong normalization theorem, applying the map prob ′U is applying

the map prob ′ finitely many times.

Proposition 3.16 If [Q,L,M] is a valid program, then the reduction satisfies

prob ′l(M)[Q,L,M] =

n∑

i=1

ρi[Qi, Li, Vi] +

m∑

j=1

ρ′jPj ,

with prob ′U [Q,L,M] =
∑n

i=1 ρi[Qi, Li, Vi], the Pj being fixed points,
∑

i ρi+
∑

j ρ′j =

1, and n + m < 2l(M).

4 Denotational semantics

In [3] the notion of completely positive map is used to model the notion of quantum

computation. We aim to show that the linear subset of the quantum lambda calculus

has the category CPM as a fully abstract model. Note that the interpretation will

not be “onto” all completely positive maps, but will only be “onto up to scalar

multiplies”. In this section we set the definition of the denotational semantics.

4.1 The category CPM

We recall the definition of the category V [3].

• The objects are signatures σ = n1, . . . , nk, i.e., finite tuples of positive integers,

• the arrows σ → σ′ are linear maps Vσ → Vσ′ , where Vn1,...,nk
= C

n1×n1 × . . . ×
C

nk×nk .

There is a tensor product (n1, . . . , nk) ⊗ (m1, . . . ,ml) = n1m1, . . . , n1ml, n2

m1, . . . , nkml and a canonical isomorphism Vσ⊗τ � Vσ⊗Vτ . Thus V has a structure

of symmetric monoidal closed category. The unit element is the signature 1. From

the vector spaces property, V(σ ⊗ τ, σ′) =Φ V(σ, τ ⊗ σ′): If B(τ) is a basis for

Vτ , then from f ∈ V(σ ⊗ τ, σ′) we construct g = Φ(f) ∈ V(σ, τ ⊗ σ′) by g(s) =∑
b∈B(τ) b⊗f(s⊗ b). Conversely, given such a g, if g(s) =

∑
b∈B(τ),u∈B(σ′) αb,ub⊗u,

one constructs f = Φ−1(g) by f(s ⊗ t) =
∑

u∈B(σ′) αt,uu. This makes V monoidal

closed.

The category CPM has the same objects as V and as arrows completely positive

maps (see [3]).

4.2 Modeling the quantum lambda-calculus

We set the denotation of types to be [[bit]] = (1, 1), [[A ⊗ B]] = [[A]]⊗ [[B]], [[qbit]] = 2,

and [[A � B]] = [[A]] ⊗ [[B]], and the denotation of contexts to be

[[x1 : A1, . . . , xn : An]] = [[A1]] ⊗ · · · ⊗ [[An]], [[∅]] = 1.

The denotation of a typing judgment of the form Δ � M : A is a linear map [[Δ]] →
[[A]], defined inductively as in Table 3. Here, Φ : hom(A ⊗ B,C) → hom(A,B ⊗ C)

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 129

[[x : A � x : A]](v) = v [[� 0 : bit]](x) = (x, 0)

[[� ∗ : �]](x) = x [[� 1 : bit]](x) = (0, x)

[[Δ � Ω : A]] = 0 : [[Δ]] → [[A]]

[[� new : bit � qbit]] = Φ(ι) : 1 → [[bit]] ⊗ [[qbit]]

[[� meas : qbit � bit]] = Φ(p) : 1 → [[qbit]] ⊗ [[bit]]

[[� U : qbit⊗n � qbit⊗n]] = Φ(U) : 1 → 22n

[[Δ, x : A � M : B]] = f : [[Δ]] ⊗ [[A]] → [[B]]

[[Δ � λx.M : A � B]] = Φ(f) : [[Δ]] → [[A]] ⊗ [[B]]

[[Δ � M : A � B]] = Φ(g) : [[Δ]] → [[A]] ⊗ [[B]]

[[Γ � N : A]] = f : [[Γ]] → [[A]]

[[Δ,Γ � MN : B]] : x ⊗ y �→ g(x ⊗ (fy)) : [[Δ]] ⊗ [[Γ]] → [[B]]

[[Δ � P : bit]] : x �→ (px, qx) : [[Δ]] → [[bit]]

[[Γ � M : A]] = f : [[Γ]] → [[A]]

[[Γ � N : A]] = g : [[Γ]] → [[A]]

[[Δ,Γ � if P then M else N : A]] : x ⊗ y �→ (px)(fy) + (qx)(gy)

[[Δ � M : A]] = f : [[Δ]] → [[A]]

[[Γ � N : B]] = g : [[Γ]] → [[B]]

[[Δ,Γ � 〈M,N〉 : A ⊗ B]] : x ⊗ y �→ fx⊗ gy : [[Δ]] ⊗ [[Γ]] → [[A]] ⊗ [[B]]

[[Δ � M : A ⊗ B]] = f : [[Δ]] → [[A]] ⊗ [[B]]

[[Γ, x : A, y : B � N : C]] = g : [[Γ]] ⊗ [[A]] ⊗ [[B]] → [[C]]

[[Δ,Γ � let 〈x, y〉 = M in N : C]] : u ⊗ v �→ g(v ⊗ (fu)) : [[Δ]] ⊗ [[Γ]] → [[C]]

[[Δ � M : �]] = f : [[Δ]] → 1

[[Γ � N : C]] = g : [[Γ]] → [[C]]

[[Δ,Γ � let ∗ = M in N : C]] : u ⊗ v �→ (fu)(gv) : [[Δ]] ⊗ [[Γ]] → [[C]]

Table 3
Denotational semantics for typing judgments.

is the bijection from the compact closed structure and ι and p are respectively the

quantum bits creation and the measurement operation:

ι : 1, 1 → 2 p : 2 �→ 1, 1

(a, b) �→
(

a 0
0 b

) (
a b
c d

)
�→ (a, d)

We also define the denotation of a quantum closure. Consider a valid quantum

closure Δ � [Q,L,M] : A where L = |x1 · · · xny1 · · · ym〉 and |Q| = n + m. The

quantum context (Q,L) can be seen as a map g : 1 → 2⊗n⊗2⊗m such that g(1) = Q.

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137130

Then if

[[Δ, x1 : qbit , . . . , xn : qbit � M : A]] = f : [[Δ]] ⊗ 2⊗n → [[A]],

one defines [[Δ � [Q,L,M] : A]] as the composition

[[Δ]]
id [[Δ]]⊗g

�� [[Δ]] ⊗ 2⊗n ⊗ 2⊗m f⊗2⊗m

�� [[A]] ⊗ 2⊗m [[A]]⊗Tr
�� [[A]].

One extends this definition to probabilistic distributions of quantum closures using

linearity:

[[Δ �
∑

i

ρiPi : A]] =
∑

i

ρi[[Δ � Pi : A]].

Lemma 4.1 Denotations of terms and quantum closures are completely positive

maps.

Lemma 4.2 (Substitution) If |Γ| ∩ |Δ| = ∅ and [[Δ, x : A � M : B]] = G : [[Δ]]⊗
[[A]] → [[B]], [[Γ � N : A]] = F : [[Γ]] → [[A]], then [[Δ,Γ � M [N/x] : B]] = H :

[[Δ]] ⊗ [[Γ]] → [[B]], with H(d ⊗ g) = G(d ⊗ (Fg))

Lemma 4.3 Given a program P : A with prob ′P =
∑

i ρiPi then [[P : A]] =

[[prob ′P : A]] = [[prob ′UP : A]].

4.3 Fullness of the semantics for the first order fragment

Proposition 4.4 For any types A = U1 ⊗ · · · ⊗ Un and B = V1 ⊗ · · · ⊗ Vm, where

each Ui and Vj is either bit or qbit, if F : [[A]] → [[B]] is any superoperator, then

there exists a valid typing judgement x : A � M : B of denotation F .

Corollary 4.5 For every type A = U1⊗· · ·⊗Un, where each Ui is either bit or qbit,

and for every hermitian positive element v ∈ V[[A]] of trace at most 1, v = [[M : A]](1)

for some closed valid term M .

5 Equivalence classes of terms

Being able to build terms, we need some tools to compare them. One can compare

them through syntactic manipulations, or one can have a finer approach using the

two semantics we have built: in the case of the operational semantics, the behavior

of the terms is what defines the equivalence, and in the case of the denotational

semantics, the equivalence is expressed by the denotation of the terms.

5.1 Axiomatic equivalence

A first notion of equality of terms can be defined by a set of syntactic rules. This

is known as the axiomatic equivalence.

Definition 5.1 We define an equivalence relation ≈ax on typing judgement. We

write the relation as Γ � M ≈ax N : A, and we define it to be the smallest relation

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 131

(β) Γ � (λx.M)N ≈ax M [N/x] : A

(η) Γ � λx.Mx ≈ax M : A � B

(β⊗) Γ � let 〈x, y〉 = 〈N,P 〉 in M ≈ax M [N/x,P/y] : A

(η⊗) Γ � let 〈x, y〉 = M in 〈x, y〉 ≈ax M : A ⊗ B

(β∗) Γ � let ∗ = ∗ inM ≈ax M : A

(η∗) Γ � let ∗ = M in ∗ ≈ax M : �

(β1
if) Γ � if 1 then M else N ≈ax M : A

(β0
if) Γ � if 0 then M else N ≈ax N : A

(Ω) Γ � M [Ω/x] ≈ax Ω : A

(ηif) Γ � if B then M [1/x] else M [0/x] ≈ax M [B/x] : A

(id) Γ � meas(new M) ≈ax M : qbit

Table 4
Axiomatic equivalence

satisfying the rules in Table 4, the alpha-equivalence and one congruence rule (ξ)

per term constructor. This means for example:

Γ � M ≈ax M ′ : A � B Δ � N ≈ax N ′ : A

Γ,Δ � MN ≈ax M ′N ′ : B
(ξapp)

Γ, x : A � M ≈ax M ′ : B

Γ � λx.M ≈ax λx.M ′ : A � B
(ξλ)

We call it the axiomatic equivalence relation.

Lemma 5.2 The order of the arguments in an application does not matter. Simi-

larly, one can apply the arguments as a pairing or sequentially. More precisely:

[Q,L, ((λxy.M)N)P] ≈ax [Q,L, ((λyx.M)P)N]

[Q,L, let 〈x, y〉 = 〈N,P 〉 in M] ≈ax [Q,L, ((λxy.M)N)P]

5.2 Operational context

To say that two arbitrary terms have the same behavior, we need a way to observe

them. The only observable types at our disposal are the types bit and �. So the

fact that two terms M and M ′ have the same behavior can be understood as the

fact that in whichever context C[−] we “use” them, if C[−] : bit , then C[M] reduces

to 0, respectively, 1, with the same probability as C[M ′]. Such a term C[−] is called

an operational context.

Definition 5.3 We define a formal operational context to be a formula defined by

the following BNF:

C[−] ::= [−] | (C[−]M) | (MC[−]) | λx.C[−] | 〈C[−],M〉 | 〈M,C[−]〉

| let 〈x, y〉 = C[−] in M | let 〈x, y〉 = M in C[−]

| if C[−] then M else N | if M then C[−] else C ′[−].

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137132

We call [−] the hole of the context.

The notions of well-typed contexts and free variables in contexts are defined the

same ways as for terms. Note that there exists a new notion: the notion of captured

variables, which are the variables whose scope includes the hole. We can make this

more precise by speaking of typed contexts:

Definition 5.4 A typed operational context is a typing tree with root Γ′ � C[−] : B,

considering the additional axiom Γ � [−] : A, i.e., a typing tree of the form

Γ � [−] : A

...
Γ′ � C[−] : B.

We say that this context is of type B, with free variables Γ′, a hole of type A, and

captured variables Γ. We also use the notation Γ′ � C[Γ � − : A] : B for a typed

operational context.

Lemma 5.5 If
Γ � [−] : A

...

Γ′ � C[−] : B.

is a valid typing derivation, then so is

Δ,Γ � [−] : A

...

Δ,Γ′ � C[−] : B,

provided the variables that occur in Δ are fresh.

5.3 Operational equivalence

We define a notion of operational equivalence, based on the reduction rules and

observations of type bit , as in [2]. (Equivalently, it would suffice to consider obser-

vations of type �).

Definition 5.6 Let � C[Γ � − : A] : bit be a closed typed operational context

of type bit , and let R = [Q,L,M] be a well-typed quantum closure with typing

judgement Γ � [Q,L,M] : A. In this case we define the substitution C[R] by

[Q,L,C[M]], where M is syntactically replacing [−] in C[−]. We linearly extend

this definition to probabilistic distributions of quantum closures of the form Γ �∑
i ρiRi : A by setting C[

∑
i ρiRi] =

∑
i ρiC[Ri].

Lemma 5.7 In Definition 5.6, the substitution is well typed and a valid typing

judgement for it is � [Q,L,C[M]] : bit.

Proof. A direct consequence of Lemma 5.5. ��

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 133

Definition 5.8 Given two well-typed quantum closures Γ � R,R′ : A, we say

that R is operationally equivalent to R′ with respect to Γ if for all closed typed

operational contexts � C[Γ � − : A] : bit , C[R] ⇓ 0 = C[R′] ⇓ 0 and C[R] ⇓ 1 =

C[R′] ⇓ 1. In this case, we write Γ � R ≈op R′ : A. If M,M ′ are terms, we say that

Γ � M ≈op M ′ : A if Γ � [|〉, |〉,M] ≈op [|〉, |〉,M ′] : A.

5.4 Denotational equivalence

The last equivalence we can define is the denotational equivalence. This equivalence

relation is simply stated:

Definition 5.9 We say that two typing judgments Γ � M,M ′ : A are denotation-

ally equivalent if [[Γ � M : A]] and [[Γ � M ′ : A]] are the same map in CPM. In that

case we write Γ � M ≈den M ′ : A.

We extend this definition to quantum closures: Γ � R ≈den R′ : A is true if

[[Γ � R : A]] = [[Γ � R′ : A]].

6 Soundness of the axiomatic equivalence and full ab-

straction of the denotational semantics

The three defined equivalence relations we have built have the expected behavior:

The axiomatic equivalence is sound with respect to the operational equivalence and

the denotational semantic is fully abstract with respect to the operational semantics:

Theorem 6.1 (Soundness) If Γ � M ≈ax M ′ : A then Γ � M ≈op M ′ : A.

Remark 6.2 An immediate consequence of soundness is that the quantum context

is not a side-effect, i.e., the order of evaluation does not affect the outcome.

Γ � ((λxy.R)M)N ≈op ((λyx.R)N)M .

Theorem 6.3 (Full abstraction) The denotational semantics is fully abstract

with respect to the operational equivalence of typing judgments, i.e.

[[Γ � M : A]] = [[Γ � M ′ : A]] if and only if Γ � M ≈op M ′ : A.

Remark 6.4 The presence of the non-terminating term Ω is necessary for full ab-

straction to hold. Without it, every program terminates with probability 1, and

there is only one definable map bit → �. Thus, although λf.(f0) and λf.(f1) of

type (bit � �) � � have different denotations, no context will distinguish them.

6.1 Proof of the soundness theorem

Assume Theorem 6.3. It suffices to show that if Γ � M ≈ax M ′ : A then Γ � M ≈den

M ′ : A. We show this by structural induction on the proof of Γ � M ≈ax M ′ : A.

We detail the cases (β1
if) and (η).

For the (β1
if) case, let [[Γ � M,N : A]] = f, g : [[Δ]] → [[A]] and [[� 1 : bit]] =

(p, q) : 1 → 1, 1. Then [[Γ � if 1 then M else N : A]] : 1 ⊗ y �→ (p1)(fy) + (q1)(gy)

which is y �→ fy, namely [[Γ � M : A]].

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137134

The case (η) is done as follows. Consider the proof tree

Γ � M : A � B x : A � x : A
Γ, x : A � Mx : B

Γ � λx.(Mx) : A � B

and set

[[x : A � x : A]] = IdA : [[a]] → [[A]]

[[Γ � M : A � B]] = Φ(g) : [[Δ]] → [[A]] ⊗ [[B]]. Then

[[Γ, x : A � Mx : B]] = f : [[Γ]] ⊗ [[A]] → [[B]]

with f(x ⊗ y) = g(x ⊗ IdA(y)) = g(x ⊗ y), and we are done.

Note that cases (β) and (let) are done using Lemma 4.2. ��

6.2 Full abstraction: preliminary lemmas

Lemma 6.5 For any two programs P,P ′ of type bit, they have the same denotation

if and only if for all b ∈ {0, 1}, P ⇓ b = P ′ ⇓ b.

Proof. Consider two well-typed programs P,P ′ : bit . Suppose they have the same

denotation f . Then from Lemma 4.3, f is also the denotation of prob ′UP and of

prob ′UP ′. But by definition, [[prob ′
UP]] = (p, q), where p = (prob ′UP)⇓0 = P ⇓0 and

q = (prob ′
UP)⇓ 1 = P ⇓ 1, and similarly for P ′. Thus P ⇓ b = P ′ ⇓ b. The argument

being reversible, we get the other implication. ��

Lemma 6.6 If [[Γ � M :A]] = [[Γ � M ′:A]] and C[Γ � − : A] : bit is a valid context,

then [[C[M] : bit]] = [[C[M ′] : bit]].

Proof. The proof uses Lemma 4.2. ��

Definition 6.7 Given a type A, we define the canonical first-order representation

A of A by the following: bit = bit , qbit = qbit , � = �, A ⊗ B = A ⊗ B, A � B =

A ⊗ B.

Lemma 6.8 For all types A, [[A]] = [[A]].

Lemma 6.9 For all types A, there exist two terms x : A � ΥA : A and x : A �

ΥA : A and constants λ, λ′ > 0, such that [[ΥA]] = λid [[A]] and [[ΥA]] = λ′id [[A′]].

Proof. The terms ΥA and ΥA are simultaneously constructed by structural induc-

tion on A. ��

Lemma 6.10 For all types A, let σ = [[A]] and let m,m′ be hermitian positive

elements in Vσ, m �= m′. Then there exists a well-typed term x : A � M : bit such

that [[M]](m) �= [[M]](m′).

Proof. By Lemma 6.9, it suffices, without loss of generality, to consider the case

where A = bit ⊗ . . .⊗ bit ⊗ qbit ⊗ . . .⊗ qbit . However, in this case, the claim follows

easily from Proposition 4.4 on the fullness of the semantics in first order. ��

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 135

Lemma 6.11 Given any type A and any hermitian positive v ∈ V[[A]], there exists

a closed term M : A and λ > 0 such that [[M]](1) = λv.

Proof. If v = 0, let M = Ω. Else, from Corollary 4.5, there exists a valid typing

judgement � N : A such that v/Tr(v) = [[N]](1). Then let M = ΥA[N/x] : A.

From Lemma 6.9, [[M : A]](1) and v are collinear. ��

6.3 Proof of the full abstraction theorem

If [[Γ � M : A]] = [[Γ � M ′ : A]], take any valid context C[Γ � − : A] : bit for

those two terms. Then from Lemma 6.6, [[� C[M] : bit]] = [[� C[M ′] : bit]]. From

Lemma 6.5, C[M] ⇓ b = C[M ′] ⇓ b, for b ∈ {0, 1}. Since this holds for arbitrary

contexts, M and M ′ are operationally equivalent.

The opposite implication follows from Lemma 6.10 and Lemma 6.11. Consider

two typing judgments Γ � M,M ′:A with denotations F=[[Γ � M : A]] and G =

[[Γ � M ′ : A]], such that F �= G.. Since the vector space V[[Γ]] is spanned by hermitian

positive elements, there exists a hermitian positive v ∈ V[[Γ]] such that F (v) �= G(v).

If Γ = x1:A1, . . . , xn:An, let B = A1 ⊗ . . . ⊗ An. By Lemma 6.11, there exists a

closed term R : B such that [[R : B]](1) = λv, for some λ > 0. By Lemma 6.10, there

exists a term x : A � S : bit such that [[x : A � S : bit]](Fv) �= [[x : A � S : bit]](Gv).

Now consider C[Γ � − : A] : bit defined by

let 〈x1, . . . xn〉 = R in let x = [−] in S.

Then [[C[M]]](1) �= [[C[M ′]]](1), hence by Lemma 6.5, C[M]⇓b �= C[M ′]⇓b, for some

b ∈ {0, 1}. It follows that M �≈opM
′, which completes the proof of full abstraction.

��

7 Conclusion

In this paper we have restricted our study to the linear fragment of the program-

ming language of [4]. We gave a syntactic notion of equivalence of terms and an

operational one, together with a fully abstract model for the latter.

Several questions remain open. First, the exact image of the denotational se-

mantics is still to be characterized as a subset of the completely positive maps. Then

it would be interesting to explore the categorical semantics of the linear language.

Finally, we may want to add weakening and duplication and find a denotational

semantics for the full quantum lambda calculus.

References

[1] Barendregt, H. P., “The Lambda-Calculus, its Syntax and Semantics,” Studies in Logic and the
Foundation of Mathematics 103, North Holland, 1984, second edition.

[2] Danos, V. and R. S. Harmer, Probabilistic game semantics, ACM Transactional on Computational Logic
3 (2002), pp. 359–382.

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137136

[3] Selinger, P., Towards a quantum programming language, Mathematical Structures in Computer Science
14 (2004), pp. 527–586.

[4] Selinger, P. and B. Valiron, A lambda calculus for quantum computation with classical control, in:
P. Urzyczyn, editor, Proceedings of the Seventh International Conference on Typed Lambda Calculi and
Applications (TLCA 2005), Lecture Notes in Computer Science 3461 (2005), pp. 354–368.

P. Selinger, B. Valiron / Electronic Notes in Theoretical Computer Science 210 (2008) 123–137 137

	Introduction
	A linear lambda-calculus for quantum computation
	Terms and Programs

	Operational semantics
	Small step semantics
	Quantum context and reduction
	Reduction to values

	Denotational semantics
	The category CPM
	Modeling the quantum lambda-calculus
	Fullness of the semantics for the first order fragment

	Equivalence classes of terms
	Axiomatic equivalence
	Operational context
	Operational equivalence
	Denotational equivalence

	Soundness of the axiomatic equivalence and full abstraction of the denotational semantics
	Proof of the soundness theorem
	Full abstraction: preliminary lemmas
	Proof of the full abstraction theorem

	Conclusion
	References

