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Abstract

A piecewise RiemanniaZrmanifoldis a combinatorial 2-manifold with a triangulation such that
each 2-simplex is a geodesic triangle of some Riemannian 2-manifold. In this paper, we study the
total exces#(X) of a simply connected nonpositively curved piecewise Riemannian 2-madifold
in connection with the Tits metric on the boundary at infinityoo). O 1999 Elsevier Science B.V.
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1. Introduction

A piecewise Riemannia2xmanifoldis a combinatorial 2-manifold with a triangulation
such that each 2-simplex is a geodesic triangle in some Riemannian 2-manifold. In
a previous paper [6], the authors studied the total excess of piecewise Riemannian
2-manifolds in connection with the existence of straight lines. In this paper, we study
the relation between the total excess of simply connected nonpositively curved piecewise
Riemannian 2-manifolds and the Tits metric on the boundary at infinity. A piecewise
Riemannian 2-manifold is said to b@npositively curvedf the sectional curvature at
any interior point of each 2-simplex is nonpositive with respect to the Riemannian metric
and theangle excessdefined in Section 2, at each vertex is also nonpositive. A simply
connected nonpositively curved piecewise Riemannian 2-mantfaéda Hadamard space
in the sense of Ballmann [2] and the boundary at infinityoo) is well defined. We
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introduce a topology, called trstandard topologyas an analogue of the sphere topology
for Hadamard manifolds. Also, a metric Td, called This metric is introduced in a similar
fashion to the one for Hadamard manifolds [2, Chapter I1].

The second author in [9] proved that for any 2-dimensional Hadamard maifdlie
total curvatureC (X) of X satisfiesC (X) = 2(r — diamrq(X (00))), where diamg(X (o0))
denotes the diameter of the metric sp&&goco), Td). We prove that the same formula
holds for the total excess of each simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary.

We then study the topology on the boundary at infinity induced by the Tits metric which
is finer than the standard topology in general. We prove that these two topologies coincide
with each other if and only if the total excess is finite.

For a simply connected nonpositively curved piecewise Riemannian 2-marifold
without boundary, the collection of all connected componentfoo), Td) provides a
decomposition of the unit circi! into points and subsets homeomorphic to open, closed
or half-open intervals. Conversely, we show taay decomposition o into points and
subsets homeomorphic to intervals is realized as the boundary at infifity), Td) for
some simply connected nonpositively curved piecewise Riemannian 2-makiifold

The authors would like to express their sincere thanks to the referee for the suggestions
that were very helpful to make the paper readable.

2. Preliminaries

In this section, we introduce some definitions and related results. First we define the
concept of a piecewise Riemannian 2-manifold.

For a metric spacéX, d), a continuous map on an intervainto X is called a curve.
A curvewa:l — X is called ageodesidf it is locally distance minimizing, i.e., for any
pointt € I, there exists a neighborhodd of ¢ such thatd («(s1), a(s2)) = |s1 — s2| for
any pointssy, s2 € U. In what follows, we assume thatis parameterized proportional to
arc length. If the above equality holds for any pointss, € 7, then we callk aminimizing
geodesicln particular, a minimizing geodesic defined @) oco) is called aray and that
defined on(—oo, o) a straight line We occasionally identify a geodesic with its image.
For a geodesic segmemt [a, b] — X on a compact intervadl, b], let

a:=dl@p: (@, b)— X,

and a point orw(a, b) is called an interior point of. Also the pointsx(a) anda(b) are
called the end points af.

A metric space(X, d) is called ageodesic spac# for any pair of pointsx, y on X,
there exists a minimizing geodesic segment frono y. A metric spacg X, d) is said
to beproperif any bounded subset has the compact closure. Any proper metric space is
locally compact and separable.

Let X be a topological 2-manifold with a triangulation such that each 2-simplex is
a geodesic triangle in some Riemannian 2-manifold. We introduce a natural metric as
follows.
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For any pair of points, y € X, letc:[a, b] — X be a piecewise smooth curve frono
y, thatis, a curve with a sequence=fg < 1 < - - - <ty = b such that|j,_, 1 is contained
in a 2-simplex for each and is a smooth curve with respect to the Riemannian metric on
the simplex. The length af is denoted by

k
1e) =Y U(cliy_y.m1)-
i=1
wherel(c|(;,_,.;1) is the length with respect to the Riemannian metric on the simplex. Now
we define the metrid by

d(x,y) :=inf{l(c) | c is a piecewise smooth curve frarrto y}.

It is easy to see that the metric spadg d ) is a proper geodesic space.
Definition 2.1. We call such a spadgX, d ) apiecewise RiemanniaZrmanifold

A piecewise Riemannian 2-manifold is said to bepiecewise flaif each 2-simplex is
isometric to a 2-simplex in the Euclidean plaké

2.1. Total excess

Here we will review the concept of total excess on piecewise Riemannian 2-manifold.
Although the total excess is defined for more general spaces, we confine ourselves to
piecewise Riemannian 2-manifold, for simplicity. See [8,12] for more details.

For a proper geodesic spaCe, d ), ageodesic triangle with verticgs, ¢ andr, denoted
by A(p, q,r), is the unionx,,, U oy, U arp, Whereay,, is a minimizing geodesic segment
from a to b. For a real numbetk, let M (k) be the 2-dimensional space form of constant
sectional curvaturé. A geodesic triangIeK(p,q,r) = AP, q.7) = ajg Uogr Uaip
in M (k) is called acomparison triangleof A(p, ¢, r) if l(aab)~= l(a;;) for anya,b e
{p.q.r}. The angle subtended ly;; anda; is denoted by/(gpr). In this paper, a
closed disk domain bounded by a geodesic triangle is also called a geodesic triangle.

For a pointp on a piecewise Riemannian 2-manifdidlet R , be the set of all geodesics
emanating fronp. Fora, 8 € R, and a real numbek, it is known that the limit

Ipe. py:= lim 7y((s)pp 1))

exists and does not depend on the choick.df is called theupper angleat p subtended
by « and 8. For a geodesic space in general, the limit does not necessarily exist and the
upper limit is defined as the superior limit of the above term. See Section 4 of [12].

In general, the upper angE,, is known to be a pseudo-metric dd, and induces
an equivalence relationr defined as followsw ~ g if and only if Z,,(a, B) =0. The
completion of the metric spad® ,/~, /) is denoted by X, /) and is called thepace
of directionsat p. For a subseY of X, let

R} :={aeR,|a(0.]) CY for somes > 0}.
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Thespace of directions with respect tB, denoted byzlf, is the completion of the metric
space(R} /~, /).

If a pointx is on )?, the interior ofX, the spaceX, is homeomorphic t&?, the unit
circle on the plan®2. Moreover, ifx is not a vertex of the triangulation &f, then X, is
isometric toSt.

For a pointp € X, letk(p) =27 — L(X},), whereL is the one-dimensional Hausdorff
measure orE,. k(p) is called theangle excesat the pointp in this paper. The following
is clear from the above:

If pis not a vertex, theh(p) = 0. (*)

Note that, whenX is piecewise flatk(p) is called the curvature gt in [5]. However,
we would like to avoid the use of the terminology “curvature” here to prevent a possible
confusion with the Gaussian curvature at a point on the interior of a 2-simplex.

For a Riemannian manifold without boundary, each geodesic is locally extended in a
unique way, but this does not hold for a piecewise Riemannian manifold. Suppose that a
piecewise Riemannian 2-manifoki has a minimizing geodesie with an end pointp.

If k(p) > 0, then it is easily seen that cannot be extended, as a geodesic, beyond

On the other hand, #(p) < 0, there are infinitely many minimizing geodesic-extensions
beyondp. In this sense, a point with nonzero angle excess is “singular” with respect to
the extension of geodesics. We define plasitive singular seBing™ (X) and thenegative
singular setSing™ (X) of X, respectively by

Sing*(X) := {p € X | k(p) = 0},

and thesingular setSing(X) by SingX) := Sing"(X) U Sing™(X). By the property £)
above, SingX) is a subset of the vertices of the triangulatiorXofit is also clear that there
is no positive singular point on the interior of any minimizing geodesic.

Now we define the total excess &f as follows. LetC(A) be the total curvature of
the Riemannian 2-manifold with boundary, an@reg(X) := > .5.5impiexC (4) provided
the sum is absolutely convergerting(X) := 3~ ,csingx) k(p) if the sum converges
absolutely. Then thiotal excesg(X) of X is defined by

e(X) := ereg(X) + esing(X),

when the sum of the right hand side makes sense.

We illustrate typical cases. I/ is a Riemannian 2-manifold triangulated by geodesic
triangles, thenesing(M) = 0 and e(M) = C(M), the total curvature ofV. If M is
a piecewise flat 2-manifold, thegteg(M) = 0 ande(M) = ZpesmgM)k(p), the total
curvature ofM in the sense of [5].

Remark. Each piecewise Riemannian 2-manifold is a good surface in the sense of [8],
and the above definition coincides with the one given in [8].

The remark above allows us to apply the following analogue of the Gauss—Bonnet
theorem in [8], which play the fundamental role in our argument.
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A curvec:la,b] — X is called abroken geodesid there is a subdivisiom = xg <
--- < x, = b such that|,,_, »;] iS a geodesic segment. The poitit;) (( =0,...,n) is
called avertexof the broken geodesic

Theorem 2.1 (The generalized Gauss—Bonnet theorem [8, Theorem 3.&{)X be a
piecewise Riemanniairmanifold without boundary an#f a compact domain oX such
thatdY consists of simple closed broken geodesics without self-intersection. Then

e(Y)=2mx(¥)— Y 60" (p),

pedY

whered” (p) =7 — L(Z)).

Remark. For a Riemannian 2-manifold and its compact domaitr, the nontrivial
contribution to the sum of the above equality is made only at the vertices of the broken
geodesics. However in our setting, a geodesic may pass through points of negative
singularity and those singular points may contribute to that sum. Also notice that, if
p €Y \ Sing(X) is not a vertex of the boundagy of Y, thend” (p) = 0. Since there

are only finitely many singular points @, the second term of the right side of the above
equality makes sense.

In what follows, for brevity,} . f(p) is often denoted by) ¢ f for a function

[ 1§ — R defined on a sef. For exampley_ ;6" (p) is abbreviated tg _,, 6"

2.2. Boundary at infinity

For a proper geodesic spake an open selV of X is called a CAp domainif, for each
geodesic triangl& (p, ¢, r) in U and the corresponding comparison triangke, ¢, r) in
R2, we have the following inequality

d(x,y) <d(X,y),

for each pair of pointst, y on the edges ofA(p, ¢,r) and the corresponding points
%,5 on A(p, q,r). If each point onX belongs to a CA§ domain, then we say that
hasnonpositive Alexandrov curvaturdfter Ballmann [2], a simply connected complete
geodesic space of nonpositive Alexandrov curvature is calleth@amard spacelt is
known that for a Hadamard spa&e X itself is a CATp domain. Hence it is clear that any
geodesic is a minimizing geodesic, and for each pair of two points,dhere exists the
unique geodesic oK joining these points.

A piecewise Riemannian 2-manifold is said tofenpositively curved the sectional
curvature at an interior point of each 2-simplex is nonpositive with respect to the
Riemannian metric and furthet(p) < 0 for each vertexp. In what follows, we
are concerned with a noncompact simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary. It is known that such a space is a Hadamard
space (the CAg-condition above is verified directly for a small neighborhood of each
vertex).
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The following is a brief review of the concepts of the boundary at infixityo) of a
Hadamard spack, the standard topology and the Tits metricX(vo). See [2] for more
detail.

Let X be a Hadamard space apé@ point onX. We denote the set of all geodesic rays on
X and all geodesic rays emanating frgnby R andR ,, respectively. Two geodesic rays
«a andg are said to basymptotidf there exists a constai such thatl/(«(t), 8(t)) < K
for anyt > 0. This is an equivalence relation and t@undary at infinityX (co) of X is
defined as the equivalence clas&es-. For a geodesic ray, the equivalence class 6fis
denoted by (c0). It is known that for any poing € X (co) and for anyp € X, there exists
the unique geodesic ray e R, such thaw (co) = &, which is denoted by ¢ .

Next we introduce a topology on the Sét= X U X (c0). Fix a pointp € X. The basis
of open sets ok consists of all open sets a&f together with the sets of the form:

Up.R.e)={ze X |z€ X\ B(p. R), d(0p:(R), 0 (R)) <},

where& € X(oco) and B(p, R) := {x € X | d(x, p) < R}. It is known that the above
topology does not depend on the choiceppfand the spac&’ with the above topology
is a compactification ok . The relative topology oX (c0) is called thestandard topology
on X (00), denoted by( X (00), st) in the sequel.

For points, n € X (o0), we define theangleby

L(&.m) == SUPLp(0pe, Opy),
peX

where/, is the upper angle. TheiX (c0), ) is a complete metric space, and the induced
topology is finer than the standard topology.

The Tits metric Td on X (oco) is defined as the interior metric of. Namely for
&,n € X(00), if there is a continuous curve frognto n on (X (c0), £), then Tdg, ) is
the infimum of the lengths of such curves and otherwisé g = co.

It is known that Td is a complete metric, and for any two poifitg € X (co) with
Td(&, n) < oo, there exists a minimizing geodesic fr@nto n with respect to Td.

3. Tits metrics and the total excess of simply connected nonpositively curved
piecewise Riemannian 2-manifolds

Throughout this sectiorn¥ denotes a simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary. We first prove that the boundary at infinity
(X (00), st) with the standard topology is homeomorphicth This is trivially true for a
Hadamard 2-manifold, becau&&oo) is homeomorphic to the unit tangent sph&p€X)
at any fixed poinp, via the map¥,: S,(X) — X (co) defined by, (v) = y,(c0), where
yy is the unique geodesic ray fromsuch thaty; (0) = v. However, on a Hadamard space,
geodesics may branch off in various directions and the ¥apbove is not well defined.

To avoid this difficulty, we represenk (co), st) as the projective limit of geodesic spheres
as follows.
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Fix a pointp € X and letS(p,r) := {x € X |d(p, x) = r}. For two positive numbers
0<r < R, acontinuous map,r:S(p, R) — S(p, r) is defined by

orr(x):=S8(p,r) Nopx forx e S(p, R),

whereo,, is the unique geodesic segment frgmmo x. It is clear that the above map is
well defined and continuous. Then we obtain a projective sy§tea{S(p, r), ¢} and
from the definition of the projective limit, we have the following result which provides a
useful tool to study the topology of (o).

Lemma 3.1. For a Hadamard spacé&’, X (co) with the standard topology is homeomor-
phic toI(im S, the projective limit of.

The following result provides information on the system above. A continuous map
f:X — Y is called anear-homeomorphisiify for eache > 0, there exists a homeomor-
phismha: X — Y such thati(f (x), h(x)) < ¢ foranyx € X.

Lemma 3.2. For any pointp € X andR > r > 0, S(p, R) is homeomorphic t&* and
each mapp,r:S(p, R) — S(p,r) is a near-homeomorphism.

Proof. First we note thaS(p, r) is homeomorphic t&* for sufficiently small- > 0.
Since SingX) is countable and discrete, for a®y> r, there is a sequenge=r1 <
rp < --- <rr = R such that

k
SingX) N {x e X |r <d(p.x) <R} | JS(p.ri).
i=1

If there is no singular point of(p, r;), then it is clear thag;, .., is a homeomorphism.

If y is a singular point onS(p, r;), then geodesics fromp throughy branch off at
y. Suppose that there are two distinct poirfsxz € S(p,riy+1) such thaty,,,, ., (x1) =
¢rri1(X2) =y € S(p,r;) asin Fig. 1. Itis clear that one of two sectors boundedjy
andoy,,, denoted bys, satisfiesp,,,,,(x) =y for eachx € SN S(p,riy1), and hence
each fiber ofy,,,,, over a singular point is homeomorphic[@ 1]. Note that the singular
points onS(p, r;) is finite andy;.,,, is @ homeomorphism ovei(p, ;) \ Sing(X). Hence
S(p, ri+1) is homeomorphic t§(p, ;) and also it is easy to see that, for each 0 there
exists a homeomorphis: S(p, ri+1) — S(p,r;) such thatd (h(x), gy, (x)) < & for
eachx € S(p, ri+1)-

ThereforeS(p, R) is homeomorphic t&S* and ¢,z :S(p, R) — S(p,r) is a near-
homeomorphism. O

Applying Brown’s approximation theorem [4] together with above lemmas, we have the
following proposition.

Proposition 3.3. For a simply connected nonpositively curved piecewise Riemannian
2-manifoldX without boundary(X (c0), st) is homeomorphic t&?.
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S(p.1) S(P. 1)

Fig. 1.

In general, the topology induced by the Tits metric Td\ofo), called the Tits topology,
is finer than the standard topology. The following is an answer to the question as to when
these topologies coincide.

Proposition 3.4. (X (c0), Td) is homeomorphic to(X (c0), st) ~ S if and only if
diamrg X (00) is finite.

Proof. Assume that diafy X (co) is finite, and we derive a contradiction by supposing
thatid : (X (00), st) — (X (oc0), Td) is not continuous at € X (co). Take a sequendg; }
of points onX (oco) such that

1lim Td(z,z;) =a:= sup Td(z, y) < diamrg X (o0) < oo.

100 yeX(00)
Since(X (c0), Td) is a geodesic space, there exists a geodesic segmems (o) from
z to z; for eachi. Now we prove that; C ¢; or¢; D ¢; for anyi, j. Suppose not. Then
¢; Uc; forms a neighborhood af in (X (00), st) for somei and j, and the compactness
of (¢; Ucj, Td) easily implies thatd: (c; U c¢j, st) = (¢; U cj, Td) is continuous, and in
particular, is continuous at a contradiction. Therefore, asj — oo,

Td(z;, z;) = |Td(z, zi) — Td(z, zj)| — 0.

By the completeness @ (c0), Td), the Cauchy sequende;} converges to a poirnis.
Note thatze, # z, since Tdze,z) = a > 0. There are exactly two simple curves on
(X (00), st) from z to z+, Only one of which is the geodesic segment (@h(co), Td).
We denote the geodesic segmentdyand take a pointv € X (c0) \ A. Then a geodesic
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Fig. 2.

from z to w must contaim because of the discontinuity @f: (X (c0), st) — (X (00), Td)
atz. Hence we have that
Td(w, z) > Td(zeo,2) = SUp Td(z,y),
yeX(00)
a contradiction.
The reverse implication is obvious and this completes the proaf.

The following theorem is our main result of this section.

Theorem 3.5. Let X be a simply connected nonpositively curved piecewise Riemannian
2-manifold without boundary. Then we have that

e(X) = 2(m — diamrg X (00)).

The proof is similar to the one for a Hadamard 2-manifold in [9] or [11]. First we prove
the following lemma.

Let «, B:[0,00) — X be two geodesic rays o emanating fromp. Suppose that
Td(a (o), B(00)) < 7, and letF be the domain defined by

F:=Jowws.
>0
Letrg:=sufr | a(t) = B(®)}, q(a, B) := a(to) = B(to) and Fp := Ut>[0 oa(t)p(r)- We call
Fp the surface component éf andg («, 8) the vertex offp in this paper. Clearly («, 8)
is a negative singular point iy > 0. For geodesic rayg ando on F emanating from
x €0F, let Zf(y, o) be the angle at subtended by ando with respect toF', which is
defined as follows (cf. Fig. 2). SincE, is homeomorphic t&*, X, is divided into two
closed intervald, J whose end points are the equivalence classes afido. Then one
of these intervals is contained iBF. If 1 ¢ ¥F, then/f(y,0) is defined to bel. (1),
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(o) = ¢(0)

0y (o)

bl
.|||II|||| q‘
q ;““ \\\\g\\\ \\\\ B(es) =c(l)

X (o)

Fig. 3.

whereL is the one-dimensional Hausdorff measureXgn Notice that if L(/) < 7, then
LE(y.0)=Li(y. o).
To simplify the notation, ley := g («, B), o 1= at|[1,00) ANAB := Bl{19,00) -

Lemma 3.6. If Td(a(c0), B(c0)) < 7, then
Td((00), B(00)) = LFo(a, B) =D "k,

Fo

Wherelf"o is the interior of Fp andk(x) = 27 — L(X,). In particular, Zﬁo k is finite.

Proof. Let! := Td(x(c0), B(c0)) and take a minimizing geodesic[0, /] — (X (c0), Td)
from a(o0) to B(c0). Sincel < =, itis clear that
U Ogc(t) = Fo,
o<r<!
whereo,; is the ray fromyg with o, (c0) =z € X(00).
Enumerate all the singular points dng as{q; | i = 1,2,...} such thatd(g;,q) <

d(qi+1,q) for eachi. We can extend the geodesic segmep}, from ¢ to g1 to two
geodesic raysfr ando; such that

7 ~+ k. +
Lgr(0qrg. 07 ) =7, Wheres; :=0i \ 04q;.

Let F1 be the subdomain ofy bounded by&li. We may assume that(co) = ¢(0) <
o, (00) < crf(oo) < ¢(l) = B(oc0) with respect to the natural order of 0, /]) as in Fig. 3.
Sincec is a geodesic onX (co), Td), we have that
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Td(a(00), B(00)) = Td(a(00), o7 (00)) + Td(07 (00), 07 (00))
+Td(0;" (00), B(c0))
> [10(ar, 07 (00)) + (L(Zyy) — 27) + L1207, B)
= /[0, B) — k(qu).

Next let U, Uy andU;" be the interiors of the subdomai§ , F1 and F;" of Fo
bounded byr ando; ", bounded by71+ ando; and bounded by andaf, respectively.
If g2 € U, then we have that

Td(e, 01 (00)) > Zg* (@, 97 (00)) — k(g2)

by the same way as above. Using this in the above estimation, it follows that

2
Td(e(00), B(00)) > LFo(a, B) = > k(gn). ()

i=1
The casey; € Uf can be treated similarly. i, € Uy, then
Td(o7 (00), 07" (00)) = £[1 (07 (00), 01 (00)) — k(q2),

and we may repeat the above argument to obtain the inequgliagéin.
Suppose thaj, € o, . Then we extend,,, to geodesic rayszi such that

Zszz(quq’szE) =7,
where F» is the subdomain ofp bounded byyzi. We may assume that(co) = ¢(0) <
0, (00) < 0, (00) < 07 (00) < c(l) = B(o0) with respect to the natural order of(0, /1)
as in Fig. 4. Then we have the inequali®y @s follows:
Td(a(00), B(00)) = Td(a(00), 05 (00)) + Td(05 (00), 05 (00))
+Td(05 (00), 01 (00)) + Td(07" (00), B(c0))
> [P0, 05) + L2 0y o))+ Lo o) + L(o5 . B)
= L%, B)+ Lo o) + L2005 05)
= /;%(a, B) — {k(q1) + k(q2)}.
The case thajz € U; can be proved similarly.
By repeating this argument, we see that, for each

Td(e(00), B(00)) > LEo(ar. B) = > k().

i=1
which clearly implies the desired inequality.
Now the above implies that

n
Lq?(@. ) — Td(e(00). B(00)) < Y _k(g1) <O for eactn,
i=1
and henc{jFo0 kisfinite. O
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0(=°) = (0)

0/ (=)

B(eo) =c(l)

B X(eo)

Fig. 4.

The next result corresponds to proposition in Section 2 of [9] and is a key step for the
proof of Theorem 3.5.

Proposition 3.7. Under the same notation as Lem®.&, we have that

e(Fo) = L[P(a. ) — Td(ae(00), B(o0)) = > 670,

dFo\(g}

whenevel d(x(00), B(c0)) < 7.

Proof. Let E() = Za(t)(aa(t)p,aa(,)ﬂg)) and n() = Zﬂ(,)(oﬂ(,)p,aﬂ(,)a(t)). By Exer-
cise 4.3 of Chapter Il in [2], we have

£(e(00), B(00)) = fim ( — £(1) = n(0)). (1)

(See [3, Lemma 4.3, p. 34] for a proof of Riemannian case. The proof of the general
case proceeds in the same way.) Sincgaleb), 8(0)) < 7, Td(a(c0), B(c0)) =
/(a(00), B(0)). Let F := Utogsgt Oa(s)B(s),» Which is homeomorphic to the closed disk.
Applying Theorem 2.1 td&F;, we obtain

e(F)=LPp)—(r—em)—nw)— > 60— > ofi. (2
a((10,))UB((10,1)) (?a(t)ﬂ(t)
Here we note that

X

0207 () =7 — L(Zf) =k(x) + (LZ) —7) > k(x)
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for eachx € o4 p(:), Where the last inequality follows from the fact that,s) is a
geodesic. Sinc{lg0 k is finite by Lemma 3.6, andl,1)g(;) is divergentas — oo, we see
thatz(;a(tw) k tends to 0 as — oo. Therefore taking the limit in (2) with the use of (1)
and the above notice, we have the desired equality.

Now we prove Theorem 3.5.

Proof of Theorem 3.5. The proof is basically the same as the one for a Hadamard 2-
manifold in [9] or [11] via Propositions 3.3 and 3.7, Lemma 3.6, Theorem 3.5 above, and
we give a detail here for completeness.

Assume first that diafy X (o00) < oo. By Theorem 3.3(X (c0), Td) is homeomorphic
to SL. Since SingX) is a countable set, we can choose a sequence ., «, of geodesic
rays emanating from a poipte X \ Sing(X) such that

(1) there exists no singular points apfor eachi,

(2) Td(@;(00), ajt1(00)) < 7 for eachi and

n
D Td(i (00), @i+1(00)) = 2 diamrg X (c0),
i=1
wherea, 11 := a1. From the condition (1), it follows that; N« ; = {p} for anyi # j.
Let Fi := ;00w )0 41()- APPlYing Proposition 3.7 to each; and noticing that the
exterior angle term vanishes oi; \ {p} by (1), we have that

e(F;) = L1 (ai, aj1) — Td(ti (00), i1 1(00))  foreachi =1.....n.
Summing up the above equalities, and noticing {hé&t a nonsingular point, we obtain
e(X)= 2(7‘[ — diamrqg X(oo)),

which completes the proof when diggX (c0) < oco.

Next we assume that diafnX (co) = co. Take two pointsy(co) and 8(co) such that
Td(a(00), B(00)) > 7. The boundaryX (00), st) ~ St is divided into two intervalg; and
J1 by a(oc0) and 8(c0). Since dianig X (00) = oo, eitheritq(I1) = oo or It¢(J1) = 0o,
wherelrq is the one-dimensional Hausdorff measure (&h(oco), Td). If I1q(/1) = oo,
there exists a poing; € I3 such that Tdw(co),&1) > 7 and TdB(c0), &1) > 7. Let
I = I, U J, wherel, and J> are closed intervals idX (00), st) with 91> = {a(c0), &1}
andaJz = {B(c0), £1}. Thenltq(l2) = oo or l14(J2) = co. Assuming the former case, take
a pointé&; € I> which is far froma(co) andé;. Continuing this process and changing the
indexes, we can choose, for edch N, a sequencé; |i =1, ...,1} with & = a(c0) <
&1 < -+ < &41 = B(c0) with respect to the natural order & (c0), st) such that

Td(, &41) > foreachi =0, ...,1. (1)

Then we can choose a suitable non-singular ppistich that, there exists no singular
points on the geodesig from p such that,y; (co) = &; for eachi. By the condition (1),
there exists a straight ling; : R — X such thato; (0c0) = y;(0c0) = & and o;(—o0) =
yir+1(00) = & 41 (cf. Lemma 4.10 in [3]). LetF; be the domain bounded by, ;1
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£

Yiﬂ

Fig. 5.

containingo;, and letE; be the subdomain of; bounded byy;, y;+1 ando;, and let

E; be the closure of; \ E; (see Fig. 5). For each> 0, let E; () be the compact domain

bounded byy; (0,11, ¥i+1l[0./] @0y, 1)y, APPlYiNng Theorem 2.1, we have that
e(Ei()) = L3 (vi vieD) + L5 (Gilio.) ™ 0yyiaao)

Ei -1 Ei
+ Zy,~+1(t)((V"'*‘“[OJ]) ’UVi+l(t)Vi(t)) - Z 65, (*)

G vy
Letg € 0;. By Lemma 3.1 in [6], we have that
E; -1
ZVi<tj)((3’i|[0le) ’Gq%'(’j)) -0
as;j — oo for some divergent sequenge Hence
E; -1
Zyi<,j)((yi|[0,tj]) ’Gyi(tj)yi+1([j)) -0
asj — oo because of
E; -1 E; -1
ZVi([j)((‘yi |[0,IJ]) ) Gyi(tj)yi+1(tj)) < Zyi(tj) ((Vz |[O,Ij]) s Uq)/,- ([j))'
Also the proof of Lemma 3.2 of [6] (the proof of Case 2) reveals that
i Ei(t) _ E;
WD SRR oL
Oy (410 ai

Hence tending of (x) to infinity,

e(E) =Ly (i, vivn) =7 — 0%

oj
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Repeating the proof of Theorem A in [6] with respectﬁp and o;, we have that
e(E;) < — ), 0%i. Therefore, we have

e(F) =e(E)) +e(E)+ ) k

<Ly —m =y 05 —ZQEi +Y 0k
(‘TJ,' (?,'

o
g

= L3 vir) — 7

Summing up all these inequalities, we have th@) = > e(F;) < (2— Dn. Sincel is
arbitrary,e(X) = —oo. This completes the proof.0

Remark. The last step of the proof above shows the following statement which will be
used later; If there is a straight line from{co) to B(oc0), then the surface componefit
bounded byx andg with the vertexp satisfies that¢(F) < élf(a, B) —m.

The following corollary is essentially proved in Proposition 2.1 in [10] for Hadamard
2-manifolds.

Corollary 3.8. Let X be a simply connected nonpositively curved piecewise Riemannian
2-manifold without boundary. The following conditions are equivalent

(@) (X (00), Td) is homeomorphic t81.

(b) (X (o0), Td) is compact.

(c) diamrg X (c0) is finite.

(d) e(X) is finite.

Proof. The implications(a) = (b) = (c) are obvious andc) = (a) follows from
Proposition 3.4. Theorem 3.5 implies the equivalef@es (d). O

Corollary 3.9. If X has an infinite properly discontinuous group of isometries onX
and (X (c0), Td) is compact, thelX is isometric toR2.

Proof. Suppose that there exists a compact don&aiof X such that(K) < 0. Since the
action is properly discontinuous, the orblt K) tends to infinity. Also, since the elements
of I act onX as isometriex(y (K)) < 0 for anyy € I'. Thereforee(X) = —oo and this
contradicts Corollary 3.8. O

The next result shows a more precise connection between the total excess and the Tits
topology of X and will be used in Section 4.

For a continuous curve:[0,1] — (X(00),st), let s; := sups > 0| o,c0)(s) =
oper)(s)}. Also, let

Fi = U Upc(s)([st» OO))»

0<s <t
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c(0)

N\
E\\\ c(t)

q.= 0,0 (S))

q,= opc(O)(Sl)

c(l)
X(o0)

Fig. 6.

the surface component of the domain bounded o) ando 1), andg; := opc0)(s1),
the vertex ofF; (see Fig. 6). Note that, is a monotone decreasing function ¢ 1]
and may be divergent as— 0, andg; is a negative singular point i; > 0. Note also
thatL(E[f) is not necessarily convergent to Ozas> 0. For notational convenience, let
e(Fy) i=e(F) + Xk (g0) oF:

Proposition 3.10. Under the above notation, the following conditions are equivalent
(@) lim,—oTd(c(0), c(r)) =0,
(b) lim;—oe(F;) =0,
(c) for somet’ > 0O, e(Fy) is finite.

Proof. We begin with the following claim: IfZ%C(O)GFf is finite for somet, then
lim; 0 £ ] (04,c(0)» Ogucry) = O

Indeed, if the sefq; | ¢+ > 0} is contained in a bounded domain, then the conclusion
follows easily from the fact that lim, o c(¢#) = ¢(0) with respect to the standard topology.
Suppose thaj; — oo ast — 0. Sincez%do) 6f is finite, we have that lim, 6% (¢;) =
0, which clearly implies the conclusion In this case as well.

(8) = (b) Under the present notation, Proposition 3.7 implies that, for small

e(Fy) = L]1(04,0) 0g,ery) — Td(c(0), c(1)).

On the other hand, enumerating all singular pointsno, and proceeding as in the proof
of Proposition 3.6, we obtain that

Td(C(O)’ C(t)) > thr (U(Irc<0)’ U(IrC(f)) - Z o',
O'qtc(O)\{qt}
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c(0)
\Q\}\&\‘&\\ N
\\\\W\\\ ’i’{\\ C c(t)
\ K
c(t)

X(e0)

Fig. 7.

Hence) ()eFt is finite. Then, by the claim above, I;moé (O pe(0)> Ope(ny) = 0,
which |mpI|es the condition (b).

(b) = (& Since im0 5\ (4, 0 6f =0 by (b), we have thaE 9Ff is finite for
eacht. Hence, by the claim above, ljmg 1 ! (Ope(0)> Ope(ry) = 0. If there is a straight line
from¢(0) to c(¢), then by remark afterTheorem 3HF) < zqt (Ope(0), Tpe(r)) — - Hence
lim;_.0e(F;) < —m, which contradicts the assumption (b). Hence there is no straight line
from ¢(0) to ¢(¢) for smallz. Now applying Proposition 3.7, we obtain the conclusion.

(b) = (c) This is trivial.

(c) = (b) Fix ane > 0 arbitrarily. We need to find a positive constansuch that, for
anyt € (0,11), e(Fy) > —e.

For a givere > 0, there exists a compact domaknof F; such that

& c K¢
—5 <e(K)+ Z 6K <0,
aKCﬂ(O'pC(O)UO'pC(r/))

whereK® := Fy/ \ K . Note that

£ . c
—E<e(K;)+ Z 0% <0 foreachO<r <17, Q)
K N0 pe©Uoper)

whereK; := K N F;. For a large number > 0 such thatype) ([0, r]) D IK N ope0),
there exists a neighborhodd of ope) ([0, 7]) such that SingX) N U C opeo) ([0, r]).
See Fig. 7. Then we can take a smglb 0 such thatk; := F;, N K C U ande(K;) =
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ereg(K;) > —e/2 for anyt € (0, 10]. There is no singular point o, ((s;, oo]) N K and
0K; NoKf, and hence for € (0, 7g],

>  #fi=0 and > k=0 2)
Ope(r) ((s1,00)NK K NIKf

Suppose that there is no singular pointo@go) ((s1y, 71). SiNCeope(0) (519, 00)) NIK C
ope0) (519, 71), We havezgpw)((xtomma,( 6f0 = 0. Letrs ;=19 > 0. Then forany O< r <
11,

eF)=e(F)+ ) 6

aF\{q:}
=e(K)+eK)+ > k+ Y o Y ef
dK;NIKf opo(0) ((51,00)) O pe(r) ((51,00))
=e(K;) +e(KS) + > of

(O-p(‘(o) Uo'pc(t))ﬂa K[C
> —€.

The third equality follows from (2).

If there is a singular point 0Bipc(0) ((s1y, 7'1), then letsg := max(s | opg) (s) € Sing(X),
s, < s < r}. Itis clear that there is a positive constant< ro such thats;, > so. Then
Zapc(O)((Sr,_oo))ﬁaK QF’ =0foranyr <. Thenforany O< ¢ < 11, e(F;) > —¢ as the above
computation, which completes the proofa

4. A construction of a 2-dimensional Hadamard space with the prescribed boundary
at infinity

As was mentioned before, for any simply connected nonpositively curved piece-
wise Riemannian 2-manifold without boundary, the identity maigl : (X (c0), Td) —

(X (00), st) ~ St is continuous. It follows easily from this fact that each connected com-
ponent of(X (c0), Td) is homeomorphic to either a point or an (open, closed or half-open)
interval. These components form a decompositioS’fA natural question arises as to
whether there is some restriction on the “configuration” of the components. The following
theorem states that there is no such restriction.

To state our result precisely, we introduce the following definitiodeomposition of a
topological spacet is a collectionD of connected subsets dfsuch thatd; N A2 = @ for
anyA; # A2 € D and D = A. LetAp be the topological space with the weak topology
with respect to the elements Bf. That is, a subsef of Ap is open if and only ifG N D
is open with respect to the relative topology@ffor any D € D.

Theorem 4.1. Let D be a decomposition & into points and subsets homeomorphic to
intervals. Then there exist a simply connected nonpositively curved piecewise Riemannian
2-manifold X and a homeomorphisni: (X (c0), st) — St such thatf : (X (c0), Td) —

S%, is also a homeomorphism.
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Construction of X. We identify S* with {(x, y) € R? | x® + y2 = 1}. First we prepare
some basic pieces of the construction. ete the set of all elements @ which are
homeomorphic to intervals and lgt= 7 and B = S!\ A. The set of all connected
components of8 on S which are homeomorphic to intervals is denoted ByEach
connected component of the §&t\ [ J{7 U B} is a point.

Note that the collectio/ U B is countable and can be enumeratefilas i =1, 2, .. .}.

Let {a;, b;} be the end points aof;, the closure of;.

Fix ane > 0 arbitrarily and let (E;) be the length of; C S1. For eachE;, we take a
piecewise Riemannian 2-manifold with boundary as follows.

Casel. E; € J is homeomorphic to a closed interval. LEtbe a sector imR?2 with the
vertex anglé(E;).

Case2. E; € J is homeomorphic to a half-open interval with € E;. Let Sy be
a sector with the vertex anglgE;), bounded by the ray:!b1L and lg. Also, for each
j €N, let S; be a sector with the vertex angle bounded by the rays} and lf
Let fo:14([0, 00)) — I3([i, 00)) be the obvious isometry withfo(i1(0)) = 72(i) and
fi ljl.+1([0, 00)) — lf([l, 00)) be the obvious isometry witf; (ljl.H(O)) = 1‘12.(1) for each
j=1

Let Lo := So Uy, S1 and inductively let j41 = L; Uy; Sj11. Then we takeF; as the
union 2o L, which is a piecewise flat Riemannian 2-manifold bounded by geodesic
rays o = I3([0, 00)) and g = I3([0,i]) U U?ozlll/z,([o, 1]). We say that the ray (8,
respectively) corresponds to the point at infinity(b;, respectively) and is denoted by
Ya; (ybﬂ respeCtively)-

Case3. E; € J is homeomorphic to an open interval. Leetbe the midpoint of;. Then
E; is divided into two components} and E? such thate} N E? = {c}, and forE?} and
E? we constructF! and F? as in Case 2. Lef; andy» be geodesic rays ifft and F2,
respectively, both of which correspond to the peinThenF; is obtained fromFl.l andFi2
by gluingy1 andy» by the obvious isometry.

Cased. E; € B. Note that an intervak; € B has thediscrete topologjn Slp. LetF; bea
simply connected Riemannian 2-manifold of nonpositive curvature bounded by geodesics
Ya; @ndyyp, With y,, Ny, = {p;i} such that

(1) B(p;,i) atp; in F; is isometric to the intersection of the sector with the vertex angle

I(E;) and thei-ball at the vertex irR2, and

(2) there exists a compact s€t> B(p;, i) such thatF; \ K is isometric to a subset of

the hyperbolic plan@l?.

In above four cased;; is homeomorphic to a sector and bounded by two geodesic rays
va; andyy,. The pointp; := y,, Ny, is called the vertex of;. Using these pieces, we will
construct the spack.

Now let

S(\Z:UF,'/N,

where p; ~ p; for eachi, j and alsox ~ y if x = y,,(t) € F; andy = Vb () € Fj for
aj=b; eStandr > 0.
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Note here thas! \ | JE; may not be empty and far € S* \ |JE;, there exists a
subsequencgEy; } of {E;} which converges ta. Hence in order to construct the desired
spaceX, we need to take the completion Efwith respect to an appropriate metric.

For a subset of S1, letc(A) be the infinite cone over the origine R2: ¢(A) = {ta | a €
A, t > 0}. For each, there exists a homeomorphigm: F; — ¢(E;) such that:; (p;) = o
and the restrictions

h; . Ya; —> c(aj) and h; Vb ™ c(b;)

are isometries. Recall that is the vertex ofF; anda;, b; are the end points af;. Then
the maph = | Jh; : X — R? is a well-defined topological embedding &finto R2. Pull
back the standard metric &2 to X via 2 and the completion with respect to that metric is
denoted byX. This metric is introduced only to define a topology ¥n

Next we will show thatX has a metric such that the inclusion map fréminto X is
an isometry for each. The metric onX is defined as follows: For, y € X, letc be a
continuous curve from to y with respect to the above topology. The length) of ¢ is
defined by

I(¢):=) l(cNF),

wherel(c N F;) is the length of the curven F; on F;. Then the distancé(x, y) on X is
defined as the infimum of the lengths of such curves. It clear that the inclusion map from
F; with the original metric intq X, d) is an isometry for each

SinceF; is flat on the -ball centered at the vertgx for eachi, itis easily seen that 1-ball
centered ap € X, the equivalence class pf, is isometric to the 1-ball ilR?. Furthermore,
by tendingi — oo, we can show easily that any poine X \ X has a flat neighborhood.
This fact guarantees that the set of the singular points is contaittggddd; andX admits
a structure of a simply connected nonpositively curved piecewise Riemannian 2-manifold
without boundary which induces the metrdi@bove as the natural metric.

Finally we show that, with respect to this metric, the resulting spade the required
piecewise Riemannian 2-manifold. From the constructioX pit is easily seen that there
exists a homeomorphisyf: (X (00), st) — St such thatf (F; (c0)) = E;, f (g (00)) =ay,
and f(yp, (00)) = b; for eachi, where F;(co) denotes the set of all points at infinity
defined by the equivalence classes of geodesic ray$;olhen we shall verify that
f (X (00), Td) — SlD is a homeomorphism, which follows from the following two claims:

(1) The collectionf ~1(D) is exactly the collection of the components(&f(co), Td).

(2) ForeachD € D, f|;-1p,: (f~H(D), Td) — D is a homeomorphism.

To check the claims, we divide our consideration into several cases.

Casel. E; € J. Suppose thak; is homeomorphic to a half-open interval withe E;.

From the construction of;, we see thagyhi 0fi = —3 e = —o0o, while there is no

singular point inF? and ZW 6% = 0. Thus for each geodesic rays# y», on F; from

p, e(F") = —oo, where F} is the subdomain of"; bounded byy;,, and y. Hence
Proposition 3.7 implies thag;, (co) is not “accessible” fromy,, (co). Let F,.V be the
closure of F; \ F}. Sincee(F/) is finite, all other points of;(co) are joined with
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va; (00) by geodesics orF; (oo0). This means thaF; (co) is isometric to[0, oo) U {oo}
in such a way thato corresponds tgf ~*(b;). Hencef| ;-1 : (f 1(E;), Td) > E; is a
homeomorphism.

Sinceq; € E;, itis clear that there exists n®; € J (i # j) such thaw; € E;. Hencey;
is not accessible from another side. This implies that(E;) is a connected component
of (X (00), Td).

When E; is homeomorphic to an open or closed interval, a similar proof to the above
shows thatf|f_1(Ei) : f~YE;) — E; is a homeomorphism and—1(E;) is a connected
component of X (c0), Td) as well.

Case2.d € D\ J. Note thatd is a point orSt. Thenit is clear thaf'| ;-14) ) —

d is a homeomorphism. Hence it suffices to show tfiat(d) is an isolated point on
(X (c0), Td).

Case2.1.d € E, for someE; € B. In this caseF; is isometric to a subdomain &f2 near
infinity, so it is easy to see th&F; (0co), Td) is discrete. Therefor¢ ~1(d) is an isolated
point.

Case2.2. There is na&; € B such thatd I:zl-. For& := f~1(d), take a neighborhood
U of the pointé with respect to the standard topology such that 7 U J, where !
and J are half-open intervals which haveas their end points such thatn J = {&}.

If & is “accessible” from the I'-side” with respect to Td, Proposition 3.10 implies that
there is an intervak € D on I-side such that! € E, which contradicts the assumption
d € D\ J. Hencet is not accessible from either side bfor J. Hence¢ is an isolated
pointin (X (c0), Td).
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