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Abstract

A piecewise Riemannian2-manifold is a combinatorial 2-manifold with a triangulation such that
each 2-simplex is a geodesic triangle of some Riemannian 2-manifold. In this paper, we study the
total excesse(X) of a simply connected nonpositively curved piecewise Riemannian 2-manifoldX

in connection with the Tits metric on the boundary at infinityX(∞).  1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

A piecewise Riemannian2-manifoldis a combinatorial 2-manifold with a triangulation
such that each 2-simplex is a geodesic triangle in some Riemannian 2-manifold. In
a previous paper [6], the authors studied the total excess of piecewise Riemannian
2-manifolds in connection with the existence of straight lines. In this paper, we study
the relation between the total excess of simply connected nonpositively curved piecewise
Riemannian 2-manifolds and the Tits metric on the boundary at infinity. A piecewise
Riemannian 2-manifold is said to benonpositively curvedif the sectional curvature at
any interior point of each 2-simplex is nonpositive with respect to the Riemannian metric
and theangle excess, defined in Section 2, at each vertex is also nonpositive. A simply
connected nonpositively curved piecewise Riemannian 2-manifoldX is a Hadamard space
in the sense of Ballmann [2] and the boundary at infinityX(∞) is well defined. We
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introduce a topology, called thestandard topology, as an analogue of the sphere topology
for Hadamard manifolds. Also, a metric Td, called theTits metric, is introduced in a similar
fashion to the one for Hadamard manifolds [2, Chapter II].

The second author in [9] proved that for any 2-dimensional Hadamard manifoldX, the
total curvatureC(X) ofX satisfiesC(X)= 2(π−diamTd(X(∞))), where diamTd(X(∞))
denotes the diameter of the metric space(X(∞),Td). We prove that the same formula
holds for the total excess of each simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary.

We then study the topology on the boundary at infinity induced by the Tits metric which
is finer than the standard topology in general. We prove that these two topologies coincide
with each other if and only if the total excess is finite.

For a simply connected nonpositively curved piecewise Riemannian 2-manifoldX

without boundary, the collection of all connected component of(X(∞),Td) provides a
decomposition of the unit circleS1 into points and subsets homeomorphic to open, closed
or half-open intervals. Conversely, we show thatanydecomposition ofS1 into points and
subsets homeomorphic to intervals is realized as the boundary at infinity(X(∞),Td) for
some simply connected nonpositively curved piecewise Riemannian 2-manifoldX.

The authors would like to express their sincere thanks to the referee for the suggestions
that were very helpful to make the paper readable.

2. Preliminaries

In this section, we introduce some definitions and related results. First we define the
concept of a piecewise Riemannian 2-manifold.

For a metric space(X,d ), a continuous map on an intervalI into X is called a curve.
A curveα : I → X is called ageodesicif it is locally distance minimizing, i.e., for any
point t ∈ I , there exists a neighborhoodU of t such thatd(α(s1),α(s2)) = |s1 − s2| for
any pointss1, s2 ∈ U . In what follows, we assume thatα is parameterized proportional to
arc length. If the above equality holds for any pointss1, s2 ∈ I , then we callα aminimizing
geodesic. In particular, a minimizing geodesic defined on[0,∞) is called aray and that
defined on(−∞,∞) a straight line. We occasionally identify a geodesic with its image.
For a geodesic segmentα : [a,b]→X on a compact interval[a,b], let

α
◦ := α|(a,b) : (a, b)→X,

and a point onα(a, b) is called an interior point ofα. Also the pointsα(a) andα(b) are
called the end points ofα.

A metric space(X,d ) is called ageodesic spaceif for any pair of pointsx,y onX,
there exists a minimizing geodesic segment fromx to y. A metric space(X,d ) is said
to beproper if any bounded subset has the compact closure. Any proper metric space is
locally compact and separable.

Let X be a topological 2-manifold with a triangulation such that each 2-simplex is
a geodesic triangle in some Riemannian 2-manifold. We introduce a natural metric as
follows.
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For any pair of pointsx,y ∈X, let c : [a,b]→X be a piecewise smooth curve fromx to
y, that is, a curve with a sequencea = t0< t1< · · ·< tk = b such thatc|[ti−1,ti] is contained
in a 2-simplex for eachi and is a smooth curve with respect to the Riemannian metric on
the simplex. The length ofc is denoted by

l(c) :=
k∑
i=1

l
(
c|[ti−1,ti ]

)
,

wherel(c|[ti−1,ti ]) is the length with respect to the Riemannian metric on the simplex. Now
we define the metricd by

d(x, y) := inf
{
l(c) | c is a piecewise smooth curve fromx to y

}
.

It is easy to see that the metric space(X,d ) is a proper geodesic space.

Definition 2.1. We call such a space(X,d ) a piecewise Riemannian2-manifold.

A piecewise Riemannian 2-manifoldX is said to bepiecewise flatif each 2-simplex is
isometric to a 2-simplex in the Euclidean planeR2.

2.1. Total excess

Here we will review the concept of total excess on piecewise Riemannian 2-manifold.
Although the total excess is defined for more general spaces, we confine ourselves to
piecewise Riemannian 2-manifold, for simplicity. See [8,12] for more details.

For a proper geodesic space(X,d ), ageodesic triangle with verticesp,q andr, denoted
by∆(p,q, r), is the unionαpq ∪ αqr ∪ αrp , whereαab is a minimizing geodesic segment
from a to b. For a real numberk, letM(k) be the 2-dimensional space form of constant
sectional curvaturek. A geodesic trianglẽ∆(p,q, r) := ∆(p̃, q̃, r̃) = αp̃q̃ ∪ αq̃r̃ ∪ αr̃p̃
in M(k) is called acomparison triangleof ∆(p,q, r) if l(αab) = l(αãb̃) for any a,b ∈
{p,q, r}. The angle subtended byαp̃q̃ andαp̃r̃ is denoted bỹ6 k(qpr). In this paper, a
closed disk domain bounded by a geodesic triangle is also called a geodesic triangle.

For a pointp on a piecewise Riemannian 2-manifoldX, letRp be the set of all geodesics
emanating fromp. Forα,β ∈Rp and a real numberk, it is known that the limit

6
p(α,β) := lim

s,t→0
6̃
k

(
α(s)pβ(t)

)
exists and does not depend on the choice ofk. It is called theupper angleatp subtended
by α andβ . For a geodesic space in general, the limit does not necessarily exist and the
upper limit is defined as the superior limit of the above term. See Section 4 of [12].

In general, the upper angle6 p is known to be a pseudo-metric onRp and induces
an equivalence relation∼ defined as follows:α ∼ β if and only if 6 p(α,β) = 0. The
completion of the metric space(Rp/∼, 6 ) is denoted by(Σp, 6 ) and is called thespace
of directionsatp. For a subsetY of X, let

RYp :=
{
α ∈Rp | α([0, ε ])⊂ Y for someε > 0

}
.
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Thespace of directions with respect toY , denoted byΣY
p , is the completion of the metric

space(RYp/∼, 6 ).
If a point x is onX

◦
, the interior ofX, the spaceΣx is homeomorphic toS1, the unit

circle on the planeR2. Moreover, ifx is not a vertex of the triangulation ofX, thenΣx is
isometric toS1.

For a pointp ∈X◦ , let k(p)= 2π −L(Σp), whereL is the one-dimensional Hausdorff
measure onΣp . k(p) is called theangle excessat the pointp in this paper. The following
is clear from the above:

If p is not a vertex, thenk(p)= 0. (∗)
Note that, whenX is piecewise flat,k(p) is called the curvature atp in [5]. However,
we would like to avoid the use of the terminology “curvature” here to prevent a possible
confusion with the Gaussian curvature at a point on the interior of a 2-simplex.

For a Riemannian manifold without boundary, each geodesic is locally extended in a
unique way, but this does not hold for a piecewise Riemannian manifold. Suppose that a
piecewise Riemannian 2-manifoldX has a minimizing geodesicα with an end pointp.
If k(p) > 0, then it is easily seen thatα cannot be extended, as a geodesic, beyondp.
On the other hand, ifk(p) < 0, there are infinitely many minimizing geodesic-extensions
beyondp. In this sense, a point with nonzero angle excess is “singular” with respect to
the extension of geodesics. We define thepositive singular setSing+(X) and thenegative
singular setSing−(X) of X, respectively by

Sing±(X) := {p ∈X◦ | k(p)≷ 0
}
,

and thesingular setSing(X) by Sing(X) := Sing+(X) ∪ Sing−(X). By the property (∗)
above, Sing(X) is a subset of the vertices of the triangulation ofX. It is also clear that there
is no positive singular point on the interior of any minimizing geodesic.

Now we define the total excess ofX as follows. LetC(∆) be the total curvature of
the Riemannian 2-manifold∆ with boundary, andereg(X) :=∑∆:2-simplexC(∆) provided
the sum is absolutely convergent,esing(X) := ∑p∈Sing(X) k(p) if the sum converges
absolutely. Then thetotal excesse(X) of X is defined by

e(X) := ereg(X)+ esing(X),

when the sum of the right hand side makes sense.
We illustrate typical cases. IfM is a Riemannian 2-manifold triangulated by geodesic

triangles, thenesing(M) = 0 and e(M) = C(M), the total curvature ofM. If M is
a piecewise flat 2-manifold, thenereg(M) = 0 ande(M) =∑p∈Sing(M) k(p), the total
curvature ofM in the sense of [5].

Remark. Each piecewise Riemannian 2-manifold is a good surface in the sense of [8],
and the above definition coincides with the one given in [8].

The remark above allows us to apply the following analogue of the Gauss–Bonnet
theorem in [8], which play the fundamental role in our argument.
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A curve c : [a,b] → X is called abroken geodesicif there is a subdivisiona = x0 <

· · ·< xn = b such thatc|[xi−1,xi ] is a geodesic segment. The pointc(xi) (i = 0, . . . , n) is
called avertexof the broken geodesicc.

Theorem 2.1 (The generalized Gauss–Bonnet theorem [8, Theorem 3.1]).Let X be a
piecewise Riemannian2-manifold without boundary andY a compact domain ofX such
that∂Y consists of simple closed broken geodesics without self-intersection. Then

e(Y )= 2πχ(Y )−
∑
p∈∂Y

θY (p),

whereθY (p)= π −L(ΣY
p ).

Remark. For a Riemannian 2-manifoldX and its compact domainY , the nontrivial
contribution to the sum of the above equality is made only at the vertices of the broken
geodesics. However in our setting, a geodesic may pass through points of negative
singularity and those singular points may contribute to that sum. Also notice that, if
p ∈ ∂Y \ Sing(X) is not a vertex of the boundary∂Y of Y , thenθY (p) = 0. Since there
are only finitely many singular points on∂Y , the second term of the right side of the above
equality makes sense.

In what follows, for brevity,
∑
p∈S f (p) is often denoted by

∑
S f for a function

f :S→R defined on a setS. For example,
∑
p∈∂Y θY (p) is abbreviated to

∑
∂Y θ

Y .

2.2. Boundary at infinity

For a proper geodesic spaceX, an open setU of X is called a CAT0 domainif, for each
geodesic triangle∆(p,q, r) in U and the corresponding comparison triangle∆̃(p,q, r) in
R2, we have the following inequality

d(x, y)6 d(x̃, ỹ),

for each pair of pointsx,y on the edges of∆(p,q, r) and the corresponding points
x̃, ỹ on ∆̃(p,q, r). If each point onX belongs to a CAT0 domain, then we say thatX
hasnonpositive Alexandrov curvature. After Ballmann [2], a simply connected complete
geodesic space of nonpositive Alexandrov curvature is called aHadamard space. It is
known that for a Hadamard spaceX, X itself is a CAT0 domain. Hence it is clear that any
geodesic is a minimizing geodesic, and for each pair of two points ofX, there exists the
unique geodesic onX joining these points.

A piecewise Riemannian 2-manifold is said to benonpositively curvedif the sectional
curvature at an interior point of each 2-simplex is nonpositive with respect to the
Riemannian metric and furtherk(p) 6 0 for each vertexp. In what follows, we
are concerned with a noncompact simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary. It is known that such a space is a Hadamard
space (the CAT0-condition above is verified directly for a small neighborhood of each
vertex).
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The following is a brief review of the concepts of the boundary at infinityX(∞) of a
Hadamard spaceX, the standard topology and the Tits metric onX(∞). See [2] for more
detail.

LetX be a Hadamard space andp a point onX. We denote the set of all geodesic rays on
X and all geodesic rays emanating fromp byR andRp , respectively. Two geodesic rays
α andβ are said to beasymptoticif there exists a constantK such thatd(α(t), β(t)) < K
for any t > 0. This is an equivalence relation and theboundary at infinityX(∞) of X is
defined as the equivalence classesR/∼. For a geodesic rayσ , the equivalence class ofσ is
denoted byσ(∞). It is known that for any pointξ ∈X(∞) and for anyp ∈X, there exists
the unique geodesic rayσ ∈Rp such thatσ(∞)= ξ , which is denoted byσpξ .

Next we introduce a topology on the setX =X ∪X(∞). Fix a pointp ∈X. The basis
of open sets ofX consists of all open sets ofX together with the sets of the form:

Up(ξ,R, ε)=
{
z ∈X ∣∣ z ∈X \B(p,R), d(σpz(R),σpξ (R))< ε},

where ξ ∈ X(∞) and B(p,R) := {x ∈ X | d(x,p) 6 R}. It is known that the above
topology does not depend on the choice ofp, and the spaceX with the above topology
is a compactification ofX. The relative topology onX(∞) is called thestandard topology
onX(∞), denoted by(X(∞), st) in the sequel.

For pointsξ, η ∈X(∞), we define theangleby

6 (ξ, η) := sup
p∈X

6
p(σpξ , σpη),

where6 p is the upper angle. Then(X(∞), 6 ) is a complete metric space, and the induced
topology is finer than the standard topology.

The Tits metric Td on X(∞) is defined as the interior metric of6 . Namely for
ξ, η ∈ X(∞), if there is a continuous curve fromξ to η on (X(∞), 6 ), then Td(ξ, η) is
the infimum of the lengths of such curves and otherwise Td(ξ, η)=∞.

It is known that Td is a complete metric, and for any two pointsξ, η ∈ X(∞) with
Td(ξ, η) <∞, there exists a minimizing geodesic fromξ to η with respect to Td.

3. Tits metrics and the total excess of simply connected nonpositively curved
piecewise Riemannian 2-manifolds

Throughout this section,X denotes a simply connected nonpositively curved piecewise
Riemannian 2-manifold without boundary. We first prove that the boundary at infinity
(X(∞), st) with the standard topology is homeomorphic toS1. This is trivially true for a
Hadamard 2-manifold, becauseX(∞) is homeomorphic to the unit tangent sphereSp(X)
at any fixed pointp, via the mapΨp :Sp(X)→X(∞) defined byΨp(v)= γv(∞), where
γv is the unique geodesic ray fromp such thatγ ′v(0)= v. However, on a Hadamard space,
geodesics may branch off in various directions and the mapΨp above is not well defined.
To avoid this difficulty, we represent(X(∞), st) as the projective limit of geodesic spheres
as follows.
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Fix a pointp ∈ X and letS(p, r) := {x ∈ X |d(p,x) = r}. For two positive numbers
0< r <R, a continuous mapϕrR :S(p,R)→ S(p, r) is defined by

ϕrR(x) := S(p, r) ∩ σpx for x ∈ S(p,R),
whereσpx is the unique geodesic segment fromp to x. It is clear that the above map is
well defined and continuous. Then we obtain a projective systemS = {S(p, r),ϕrR} and
from the definition of the projective limit, we have the following result which provides a
useful tool to study the topology ofX(∞).

Lemma 3.1. For a Hadamard spaceX, X(∞) with the standard topology is homeomor-
phic to lim←− S, the projective limit ofS.

The following result provides information on the system above. A continuous map
f :X→ Y is called anear-homeomorphismif, for eachε > 0, there exists a homeomor-
phismh :X→ Y such thatd(f (x),h(x)) < ε for anyx ∈X.

Lemma 3.2. For any pointp ∈ X andR > r > 0, S(p,R) is homeomorphic toS1 and
each mapϕrR :S(p,R)→ S(p, r) is a near-homeomorphism.

Proof. First we note thatS(p, r) is homeomorphic toS1 for sufficiently smallr > 0.
Since Sing(X) is countable and discrete, for anyR > r, there is a sequencer = r1 <

r2< · · ·< rk =R such that

Sing(X) ∩ {x ∈X | r 6 d(p,x)6R}⊂ k⋃
i=1

S(p, ri ).

If there is no singular point onS(p, ri ), then it is clear thatϕriri+1 is a homeomorphism.
If y is a singular point onS(p, ri), then geodesics fromp throughy branch off at

y. Suppose that there are two distinct pointsx1, x2 ∈ S(p, ri+1) such thatϕriri+1(x1) =
ϕriri+1(x2)= y ∈ S(p, ri ) as in Fig. 1. It is clear that one of two sectors bounded byσyx1

andσyx2, denoted byS, satisfiesϕriri+1(x) = y for eachx ∈ S ∩ S(p, ri+1), and hence
each fiber ofϕriri+1 over a singular point is homeomorphic to[0,1]. Note that the singular
points onS(p, ri) is finite andϕriri+1 is a homeomorphism overS(p, ri ) \Sing(X). Hence
S(p, ri+1) is homeomorphic toS(p, ri ) and also it is easy to see that, for eachε > 0 there
exists a homeomorphismh :S(p, ri+1)→ S(p, ri ) such thatd(h(x),ϕriri+1(x)) < ε for
eachx ∈ S(p, ri+1).

ThereforeS(p,R) is homeomorphic toS1 and ϕrR :S(p,R) → S(p, r) is a near-
homeomorphism. 2

Applying Brown’s approximation theorem [4] together with above lemmas, we have the
following proposition.

Proposition 3.3. For a simply connected nonpositively curved piecewise Riemannian
2-manifoldX without boundary,(X(∞), st) is homeomorphic toS1.



180 K. Kawamura, F. Ohtsuka / Topology and its Applications 94 (1999) 173–193

Fig. 1.

In general, the topology induced by the Tits metric Td onX(∞), called the Tits topology,
is finer than the standard topology. The following is an answer to the question as to when
these topologies coincide.

Proposition 3.4. (X(∞),Td) is homeomorphic to(X(∞), st) ≈ S1 if and only if
diamTdX(∞) is finite.

Proof. Assume that diamTdX(∞) is finite, and we derive a contradiction by supposing
that id : (X(∞), st)→ (X(∞),Td) is not continuous atz ∈ X(∞). Take a sequence{zi}
of points onX(∞) such that

lim
i→∞Td(z, zi)= a := sup

y∈X(∞)
Td(z, y)6 diamTdX(∞) <∞.

Since(X(∞),Td) is a geodesic space, there exists a geodesic segmentsci onX(∞) from
z to zi for eachi. Now we prove thatci ⊂ cj or ci ⊃ cj for any i, j . Suppose not. Then
ci ∪ cj forms a neighborhood ofz in (X(∞), st) for somei andj , and the compactness
of (ci ∪ cj ,Td) easily implies thatid : (ci ∪ cj , st)→ (ci ∪ cj ,Td) is continuous, and in
particular, is continuous atz, a contradiction. Therefore, asi, j→∞,

Td(zi , zj )=
∣∣Td(z, zi)− Td(z, zj )

∣∣→ 0.

By the completeness of(X(∞),Td), the Cauchy sequence{zi} converges to a pointz∞.
Note thatz∞ 6= z, since Td(z∞, z) = a > 0. There are exactly two simple curves on
(X(∞), st) from z to z∞, only one of which is the geodesic segment on(X(∞),Td).
We denote the geodesic segment byA, and take a pointw ∈ X(∞) \A. Then a geodesic
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Fig. 2.

from z tow must containA because of the discontinuity ofid : (X(∞), st)→ (X(∞),Td)
at z. Hence we have that

Td(w, z) > Td(z∞, z)= sup
y∈X(∞)

Td(z, y),

a contradiction.
The reverse implication is obvious and this completes the proof.2
The following theorem is our main result of this section.

Theorem 3.5. LetX be a simply connected nonpositively curved piecewise Riemannian
2-manifold without boundary. Then we have that

e(X)= 2
(
π − diamTdX(∞)

)
.

The proof is similar to the one for a Hadamard 2-manifold in [9] or [11]. First we prove
the following lemma.

Let α,β : [0,∞)→ X be two geodesic rays onX emanating fromp. Suppose that
Td(α(∞),β(∞)) < π , and letF be the domain defined by

F :=
⋃
t>0

σα(t)β(t).

Let t0 := sup{t | α(t)= β(t)}, q(α,β) := α(t0)= β(t0) andF0 :=⋃t>t0 σα(t)β(t). We call
F0 the surface component ofF andq(α,β) the vertex ofF0 in this paper. Clearlyq(α,β)
is a negative singular point ift0 > 0. For geodesic raysγ andσ on F emanating from
x ∈ ∂F , let 6 Fx (γ,σ ) be the angle atx subtended byγ andσ with respect toF , which is
defined as follows (cf. Fig. 2). SinceΣx is homeomorphic toS1, Σx is divided into two
closed intervalsI, J whose end points are the equivalence classes ofγ andσ . Then one
of these intervals is contained inΣF

x . If I ⊂ ΣF
x , then 6 Fx (γ,σ ) is defined to beL(I),
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Fig. 3.

whereL is the one-dimensional Hausdorff measure onΣx . Notice that ifL(I)6 π , then
6 F
x (γ,σ )= 6 x(γ,σ ).
To simplify the notation, letq := q(α,β), α := α|[t0,∞) andβ := β|[t0,∞).

Lemma 3.6. If Td(α(∞),β(∞)) < π , then

Td
(
α(∞),β(∞))> 6 F0

q (α,β)−
∑
F
◦

0

k,

whereF
◦

0 is the interior ofF0 andk(x)= 2π −L(Σx). In particular,
∑
F
◦

0
k is finite.

Proof. Let l := Td(α(∞),β(∞)) and take a minimizing geodesicc : [0, l]→ (X(∞),Td)
from α(∞) to β(∞). Sincel < π , it is clear that⋃

06t6l
σqc(t) = F0,

whereσqz is the ray fromq with σqz(∞)= z ∈X(∞).
Enumerate all the singular points onF

◦
0 as {qi | i = 1,2, . . .} such thatd(qi, q) 6

d(qi+1, q) for eachi. We can extend the geodesic segmentσqq1 from q to q1 to two
geodesic raysσ+1 andσ−1 such that

6
q1

(
σq1q, σ̃

±
1

)= π, whereσ̃±1 := σ±1 \ σqq1.

Let F1 be the subdomain ofF0 bounded byσ̃±1 . We may assume thatα(∞) = c(0) <
σ−1 (∞) < σ+1 (∞) < c(l)= β(∞) with respect to the natural order ofc([0, l]) as in Fig. 3.
Sincec is a geodesic on(X(∞),Td), we have that
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Td
(
α(∞),β(∞))= Td

(
α(∞), σ−1 (∞)

)+ Td
(
σ−1 (∞), σ+1 (∞)

)
+Td

(
σ+1 (∞),β(∞)

)
> 6 F0

q

(
α,σ−1 (∞)

)+ (L(Σq1)− 2π
)+ 6 F0

q (σ
+
1 , β)

= 6 F0
q (α,β)− k(q1).

Next let U−1 , U1 andU+1 be the interiors of the subdomainsF−1 , F1 andF+1 of F0

bounded byα andσ−1 , bounded byσ+1 andσ−1 and bounded byβ andσ+1 , respectively.
If q2 ∈U−1 , then we have that

Td
(
α,σ−1 (∞)

)
> 6 F

−
1
q

(
α,σ−1 (∞)

)− k(q2)

by the same way as above. Using this in the above estimation, it follows that

Td
(
α(∞),β(∞))> 6 F0

q (α,β)−
2∑
i=1

k(qi). (∗)

The caseq2 ∈U+1 can be treated similarly. Ifq2 ∈U1, then

Td
(
σ−1 (∞), σ+1 (∞)

)
> 6 F1

q1

(
σ+1 (∞), σ−1 (∞)

)− k(q2),

and we may repeat the above argument to obtain the inequality (∗) again.
Suppose thatq2 ∈ σ−1 . Then we extendσqq2 to geodesic raysσ±2 such that

6 F2
q2

(
σq2q , σ

±
2

)= π,
whereF2 is the subdomain ofF0 bounded byσ±2 . We may assume thatα(∞) = c(0) <
σ−2 (∞) < σ+2 (∞) < σ+1 (∞) < c(l)= β(∞) with respect to the natural order ofc([0, l])
as in Fig. 4. Then we have the inequality (∗) as follows:

Td
(
α(∞),β(∞))= Td

(
α(∞), σ−2 (∞)

)+ Td
(
σ−2 (∞), σ+2 (∞)

)
+Td

(
σ+2 (∞), σ+1 (∞)

)+ Td
(
σ+1 (∞),β(∞)

)
> 6 F0

q (α,σ
−
2 )+ 6 F2

q2
(σ−2 , σ

+
2 )+ 6 F1

q1
(σ+2 , σ

+
1 )+ 6 F0

q (σ
+
2 , β)

= 6 F0
q (α,β)+ 6 F1

q1
(σ−1 , σ

+
1 )+ 6 F2

q2
(σ−2 , σ

+
2 )

= 6 F0
q (α,β)−

{
k(q1)+ k(q2)

}
.

The case thatq2 ∈U−1 can be proved similarly.
By repeating this argument, we see that, for eachn,

Td
(
α(∞),β(∞))> 6 F0

q (α,β)−
n∑
i=1

k(qi),

which clearly implies the desired inequality.
Now the above implies that

6 F0
q (α,β)− Td

(
α(∞),β(∞))6 n∑

i=1

k(qi)6 0 for eachn,

and hence
∑
F
◦

0
k is finite. 2
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Fig. 4.

The next result corresponds to proposition in Section 2 of [9] and is a key step for the
proof of Theorem 3.5.

Proposition 3.7. Under the same notation as Lemma3.6, we have that

e(F0)= 6 F0
q (α,β)− Td

(
α(∞),β(∞))− ∑

∂F0\{q}
θF0,

wheneverTd(α(∞),β(∞)) < π .

Proof. Let ξ(t) := 6 α(t)(σα(t)p, σα(t)β(t)) and η(t) := 6 β(t)(σβ(t)p, σβ(t)α(t)). By Exer-
cise 4.3 of Chapter II in [2], we have

6 (α(∞),β(∞))= lim
t→∞

(
π − ξ(t)− η(t)). (1)

(See [3, Lemma 4.3, p. 34] for a proof of Riemannian case. The proof of the general
case proceeds in the same way.) Since Td(α(∞),β(∞)) < π , Td(α(∞),β(∞)) =
6 (α(∞),β(∞)). Let Ft :=⋃t06s6t σα(s)β(s), which is homeomorphic to the closed disk.
Applying Theorem 2.1 toFt , we obtain

e(Ft )= 6 F0
q (α,β)−

(
π − ξ(t)− η(t))− ∑

α((t0,t))∪β((t0,t))
θFt −

∑
σ
◦
α(t)β(t)

θFt . (2)

Here we note that

0> θFt (x)= π −L(ΣFt
x )= k(x)+

(
L(Σ

X\Ft
x )− π)> k(x)
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for eachx ∈ σ◦α(t)β(t), where the last inequality follows from the fact thatσα(t)β(t) is a
geodesic. Since

∑
F
◦

0
k is finite by Lemma 3.6, andσα(t)β(t) is divergent ast→∞, we see

that
∑
σ
◦
α(t)β(t)

k tends to 0 ast→∞. Therefore taking the limit in (2) with the use of (1)
and the above notice, we have the desired equality.2

Now we prove Theorem 3.5.

Proof of Theorem 3.5. The proof is basically the same as the one for a Hadamard 2-
manifold in [9] or [11] via Propositions 3.3 and 3.7, Lemma 3.6, Theorem 3.5 above, and
we give a detail here for completeness.

Assume first that diamTdX(∞) <∞. By Theorem 3.3,(X(∞),Td) is homeomorphic
to S1. Since Sing(X) is a countable set, we can choose a sequenceα1, . . . , αn of geodesic
rays emanating from a pointp ∈X \Sing(X) such that

(1) there exists no singular points onαi for eachi,
(2) Td(αi(∞),αi+1(∞)) < π for eachi and

n∑
i=1

Td
(
αi(∞),αi+1(∞)

)= 2 diamTdX(∞),

whereαn+1 := α1. From the condition (1), it follows thatαi ∩ αj = {p} for anyi 6= j .
Let Fi :=⋃t>0σαi(t)αi+1(t). Applying Proposition 3.7 to eachFi and noticing that the

exterior angle term vanishes on∂Fi \ {p} by (1), we have that

e(Fi)= 6 Fip (αi,αi+1)− Td
(
αi(∞),αi+1(∞)

)
for eachi = 1, . . . , n.

Summing up the above equalities, and noticing thatp is a nonsingular point, we obtain

e(X)= 2
(
π − diamTdX(∞)

)
,

which completes the proof when diamTdX(∞) <∞.
Next we assume that diamTdX(∞) =∞. Take two pointsα(∞) andβ(∞) such that

Td(α(∞),β(∞)) > π . The boundary(X(∞), st)≈ S1 is divided into two intervalsI1 and
J1 by α(∞) andβ(∞). Since diamTdX(∞) =∞, either lTd(I1) =∞ or lTd(J1) =∞,
where lTd is the one-dimensional Hausdorff measure on(X(∞),Td). If lTd(I1) = ∞,
there exists a pointξ1 ∈ I1 such that Td(α(∞), ξ1) > π and Td(β(∞), ξ1) > π . Let
I1 = I2 ∪ J2 whereI2 andJ2 are closed intervals in(X(∞), st) with ∂I2 = {α(∞), ξ1}
and∂J2= {β(∞), ξ1}. ThenlTd(I2)=∞ or lTd(J2)=∞. Assuming the former case, take
a pointξ2 ∈ I2 which is far fromα(∞) andξ1. Continuing this process and changing the
indexes, we can choose, for eachl ∈ N, a sequence{ξi | i = 1, . . . , l} with ξ0 = α(∞) <
ξ1< · · ·< ξl+1= β(∞) with respect to the natural order on(X(∞), st) such that

Td(ξi , ξi+1) > π for eachi = 0, . . . , l. (1)

Then we can choose a suitable non-singular pointp such that, there exists no singular
points on the geodesicγi from p such that,γi(∞)= ξi for eachi. By the condition (1),
there exists a straight lineσi :R→ X such thatσi(∞) = γi(∞) = ξi and σi(−∞) =
γi+1(∞) = ξi+1 (cf. Lemma 4.10 in [3]). LetFi be the domain bounded byγi , γi+1
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containingσi , and letEi be the subdomain ofFi bounded byγi , γi+1 andσi , and let
Ẽi be the closure ofFi \Ei (see Fig. 5). For eacht > 0, letEi(t) be the compact domain
bounded byγi |[0,t ], γi+1|[0,t ] andσγi (t)γi+1(t). Applying Theorem 2.1, we have that

e
(
Ei(t)

)= 6 Fip (γi, γi+1)+ 6 Eiγi (t)
(
(γi |[0,t ])−1, σγi(t)γi+1(t)

)
+ 6 Eiγi+1(t)

(
(γi+1|[0,t ])−1, σγi+1(t)γi(t)

)− π − ∑
σ
◦
γi (t)γi+1(t)

θEi (t). (∗)

Let q ∈ σi . By Lemma 3.1 in [6], we have that

6 Ei
γi(tj )

(
(γi |[0,tj ])−1, σqγi (tj )

)→ 0

asj→∞ for some divergent sequencetj . Hence

6 Ei
γi(tj )

(
(γi |[0,tj ])−1, σγi (tj )γi+1(tj )

)→ 0

asj→∞ because of

6 Ei
γi(tj )

(
(γi |[0,tj ])−1, σγi (tj )γi+1(tj )

)
6 6 Eiγi(tj )

(
(γi |[0,tj ])−1, σqγi (tj )

)
.

Also the proof of Lemma 3.2 of [6] (the proof of Case 2) reveals that

lim
t→∞

∑
σ
◦
γi (t)γi+1(t)

θEi(t) =
∑
σi

θEi .

Hence tendingt of (∗) to infinity,

e(Ei)= 6 Fip (γi, γi+1)− π −
∑
σi

θEi .
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Repeating the proof of Theorem A in [6] with respect tõEi and σi , we have that
e(Ẽi)6−∑σi

θ Ẽi . Therefore, we have

e(Fi)= e(Ei)+ e(Ẽi)+
∑
σ
◦
i

k

6 6 Fip (γi, γi+1)− π −
∑
σ
◦
i

θEi −
∑
σ
◦
i

θ Ẽi +
∑
σ
◦
i

k

= 6 Fip (γi, γi+1)− π.
Summing up all these inequalities, we have thate(X) =∑e(Fi) 6 (2− l)π . Sincel is
arbitrary,e(X)=−∞. This completes the proof.2
Remark. The last step of the proof above shows the following statement which will be
used later; If there is a straight line fromα(∞) to β(∞), then the surface componentF
bounded byα andβ with the vertexp satisfies thate(F )6 6 Fp (α,β)− π .

The following corollary is essentially proved in Proposition 2.1 in [10] for Hadamard
2-manifolds.

Corollary 3.8. LetX be a simply connected nonpositively curved piecewise Riemannian
2-manifold without boundary. The following conditions are equivalent:

(a) (X(∞),Td) is homeomorphic toS1.
(b) (X(∞),Td) is compact.
(c) diamTdX(∞) is finite.
(d) e(X) is finite.

Proof. The implications(a) ⇒ (b) ⇒ (c) are obvious and(c) ⇒ (a) follows from
Proposition 3.4. Theorem 3.5 implies the equivalence(c)⇔ (d). 2
Corollary 3.9. If X has an infinite properly discontinuous groupΓ of isometries onX
and(X(∞),Td) is compact, thenX is isometric toR2.

Proof. Suppose that there exists a compact domainK of X such thate(K) < 0. Since the
action is properly discontinuous, the orbitΓ (K) tends to infinity. Also, since the elements
of Γ act onX as isometries,e(γ (K)) < 0 for anyγ ∈ Γ . Thereforee(X)=−∞ and this
contradicts Corollary 3.8.2

The next result shows a more precise connection between the total excess and the Tits
topology ofX and will be used in Section 4.

For a continuous curvec : [0,1] → (X(∞), st), let st := sup{s > 0 | σpc(0)(s) =
σpc(t)(s)}. Also, let

Ft :=
⋃

06s6t
σpc(s)

([st ,∞)),
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the surface component of the domain bounded byσpc(0) andσpc(t), andqt := σpc(0)(st ),
the vertex ofFt (see Fig. 6). Note thatst is a monotone decreasing function on(0,1]
and may be divergent ast → 0, andqt is a negative singular point ifst > 0. Note also
thatL(ΣFt

qt ) is not necessarily convergent to 0 ast → 0. For notational convenience, let
e(Ft ) := e(Ft )+∑∂Ft\{qt } θ

Ft .

Proposition 3.10. Under the above notation, the following conditions are equivalent:
(a) limt→0 Td(c(0), c(t))= 0,
(b) limt→0 e(Ft )= 0,
(c) for somet ′ > 0, e(Ft ′) is finite.

Proof. We begin with the following claim: If
∑
σqt c(0)

θFt is finite for somet , then

limt→0 6 Ftqt (σqt c(0), σqt c(t))= 0.
Indeed, if the set{qt | t > 0} is contained in a bounded domain, then the conclusion

follows easily from the fact that limt→0 c(t)= c(0) with respect to the standard topology.
Suppose thatqt→∞ ast→ 0. Since

∑
σqt c(0)

θFt is finite, we have that limt→0 θ
Ft (qt)=

0, which clearly implies the conclusion in this case as well.
(a)⇒ (b) Under the present notation, Proposition 3.7 implies that, for smallt ,

e(Ft )= 6 Ftqt
(
σqtc(0), σqt c(t)

)− Td
(
c(0), c(t)

)
.

On the other hand, enumerating all singular points onσqtc(0) and proceeding as in the proof
of Proposition 3.6, we obtain that

Td
(
c(0), c(t)

)
> 6 Ftqt

(
σqt c(0), σqt c(t)

)− ∑
σqt c(0)\{qt }

θFt .
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Fig. 7.

Hence
∑
σqt c(0)

θFt is finite. Then, by the claim above, limt→0 6 Ftqt (σpc(0), σpc(t)) = 0,
which implies the condition (b).
(b)⇒ (a) Since limt→0

∑
∂Ft\{qt } θ

Ft = 0 by (b), we have that
∑
σqt c(0)

θFt is finite for

eacht . Hence, by the claim above, limt→0 6 Ftqt (σpc(0), σpc(t))= 0. If there is a straight line

fromc(0) to c(t), then by remark after Theorem 3.5,e(Ft )6 6 Ftqt (σpc(0), σpc(t))−π . Hence
limt→0 e(Ft )6−π , which contradicts the assumption (b). Hence there is no straight line
from c(0) to c(t) for small t . Now applying Proposition 3.7, we obtain the conclusion.
(b)⇒ (c) This is trivial.
(c)⇒ (b) Fix an ε > 0 arbitrarily. We need to find a positive constantt1 such that, for

anyt ∈ (0, t1), e(Ft ) >−ε.
For a givenε > 0, there exists a compact domainK of Ft ′ such that

−ε
2
< e(Kc)+

∑
∂Kc∩(σpc(0)∪σpc(t ′))

θK
c 6 0,

whereKc := Ft ′ \K
◦
. Note that

−ε
2
< e(Kc

t )+
∑

∂Kct ∩(σpc(0)∪σpc(t))
θK

c
t 6 0 for each 0< t 6 t ′, (1)

whereKc
t := Kc ∩ Ft . For a large numberr > 0 such thatσpc(0)([0, r])⊃ ∂K ∩ σpc(0),

there exists a neighborhoodU of σpc(0)([0, r]) such that Sing(X) ∩ U ⊂ σpc(0)([0, r]).
See Fig. 7. Then we can take a smallt0 > 0 such thatKt := Ft ∩ K ⊂ U ande(Kt) =
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ereg(Kt ) >−ε/2 for anyt ∈ (0, t0]. There is no singular point onσpc(t)((st ,∞])∩K and
∂Kt ∩ ∂Kc

t , and hence fort ∈ (0, t0],∑
σpc(t)((st ,∞])∩K

θFt = 0 and
∑

∂Kt∩∂Kct
k = 0. (2)

Suppose that there is no singular point onσpc(0)((st0, r]). Sinceσpc(0)((st0,∞))∩ ∂K ⊂
σpc(0)((st0, r]), we have

∑
σpc(0)((st0,∞))∩∂K θ

Ft0 = 0. Let t1 := t0> 0. Then for any 0< t <
t1,

e(Ft )= e(Ft )+
∑

∂Ft\{qt }
θFt

= e(Kt)+ e(Kc
t )+

∑
∂Kt∩∂Kct

k+
∑

σpc(0)((st ,∞))
θFt +

∑
σpc(t)((st ,∞))

θFt

= e(Kt)+ e(Kc
t )+

∑
(σpc(0)∪σpc(t))∩∂Kct

θFt

>−ε.
The third equality follows from (2).

If there is a singular point onσpc(0)((st0, r]), then lets0 :=max{s | σpc(0)(s) ∈ Sing(X),
st0 < s 6 r}. It is clear that there is a positive constantt1 < t0 such thatst1 > s0. Then∑
σpc(0)((st ,∞))∩∂K θ

Ft = 0 for anyt < t1. Then for any 0< t < t1, e(Ft )>−ε as the above
computation, which completes the proof.2

4. A construction of a 2-dimensional Hadamard space with the prescribed boundary
at infinity

As was mentioned before, for any simply connected nonpositively curved piece-
wise Riemannian 2-manifoldX without boundary, the identity mapid : (X(∞),Td)→
(X(∞), st) ≈ S1 is continuous. It follows easily from this fact that each connected com-
ponent of(X(∞),Td) is homeomorphic to either a point or an (open, closed or half-open)
interval. These components form a decomposition ofS1. A natural question arises as to
whether there is some restriction on the “configuration” of the components. The following
theorem states that there is no such restriction.

To state our result precisely, we introduce the following definition. Adecomposition of a
topological spaceA is a collectionD of connected subsets ofA such thatA1∩A2= ∅ for
anyA1 6=A2 ∈D and

⋃
D =A. Let AD be the topological space with the weak topology

with respect to the elements ofD. That is, a subsetG of AD is open if and only ifG∩D
is open with respect to the relative topology ofD for anyD ∈D.

Theorem 4.1. LetD be a decomposition ofS1 into points and subsets homeomorphic to
intervals. Then there exist a simply connected nonpositively curved piecewise Riemannian
2-manifoldX and a homeomorphismf : (X(∞), st)→ S1 such thatf : (X(∞),Td)→
S1
D is also a homeomorphism.
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Construction of X. We identify S1 with {(x, y) ∈ R2 | x2 + y2 = 1}. First we prepare
some basic pieces of the construction. LetJ be the set of all elements ofD which are
homeomorphic to intervals and letA =⋃J andB = S1 \ A. The set of all connected
components ofB on S1 which are homeomorphic to intervals is denoted byB. Each
connected component of the setS1 \⋃{J ∪B} is a point.

Note that the collectionJ ∪B is countable and can be enumerated as{Ei | i = 1,2, . . .}.
Let {ai, bi} be the end points ofEi , the closure ofEi .

Fix an ε > 0 arbitrarily and letl(Ei) be the length ofEi ⊂ S1. For eachEi , we take a
piecewise Riemannian 2-manifoldFi with boundary as follows.

Case1.Ei ∈ J is homeomorphic to a closed interval. LetFi be a sector inR2 with the
vertex anglel(Ei).

Case2. Ei ∈ J is homeomorphic to a half-open interval withai ∈ Ei . Let S0 be
a sector with the vertex anglel(Ei), bounded by the raysl10 and l20. Also, for each
j ∈ N, let Sj be a sector with the vertex angleε, bounded by the raysl1j and l2j .

Let f0 : l11([0,∞))→ l20([i,∞)) be the obvious isometry withf0(l
1
1(0)) = l20(i) and

fj : l1j+1([0,∞))→ l2j ([1,∞)) be the obvious isometry withfj (l1j+1(0))= l2j (1) for each
j > 1.

Let L0 := S0 ∪f0 S1 and inductively letLj+1 = Lj ∪fj Sj+1. Then we takeFi as the
union

⋃∞
j=0Lj , which is a piecewise flat Riemannian 2-manifold bounded by geodesic

rays α = l10([0,∞)) and β = l20([0, i]) ∪
⋃∞
j=1 l

2
j ([0,1]). We say that the rayα (β ,

respectively) corresponds to the point at infinityai (bi , respectively) and is denoted by
γai (γbi , respectively).

Case3.Ei ∈J is homeomorphic to an open interval. Letc be the midpoint ofEi . Then
Ei is divided into two componentsE1

i andE2
i such thatE1

i ∩ E2
i = {c}, and forE1

i and
E2
i we constructF 1

i andF 2
i as in Case 2. Letγ1 andγ2 be geodesic rays inF 1

i andF 2
i ,

respectively, both of which correspond to the pointc. ThenFi is obtained fromF 1
i andF 2

i

by gluingγ1 andγ2 by the obvious isometry.
Case4.Ei ∈ B. Note that an intervalEi ∈ B has thediscrete topologyin S1

D . LetFi be a
simply connected Riemannian 2-manifold of nonpositive curvature bounded by geodesics
γai andγbi with γai ∩ γbi = {pi} such that

(1) B(pi, i) atpi in Fi is isometric to the intersection of the sector with the vertex angle
l(Ei) and thei-ball at the vertex inR2, and

(2) there exists a compact setK ⊃ B(pi , i) such thatFi \K is isometric to a subset of
the hyperbolic planeH2.

In above four cases,Fi is homeomorphic to a sector and bounded by two geodesic rays
γai andγbi . The pointpi := γai ∩γbi is called the vertex ofFi . Using these pieces, we will
construct the spaceX.

Now let

X̂ :=
⋃
Fi/∼,

wherepi ∼ pj for eachi, j and also,x ∼ y if x = γai (t) ∈ Fi andy = γbj (t) ∈ Fj for
ai = bj ∈ S1 andt > 0.
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Note here thatS1 \ ⋃Ei may not be empty and forx ∈ S1 \ ⋃Ei , there exists a
subsequence{Ekj } of {Ei} which converges tox. Hence in order to construct the desired
spaceX, we need to take the completion of̂X with respect to an appropriate metric.

For a subsetA of S1, letc(A) be the infinite cone over the origino ∈R2: c(A)= {ta | a ∈
A, t > 0}. For eachi, there exists a homeomorphismhi :Fi→ c(Ei) such thathi(pi)= o
and the restrictions

hi :γai → c(ai) and hi :γbi→ c(bi)

are isometries. Recall thatpi is the vertex ofFi andai, bi are the end points ofEi . Then
the mapĥ =⋃hi : X̂→ R2 is a well-defined topological embedding of̂X into R2. Pull
back the standard metric ofR2 to X̂ via ĥ and the completion with respect to that metric is
denoted byX. This metric is introduced only to define a topology onX.

Next we will show thatX has a metric such that the inclusion map fromFi into X is
an isometry for eachi. The metric onX is defined as follows: Forx,y ∈ X, let c be a
continuous curve fromx to y with respect to the above topology. The lengthl(c) of c is
defined by

l(c) :=
∑
i

l(c ∩Fi),

wherel(c ∩ Fi) is the length of the curvec ∩ Fi onFi . Then the distanced(x, y) onX is
defined as the infimum of the lengths of such curves. It clear that the inclusion map from
Fi with the original metric into(X,d ) is an isometry for eachi.

SinceFi is flat on thei-ball centered at the vertexpi for eachi, it is easily seen that 1-ball
centered atp ∈X, the equivalence class ofpi , is isometric to the 1-ball inR2. Furthermore,
by tendingi→∞, we can show easily that any pointx ∈X \ X̂ has a flat neighborhood.
This fact guarantees that the set of the singular points is contained in

⋃
i ∂Fi andX admits

a structure of a simply connected nonpositively curved piecewise Riemannian 2-manifold
without boundary which induces the metricd above as the natural metric.

Finally we show that, with respect to this metric, the resulting spaceX is the required
piecewise Riemannian 2-manifold. From the construction ofX, it is easily seen that there
exists a homeomorphismf : (X(∞), st)→ S1 such thatf (Fi(∞))=Ei , f (γai (∞))= ai ,
and f (γbi (∞)) = bi for eachi, whereFi(∞) denotes the set of all points at infinity
defined by the equivalence classes of geodesic rays onFi . Then we shall verify that
f : (X(∞),Td)→ S1

D is a homeomorphism, which follows from the following two claims:
(1) The collectionf−1(D) is exactly the collection of the components of(X(∞),Td).
(2) For eachD ∈D, f |f−1(D) : (f

−1(D),Td)→D is a homeomorphism.
To check the claims, we divide our consideration into several cases.
Case1.Ei ∈ J . Suppose thatEi is homeomorphic to a half-open interval withai ∈Ei .

From the construction ofFi , we see that
∑
γbi
θFi = −∑ε = −∞, while there is no

singular point inFi
◦

and
∑
γai
θFi = 0. Thus for each geodesic raysγ 6= γbi on Fi from

p, e(F γi ) = −∞, whereFγi is the subdomain ofFi bounded byγbi and γ . Hence
Proposition 3.7 implies thatγbi (∞) is not “accessible” fromγai (∞). Let F̂ γi be the
closure ofFi \ Fγi . Since e(F̂ γi ) is finite, all other points ofFi(∞) are joined with
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γai (∞) by geodesics onFi(∞). This means thatFi(∞) is isometric to[0,∞) ∪ {∞}
in such a way that∞ corresponds tof−1(bi). Hencef |f−1(Ei )

: (f−1(Ei),Td)→Ei is a
homeomorphism.

Sinceai ∈Ei , it is clear that there exists noEj ∈ J (i 6= j) such thatai ∈Ej . Henceai
is not accessible from another side. This implies thatf−1(Ei) is a connected component
of (X(∞),Td).

WhenEi is homeomorphic to an open or closed interval, a similar proof to the above
shows thatf |f−1(Ei )

:f−1(Ei)→ Ei is a homeomorphism andf−1(Ei) is a connected
component of(X(∞),Td) as well.

Case2.d ∈D \J . Note thatd is a point onS1. Then it is clear thatf |f−1(d) :f
−1(d)→

d is a homeomorphism. Hence it suffices to show thatf−1(d) is an isolated point on
(X(∞),Td).

Case2.1.d ∈E◦ i for someEi ∈ B. In this case,Fi is isometric to a subdomain ofH2 near
infinity, so it is easy to see that(Fi(∞),Td) is discrete. Thereforef−1(d) is an isolated
point.

Case2.2. There is noEi ∈ B such thatd ∈ E◦ i . For ξ := f−1(d), take a neighborhood
U of the pointξ with respect to the standard topology such thatU = I ∪ J , whereI
andJ are half-open intervals which haveξ as their end points such thatI ∩ J = {ξ}.
If ξ is “accessible” from the “I -side” with respect to Td, Proposition 3.10 implies that
there is an intervalE ∈ D on I -side such thatd ∈ E, which contradicts the assumption
d ∈ D \ J . Henceξ is not accessible from either side ofI or J . Henceξ is an isolated
point in (X(∞),Td).
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