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Muscle atrophy in transgenic mice expressing a human TSC1 transgene
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Abstract Muscle mass is regulated by a wide range of hor-
monal and nutritional signals, such as insulin and IGF. Tuberous
sclerosis complex (TSC) is an inherited hamartoma disease with
tumor growth in numerous organs. TSC is caused by mutation in
either TSC1 or TSC2 tumor suppressor genes that negatively
regulate insulin-induced S6K activation and cell growth. Here
we report that expression of human TSC1 (hTSC1) in mouse
skeletal muscle leads to reduction of muscle mass. Expression
of hTSC1 stabilizes endogenous TSC2 and leads to inhibition
of the mTOR signaling. The hTSC1-mTSC2 hetero-complex
and its downstream components remain sensitive to insulin stim-
ulation and nutrition signals. This study suggests that an increase
in the steady state level of resident TSC1–TSC2 complex is suf-
ficient to reduce muscle mass and cause atrophy.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Skeletal muscle atrophy accompanies various diseases, such

as cancer, diabetes and AIDS [1]. Muscle atrophy could be in-

duced by deregulation of different signaling pathways, includ-

ing interleukin-1 (IL-1), tumor necrosis factor (TNF) and

insulin/insulin-like growth factor (IGF) signaling, which lead

to reduced protein synthesis or activated protein degradation

[2–7]. Insulin/IGF signaling is one of the best-understood sys-

tems in growth regulation. Suppression of its downstream reg-

ulator mammalian target of rapamycin (mTOR), a positive

regulator of protein synthesis, has been suggested to cause

skeletal muscle atrophy [4–7]. Mice lacking both AKT1 and

AKT2, the downstream targets of insulin/IGF, have impaired

mTOR activity and about 50% reduction in muscle mass [6].

Mice without ribosomal protein S6 kinase 1 (S6K1), a positive

protein synthesis regulator downstream of mTOR, also display

20% reduction in muscle size without obviously affecting the

number and type of muscle fibers [7].

Tuberous sclerosis complex (TSC) is an autosomal disorder

characterized as benign tumors in multiple organs. The disease
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is caused by mutations in either the TSC1 or the TSC2 tumor

suppressor genes [8]. The TSC1–TSC2 complex has been char-

acterized in both Drosophila and mammals as a negative regu-

lator of insulin/IGF induced S6K activation [9–12]. Germline

disruption of TSC1 or TSC2 leads to embryonic lethality, dem-

onstrating a general requirement for TSC genes in early deve-

lopment [13]. The C-terminal of TSC2 proteins contains a

domain homologous to the GAP domain of Rap GTPase-acti-

vating protein (Rap GAP), which is responsible for the negative

regulation of Rheb small GTPase and mTOR [14–16]. TSC2

proteins are suggested to be functional in a stable complex with

TSC1 proteins through their coiled-coil domains [17,18]. This

complex prevents ubiquitin-dependent degradation of TSC2

[18]. It can be destabilized by AKT1 dependent phosphoryla-

tion of TSC2, a process regulated by a kinase cascade origi-

nated from extracellular insulin/IGF molecules [9–11,19,20].

Cellular energy and nutrition levels regulate cell growth, cell

size, and cell survival. Nutrition deprivation activates AMP-

activated protein kinase (AMPK) in cultured mammalian cells,

which in turn phosphorylates TSC2 on the T1227 and S1345

residues. AMPK phosphorylated TSC2 suppresses the activity

of mTOR-S6K cascade. In S6K1 knockout mice, skeletal mus-

cle mass fails to respond to altered nutrition conditions, fur-

ther suggesting a critical role for AMPK-TSC-mTOR in

mediating nutrition signals [7,21,22].

To further understand the role of TSC genes in regulating

muscle mass in vivo, we produced transgenic mice ectopically

expressing hTSC1 in the skeletal muscle. These mice showed

reduced muscle mass but otherwise were viable and fertile.

Reduction of muscle mass is correlated with an increase of sta-

ble TSC2, presumably through its interaction with hTSC1 pro-

teins. We further show that insulin and nutrition signals

remain effective in regulating TSC1–TSC2 complex activity

and the downstream events such as activation of S6K in the

transgenic mice. Thus, hTSC1 transgenic mice represent an

animal model for muscle atrophy, in which the muscle retains

relatively normal response to insulin signaling.
2. Materials and methods

2.1. Transgenic mice
The 3.3 kb MCK promoter [23] was excised with EcoRI/XbaI and li-

gated into NotI/XbaI sites of pBluescript II KS+ vector. Myc-tagged
full-length human TSC1 cDNA was then cloned into the XbaI site with
blished by Elsevier B.V. All rights reserved.
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Fig. 1. MCK-driven hTSC1 is preferentially expressed in mouse
skeletal muscle. (A) The MCK-hTSC1 transgenic construct. A 3.5 kb
human TSC1 cDNA (hTSC1) was fused in frame with a 3· myc tag
sequence at the 5 0 end and placed between the 3.3-kb MCK promoter
and the 2.1 kb human growth hormone gene fragment containing the
polyadenylation signal (hGH pA). (B) Expression pattern of hTSC1 in
various organs (top panel) and different muscles (bottom panel).
Transgene expression level was detected with anti-myc antibody.
Amount of loaded proteins was judged by Coomassie blue staining or
anti-tubulin antibody staining. H, heart; L, liver; S, spleen; K, kidney;
TA, tibialis anterior; EDL, extensor digitorum longus; Sl, soleus; WT,
TA sample from a wild type littermate. (C) Western blot shows
transgene expression in TA muscles from different transgenic lines.
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blunted-end ligation. The 2.1-kb SpeI/XhoI fragment of human growth
hormone gene was inserted between the SpeI/XhoI sites to provide
polyadenylation signal (hGH polyA) [24]. The transgene cassette was
linearized by BssHII, purified by agarose gel and microinjected into
fertilized eggs from FVB/NJ mice. Transgenic offspring was identified
by a 996-bp PCR product with the following primers: MCK5:
5 0-CGAGCTGAAAGCTCATCTGCTCTCAGGG-30; T1-3: 5 0-TA-
ATTCCGGATGAATTCGCACATGCTCC-3 0. Animals were main-
tained on a 12/12 light/dark cycle and were allowed free access to food
and water. For insulin stimulation test, eight-week-old mice were
fasted overnight before receiving intraperitoneal (I.P.) injection of
insulin next morning. Ten minutes after injection, tibialis anterior
(TA) muscles were rapidly removed from sacrificed mice and processed
for Western blot exactly as described below. For starvation and re-
feeding experiments, five-week-old male mice were deprived of food
for 2 days and then allowed free access to food and water for two days
before analysis [7].

2.2. Histology
TA and extensor digitorum longus (EDL) muscles of 8-week-old

male mice were weighed and embedded in OCT media (Leica CM)
for frozen section. 7 lm thick transverse sections were collected and
stained with haematoxylin/eosin solution (Sigma) to determine muscle
and fiber size, or with NADH solution to distinguish fast and slow
muscle fibers. Pictures were taken with a Leica dissecting microscope
and a DC300 camera. Section areas were measured with Adobe Photo-
shop. Fiber size and fiber type were determined based on at lease 200
fibers counted in each muscle.

2.3. Western blot
Protein extraction was prepared with the RIPA lysis buffer (Santa

Cruz) according to manufacturer’s instruction and quantified with
the BCAe Protein Assay Kit (Pierce). Equal amounts of samples were
separated by SDS/PAGE, transferred onto PVDF membranes (Milli-
pore), and immunoblotted following standard protocols. Quantitative
analysis was carried out with NIH ImageJ.

Goat anti-Myc antibody (Santa Cruz) was used to detect transgene
expression. Rabbit anti-p-S6K (T389) antibody (Cell Signaling) was
used to detect phosphorylation of Thr 389 residue of S6K proteins,
while rabbit anti-S6K antibody (Cell Signaling) was used to determine
total S6K proteins. Tubulin level usually served as loading control and
was determined by Goat anti-tubulin antibody (Santa Cruz). Rabbit
anti-TSC2 antibody (see acknowledgements) was used to detect endog-
enous mTSC2 proteins. HRP-conjugated bovine anti-goat antibody
and anti-rabbit antibody were purchased from Santa Cruz.
2.4. Quantitative real-time RT-PCR
Total RNA extraction and reverse transcription was carried out with

TRIzol (Invitrogen) and 9-bp random primers (Takara), respectively.
Quantitative PCR was performed with the SYBRGreen PCR Master
Mix system (ABgene) on an Mx3000p real-time PCR machine (Strata-
gene).

2.5. Statistical analyses
Results were expressed as the means ± S.D. Statistical significances

of body weight, organ weight, and real-time results were determined
using unpaired Student’s t-test. Statistical significances of muscle size,
fiber size and fiber type were determined using unpaired Student’s t-
test and two-tailed Z test. P < 0.001 is considered statistically signifi-
cant in this study.
3. Results

3.1. Transgenic expression of hTSC1 in skeletal muscle

To investigate the function of TSC1–TSC2 complex in

mouse skeletal muscle, we generated transgenic mice that ex-

pressed hTSC1 cDNA driven by the promoter of mouse mus-

cle creatine kinase (MCK) gene (Fig. 1A). Transgenes driven

by MCK promoter express preferentially in skeletal muscle,

with a higher level in fast-fiber enriched muscles, such as
EDL, than in slow-fiber enriched muscles, such as soleus.

However, a low-level leaky expression in cardiac muscle was

also reported [23,25]. We produced 11 independent MCK-

hTSC1 transgenic lines and characterized three of them (F13,

F37 and F38) in this study. Consistent with previous studies

of the MCK promoter, the hTSC1 transgene was found highly

expressed in skeletal muscle such as tibialis anterior (TA).

Among all other major organs analyzed, only heart showed

a low-level transgene expression. Further analysis demon-

strated that soleus expressed less hTSC1 proteins than EDL

did (Fig. 1B). The level of hTSC1 expression in line F38 is

96 ± 21% of that in line F37 (P = 0.37), while hTSC1 expres-

sion in line F13 is only 26 ± 12% of that in line F37

(P < 0.001) (Fig. 1C).

3.2. The transgenic mice display skeletal muscle atrophy

All three transgenic lines had normal physical appearance at

birth. However, F37 mice and F38 males exhibited reduced

body weight than their wild type littermates since four to five

weeks after birth (Fig. 2A). At the age of eight weeks, F37

males and females were 3.0 g (12.2%) and 2.0 g (9.8%) lighter

than their wild type littermates, respectively, while F38 males



Fig. 2. Ectopic expression of hTSC1 causes skeletal muscle atrophy in mice. (A) Body weight reduction in transgenic mice. (B) Muscle size reduction
in transgenic mice measured with H&E staining of cross-sections of TA and EDL from adult male mice. Left panel showed the section from a F37
transgenic mouse and its wild type littermate, bar = 1 mm. Quantification of different lines is shown in the right panel. (C) TA fiber size reduction in
transgenic mice. Left panel showed the H&E staining of the cross-section of TA from a F37 transgenic male mouse and its wild type littermate,
bar = 50 lm. Quantification of different lines is shown at the right panel. (D) Size reduction of fast fibers and slow fibers in transgenic mice. NADH
staining of the cross-section of TA from adult male mice was performed to measure the average size of different fibers. (E) Composition of slow (type
I) fibers and fast (type II) fibers did not change in transgenic mice. TA muscles from adult F37 transgenic males and their wild type littermates were
analyzed. Tg, transgenic mice; WT, wild type littermates; n, number of the samples, error bar shows the standard deviation; *P < 0.001.
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of the same age were 2.5 g (10.3%) lighter. F38 females and

F13 showed no significant body weight reduction (Fig. 2A

and data not shown).

We next investigated whether the body weight reduction was

mainly due to the loss of muscle mass. Significant decrease in

muscle mass of both TA and EDL was observed in F37 mice
and F38 males (P < 0.001, Table 1). In line F13, muscle weight

reduction was approximately 8% (P < 0.005, data not shown).

A less dramatic weight reduction was also observed in heart,

liver, spleen, and kidney of the transgenic mice (Table 1).

These results indicate that muscle mass reduction is a major

contributor to weight loss in the transgenic mice.



Table 1
Organ weight of wild type and transgenic mice

Heart (mg) Liver (mg) Spleen (mg) Kidney (mg) TA (mg) EDL (mg) Body weight (g)

F37 Male
WT (n = 16) 123.2 ± 15.2 1388.2 ± 187.4 98.6 ± 14.0 212.4 ± 31.1 44.8 ± 4.5 9.3 ± 1.4 24.6 ± 1.9
Tg (n = 9) 111.2 ± 9.0# 1263.1 ± 166.7 92.5 ± 7.8 194.7 ± 21.1 32.4 ± 2.4* 7.2 ± 1.6* 21.6 ± 1.1*

F37 Female
WT (n = 12) 96.1 ± 6.8 1061.9 ± 144.6 100.1 ± 11.0 142.3 ± 12.0 38.2 ± 3.2 8.2 ± 0.6 20.4 ± 1.1
Tg (n = 7) 101.5 ± 10.4 1051.3 ± 113.7 99.2 ± 17.3 129.7 ± 17.7 29.4 ± 1.7* 6.7 ± 0.4* 18.4 ± 1.1*

F38 Male
WT (n = 8) 119.0 ± 11.2 1252.2 ± 90.3 95.4 ± 5.5 195.8 ± 17.5 42.7 ± 1.8 9.3 ± 0.7 24.3 ± 0.9
Tg (n = 10) 109.4 ± 7.3 1207.9 ± 75.5 91.9 ± 10.2 190.7 ± 14.1 33.9 ± 1.5* 7.6 ± 1.0* 21.8 ± 1.0*

Eight-week-old mice and their wild type littermates were analyzed. Data are presented as means ± S.D.
Data of transgenic animals were also compared with those of wild type individuals to calculate the P values. *, P < 0.001; #, P = 0.042; unmarked,
P > 0.05.
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The skeletal muscle TA and EDL of the transgenic mice was

further examined by histological analysis. In F37 and F38 male

mice, the combined cross-section of TA and EDL displayed a

23% and 20% reduction in size, respectively (Fig. 2B). Corre-

spondingly, the average of fiber size in TA had a 19% and

17% reduction, respectively (Fig. 2C). Although both slow

(type I) and fast (type II) muscle fibers showed smaller sizes

in these two lines, the change of fast fibers was more severe

than that of slow fibers (P < 0.001, Fig. 2D). This was likely

due to higher transgene expression in fast fibers driven by

the MCK promoter. F13 males displayed about 12% decrease

in both muscle and fiber size (data not shown). These observa-

tions support that hTSC1 expression resulted in skeletal mus-

cle atrophy in a dosage-dependent manner. Consistent with

previous studies in AKT1 transgenic and S6K1 mutant mice,

analysis of fiber type composition did not reveal any significant

changes in hTSC1 transgenic mice when compared with wild

type littermates (Fig. 2E) [7,26].
Fig. 3. Ectopic expression of hTSC1 stabilizes endogenous TSC2
proteins. (A) Western blot of TAs from three F37 transgenic
individuals and their wild type littermates. Anti-myc antibody was
used to detect transgene expression. Anti-TSC2 antibody shows
endogenous TSC2 protein level. Tubulin level served as the loading
control. (B) TSC2 mRNA levels were not changed in transgenic
animals. TSC2 mRNA was quantified by real-time RT-PCR. TA
samples were from F37 transgenic males and their wild type
littermates. Each group has three individuals. Results were normalized
with endogenous GAPDH mRNA level. Error bar shows the standard
deviation.
3.3. Increased endogenous TSC2 protein level in hTSC1

transgenic mice

TSC1 and TSC2 form a functional complex to suppress insu-

lin/IGF signaling cascade. Separation of TSC1 from TSC2

leads to ubiquitin-dependent degradation of the latter [18].

To study the mechanism of skeletal muscle atrophy in hTSC1
Fig. 4. TSC hetero-complex is regulated by insulin signaling. (A)
Insulin stimulation decreased TSC2 protein levels and increased S6K
phosphorylation in TA muscle. TA samples from adult female mice
were used for Western blot. Each fasted mouse was stimulated with
PBS containing 0, 0.5, or 1.0 IU of insulin as described above. Free
feeding mice (Con.) were also sampled as the control. (B) S6K and S6
phosphorylation after insulin stimulation. All procedures were the
same as in (A), except 5 IU of insulin was used for each mouse.
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transgenic mice, we examined mRNA and protein expression

levels of endogenous TSC2 in TA muscles. Despite of in-

creased protein level (Fig. 3A), the abundance of TSC2

mRNA in the muscle sample of F37 transgenic mice was not

affected (Fig. 3B). Similar results were obtained from F38 mice

(data not shown). This observation implies that hTSC1 can

stabilize endogenous mouse TSC2 (mTSC2) in vivo and the

hTSC1-mTSC2 hetero-complex may be responsible for the

reduction of muscle mass in the transgenic mice.

3.4. The TSC1–TSC2 complex is regulated by the insulin signal

Activity of the TSC1–TSC2 complex is regulated by AKT

and its upstream growth signals. In mammalian cells and

Drosophila insulin/IGF signals trigger AKT mediated phos-

phorylation of TSC2, and consequently inhibit functions of

the TSC1–TSC2 complex. The TSC1–TSC2 complex is able

to suppress the phosphorylation of Thr 389 in S6K, which is

an essential step to further phosphorylate S6 (Fig. 4A)

[10,11]. We evaluated the effect of insulin signaling on the sta-

bility of mTSC2 in fasted hTSC1 transgenic mice. Insulin stim-

ulation resulted in degradation of most endogenous mTSC2 in

both control and transgenic individuals (Fig. 4A). Further-

more, phosphorylation of S6K and S6 in response to insulin

stimulation occurred similarly in both hTSC1 transgenic and

the wild type littermates (Fig. 4A and B). These results indicate

that the activity of hTSC1-mTSC2 hetero-complex is regulated
Fig. 5. Skeletal muscle of the transgenic mice responds to nutrition
condition alterations. (A) TA and EDL mass changes after starvation
and re-feeding processes. (B) Phosphorylation of S6K during starva-
tion and re-feeding. Western blots of protein extracts from TA muscles
were shown. Tg, transgenic group; WT, wild type littermates; Con, free
fed mice; St, starved mice; Rf, re-fed mice. #P < 0.05; *P < 0.001.
by insulin signal in a manner similar to endogenous mouse

TSC1–TSC2 complex.
3.5. Nutrition regulates the TSC1–TSC2 complex in the

transgenic mice

The TSC1–TSC2 complex is able to mediate cellular nutri-

tion responses. To determine whether the hetero-complex is

also subject to nutrition regulation, we evaluated the response

of skeletal muscle to starvation and re-feeding conditions.

Both transgenic and wild type littermates lost about 30% of

the body weight after 48-h starvation, and recovered to

approximately 90% of the original weight after re-feeding for

another 48 h (data not shown). In both groups of mice, TA

and EDL muscle mass showed the same trend of reduction

and recovery responding to the starvation and re-feeding pro-

cesses, respectively (Fig. 5A). Both transgenic and wild type lit-

termates had phosphorylated S6K level increased following

nutrition recovery (Fig. 5B). These data indicate that the

hTSC1-mTSC2 hetero-complex could respond to changes in

nutrition conditions.
4. Discussion

TSC1 and TSC2 proteins can form stable complexes and

function as suppressors of insulin/IGF pathway in Drosophila

and cultured mammalian cells [9,11,14,19,20]. Inhibition of

insulin/IGF signaling in mouse skeletal muscle could cause

muscle atrophy [6,7,27,28]. In our study, ectopic expression

of wild type hTSC1 enhanced the intracellular level of TSC2

proteins and caused a reduction in muscle mass. Considering

the high degree of similarity among mammalian TSC protein

sequences and functional conservation across species, these re-

sults suggested that the hTSC1 transgene induced an increase

of functional TSC1–TSC2 complexes in muscle cells.

Skeletal muscle constitutes approximately 30% of total body

mass [29]. In our experiments, hTSC1 expression in the skeletal

muscle leads to more than 20% reduction of the muscle mass

(Table 1), which accounts for nearly two thirds of total body

weight loss (about 10%) in corresponding lines. In addition

to muscle atrophy, a less dramatic weight reduction was also

observed in other major organs (Table 1). This is not unex-

pected since skeletal muscle also takes part in energy and pro-

tein metabolism in vivo. Thus, muscle mass changes may

induce metabolic alterations and weight reductions in other tis-

sues.

In addition to growth control, insulin/IGF signaling is

known to be involved in regulating glucose homeostasis. Inhi-

bition of this pathway in mouse skeletal muscle usually causes

impaired glucose homeostasis [27,28]. However, hTSC1 trans-

genic mice showed normal level of blood glucose in either fast-

ing or random-feeding conditions, and behaved normally in

glucose and insulin tolerance tests (data not shown). These re-

sults imply that increase of TSC1–TSC2 complex level in skel-

etal muscle does not affect glucose homeostasis.

In contrast to the above model that puts TSC proteins

downstream of insulin signaling, a parallel model suggesting

independent function of TSC proteins and insulin in regulating

cell growth has also been proposed in Drosophila [9,30]. Our

data showed that the level of TSC2 protein in skeletal muscle

is subject to insulin regulation in both transgenic and wild type
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mice (Fig. 4A). This result supports the linear relationship be-

tween insulin and TSC1–TSC2 complex.

TSC proteins suppress insulin-stimulated S6K activity with a

dosage-dependent manner in cultured mammalian cells [11]. In

hTSC1 transgenic mice, we observed normal activation of S6K

after insulin stimulation even though TSC1–TSC2 complex

is increased (Fig. 4A and B). Transiently transfected cells are

likely to produce a much higher level of TSC proteins than

in the transgenic mice. In addition, TSC1 and TSC2 were co-

transfected in the cell culture experiment whereas only TSC1

was used in producing the transgenic mice. These differences

may lead to the resistance to insulin mediated TSC protein

degradation in cultured cells but not in the transgenic mice.

S6K is a positive regulator of protein synthesis. It needs to be

phosphorylated to be functional. However, S6K phosphoryla-

tion in mouse skeletal muscle is too low to be determined

accurately under normal conditions. Thus we used starvation-

refeeding assay to stimulate S6K phosphorylation. Although

increased phosphorylation of S6K was observed in both trans-

genic and wild type littermates after refeeding, we did notice an

approximately 36% reduction of phosphorylation in the trans-

genic group (Fig. 5B). Block of S6K activation, although not as

dramatic as reported in the tissue culture system, may account

for the reduced muscle mass in transgenic animals. This is

consistent with the observations in Drosophila that S6K affects

cell mass through insulin-TSC signaling [9,10].

An important observation is that muscle mass change of

hTSC1 transgenic mice in the starvation-refeeding test is in

proportion to that of the wild type mice (Fig. 5A). This indi-

cates that muscle mass is subject to regulation by an intrinsic

genetic factor which differentiates the transgenic mice from

the wild type controls. Intracellular TSC1–TSC2 complex

has been shown to control cell size in a cell autonomous man-

ner [9,10]. Mutations in Drosophila and mammalian TSC1 or

TSC2 result in a cell autonomous increase in cell size, while

overexpression of TSC1 and TSC2 leads to the opposite effect

[9,10,21,31,32]. Our result is consistent with the idea that the

level of TSC1–TSC2 complex is involved in setting the final

size of muscle fibers.

In conclusion, our studies suggest that the TSC1–TSC2 com-

plex plays an important role in determining the fiber size of

skeletal muscles in mice. An increase of the TSC1–TSC2 com-

plex leads to reduction of muscle mass and atrophic pheno-

types. In addition to explore the utility of TSC1 expression

as animal models for muscle atrophy, it would be interesting

to investigate whether elevated TSC1–TSC2 complex level also

responsible for a subset of muscle atrophy among human pop-

ulation.
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