
Theoretical Computer Science 435 (2012) 3–20

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Internal models of system F for decompilation
Stefano Berardi a,∗, Makoto Tatsuta b

a Department of Computer Science, University of Turin, Corso Svizzera 185, 10149 Torino, Italy
b National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

a r t i c l e i n f o

Keywords:
Typed λ-calculus
System F
Semantics of polymorphism
Compiler
Decompiler
de Bruijn level

a b s t r a c t

This paper considers Girard’s internal coding of each term of System F by some term of
a code type. This coding is the type-erasing coding definable already in the simply typed
lambda-calculus using only abstraction on term variables. It is shown that there does not
exist any decompiler for System F in System F, where the decompiler maps a term of
System F to its code. An internal model of F is given by interpreting each type of F by
some type equipped with maps between the type and the code type. This paper gives
a decompiler–normalizer for this internal model in F, where the decompiler–normalizer
maps any term of the internal model to the code of its normal form. It is also shown that
for any model of F the composition of this internal model and the model produces another
model of F whose equational theory is below untyped beta–eta-equality.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

LetF denote the Church-style second order λ-calculus with βη-equality. For a definition ofF and amodel ofF we refer
to [15] and Section 4.

It will be nice if we may find some subsystem of F which simulates F itself and has additional useful properties that F
does not have.Wewill investigate such a subsystem that has the decompilation property. If we allow some extended system
for describing a compiler, the subsystemwill have a compiler, which enables us meta programming. When we compose the
decompiler and the compiler, we will obtain a normalizer, which is important for normalization by evaluation. If we refine
the subsystem so that it faithfully represents F , it will give a new βη-complete model.

In order to investigate such a subsystem, it will be better to generalize it to some subsystem of some extension F ′ of F .
The extensions we have in mind are F itself or Fω .
This paper studies three interrelated problems, namely:

(1) Normalization by evaluation. To find a normalization algorithm for F , written in some extension F ′ of F .
(2) Compilation and Decompilation. To find compilation and decompilation algorithms, written in some extension F ′ of F ,

for the subsystem.
(3) βη-completeness. To find some class of βη-complete models for F , that is, a class of models whose equational theory is

exactly βη-convertibility.

A normalizer, a compiler and a decompiler are defined w.r.t. some coding of the terms of F inside F itself. Abel [1,2]
defined a normalizer for F inside ML. Pfenning and Lee [18] defined a compiler and a decompiler for F inside an extension
Fω of F . The first non-trivial example of βη-complete model of F is the BB-model [6], proved βη-complete in [7] and
generalized in [8]. Problems (1), (2), (3) are not related a priori, but theymay be solved together. Problem (1) requires to find
a normalizer (see Section 5), i.e., some family evA of terms in F ′, indexed over the types A of F , and computing the code of

∗ Corresponding author.
E-mail addresses: stefano@di.unito.it (S. Berardi), tatsuta@nii.ac.jp (M. Tatsuta).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.02.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82346667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2012.02.022
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:stefano@di.unito.it
mailto:tatsuta@nii.ac.jp
http://dx.doi.org/10.1016/j.tcs.2012.02.022

4 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

the normal form in F , given the code of a term of type A in F . Problem (2) requires to find two families fA and gA of terms
of F ′, indexed over the types A of F . The terms fA represent a decompiler (see Sections 5 and 6), and compute the code u of
a term t of type A in F , from the representation of t in F ′ . We may justify the use of the word ‘‘decompiler’’ if we consider
u as a ‘‘source code’’ of t , and the representation of t as an ‘‘executable version’’ of t . In the case fA computes the code of
the normal form of t , we say that fA is a decompiler–normalizer. The action of fA is sometimes called ‘‘reification’’, because
it transforms a program, considered as an abstract concept, into a concrete datum available for manipulation. The terms gA
represent a compiler (see Sections 5 and 6), and they provide the inverse transformation: they compute the representation
of t from the code u of the term t . The action of gA is sometimes called a ‘‘reflection’’: it is a process by which a programmay
define a new program. Problem (3), instead, requires to find some class of models of F defined as mathematical structures,
whose equational theory is exactly βη. All these problems have independent reasons for interest.

(1) Problem (1), normalization for the image the subsystem of F ′ inside F ′, has a potential interest from a programming
viewpoint: if the language F ′ can evaluate the subsystem of itself, it can also implement extensions of this subset. An
example taken from real programming is the language Scheme with its primitive eval. The language Scheme, indeed,
may define its own extensions.

(2) Problem (2), compilation and decompilation of the subsystem of F ′ inside F ′, has also a potential interest from a
programming viewpoint: if a language F ′ can decompile the subsystem, then F ′ maymanipulate the source code of its
programs, in order to optimize them. An example of a language having this feature in the real world is again Scheme, in
which there are primitives quote, unquote, for ‘‘freezing’’ and ‘‘unfreezing’’ the execution of any expression of Scheme
itself, and for manipulating the syntactical tree of a Scheme expression.

(3) The interest of Problem (3), completeness, lies in the fact that a βη-complete model of F describes the equality =βη of
the calculus F in the language of mathematical structures, and explains the mathematical principles which are hidden
behind the syntax of F .

After Pfenning and Lee’s result, a natural additional request for the problems (1) and (2) is thatF ′ should be as close toF
as possible. In this paper we address the following version of the problems (1) and (2): whether we may define a compiler,
a decompiler or a normalizer for a subsystem representing F in F itself, that is, if we require F ′

= F . We assume that
our subsystem is the image of some map j : F → F ′ that is compatible with typing and βη-reductions. We call this map
an embedding. The embedding maps a term to its representation. A compiler, a decompiler, or a normalizer for the image
j(F) of F may be defined within F itself. We call internal a compiler, a decompiler, or a normalizer which may be written
in F itself. In this paper, we consider the existence of internal normalizers, compilers and decompilers in the case where
the embedding is id. We prove that there is no normalizer, compiler nor decompiler for F written in F itself, under broad
assumptions over the coding of λ-terms in F . Instead we define a new embedding (.)∗c : F → F of F into itself. Then we
define a decompiler–normalizer, w.r.t. Girard’s coding of λ-terms, and written inside F , for the terms of the image F ∗c

⊆ F
of F . This positive answer is surprising, because for real-world languages decompilation is a hard problem, and because we
just showed that no internal normalizer exists for the same coding. Besides, a similar result does not hold for compilation:
we prove that for taking the embedding to be (.)∗c (and indeed for any choice of embedding F → F and under a broad
assumption over the coding)we cannot define a compiler inF for the terms of the subsystem. The best result for compilation
is still Pfenning and Lee’s compilation of F , outside F and inside F3. We interpret these results as follows. Normalization
and compilation for the subsystem require essentially stronger reduction rules than those available in F , for instance, they
require the rules of F3. Decompiling F ∗c , instead, means deducing the structure of the normal forms from their observable
behavior, and this can be done inside F . Summing up, F maymanipulate its own programs, at some extent, even if the last
step, compiling, must be done in F3.

Instead Problem (3) requires to define a class of βη-complete models for F , a problem which is a priori unrelated with
the problems (1) and (2). However, we claim that within any model M of F , we may use the embedding (.)∗c of F into
itself, in order to define a sub-model M∗c of M whose equational theory is between βη-equality and untyped βη equality.
At the end of this paper, we conjecture that bymodifying themap (.)∗c wemay define inside anymodelM some sub-model
M∗c whose equational theory is exactly βη (this was our original goal, but it is not yet solved).

In Section 2 we sum up what is known about the corresponding of the problems (1), (2), (3) for the simply typed lambda
calculus λ→. In the rest of the paper we try to adapt the solutions we have in the case of λ→ toF . In Section 3we introduce
the definition of F and we define a type Tmc of F , coding all untyped λ-terms in F , and we discuss the minimal property a
coding of untyped λ-terms should have. In Section 4 we define models of F and βη-completeness. In Section 5 we discuss
some alternative internal codings for F , and we prove that there is no normalizer, compiler, nor decompiler for F in F for
a broad choice of codings. In Section 6 we define (.)∗ and (.)∗c , two variants of the same interpretation of F in F , and in
Section 7 we prove there is a decompiler–normalizer (but no compiler) written in F for the terms of F ∗c . In Section 8 we
discuss how to define a class of βη-complete models of F using (.)∗, and we prove the first result towards this goal, that we
may define a class of models whose equational theory is below untyped βη.

2. βη-completeness, internal decompilation and normalization for simply typed λ-calculus

In this section we sum up what is known about the corresponding of the problems (1), (2), (3) for simply typed lambda
calculus λ→. In the rest of the paper, we try to adapt the solutions we have for λ→ to F .

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 5

We refer to [9] for a definition of λ→. Friedman considered the problem of defining βη-complete models for λ→. He
considered all set-theoretical models of λ→. In these models all atomic types o of λ→ are interpreted by some set, and
the type A → B is interpreted as the set of all maps from the interpretation of A to the interpretation of B. Friedman has
proved the following theorem [9]: ‘‘a set-theoretical model of λ→ is βη-complete if and only if all atomic types of λ→ are
interpreted by infinite sets.’’ The proof of Friedman is highly abstract, using Classical Logic, uncountable sets and Choice
Axiom. However, if we unwind Friedman’s proof, we discover the following elementary and constructive argument, hidden
in it. First, in any infinite set-theoretical model there is a decompiler–normalizer for λ→. Indeed, there is some atomic type
Tm representing all untyped λ-terms in a suitable context (see Section 3 for a definition of this coding). There is some family
fA : A → Tm of maps of the model, for each simple type A, such that if t : A is a term of λ→, then fA(t) = the code
of the normal form t ′ of t in Tm. To be more accurate, fA(t) returns the code of the untyped λ-term, which is the erasure
of the βη-long normal form of the term t (again, see Section 3 for details). However, this amounts to the same, because
the typing information required for a normal term of λ→ may be recovered from the erasure of the term. The argument
hidden in Friedman’s proof continues as follows: if t, u are definable in λ→ and t = u in the set-theoretical model, then
fA(t) = fA(u) : Tm in the same model, therefore t, u have the same (βη-long) normal form, and hence t =βη u.

Surprisingly, the set-theoretical maps fA turn out to be definable in λ→. The definition of fA requires two free variables
ap : Tm → Tm → Tm and lam : (Tm → Tm) → Tm to represent application and lambda abstraction. Joly [11] explicitly
defined this decompiler–normalizer fA : A → Tm for λ→, though he only studied it as an example of a family of injections
definable in λ→, from all types to a single type. Berger [5] and Werner [12] studied this internal decompiler–normalizer
for λ→, and then defined a compiler and a normalizer for λ→ in Gödel’s system T , an extension of λ→. These results
are solutions for the problems (1), (2), (3) for λ→ which are probably optimal: there are a family of βη-complete models,
an internal decompiler–normalizer for λ→, and compilers and normalizers written in some extensions T of λ→. We will
try to adapt the definition of a decompiler–normalizer from λ→ to F . The problem is that the definition of a decompiler–
normalizer in λ→ heavily relies on two properties of λ→: the fact that wemay recover a normal form from its erasure, and
the existence of a set-theoretical model. These properties do not hold for F .

3. The system F and a type Tmc coding untyped λ-terms

In this section we introduce F , and one possible choice for a type Tmc in which we may represent an untyped λ-term
t (possibly not normal) by some (βη-long) normal form [t]c ∈ F . βη-long normal forms in F are defined below. The
definition of Tmc is originally from [10]. Representation of untyped λ-terms in Tmc is up to α-rule and it is not up to β-rule.
We consider two α-convertible untyped λ-terms as two representation of the same term. If t, u are two untyped λ-terms
which are not α-convertible, then t, u have two representations in Tmc by some (βη-long) normal forms which are not
βη-convertible. In this section and in Section 4 we discuss the minimum property that a coding of untyped λ-terms should
have, and in Section 5 we describe an alternative coding for untyped λ-terms in F , with de Bruijn’s ‘‘levels’’ of variables
[4,13].

We denote the untyped λ-calculus by Λ. We assume having variable names x, y, a, b, The syntax of Λ is
t ::= x | (tt) | λx.t. We use ‘‘typewriter’’ letters t, u, v, . . . to denote untyped λ-terms. The length of an untyped λ-term
is the number of symbols (variables, applications and λ-abstraction) in it: we denote the length of t ∈ Λ by len(t).

By F we denote the second order λ-calculus, as defined in [15]. We assume having type variables Tm,Var, dB, α, β,
The syntax of F is A ::= α | A → A | ∀αA for types. We write both A → B → C and A, B → C for A → (B → C).
We write ∀α.A → B for ∀α.(A → B). A context is a set Γ = {x1 : A1, . . . , xm : Am} where xi ≠ xj for i ≠ j. We write
x, y : A for x : A, y : A. We assume having variable names ap, lam, 0, S,Var, x, y, z, a1, a2, f1, f2, g1, g2, The syntax for
pseudo-terms is t ::= x | λx : A.t | tt | λα.t | tA. We write t(t1) and t(t1, t2) for tt1 and (tt1)t2 respectively. We define
λ_ : A.t as λx : A.t for some fresh variable x. We will denote the set of the free variables in t by FV(t). There are introduction
and elimination rules for → and ∀, assigning types to some pseudo-terms. We write Γ ⊢ t : A for ‘‘t has the type A in F in
the context Γ ’’. The degree deg(A) of A is inductively defined by deg(α) = 0, deg(A → B) = max(deg(A)+ 1, deg(B)) and
deg(∀α.A) = deg(A) + 1. We write =α for the α-convertibility relation: equality up to variable renaming. The reduction
rules of F are β- and η-reductions. We write =βη for the convertibility relation up to β and η rules.

By ‘‘βη-long normal form’’ of a term t of F we mean the longest η-expansion of the β-normal form t ′ of t which is
still β-normal. Alternatively, we define the βη-long normal form t ′′ of t by repeatedly replacing each maximal subterm
u = x(t1, . . . , tn) of t ′ by λα.x(t1, . . . , tn, α) if u has the type ∀β.B, by λy : B.x(t1, . . . , tn, y) if u has the type B → C . We
continue until we reach a term t ′′ in which all maximal subterms of the form x(t1, . . . , tn) have a variable type. For instance,
if A = ∀α.α → α, the βη-long normal form of λx : A.x is λx : A.λα.λy : α.x(α, y). The βη-long normal form exists by a
corollary of Girard’s Normalization Theorem for F , and it is unique by the Church–Rosser confluence property for F [19].

For every type A of F , we write idA for the identity λx : A.x on the type A, we write Id for the type ∀α.α → α, and id for
the polymorphic identity λα.λx : α.x : Id. The term tnu is defined as (t(. . . (tu) . . .)) (n times of t) for any natural number n.

For every term of F , we write |t| ∈ Λ for the untyped λ-term obtained by stripping all type information from t , and
replacing the variable xi of F with the variable xi of Λ. We may recursively define |xi| = xi, |λx : A.t| = λx.|t|, |tu| =

|t||u|, |λα.t| = |t|, |tA| = |t|. An equational theory is any equivalence relation over the terms of F , compatible with term
formation and with βη-reduction. We call ‘‘untyped βη’’, and we denote with |βη|, the equational theory on F such that,
for all terms t, u of F , we have t =|βη| u if and only if |t| =βη |u| inΛ.

6 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

We claim that βη ⊂ |βη|, that is, the equational theory |βη| for F is larger than the equational theory βη, because a
βη-long normal form of F cannot be uniquely recovered from its erasure. An example is given as follows. Let Void = ∀α.α
and t = λx : Void.x and u = λx : Void.x(Void). Then t, u : Void → Void and t ≠βη u (t, u are different βη-long normal
forms), while t =|βη| u, because |t| = λx.x = |u|.

We want to represent all untyped λ-terms by the elements of some type of F . There are several choices for this coding,
but we discuss them later. In this section we introduce the type Tmc proposed by Girard [10], which we are going to adopt.

We first explain how to internalize the notion of booleans and natural numbers. We introduce a set of data types
representable in F which is suitable for the paper: mutually recursive first-order data types.

Definition 3.1 (Data Types). We introduce booleans, natural numbers and data types in F , as follows.

(1) Amutually recursive first order data type, just a data type for short, is any closed type of the form ∀α1, . . . , αn.A, with no
connective ∀ in A, and deg(A) ≤ 2.

(2) Bool = ∀α.α → α → α, and True = λα.λx, y : α.x, False = λα.λx, y : α.y.
(3) Nat = ∀α.(α → α) → (α → α) and n = λα.λf : (α → α).λa : α.f n(a) for any natural number n ∈ N .
(4) Sl, Sr , S : Nat → Nat are defined in the context {x : Nat, f : α → α, a : α} by: Sl(x, α, f , a) = x(α, f , f (a)) and

Sr(x, α, f , a) = f (x(α, f , a)) and S = Sr .

In system F , mutually recursive data types translate the idea of first order closure of a finite set of maps. Assume be
given any finite set Γ = {α1, . . . , αm} of type variables, any finite set of declaration∆ = {f1 : C1, . . . , fn : Cn} of first order
functions, such that for all 1 ≤ i ≤ n we have Ci = (αi1 , . . . , αin → αip+1) for some αi1 , . . . , αip+1 ∈ Γ . The first order
closure is the smallest set of well-typed terms whose type is in Γ and closed under f1, . . . , fn. Then we arbitrarily select one
type α ∈ Γ , and we call the terms of type α the elements of the first order closure. In the case there is some type β ≠ α,
β ∈ Γ , then the elements of type β are considered to be parameters which may be used to define some element of type
α: we do not consider them elements of the first order closure. The first order closure may be coded in F by the data type
D = ∀α1, . . . , αm.(C1, . . . , Cn → α). We may prove that closed βη-long normal forms of type D in F are in canonical
bijection with the elements of the first order closure.

Mutually recursive data types translate in system F the idea of first order closure of a finite set of maps. Assume be
given any finite set Γ = {α1, . . . , αm} of type variables, any finite set of declaration∆ = {f1 : C1, . . . , fn : Cn} of first order
functions, such that for all 1 ≤ i ≤ nwe have Ci = (αi1 , . . . , αin → αip+1) for some αi1 , . . . , αip+1 ∈ Γ . We take the smallest
set ofwell-typed termswhose type is inΓ and closed under f1, . . . , fn. Thenwe arbitrarily select one typeα ∈ Γ , andwe call
the terms of type α the elements of the first order closure. In the case there is some type β ≠ α, β ∈ Γ , then the elements
of type β are considered to be parameters which may be used to define some element of type α: they are not elements of
the first order closure. The first order closure may be coded in F by the data type D = ∀α1, . . . , αm.(C1, . . . , Cn → α). We
may prove that closed βη-long normal forms of type D in F are in canonical bijection with the elements of the first order
closure.

Bool and Nat are data types of F , whose closed βη-long normal forms are True, False, 0, 1, 2 . . ., in bijection with
booleans, and with natural numbers. Sl, Sr are called the left- and right-successor. We call right-successor also ‘‘successor’’
and we also denote it by just S. By definition we have Sl(n) =βη n + 1 =βη Sr(n) = S(n) for all n ∈ N .

Using the type Bool we may define the observational equality over terms.

Definition 3.2 (Observational Equality). Assume t, u are closed terms having a closed type A in F .

(1) t, u are observationally equal if for all closed term f : A → Bool of F , f (t) =βη f (u).
(2) We write t =O u for ‘‘t, u are observationally equal’’.

Observational equality is a consistent equational theory (i.e., it does not equate all terms), and it is the largest equational
theory for F [16].

We internalize the notion of untyped λ-terms inside F , first by an open type Tm, and then by a closed type Tmc , using
a technique called Higher-order abstract syntax [17], in which binders in the object-language are represented via binders
in the meta-language. The particular definition of Tmc is taken from [10]. Fix a type variable Tm. We fix the context
ΓTm = {lam : ((Tm → Tm) → Tm), ap : (Tm → Tm → Tm)}. Then the elements of Tm represent the syntax
trees of untyped λ-terms in F . The variables lam and ap codify λ-abstraction and application: if f : Tm → Tm then
lam(λx : Tm.f (x)) : Tm codifies the λ-abstraction of f , and if x, y : Tm then ap(x, y) : Tm codifies the application of x to
y. Codes in Tm are βη-long normal forms: we do not have reduction rules for them. An example: if x, y : Tm are variables,
then the term ap(lam(λx : Tm.x), y) : Tm of F codifies the untyped λ-term (λx.x)(y) ∈ Λ, but (λx.x)(y) =βη y, while
ap(lam(λx : Tm.x), y) ≠βη y, because the terms ap(lam(λx : Tm.x), y) : Tm and y : Tm of F are different βη-long normal
forms.

According to the view expressed in [10], the free variables Tm, lam, ap of ΓTm define a generic coding for Λ in F . In
Definition 5.6 we will introduce a triple DB, Lam,Ap replacing these variables with an example of one concrete coding, de
Bruijn coding ‘‘with levels’’ of variables [4,13]. Thenwewill prove that for both codings (and indeed, for any coding satisfying
a minimum of requests) there is no compiler nor decompiler in F . Indeed, it seems impossible in general to construct a

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 7

decompiler which turns two observationally equivalent functions of type Nat → Nat into the same code. We will formalize
this remark for the left- and right-successor maps. However, with the interpretation [[.]] of F into F , integers have a more
informative encoding Nat∗, and we will prove that a decompiler does exists, even if this is not intuitive.

We formally define the interpretations [.] ofΛ and [[.]] ofF into the open type Tm in the contextΓTm. Themap [.] applied
to any closed t ∈ Λ interprets abstractions and applications of t by lam and ap.When themap [[.]] is applied to a term ofF ,
it first forgets abstractions and applications over types, then, it translates abstractions and applications over terms by lam
and ap.

Definition 3.3 (InterpretingΛ in F). Assume t ∈ Λ be an untyped λ-term with FV(t) ⊆ {x1, . . . , xm}. Let Γ = {x1 :

Am, . . . , xm : Am} and u be a term of F such that Γ ⊢ u : A. Let σ be the map a1/x1, . . . , am/xm from variables of Λ
to variables of type Tm, with a1, . . . , am pairwise distinct. We recursively define [t]σ : Tm in the context ΓTm ∪ {a1 :

Tm, . . . , am : Tm} by:

(1) (variable) [xi]σ = ai.
(2) (abstraction) [λx.t]σ = lam(λa : Tm.[t]σ ,a/x) (a fresh variable).
(3) (application) [t1t2]σ = ap([t1]σ , [t2]σ).

Whenm = 0, we abbreviate [t]σ with [t]. We set [[u]]σ = [|u|]σ and [[u]] = [|u|].

We interpret a term of F by first stripping off its type information. If u is a term of F , then [[u]]σ is a term of F of type
Tm and context ΓTm ∪ {a1 : Tm, . . . , am : Tm}. When u is closed then we abbreviate [[u]]σ with [[u]]. We may avoid the use
of free variables lam, ap and define a closed type Tmc

= ∀Tm.((Tm → Tm) → Tm) → (Tm → Tm → Tm) → Tm of F
representing all closed untyped λ-terms. Define λΓTm as the sequence of λ-abstractions

λTm.λlam : (Tm → Tm) → Tm.λap : (Tm, Tm → Tm),

and define tΓTm as the sequence of applications t(Tm)(lam)(ap). The closed interpretation of a closed t ∈ Λ in Tmc is
[t]c = λΓTm.[t] : Tmc , and the closed interpretation of a closed u ∈ F in Tmc is [[u]]c = λΓTm.[[u]] : Tmc . Closed
terms of type Tmc are, up to βη-rule, exactly the closures of the terms of type Tm in the context ΓTm. Tmc is not a data
type because Tmc

= ∀α.A for some A such that deg(A) = 3. We may define a closed term apc
: Tmc

→ Tmc
→ Tmc

such that apc([[a]]c, [[b]]c) =βη [[ab]]c , by setting apc(x, y) = λΓTm.ap(x(Tm, lam, ap), y(Tm, lam, ap)) in the context
{x : Tmc, y : Tmc

}. There is no way of defining a closed corresponding lamc
: ((Tmc

→ Tmc) → Tmc) of lam, though.
We list the properties we consider more relevant for any possible coding of F into F . We state them only for a coding

using closed types and terms, for short.

Definition 3.4 (Properties of Coding). Assume T is any closed type ofF equippedwith a coding [.] of closed untypedλ-terms
into closed terms of type T . Let [[t]] = [|t|] be the associated code of terms of F .

(1) [.] is normal if [t] is a βη-long normal form, for all u ∈ Λ.
(2) [.] is surjective if for all closed c : T we have c =βη [u] for some closed u ∈ Λ.
(3) [.] is injective if [t] =βη [u] implies t =α u, for all t, u ∈ Λ.
(4) [.] is extending if len(t) < len(|[t]|), for all t ∈ Λ.
(5) K : T → T internalizes the coding [.] in F if K([[t]]) = [[[[t]]]].

‘‘Normal’’ means that a coding produces a βη-long normal form. This is a natural request for any type of data, besides, we
may always replace a coding by a normal coding. ‘‘Surjective’’ means that every closed term of type T is the interpretation
of some untyped λ-term. ‘‘Injective’’ means that two interpretations of untyped λ-terms are βη-equal in F if and only
if the two original untyped λ-terms are α-convertible (are the ‘‘same’’ term). Both surjective and injective are minimal
requests over a coding. A coding is ‘‘extending’’ if, after erasing all types, the coding of an untyped λ-term is longer than the
original term. This is the case of all known codings which interpret λ-abstractions and applications by some operators. For
instance, any application tu is represented by some notation of the form ap([[t]], [[u]]), which is at least one symbol more.
An ‘‘internalization’’ is a map representing the coding of terms of type T inside F . All known codings may be internalized
by some map K . Informally, the reason is that F may represent all maps provably total in Second Order Arithmetic [10].

The coding [.]c is surjective and injective.

Lemma 3.5 (Injectivity of [.]c). (1) (Surjective) If ΓTm ⊢ c : Tm, then c =βη [u] for some closed u ∈ Λ.
(2) (Injective) If u1, u2 ∈ Λ, then u1 =α u2 if and only if [u1] =βη [u2].

The same properties hold if we replace [.] by [.]c and we consider closed c : Tmc .

Proof. By induction on c , we can prove the following statement which implies both (1) and (2). We assume ΓTm, a1 : Tm,
. . . , an : Tm ⊢ c : Tm, and c is βη-long normal, and we prove that c = [u]σ for some u ∈ Λ, unique up to α-rule,
and for some σ = a1/x1, . . . , an/xn. Indeed, by analysis of the normal form, either c = ai = [xi]σ or c = ap(c1, c2) or
c = lam(λa.d) for some c1, c2 : Tm in the same context, and some d in the context extended with a : Tm. c1, c2, d are

8 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

βη-long normal, and by induction hypothesis on c1, c2, d we deduce ci = [ui]σ and d = [v]σ ,a/x for some (unique, up to
α-rule) untyped λ-terms u1, u2, v. We conclude that c = [u]σ for some (unique, up to α-rule) untyped λ-term u. �

The coding in Tmc expands the term and the map [[.]]c may be internalized in F .

Lemma 3.6 (Internalization of Coding). (1) (Normal) For all closed t ∈ Λ, [[t]]c is a βη-long normal form.
(2) (Expansion) For all closed t ∈ Λ we have len(t) < len(|[t]c |).
(3) (K) There is some closed term K : Tmc

→ Tmc of F such that K([[t]]c) =βη [[[[t]]c]]c for all closed terms t of F .

Proof. (1) Immediate by definition of [[t]]c .
(2) By definition we may check that len(|[x]|) = 1 = len(x) and len(|[λx.t]|) = len(lam(λa.|[t]|)) = 3 + len(|[t]|)

and len(|[tu]|) = len(ap(|[t]|, |[u]|)) = (there are two applications hidden in ap(., .)) 3 + len(|[t]|) + len(|[u]|).
By induction over t ∈ Λwe conclude that for all closed t ∈ Λwe have len(t) < len(|[t]|) < len(|[t]c |).

(3) If we unfold the definition of [[[[t]]]], we notice that the free variables lam, ap in [[t]] are replaced by some fresh variables
lam′

: Tm, ap′
: Tm in [[[[t]]]]. Let Γ = ΓTm ∪ {lam′

: Tm, ap′
: Tm}. In the context Γ , we define lam0(f) =

ap(lam′, lam(f)) : Tm, where f : (Tm → Tm). In the same context we define ap0(a, b) = ap(ap(ap′, a), b) : Tm,
where a, b : Tm. By induction on the term t of F we prove [[t]][lam0/lam, ap0/ap] =βη [[[[t]]]]. We define a term
K0 : Tmc

→ Tmc with free variables {lam′
: Tm, ap′

: Tm} by the following equation in Γ : K0(x, Tm, lam, ap) =

x(Tm, lam0, ap0) : Tm. By definition, K0([[t]]c, Tm, lam, ap) =βη [[t]][lam0/lam, ap0/ap] =βη [[[[t]]]]. Now we
define a closed term K : Tmc

→ Tmc by the following equation in ΓTm: K(x, Tm, lam, ap) = lam(λlam′
:

Tm.lam(λap′
: Tm.K0(x, Tm, lam, ap))). Thus, K([[t]]c, Tm, lam, ap) =βη lam(λlam′

: Tm.lam(λap′
: Tm.[[[[t]]]])) =βη

[[λTm.λlam′
: Tm.λap′

: Tm.[[t]]]] =βη [[[[t]]c]]. By a closure in the context ΓTm we conclude K([[t]]c) =βη λΓTm.[[[[t]]c]] =

[[[[t]]c]]c in the empty context. �

4. Models of F and βη-completeness

In this section we define the models of F , and what are, in our opinion, all minimum requests for a coding of untyped
λ-terms in F . Then we introduce the notion of βη-completeness for types and for models of F .

The definition of models is taken from the definition of β-model inMitchell [15]. We add the requirement that Mitchell’s
maps Φa,b and ΦF , interpreting term and type application, are injective: this is equivalent to ask that our models satisfy
η-rule. There is another (this time purely stylistic) difference with the original Mitchell’s definition: in the signature of the
model we explicitly indicate the list of kinds Tp, Pred interpreting the set of types and predicates, and the kind constants
(.⇒.),Π(.), interpreting arrow and quantifier operators. The first step in the definition of a model for F is the definition of
a frame. A frame for F is a structure in which we may interpret types and terms of F , but is not yet an interpretation.

Definition 4.1 (F -Frames). A frame for F is a tuple M = ⟨Tp, E(.), Pred,⇒,Π, {Φa,b}a,b∈Tp, {ΦF }F∈Pred⟩:

(1) Tp is a set of elements called ‘‘the types’’ of M.
(2) For all a ∈ Tp, E(a) is a set of elements called ‘‘the terms of type a’’ of M.
(3) Pred ⊆ (Tp → Tp) is a set of maps over types of M called ‘‘the predicates’’ of M.
(4) ⇒ : Tp → Tp → Tp is a map on types of M called ‘‘arrow’’, which we write in infix notation. For all a, b ∈ Tp,Φa,b is an

injection from E(a⇒b) to (E(a) → E(b)) interpreting application to a term.
(5) Π : Pred → Tp is amap from the predicates ofM to the types ofM called ‘‘quantifier’’. For all F ∈ Pred,ΦF is an injection

from E(Π(F)) toΠa∈TpE(F(a)) interpreting application to a type.

Elements of type Pred are also called ‘‘type constructors’’ in the literature, especially in the papers describing models of
the higher order systems, likeF3, CC . The next step in the definition of amodel is introducing the notion of an interpretation
map and a type structure. A type structure is a triple of some set Tp, some E(.), associating to each a ∈ Tp some set E(a),
and some interpretation map [[[.]]], sending any type of F into Tp, and any term of F into E(a) for some a ∈ Tp.

Definition 4.2 (Interpretations and Type Structures). Let Tp be any set and E(.) be any map associating to each a ∈ Tp some
set E(a). Assume that Γ = {α1, . . . , αn} is a set of type variables of F , σ : Γ → Tp is a map from the variables in Γ to the
set Tp, and A is any type of F with FV(A) ⊆ Γ .

(1) [[[.]]](.) is an interpretation for the types in M if: [[[.]]](.) maps all pairs A, σ as above in Tp: [[[A]]]σ ∈ Tp, and: [[[.]]](.) acts as
variable interpretation, that is, [[[αi]]]σ = σ(αi) for i = 1, . . . , n.

(2) [[[.]]] is an interpretation for the types and terms in M if it is the union of two maps [[[.]]](.), [[[.]]](.,.) such that:
(a) [[[.]]](.) is an interpretation for the types of F ,
(b) whenever∆ = {x1 : A1, . . . , xm : Am} is a set of term variables of F , τ(xj) ∈ E([[[Aj]]]σ) for j = 1, . . . ,m, FV(A) ⊆ Γ ,

and∆ ⊢ t : A in F , then [[[t]]]σ ,τ ∈ E([[[A]]]σ), and [[[xj]]]σ ,τ = τ(xj) for j = 1, . . . ,m.
We call σ , τ a type and a term substitution (on Γ ,∆ and in Tp, E(.), [[[.]]]).

(3) A type structure is any list ⟨Tp, E(.), [[[.]]]⟩ with the properties above.

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 9

From frames and interpretation maps we may define models of F .

Definition 4.3 (F -Model). A model of F is a frame for F equipped with an interpretation map [[[.]]] for types and terms of
F , such that the interpretation of types of F satisfies the following two conditions for →,∀:

(1) [[[A → B]]]σ = ([[[A]]]σ⇒[[[B]]]σ),
(2) [[[∀α.A]]]σ = Π(F) for some F ∈ Pred such that F(a) = [[[A]]]σ ,a/α for all a ∈ Tp,

and the interpretation of terms of F satisfies the following four conditions for abstraction and application:

(1) If t : A → B, u : A, a = [[[A]]]σ , and b = [[[B]]]σ , then [[[t(u)]]]σ ,τ = Φa,b([[[t]]]σ ,τ , [[[u]]]σ ,τ),
(2) If λx : A.t : A → B, a = [[[A]]]σ , b = [[[B]]]σ , and φ(c) = [[[t]]]σ ,(τ ,c/x) for all c ∈ [[[A]]]σ , then [[[λx : A.t]]]σ ,τ = Φ−1

a,b (φ),
(3) if t : ∀α.A and F(a) = [[[A]]]σ ,a/α for all a ∈ Tp, then [[[t(B)]]]σ ,τ = ΦF ([[[t]]]σ ,τ , [[[B]]]σ),
(4) If λα.t : ∀α.A, F(a) = [[[A]]]σ ,a/α for all a ∈ Tp, and ψ(a) = [[[t]]](σ ,a/α),τ for all a ∈ Tp, then [[[λα.t]]]σ ,τ = Φ−1

F (ψ).

A basic property we will prove for all models is commutation of the interpretation map with substitution and with βη.
Commutation is stated as follows:

Definition 4.4 (Commutation with Substitution and βη-Convertibility). Assume A is a type with free type variables in Γ , α,
and T is a type with free type variables in Γ . Assume t is a term in the context ∆, x : A with free type variables in Γ , α,
and u, v are terms in the context ∆ with free type variables in Γ . Let σ , τ be a type and a term substitution on Γ ,∆ in
Tp, E(.), [[[.]]]. We say that

(1) [[[.]]] commutes with substitution if for all A, T , t, u, σ , τ we have [[[A[T/α]]]]σ = [[[A]]]σ ,[[[T]]]σ /α
and [[[t[T/α, u/x]]]]σ ,τ =

[[[t]]](σ ,[[[T]]]σ /α),(τ ,[[[u]]]σ ,τ /x).
(2) [[[.]]] is commutes with βη if for all u, v, σ , τ , u =βη v implies [[[u]]]σ ,τ = [[[v]]]σ ,τ .

In Section 8 we will prove that a type structure ⟨Tp, E(.), [[[.]]]⟩ can be extended to a model if and only if: [[[.]]] commutes
with substitutions and βη-convertibility, and it satisfies a property called ‘‘Weak Extensionality’’ by H. Barendregt. In fact,
we introduced type structures in order to have an alternative characterization of models in some proofs. For any frame M,
the interpretationmap [[[.]]] on terms and types ofF is uniquely determined by the equations in Definition 4.3. This is proved
by induction over the types and terms of F . In the case of the interpretation of λx : A.t , λα.t we use the fact that Φa,b,ΦF

are assumed to be injective, and therefore Φ−1
a,b ,Φ

−1
F are uniquely determined when they are defined. All other cases are

immediate. We write [[[t]]]M,σ for the interpretation of a term t in the model M, w.r.t. the variable assignment σ . We write
[[[t]]]M = [[[t]]]M,∅ for the interpretation of a closed term t having a closed type.

If A is a closed type, t, u : A are closed terms of F , and M is a model, we write t =M u if [[[t]]]M = [[[u]]]M . It is
straightforward to show that the equivalence relation =M defines an equational theory for F including βη. A model M
of F is inconsistent if any two elements of the same type of M are equal. A model is consistent if it is not inconsistent.
Among the consistent models of F we quote: the termmodel, consisting of all open types and terms of F , the observational
model, consisting of all closed types and terms of F modulo observational equality (Definition 3.2), and Longo-Moggi PER
models [14]. We may now formally define the notion of βη-completeness.

Definition 4.5 (βη-Completeness for Types and Models of F). Assume A, B are closed types of F .

(1) eqA is an internal equality for A if eqA : A → A → Bool is a closed term of F and for any two closed terms t, u : A of F
we have t =βη u if and only if eqA(t, u) =βη True.

(2) f : A → B is an internal injection if f is a closed term of F and for all closed terms t, u : A of F : if f (t) =βη f (u) then
t =βη u.

(3) A closed type A of F is βη-complete in a model M for F if for all closed terms t, u : A of F : t =M u if and only if t =βη u.
(4) A closed type A of F is βη-complete if A is βη-complete in all consistent models of F .
(5) A model M is βη-complete if all closed types of F are βη-complete in M.

All data types (like Bool,Nat) of F have an internal equality and are βη-complete (that is, βη-complete in all consistent
models of F). In this section we only prove this result for the data types Bool,Nat. In the next section, we prove
βη-completeness for a data type internalizing de Bruijn coding with levels of variables.

Lemma 4.6. Assume A, B are closed types of F .

(1) Nat has some internal equality eqNat in F .
(2) True ≠M False, for any consistent model M of F .
(3) (Statman’s Lemma) Bool is βη-complete.
(4) If A has some internal equality eqA, then A is βη-complete.
(5) Nat is βη-complete.
(6) If B is βη-complete and f : A → B is an internal injection, then A is βη-complete.

10 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

Proof. (1) We define eqNat using a double iterator on Nat w.r.t. the constructors 0 : Nat, S : Nat → Nat. This iterator is
definable in F . We set
(a) eqNat(0, 0) = True
(b) eqNat(S(n), S(n′)) = eqNat(n, n′)

(c) In all remaining cases we set eqNat(n, n′) = False
By induction on the length of the βη-long normal forms of t, u, we can prove that eqNat(t, u) =βη True if and only if

t =βη u.
(2) Assume True =M False, that is, [[[True]]]M = [[[False]]]M . Then for all types θ of M and all a, b ∈ E(θ) we have

[[[True]]]M(θ, a, b) = [[[False]]]M(θ, a, b), and by β-rule, a = b, against the consistency of M.
(3) Assume M is any consistent model, t, u : Bool are closed terms of F , and t =M u. If either the βη-long normal forms of

t, u are both True, or are both False, then t =βη u. If one is True while the other is False, then True =M False, against (2).
(4) Assume t =M u. Then eqA(t, u) =M eqA(t, t) =M True. By (3) above we deduce eqA(t, u) =βη True. By definition of

internal equality we conclude t =βη u.
(5) By (1), Nat has some internal equality eqNat. By (4), Nat is βη-complete.
(6) AssumeM is any consistentmodel, t, u : A are two closed terms ofF , and t =M u. Then f (t) =M f (u) and f (t), f (u) : B.

By βη-completeness of Bwe deduce f (t) =βη f (u), and by f internal injection we conclude t =βη u, as wished. �

There are consistent models which are βη-complete (with respect to all types, and not only with respect to data types).
The term model is trivially βη-complete, and there are also non-trivial examples [8]. The observational model and most
PER-models are consistent but not βη-complete: in these models, the type Nat → Nat is not βη-complete.

Lemma 4.7. Assume O is the observational model of F and Sl, Sr : Nat → Nat are the left- and right-successor (Definition 3.1).

(1) Sl ≠|βη| Sr and Sl =O Sr .
(2) O is not βη-complete for the type Nat → Nat.

Proof. (1) |Sl| = λx.λf.λa.x(f, f(a)) and |Sr | = λx.λf.λa.f(x(f, a)) are not βη-convertible, therefore Sl ≠|βη| Sr . We
have still to prove [[[Sl]]]O = [[[Sr]]]O . In all models M, if A is a closed type and f , g : (A → A) are closed terms of F ,
then [[[f]]]M, [[[g]]]M are identified with maps over [[[A]]]M . If [[[f]]]M(a) = [[[g]]]M(a) for all elements a of [[[A]]]M , then
[[[f]]]M = [[[g]]]M . O is a model of F by [16]: therefore, in order to prove [[[Sl]]]O = [[[Sr]]]O we assume that t is an
element of [[[Nat]]]O and we prove [[[Sl]]]O(t) = [[[Sr]]]O(t). By definition of observational model, t is a closed term of F
of type Nat. Therefore the βη-long normal form of t is n = λα.λf : α → α.λa : α.f n(a) for some n ∈ N . We deduce
Sl(t) =βη Sl(n) =βη n + 1 =βη Sr(n) =βη Sr(t). Hence Sl(t), Sr(t) are observationally equal, i.e., [[[Sl]]]O(t) = [[[Sr]]]O(t).

(2) By (1) and βη ⊂ |βη|. �

Wemay now discuss what are the minimal requests we should have over any type T coding untyped λ-terms in F . First
of all, the coding should be injective, as we said in the previous section: any two codings should be βη-convertible if and
only if they represent the same syntactic tree, that is, if and only if the two untyped λ-terms are equal under α-conversion.
Besides, T should be βη-complete, like any other type of data. That is, equality over the codings of two terms should be
independent of the equational theory we choose for F , as it is the case for the equality between elements of any data type
in F . This leads to the following definition:

Definition 4.8 (α-Completeness). Assume T is any type of F equipped with a coding [.] of untyped λ-terms. The coding [.]
is α-complete if [.] is an injective coding and T is a βη-complete type.

If a coding is α-complete and the codings of two untyped λ-terms are equal in some model of F , then the two untyped
terms are α-convertible.

5. There is no normalizer, compiler, nor decompiler for F inside F

In this section, by adapting Turing’s diagonalization argument, we prove that for any α-complete coding there is no
normalizer nor compiler for all terms in F written in F itself, and that the coding in Tmc and de Bruijn coding are, indeed,
α-complete. By defining an internal equality for Tmc we also prove that there is no decompiler for all terms in F written in
F itself. The result for normalizers generalizes to any normal coding having an ‘‘internalization’’ K of the coding map and
extending the terms.

We first formally define normalizers, compilers, and decompilers for F inside F , w.r.t. any coding [[.]].

Definition 5.1. Let [[.]]c be any closed coding of F in some closed type T .

(1) A normalizer forF inF is a family of closed terms evA : T → T ofF , for each closed type A ofF , such that for all closed
terms t : A of F , with its βη-long normal form t ′ : A, we have evA([[t]]c) =βη [[t ′]]c .

(2) A compiler for F in F is a family gA : T → A of closed terms of F , for each closed type A of F , such that for all closed
terms t : A of F we have gA([[t]]c) =βη t .

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 11

(3) A decompiler for F in F is a family fA : A → T of closed terms of F , for each closed type A of F , such that for all closed
terms t : A of F we have fA(t) =βη [[t ′]]c for some t ′ =βη t .

The non-existence of a normalizer is provable for any normal coding having a map K internalizing the coding map in F
and extending the terms (Definition 3.4). Under these assumptions, we prove that the existence of a normalizer implies that
the coding map has some fixed point t , contradicting the fact that the coding map should extend t .

The non-existence of a compiler for F in F is immediate if we consider that the range T of the compiler must include
some closed term, while the target type A may be the type Void, having no closed term. However, we can prove the
non-existence of a compiler for F in F even if we restrict the family gA to any inhabited type A of F . In this case we use
Turing’s diagonalization argument in order to prove that the successor map has a fixed point, which leads to contradiction.

Theorem 5.2 (Normalizer and Compiler for F in F). Assume [[.]]c is any closed coding in T .

(1) If [[.]]c is normal, has an internalization map K and extends the terms, then there is no normalizer for F in F w.r.t. [[.]]c .
(2) There is no normalizer for F in F w.r.t. the closed coding in Tmc .
(3) There is no compiler for F in F , w.r.t. for any coding, even if we restrict the compiler gA to the inhabited types A of F .

Proof. (1) Assume evA is a normalizer forF inF . Set A = T . By assumption, there is amapK : T → T internalizing [[.]]c .We
define a closed term f : T → T of F by f (x) = evA(apc(x, K(x))) : T , where x : T . Assume g : T is the βη-long normal
form of f ([[f]]c). Then by definition we have: g =βη f ([[f]]c) =βη evA(apc([[f]]c, K([[f]]c))) =βη (since K internalizes
[[.]]c) evA(apc([[f]]c, [[[[f]]c]]c)) =βη evA([[f ([[f]]c)]]c) =βη (since evA is a normalizer and g is the βη-long normal form
of f ([[f]]c)) [[g]]c . The terms g, [[g]]c are βη-long normal by assumption, therefore g =βη [[g]]c implies g =α [[g]]c , and
hence |g| =α |[[g]]c | = |[|g|]c |, contradicting the assumption that [.]c extends the length of the term |g|.

(2) By Lemma 3.6 and (1) above.
(3) Assume gA : T → A is a compiler for F , written inside F , for any inhabited type A. Let A = (T → Nat), an inhabited

type, and Sr be the right-successor (Definition 3.1). Define a closed term h : A of F by h(x) = Sr(gA(x)(x)) : Nat, where
x : T . By definition we have h([[h]]c) =βη Sr(gA([[h]]c)([[h]]c)) =βη Sr(h([[h]]c)). The βη-long normal form of h([[h]]c) is n
in Nat for some n ∈ N , while the βη-long normal form of Sr(h([[h]]c)) is n + 1, which is a contradiction. In this proof we
used no specific property of [[.]]c . �

Wewill prove that there is no decompiler for F for any α-complete coding in F , and that Tmc is, indeed, an α-complete
coding. We first define an internal equality eqTmc , deciding βη-equality for Tmc (hence α-equality for the coding of untyped
λ-terms). We cannot define the internal equality as we do for data types, because Tmc is not a data type. As a preliminary
step, we translate the elements of Tmc into some suitable data type dBc by some internal injection of F , and then we use
the internal equality of dBc to prove that the coding in Tmc is α-complete. The type dBc internalizes de Bruijn coding with
level of variables for untyped λ-terms.

In this coding, a λ-abstraction nested within m other λ-abstractions always binds the variable of name m (it binds the
variable of name n + m if the λ-term lives in the context {x0, . . . , xn−1}). For instance, the λ-term t = λx.(x(λy.(xy)))
is coded by λ0.(0(λ1.(01))). Remark that the same term t, in the coding with deBruijn indexes [4,13], would be coded
λ0.(0(λ0.(10)))instead.

DeBruijn level coding is an example of α-complete coding. In dBc we explicitly represent variable nameswith a type Var
isomorphic to Nat, somethingwe do not have in Tm.We fix two type variables Var, dB and the contextΓdB with the variables
representing de Bruijn coding: 0 : Var, S : Var → Var, var : Var → dB, ap : dB → dB → dB, lam : Var → dB → dB.

Definition 5.3. Wewrite λΓdB as an abbreviation for the λ-abstractions: λVar.λdB.λ0 : Var.λS : Var → Var.λvar : (Var →

dB).λap : (dB → dB → dB).λlam : (Var → dB → dB) and x(ΓdB) for x(Var, dB, 0, S, var, ap, lam). Then we set:

(1) dBc
= ∀Var.∀dB.Var → (Var → Var) → (Var → dB) → (dB → dB → dB) → (Var → dB → dB) → dB.

(2) We define the closed terms of F representing the constructors of dBc:
(a) varc : Nat → dBc by varc(x) = λΓdB.var(x(Var, 0, S)).
(b) apc

: dBc
→ dBc

→ dBc by apc(x, y) = λΓdB.ap(x(ΓdB), y(ΓdB)).
(c) lamc

: (Nat → dBc
→ dBc) by lamc(n, y) = λΓdB.lam(n(Var, 0, S), y(ΓdB)).

If we take A such that dBc
= ∀Var.∀dB.A, then there is no ∀ in A and deg(A) = 2, and therefore dBc is a data type. We can

prove that dBc is βη-complete (in fact, all data types are, but we only need βη-completeness of Bool,Nat and dBc).

Lemma 5.4. dBc is βη-complete

Proof. Wedefine an internal equality eqD forD = dBc using a double iterator on dBc w.r.t. the constructors varc : Nat → dBc ,
lamc

: Nat, dBc
→ dBc and apc

: dBc, dBc
→ dBc . This iterator is definable in F . Assume ∧ : Bool, Bool → Bool is a closed

term of F representing boolean conjunction. Then for D = dBc we set:

(1) eqD(varc(n), varc(n′)) = eqNat(n, n′)

(2) eqD(lam
c(v, t), lamc(v′, t ′)) = eqNat(v, v

′) ∧ eqD(t, t ′)

12 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

(3) eqD(apc(t, t ′), apc(u, u′)) = eqD(t, t ′) ∧ eqD(u, u′)

(4) In all remaining cases we set eqD(t, t ′) = False

By induction on the βη-long normal forms of t, u we can prove that if D = dBc , then eqD(t, u) =βη True if and only if
t =βη u. �

The code of a untyped λ-term in dB (or in dBc) is uniquely given for any untyped context (list of untyped variables) for
the λ-term. Assume that u is the de Bruijn code of an untyped λ-term with free variables in x0, . . . , xn−1, and lam(x, t) is a
subterm of u, within nested m abstractions of u. We call m the ‘‘level’’ of the variable x. We require that x = xn+m, that is,
that the variable bound by any lam nested withinm − 1 more lambda’s is the variable number n + m.

Definition 5.5. Let n ∈ N , and v(n) = Sn(0) in the context ΓdB. The coding ⌈t⌉n of a term t ∈ Λ in ΓdB is recursively defined
as follows:

(1) ⌈xi⌉n = var(v(i)).
(2) ⌈λx.t⌉n = lam(var(v(n)), ⌈t[xn/x]⌉n+1).
(3) ⌈tu⌉n = ap(⌈t⌉n, ⌈u⌉n).

We define ⌈t⌉c
n = λΓdB.⌈t⌉n : dBc . If t is closed then ⌈t⌉c

0 is closed. We first prove that the de Bruijn level coding of
t ∈ Λ in F is injective, that is, an injection up to α-conversion, and that there is an internal injection from Tmc to dBc ,
sending a representation [t]c of any closed t ∈ Λ to a representation ⌈t⌉c

0 of the same t in dBc .
An untyped λ-term t is in fact represented by a family of de Bruijn codes, depending on a parameter n ∈ Nat, and

representing the code of t with free variables in x0, . . . , xn−1. Implicitly, the type of the de Bruijn coding of t should be
Nat → dBc . We define a canonical substitution over the context ΓTm, replacing a generic coding ofΛ by a concrete coding,
de Bruijn level coding.

Definition 5.6 (The de Bruijn Substitution). We set DB = Nat → dBc . We define Lam : (DB → DB) → DB and
Ap : DB → DB → DB with arguments a, b : DB, n : Nat, f : DB → DB by:

(1) Lam(f)(n) = lamc(n, f (λ_ : Nat.varc(n))(n + 1)) : dBc .
(2) Ap(a, b)(n) = apc(a(n), b(n)) : dBc .

We call δ = [DB/Tm, Lam/lam,Ap/ap] the de Bruijn substitution.

We prove that the de Bruijn substitution δ sends the coding of untyped λ-terms in Tm to their de Bruijn coding in DB.
A program recovering the deBruijn syntax from the abstract syntax was already known for deBruijn indexes [3]. As far as
we know, this is the first program working for deBruijn levels.

Lemma 5.7 (de Bruijn Level Coding and Tmc are α-Complete Codings). (1) de Bruijn coding is injective: if t, u ∈ Λ have free
variables in x0, . . . , xn−1, then t =α u if and only if ⌈t⌉n =βη ⌈u⌉n.

(2) de Bruijn level coding is an α-complete coding.
(3) There is a term db : Tmc

→ dBc of F , such that for all closed terms t ofΛ we have db([t]c) =βη ⌈t⌉c
0.

(4) db is an internal injection from Tmc to dBc .
(5) The type Tmc is an α-complete coding.

Proof. (1) By induction on the pair t, u.
(2) By (1) and the fact that dBc is βη-complete by 5.4.
(3) We first define a term d : Tmc

→ Nat → dBc of F , such that for all closed terms t ∈ Λwe have d([t]c, n) = ⌈t⌉c
n. We

will use continuation-passing-style programming. Assume t ∈ Λ, FV(t) ⊆ {x0, . . . , xn−1} and σ(xi) = ai for all i < n.
If x : Tmc , then by definition of Tmc we have

x(DB) : ((DB → DB) → DB) → (DB → DB → DB) → DB.

We set d(x) = x(DB)(Lam)(Ap) : DB. Let ρ(ai) = λ_ : Nat.⌈xi⌉c
0 for all i < n. Then we

can show d(ρ([t]cσ), n) =βη ⌈t⌉c
n as follows. By unfolding the definition of d we have d(ρ([t]cσ))(n) =

(ρ([t]cσ)(DB)(Lam)(Ap))(n) = (ρ([t]cσ (DB)(Lam)(Ap)))(n). By unfolding the definition of [.]c(.), the latter is equal to
(ρ((λΓdB.[t]σ)(DB)(Lam)(Ap)))(n) = (ρ(δ([t]σ)))(n) for any n : Nat. By induction on all t ∈ Λ with free variables
in x0, . . . , xn−1, we can prove that ρ(δ([t]σ))(n) = ⌈t⌉c

n : dBc . Eventually we set db(x) = d(x, 0) : dBc . We conclude
db([t]c) = ⌈t⌉c

0 : dBc for all closed t ∈ Λ.
(4) All closed terms t, u : Tmc in F have normal forms [f]c, [g]c for some closed f, g ∈ Λ such that [f]c =βη t and

[g]c =βη u. Assume db(t) =βη db(u). Then ⌈f⌉c
0 =βη db([f]c) =βη db(t) =βη db(u) =βη db([g]c) =βη ⌈g⌉c

0, and hence
f =α g inΛ. We conclude t =βη [f]c =α [g]c =βη u.

(5) By (4), there is an internal injection db : Tmc
→ dBc . Since dBc is βη-complete by 5.4, by Lemma 4.6(6), Tmc is

βη-complete. Tmc is injective because if [t]c =βη [u]c , then by (3) we have ⌈t⌉c
0 =βη db([t]c) =βη db([u]c) =βη ⌈u⌉c

0,
hence t =α u by (1) (injectivity of dBc). �

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 13

Wemay now prove that F cannot decompile itself.

Theorem 5.8. (1) There is no decompiler for F in F w.r.t. any α-complete coding [[.]]c .
(2) There is no decompiler for F in F w.r.t. Tmc nor dBc .

Proof. (1) We assume having some decompiler fA w.r.t. some α-complete coding [[.]]c . We will show a contradiction. By
Lemma4.7(1),we have Sl =O Sr . By definition of decompiler,we have some S ′

l and S ′
r such that Sl =βη S ′

l , fNat → Nat(Sl) =βη

[[S ′

l]]
c , Sr =βη S ′

r , and fNat → Nat(Sr) =βη [[S ′
r]]

c . Since fNat → Nat(Sl) =O fNat → Nat(Sr), we have [[S ′

l]]
c

=O [[S ′
r]]

c .
By α-completeness of the coding, we deduce first [[S ′

l]]
c

=βη [[S ′
r]]

c (by βη-completeness), then |S ′

l | =α |S ′
r | (by

injectivity). Therefore we have |Sl| =βη |S ′

l | =α |S ′
r | =βη |Sr |, which contradicts with Sl ≠|βη| Sr in Lemma 4.7(1).

(2) Because Tmc and dBc are α-complete codings by Lemma 5.7. �

In the next section we will weaken the definition of decompiler. In Definition 6.1 we consider the possibility of
decompiling not F itself, but some interpretation of F in F . In this case the argument of Theorem 5.8 no longer applies,
because what we recover by decompilation is not the original term of F but some interpretation of it, again in F . We will
consider the interpretation ofF inF obtained by restricting all type quantifiers to the set of typeswhichwe call ‘‘connected’’
to the type Tm coding untyped λ-terms. Our main, Theorem 6.5, is that this interpretation of F in F may be decompiled
by F .

6. An interpretation (.)∗c of F into itself whose image is decompilable

In this section we define a particular interpretation (.)∗c of F inside F and a decompiler–normalizer, written in F , for
the terms of F ∗c . In addition we prove that there is no compiler written in F for the terms of F ∗c . In Theorem 5.2 we have
already proved that there is no normalizer in F for the codes of terms of F .

We formally define the notion of a decompiler–normalizer and a compiler for F ◦ in F , for any interpretation (.)◦ of F
in F .

Definition 6.1. Assume (.)◦ is any interpretation of F in F .

(1) A compiler for F ◦ in F is any family gA : Tmc
→ A◦ of closed terms of F , for each closed type A of F , such that for all

closed terms t : A of F we have gA([[t]]c) =βη t◦.
(2) A decompiler–normalizer for F ◦ in F is any family fA : A◦

→ Tmc of closed terms of F , for each closed type A of F ,
such that for all closed terms t : A of F we have fA(t◦) =βη [[t ′]]c for the βη-long normal form t ′ of t .

The goal of this section is to define some interpretation (.)∗c of F into F , and a decompiler–normalizer in F for the
terms of F ∗c . For some interpretation of F into F we could easily adapt the proof of Theorem 5.8, and show that the
interpretation has no decompiler. This is the case, for instance, of any interpretation compatible with observational equality.
Indeed, if t =O u implies t∗c =O u∗c , for any term t, u of F , then S∗

l
c

=O S∗
r
c , and if we repeat the proof of 5.8 we derive a

contradiction from the existence of a decompiler for (.)∗c .
In this section, we will instead select an interpretation (.)∗c which does not fall in this class, and which may interpret

two observationally equal terms like Sl, Sr by two terms which are not observationally equal.
Our interpretation is defined by restricting the domain of every quantifier over types.We use themap (.)∗: we first define

A∗ by induction over the types of F , an induction external to F .
Let A, B be two types of F . A connection of A, B is a pair (f , g) of terms f : A → B and g : B → A of F in some

context Γ . Two types are connected if they have a connection. For instance, (idTm, idTm) is a connection between Tm and
Tm in the context ΓTm, while (lam, ap) is a connection between Tm → Tm and Tm, again in the context ΓTm. In F ∗, all type
quantifiers (∀α.A)∗ will be bounded over the types α which are connected with Tm, i.e., for which two maps fα : α → Tm
and gα : Tm → α are given in the context in which A∗ lives. The restriction over the quantifiers is reminiscent of what
happens in the normalization proof for F : a quantifier has to be restricted to the set of candidates in order to interpret ∀α.A
as a candidate.1 We define a family of connections (fA, gA) between A∗ and Tm, and then we prove that if all type variables
in FV(A) are connected with Tm, then fA is a decompiler. The idea of the pair (f , g) is taken from Friedman’s proof for λ→,
but in the case of λ→ there is the additional requirement that (f , g) is an embedding-retraction pair, i.e., g◦f = idα , which
we do not ask for F .

Definition 6.2. Assume A is a type with free type variables in {α1, . . . , αn, Tm} of F . We define A∗ by induction on A. When
A = ∀α.B by possibly renaming α we assume α ≠ Tm.

(1) α∗
= α, if α is a type variable.

(2) (B → C)∗ = B∗
→ C∗.

(3) (∀α.B)∗ = ∀α.(α → Tm) → (Tm → α) → B∗ with α ≠ Tm.

1 We owe this remark to an anonymous referee.

14 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

If Γ = x1 : A1, . . . , xm : Am is any context of F then Γ ∗
= x1 : A∗

1, . . . , xm : A∗
m.

We define A∗c as ∀Tm.((Tm → Tm) → Tm) → (Tm → Tm → Tm) → A∗.

For all types A∗, we now define some connection between A∗ and Tm in a suitable context. We explain the idea first.

(1) For any type variable α ≠ Tm we assume some connection (fα, gα) between α and Tm. If α = Tm the connection is the
identity.

(2) For arrow types we follow Joly [11]. We lift one connection between B∗, Tm and another connection between C∗, Tm to
a connection between B∗

→ C∗ and Tm → Tm, and eventually we compose it with the connection (lam, ap) between
Tm → Tm and Tm, obtaining a connection between A∗

= (B∗
→ C∗) and Tm.

(3) The case of (∀α.A)∗ is the main original idea of this paper. Assume some connection between A∗ and Tm is given. We
may lift the map : Tm → A∗ to a map : Tm → (∀α.A)∗ by λ-abstraction. Conversely, we take any term : (∀α.A)∗, and
we take α to be Tm, and the connection between α and Tm to be the connection (idTm, idTm) between Tm and Tm. We
obtain a term in A[Tm/α]

∗ and we apply some suitable instance of the map : A∗
→ Tm.

Definition 6.3 (The Connection fA, gA Between A∗ and Tm). For each type A of F with FV(A) ⊆ {α1, . . . , αn, Tm}, by
induction on the number of connectives in A, we define two terms fA : A∗

→ Tm and gA : Tm → A∗ of F , in the context
{f1 : α1 → Tm, . . . , fn : αn → Tm, g1 : Tm → α1, . . . , gn : Tm → αn} ∪ ΓTm. Assume y is a fresh variable. When A = ∀α.B
by possibly renaming α we assume α ≠ Tm.

(1) fαi = fi and fTm = idTm.
gαi = gi and gTm = idTm.

(2) fB→C = λy : (B → C)∗.lam(fC ◦y◦gB).
gB→C = λy : Tm.gC ◦ap(y)◦fB.

(3) f∀α.B = λy : (∀α.B)∗.fB[Tm/α](y(Tm, idTm, idTm)). g∀α.B = λy : Tm.λα.λfα : α → Tm.λgα : Tm → α.gB(y).

For any closed type A, we define f cA = λx : A∗c .λΓTm.fA(xΓTm) : A∗c
→ Tmc .

Implicitly, the interpretation of A in F ∗ is the triple (A∗, fA, gA), of the type A∗ and some connection between A∗ and Tm.
In the definition of g∀α.B, the term gB has three more free variables: α, fα : α → Tm, and gα : Tm → α.

We define the interpretation t∗ of a term t , living in a context extended with variables of the form fβ , gβ , which should
be fresh. This is not a serious restriction: by possibly renaming the term variables in t and the context of t , we may always
assume that fβ , gβ are fresh variables, not occurring in t . Besides, our main result concerns closed terms t , which trivially
satisfy the condition ‘‘fβ , gβ not free in t ’’.

Definition 6.4. Assume Γ ⊢ t : A in F , with Γ = {x1 : A1, . . . , xm : Am}, and any variable in Γ is distinct from any fα, gα .
We define t∗ : A∗ in the context Γ ∗

∪ {f1 : α1 → Tm, . . . , fn : αn → Tm, g1 : Tm → α1, . . . , gn : Tm → αn} ∪ ΓTm.
If t = λx : A. . . . or t = λα. . . ., by possibly renaming x and α we assume x ≠ fβ , gβ for any β and α ≠ Tm.

(1) x∗
= x.

(2) (tu)∗ = t∗u∗.
(3) (λx : A.t)∗ = λx : A∗.t∗, with x ≠ fβ , gβ for any β .
(4) (λα.t)∗ = λα.λfα : α → Tm.λgα : Tm → α.t∗, with α ≠ Tm.
(5) (t(T))∗ = t∗(T ∗, fT , gT).

We define t∗c as λΓTm.t∗.

In the definition of (λα.t)∗, the term t∗ has two fresh free variables: fα : (α → Tm), gα : (Tm → α).
For example, we have fA(id∗) =βη [[id]] for A = Id (the type of polymorphic identity id = λα.λx : α.x). We unfold the

definition of fA. fA first applies the clause for ∀α.α → α, and maps id∗ to id∗(Tm, idTm, idTm) =βη λx : Tm.x. Then fA applies
the clause for Tm → Tm, sending λx : Tm.x to lam(λx : Tm.x). The latter is the coding of the untyped λ-term λx.x, and
therefore it is equal to [λx.x], that is, to [|id|], or [[id]]. We conclude fA(id∗) =βη [[id]], as expected: fA is a decompiler in the
context ΓTm at least when applied to id∗.

The main theorem of the paper is:

Theorem 6.5 (There is a Decompiler–Normalizer for F ∗c in F). Assume u, v are terms of F and no variable of the form fβ , gβ
is free in u, v. Assume ∅ ⊢ t : A in F , and that t ′ is the βη-long normal form of t.

(1) (.)∗c is an interpretation: if u =βη v, then u∗c
=βη v

∗c .
(2) f cA is a decompiler–normalizer: f cA (t

∗c) =βη [[t ′]]c : Tmc .
(3) There is no compiler for F ∗c in F w.r.t. the coding in Tmc .

We devote the next section to the proof of Theorem 6.5.

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 15

7. Proof of main theorem

In this section we prove Theorem 6.5. During the proof, we extend the notion of a compilable (decompilable) term t in
the context ΓTm to terms with free type and term variables, by asking that the ‘‘canonical substitution’’ of t is compilable
(decompilable). The ‘‘canonical substitution’’ replaces any type variable α with Tm, any connection (fα, gα)with the pair of
identities (idTm, idTm).

Definition 7.1 (Canonical Substitution). Assume t : A has the context Γ = {x1 : A1, . . . , xm : Am} with free type
variables α1, . . . , αn, and no variable of the form fβ , gβ is in Γ . Let a1, . . . , am be fresh variables and assume the context
a1 : Tm, . . . , am : Tm.

(1) σ , τ are the canonical substitutions for t if σ(αi) = Tm, σ(fαi) = σ(gαi) = idTm for all i = 1, . . . , n, σ(xj) = σ(gAj(aj))
and τ(xj) = aj for all j = 1, . . . ,m.

(2) t is decompilable if σ(fA(t∗)) =βη [[t]]τ for some σ , τ canonical for t .
(3) t is compilable if σ(t∗) =βη σ(gA([[t]]τ)) for some σ , τ canonical for t .

Recall that fA, gA are terms in the context ΓTm extended with fα1 , gα1 , . . . , fαn , gαn . In the definition of ‘‘compilable’’ and
‘‘decompilable’’ we do not ask that we recover the open untyped λ-term underlying the term, but only that wemay compile
(decompile) the canonical instance of the term. If A = αi for some i, then σ(fA) = σ(fα) = idTm = σ(gα) = σ(gA), and
therefore both ‘‘decompilable’’ and ‘‘compilable’’ unfold to σ(t∗) = [[t]]τ . ‘‘compilable’’ and ‘‘decompilable’’ are equivalent
in this case, and they both say that the canonical substitution σ maps t∗ into the code [[t]]τ for t in the context ΓTm.

We now prove that (.)∗, fA, gA commute with substitutions of term and type variables (the proof is long definition
unfolding), and then a crucial statement, that formation of themap g∀α.A commutes with ∀-elimination. In order to state the
commutative properties, let us recall that any substitution T/α in F corresponds to a substitution σ = [T ∗/α, fT/fα, gT/gα]
in F ∗.

Lemma 7.2 (Substitution Lemma). Assume α ≠ Tm and x ≠ fβ , gβ for any β . Let σ = [T ∗/α, fT/fα, gT/gα]. Assume no fβ , gβ
is free in the term t. The following commutative properties hold:

(1) A[T/α]
∗

= A∗
[T ∗/α],

(2) t[u/x]∗ = t∗[u∗/x],
(3) fA[T/α] = σ(fA),

gA[T/α] = σ(gA),
(4) t[T/α]

∗
= σ(t∗),

(5) g∀α.A commutes with ∀-elimination: g∀α.A(y)(T ∗, fT , gT) =βη gA[T/α](y).

Proof. The proof is long but routine, by definition unfolding. We postpone it to the Appendix. �

As a consequence of Lemma 7.2(2), we can prove that (.)∗ is compatible with β . The compatibility of (.)∗ with η, instead,
may be proved directly, by using η itself.

Lemma 7.3 (Commutation of (.)∗ with βη). Assume that no variable of the form fβ , gβ is free in t, u.

(1) ((λx : A.t)(u))∗ =βη t[u/x]∗.
(2) ((λα.t)(T))∗ =βη t[T/α]

∗.
(3) (λx : A.t(x))∗ =βη t∗, if x ∉ FV(t).
(4) (λα.t(α))∗ =βη t∗, if α ∉ FV(t).
(5) If t =βη u then t∗ =βη u∗.

Proof. By possibly renaming x, α we may assume x ≠ fβ , gβ for any β and α ≠ Tm, so that Lemma 7.2 applies.

(1) By definition, ((λx : A.t)(u))∗ =βη t∗[u∗/x]. Now we apply Lemma 7.2(2) to obtain t[u/x]∗.
(2) By definition, ((λα.t)(T))∗ =βη t∗[T ∗/α, fT/fα, gT/gα]. Now we apply Lemma 7.2(4) to obtain t[T/α]

∗.
(3) If x ∉ FV(t) then x ∉ FV(t∗), because x ≠ fβ , gβ for any β and the extra term variables in t∗ are different from x.

By definition, (λx : A.t(x))∗ =βη λx : A∗.t∗(x) =βη t∗ (by η-rule and x ∉ FV(t∗)).
(4) If α ∉ FV(t) then α ∉ FV(t∗), because α ≠ Tm, which is the only extra type variable in t∗. From α ∉ FV(t) we deduce

fα, gα ∉ FV(t∗). By definition, (λα.t(α))∗ =βη λα.λfα : α → Tm.λgα : Tm → α.t∗(α, fα, gα) =βη t∗ (by η-rule and
α, fα, gα ∉ FV(t∗)).

(5) By (1)–(4), compatibility of (.)∗, and term formation. �

In the next lemma we prove that βη-long normal terms in F are decompilable.

Lemma 7.4 (Decompilation of βη-Long Normal Forms). Assume that t1, . . . , tn, t, u are any terms with no variable fβ , gβ free,
A, B, T are any types, and α ≠ Tm is any type variable of F .

(1) All term variables x are compilable.
(2) If t : A → B is compilable and u : A is decompilable, then tu : B is compilable.

16 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

(3) If t : ∀α.A is compilable then t(T) : A[T/α] is compilable.
(4) If t : α is compilable, then t is decompilable.
(5) If t = x(t1) . . . (tn) : A and each ti is either decompilable or a type, then t is compilable. If A = α, then t is also decompilable.
(6) If t is decompilable then λx : A.t is decompilable.
(7) If t is decompilable then λα.t is decompilable.
(8) If t is βη-long normal then t is decompilable.

Proof. (1) By definition.
(2) By definition.
(3) By definition and Lemma 7.2(5).
(4) If t : α, then both ‘‘decompilable’’ and ‘‘compilable’’ unfold to σ(t∗) =βη [[t]]τ .
(5) Assume t = x(t1) . . . (tn) : A, with each ti a term or a type. Then by induction on n we can show that t is compilable: if

n = 0 we use (1). If tn is a term, this case is shown by (2). If tn is a type, this case is shown by (3). Now in the case t : α
by (4) we conclude that t is decompilable.

(6) By definition.
(7) By definition and Lemma 7.2(4).
(8) Every βη-long normal term t in F has the form λx1. . . . λxn.x(t1, . . . , tm), where each xi is a term variable or a type

variable, each tj is aβη-long normal term or a type, and x(t1, . . . , tm) : α for some type variableα.We argue by induction
on the size of the βη-long normal form. If n = 0 we apply (5). If n ≥ 1, let t ′ = λx2. . . . λxn.x(t1, . . . , tm). If x1 is a term
variable, the thesis is shown by (6) applied to t ′. If xn is a type variable, the thesis is shown by (7) applied to t ′. �

Theorem 6.5(2) (there is a decompiler–normalizer for F ∗ in F) is an immediate consequence of Lemma 7.4(8). There is
no compiler for F ∗ in F because the composition of a decompiler–normalizer and a compiler defines a normalizer, which
is the key idea in normalization by evaluation.

Proof of Theorem 6.5. Assume that no variable of the form fβ , gβ is free in t . Therefore Lemmas 7.3 and 7.4 apply to t .

(1) (.)∗ commutes with βη by Lemma 7.3(5).
(2) Assume t is a closed term, A is a closed type, and t : A. Let t ′ =βη t be theβη-long normal formof t . Then by Lemma7.4(8)

we have fA(t ′∗) =βη [[t ′]] (the substitutions σ , τ are empty because t , A are closed). By Lemma 7.3(5) we have t∗ =βη t ′∗.
We conclude fA(t∗) =βη fA(t ′∗) =βη [[t ′]]. Thus, f cA (t

∗c) =βη λΓTm.fA(t∗) =βη λΓTm.[[t ′]] = [[t ′]]c . The family f cA of closed
terms of F is a decompiler.

(3) Assume that there is some family GA : Tmc
→ A∗c of closed terms of F , for A closed type of F , which is a compiler.

Define evA = f cA ◦GA : Tmc
→ Tmc . Let t : A be a closed term of F and t ′ =βη t be the βη-long normal form of t .

Then we have evA([[t]]c) = f cA ◦GA([[t]]c) =βη f cA (t
∗c) =βη [[t ′]]c . Thus, the family evA is a normalizer, which contradicts

Theorem 5.2(1). �

8. What we can prove about F and βη-completeness

In this section we conjecture that we may use the map (.)∗ or (.)∗c in order to define some class of βη-complete models.
We cannot prove this goal yet, but we can prove a result which is close to this goal: inside every consistent model

M = ⟨Tp, E(.), Pred,⇒,Π, {Φa,b}a,b∈Tp, {ΦF }F∈Pred, [[[.]]]⟩

ofF (Definition 4.3) wemay internally define somemodelM∗ whose equational theory includes βη and is included in |βη|.
This is not yet our goal because βη ⊂ |βη|.

Let δ = [DB/Tm, Lam/lam,Ap/ap] be the de Bruijn substitution (Definition 5.6). The substitution δ replaces the free
variables Tm, lam, ap, denoting a generic coding forΛ in F , with the closed type DB and the closed terms Lam,Ap, denoting
de Bruijn level coding for Λ in F . We define a type structure for M∗ (Definition 4.3), and then we prove that it may be
extended in a canonical way to a model. A type in Tp∗ is a triple of a type of M and a connection pair between the type and
the interpretation of DB inM. The interpretation [[[.]]]∗ of a type or a term inM∗ is obtained by composing the interpretation
(.)∗ of F into F , δ, and the interpretation [[[.]]] of F in M. Note that we could also define M∗ by using (.)∗c instead of (.)∗,
but we will use (.)∗ in this section for notational simplicity. We could also replace the type DB we used in the definition
of M∗ by any type of an α-complete coding: we chose de Bruijn coding because it is commonly considered the canonical
coding of untyped λ-terms.

Definition 8.1 (An Internal Type Structure for M). Assume M is any model of F . Then we define a type structure
⟨Tp∗, E(.)∗, [[[.]]]∗⟩ for F as follows. Let DB = [[[DB]]] be the interpretation of de Bruijn’s type in M.

(1) The set Tp∗ of types of M∗ consists of all triples (a, φ, ψ), with a ∈ Tp and φ ∈ E(a⇒DB), ψ ∈ E(DB⇒a), two maps
connecting a and DB.

(2) The set of elements of the type (a, φ, ψ) ∈ Tp∗ is the set E((a, φ, ψ))∗ = E(a).

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 17

(3) Let ∆ = {α1, . . . , αn} and σ : ∆ → Tp∗, with σ(αi) = (ai, φi, ψi), for i = 1, . . . , n. Let σ ∗ be the type and term
assignment of M defined by σ ∗(αi) = ai, σ ∗(fαi) = φi, and σ ∗(gαi) = ψi.
(a) For any type A of F with free type variables in∆ = α1, . . . , αn, and any assignment σ , σ ∗ as above, we set

[[[A]]]
∗

σ = ([[[δ(A∗)]]]σ∗ , [[[δ(fA)]]]σ∗ , [[[δ(gA)]]]σ∗).

(b) For any term t of F in the context Γ = x1 : A1, . . . , xn : An with ∆, any σ as above, and any substitution τ over Γ
such that τ(xi) ∈ E([[[Ai]]]

∗

σ) for i = 1, . . . , nwe set:
[[[t]]]∗σ ,τ = [[[δ(t∗)]]]σ∗,τ .

Note that t∗c(ΓDB) =βη δ(t∗).
We will prove that there is a unique model

M∗
= ⟨Tp∗, E(.)∗, Pred∗,⇒∗,Π∗, {Φ∗

a,b}a,b∈Tp∗ , {Φ∗

F }F∈Pred∗ , [[[.]]]∗⟩

of F , included in M, and obtained by extending the type structure ⟨Tp∗, E(.)∗, [[[.]]]∗⟩ with the minimum set Pred∗ of
predicates. We have to isolate a necessary and sufficient condition for the existence and uniqueness of such an extension.
Following Barendregt [4], we say that an interpretation [[[.]]] is ‘‘Weakly Extensional’’ if the interpretations of the type ∀α.A
and the terms λx : B.t, λα.u are uniquely determined by the interpretations of all instances of A, t, u.

Definition 8.2 (Weak Extensionality). Assume ⟨Tp, E(.), [[[.]]]⟩ is a type structure. Let A, B be types and t, u, v, w be terms.
Let σ and τ be substitutions on the free variables of A, B, t, u, v, w different from α, x.

[[[.]]] is weakly extensional if the following holds.

(1) If [[[A]]]σ ,a/α = [[[B]]]σ ,a/α for all a ∈ Tp, then [[[∀α.A]]]σ = [[[∀α.B]]]σ .
(2) If [[[t]]]σ ,(τ ,c/x) = [[[u]]]σ ,(τ ,c/x) for all c ∈ [[[A]]]σ , then [[[λx : A.t]]]σ ,τ = [[[λx : A.u]]]σ ,τ .
(3) If [[[v]]](σ ,a/α),τ = [[[w]]](σ ,a/α),τ for all a ∈ Tp, then [[[λα.v]]]σ ,τ = [[[λα.w]]]σ ,τ .

We may now state and prove a necessary and sufficient condition for extending a type structure to a model.

Lemma 8.3 (Extension Lemma). Let ⟨Tp, E(.), [[[.]]]⟩ by any type structure. Then ⟨Tp, E(.), [[[.]]]⟩ can be extended to a model M
of F if and only if:

• [[[.]]] commutes with substitutions
• [[[.]]] commutes with βη (Definition 4.3(4)(a) and (b))
• [[[.]]] satisfies Weak Extensionality.

If the extension exists, it is unique if we choose the smallest possible Pred.

Proof. First, we prove that every extension of a type structure to a model satisfies all conditions above. Then, we prove that
every type structure satisfying all conditions above may be extended to a model with the smallest possible Pred. We will
sometimes write [[[t]]]a/α,c/x,b/β,d/y for [[[t]]](a/α,b/β),(c/x,d/y).

(1) Assume that ⟨Tp, E(.), [[[.]]]⟩ may be extended to a model M. Then the following conditions are satisfied:
(a) Commutation with type substitution: [[[A[T/α]]]]σ = [[[A]]]σ ,[[[T]]]σ /α

. By induction over A, using the conditions over
[[[.]]]σ for a model.

(b) Commutation with term substitution: [[[t[T/α, u/x]]]]σ ,τ = [[[t]]](σ ,[[[T]]]σ /α),(τ ,[[[u]]]σ ,τ /x). By induction over t , using the
conditions over [[[.]]]σ ,τ for a model, and commutation with type substitution.

(c) Commutation with β . By unfolding the interpretation of (λx : A.t)(u), (λα.v)(T) and by commutation with term
substitution.

(d) Commutation with η. Assume that t : A → B, x ∉ FV(t), and a = [[[A]]]σ , b = [[[B]]]σ . For all c ∈ E([[[A]]]σ) define
φ(c) = [[[tx]]]σ ,(τ ,c/x). By interpretation of λ-abstraction we have [[[λx.tx]]]σ ,τ = Φ−1

a,b (φ). By the interpretation of
application we have Φa,b([[[t]]]σ ,τ)(c) = Φa,b([[[t]]]σ ,τ , [[[x]]]c/x) = [[[tx]]]σ ,(τ ,c/x) = φ(c). Hence Φa,b([[[t]]]σ ,τ) = φ.
Thus, [[[t]]]σ ,τ = Φ−1

a,b (φ) = [[[λx.tx]]]σ ,τ . The case of λα.tα with α ∉ FV(t) is proved in a similar way.
(e) Weak Extensionality. Immediate: the interpretations of ∀α.A, λx : B.t, λα.u are defined in term of the set of

interpretations of all instances of A, t, u.
(2) Assume we have a type structure ⟨Tp, E(.), [[[.]]]⟩ which satisfies the following conditions: [[[.]]] commutes with

substitution and βη, and it satisfies Weak Extensionality. We prove that we may extend the type structure to a model
M having the smallest possible set Pred, and that this extension is unique.

The smallest set Pred of predicates of M is the set of all maps F : Tp → Tp such that there are a type A of F , a type
variable α, and a substitution σ of M, and for all a ∈ Tp, F(a) = [[[A]]]σ ,a/α .

Clearly, this choice for the set Pred is the smallest possible.Wehave to prove that there is a uniquemodelM extending
Tp, E(.), Pred, [[[.]]]. If there is such a model, the only possible choices for ⇒,Π,Φa,b,ΦF are the following:
(a) a⇒b = [[[α → β]]]a/α,b/β ,
(b) Π(F) = [[[∀α.A]]]σ if F(a) = [[[A]]]σ ,a/α ,

18 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

(c) Φa,b(c, d) = [[[x(y)]]]c/x,d/y,
(d) ΦF (c, a) = [[[x(α)]]]c/x,a/α if F(a′) = [[[A]]]σ ,a′/α and x : ∀α.A.

Conversely, for a given [[[.]]] the equations above define⇒,Π,Φa,b,ΦF . This is immediate for⇒,Φa,b,ΦF . In the case
ofΠ , the uniqueness of the value ofΠ(F) follows fromWeak Extensionality for [[[.]]] and ∀. Assume F(a) = [[[A]]]σ ,a/α =

[[[A′
]]]σ ′,a/α for all a ∈ Tp. By possibly renaming we have dom(σ) ∩ dom(σ ′) = ∅. We deduce F(a) = [[[A]]]σ ,σ ′,a/α =

[[[A′
]]]σ ,σ ′,a/α for all a ∈ Tp, and we concludeΠ(F) = [[[∀α.A]]]σ = [[[∀α.A]]]σ ,σ ′ = [[[∀α.A′

]]]σ ,σ ′ = [[[∀α.A′
]]]σ ′ .

We have still to check the injectivity conditions:
(a) Φa,b is an injection. Indeed, assume c, c ′

∈ E(a⇒b) and Φa,b(c) = Φa,b(c ′). Then for all d ∈ E(a) we have
Φa,b(c)(d) = Φa,b(c ′)(d), and by definition of Φa,b we have [[[xy]]]c/x,d/y = [[[xy]]]c′/x,d/y. This equation is equivalent
to [[[xy]]]a/α,(c/x,c′/x′,d/y) = [[[x′y]]]a/α,(c/x,c′/x′,d/y). By Weak Extensionality of [[[.]]] we deduce [[[λy : α.xy]]]c/x,c′/x′ =

[[[λy : α.x′y]]]c/x,c′/x. By commutation with the η-rule we conclude [[[x]]]c/x,c′/x′ = [[[x′
]]]c/x,c′/x′ , that is, c = c ′.

(b) ΦF is an injection. This is proved in a way similar to the previous point.
We can prove that ⇒ andΠ satisfy the two conditions for the interpretation of types in a model.

(a) By commutativity with substitution of [[[.]]] we have [[[A]]]σ⇒[[[B]]]σ = [[[α → β]]][[[A]]]σ /α,[[[B]]]σ /β = [[[A → B]]]σ .
(b) The condition: ‘‘ if F(a) = [[[A]]]σ ,a/α thenΠ(F) = [[[∀α.A]]]σ ’’ holds by definition ofΠ .

We prove now that the interpretation of [[[.]]]σ ,τ satisfies the four conditions for the interpretation of terms in amodel.
We use commutativity with substitution and β of [[[.]]], and injectivity ofΦa,b,ΦF .
(a) Φa,b([[[t]]]σ ,τ , [[[u]]]σ ,τ) = [[[x(y)]]][[[t]]]σ ,τ /x,[[[u]]]σ ,τ /y = [[[t(u)]]]σ ,τ , if a = [[[A]]]σ and b = [[[B]]]σ .
(b) Assume a = [[[A]]]σ and b = [[[B]]]σ and φ(d) = [[[t]]]σ ,(τ ,d/y) for all d ∈ E(a). Then Φa,b([[[λy : A.t]]]σ ,τ)(d) =

[[[x(y)]]]([[[λx:A.t]]]σ ,τ)/x,d/y = [[[(λy : A.t)(y)]]]σ ,(τ ,d/y) = [[[t]]]σ ,(τ ,d/y) = φ(d). Thus, [[[λy : A.t]]]σ ,τ = Φ−1
a,b (φ).

(c) For any type B with free variables in the domain of σ we have: ΦF ([[[t]]]σ ,τ , [[[B]]]σ) = [[[x(α)]]][[[t]]]σ ,τ /x,[[[B]]]σ /α =

[[[t(B)]]]σ ,τ if F(a) = [[[A]]]σ ,a/α and x : ∀α.A.
(d) Assume F(a) = [[[A]]]σ ,a/α , x : ∀α.A, and ψ(a) = [[[t]]](σ ,a/α),τ for all a ∈ Tp. Then ΦF ([[[λα.t]]]σ ,τ)(a) =

[[[x(α)]]]a/α,[[[λα.t]]]σ ,τ /x = [[[(λα.t)(α)]]](σ ,a/α),τ = [[[t]]](σ ,a/α),τ = ψ(a). Thus, [[[λα.t]]]σ ,τ = Φ−1
F (ψ). �

This finishes the definition of M and the proof that M is unique if Pred is the smallest possible. �

The type structure ⟨Tp∗, E(.)∗, [[[.]]]∗⟩ satisfies all conditions required to be extended to a model M∗.

Lemma 8.4 (Extension to a Model). Assume M is any model and ⟨Tp∗, E(.), [[[.]]]∗⟩ is the type structure defined from M.

(1) [[[.]]]∗ commutes with substitution and βη, and it is weakly extensional.
(2) There is a unique extension of ⟨Tp∗, E(.), [[[.]]]∗⟩ to a model M∗ with the minimum set Pred∗.

Proof. (1) The commutation of [[[.]]]∗ with substitution is a consequence of Lemma 7.2(1)(2)(4) (the commutation of (.)∗
w.r.t. substitution) and commutation of [[[.]]] and δ(.)with substitution. Commutation of [[[.]]]∗ w.r.t. βη is a consequence
of Lemma 7.3(5) (commutation of (.)∗ w.r.t. βη) and commutation of [[[.]]] and δ(.) w.r.t. βη. Weak Extensionality of
[[[.]]]∗ is a consequence of Weak Extensionality for [[[.]]] and the fact that (.)∗ is uniquely defined in term of →,∀, λ.

(2) By (1) and Lemma 8.3. �

This concludes the definition of M∗ and the proof that it is a model. The decompiler for F ∗ is interpreted as a family of
maps in M∗. By applying them we can prove:

Theorem 8.5. If M is consistent, then its equational theory =M∗ is between βη and |βη|.

Proof. SinceM∗ is amodel ofF , its equational theory includes βη. Assume t, u are closed terms ofF of a closed type A, and
t =M∗ u. Let t ′ and u′ be the βη-long normal forms of t and u respectively. We have t ′ =M∗ u′, therefore δ(t ′∗) =M δ(u′∗) by
definition of M∗. By Theorem 6.5 for the coding in Tmc , we deduce that δ([[t ′]]) =βη δ(fA(t ′∗)) =M δ(fA(u′∗)) =βη δ([[u′

]]),
and therefore δ([[t ′]]) =M δ([[u′

]]) in the type δ(Tm) = DB = (Nat → dBc). We claim that this implies t =|βη| u in F .
Indeed, if we apply both sides to 0 we deduce δ([[t ′]])(0) =M δ([[u′

]])(0) in the type dBc , so δ([[t]])(0) =βη δ([[u]])(0)
in F by βη-completeness of dBc in the consistent model M. By δ([[t ′]])(0) =βη ⌈|t ′|⌉c

0 in the proof of Lemma 5.7(2), we
conclude ⌈|t ′|⌉c

0 =βη ⌈|u′
|⌉

c
0, so |t ′| =α |u′

|. We conclude |t| =βη |t ′| =α |u′
| =βη |u| and hence t =|βη| u in F . �

Remark that the equational theory ofM could be, say, observational equality: yet, even in this case, wemay define inside
M, and using only the language of M, some model M∗ whose equational theory is weaker than |βη|.

We would like to prove a stronger result: ‘‘in every model M of F we can define some model M∗ whose equational theory is
exactly βη.’’We conjecture that this can be done if in the proof of the previous theoremwe change the type Tm representing
all untyped λ-terms of Λ in F to some suitable type of F representing all pseudo-terms of F . The reason why we cannot
prove this result for the moment is that our decompiler produces codes of untyped λ-terms, erasing all types from the term,
and therefore it identifies any two terms which are equal in |βη|.

S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20 19

Appendix

Proof of Lemma 7.2. (1) By induction on A. We distinguish three cases, according to the first symbol of A.
(a) Assume A = β . Then A[T/α]

∗
= β[T/α]

∗ and A∗
[T ∗/α∗

] = β∗
[T ∗/α∗

] = β[T ∗/α]. If β = α then both expressions
are T ∗. If β ≠ α then both expressions are β .

(b) Assume A = B → C . Then A[T/α]
∗

= (B[T/α] → C[T/α])∗ = B[T/α]
∗

→ C[T/α]
∗

= (by induction hypothesis on
B, C) B∗

[T ∗/α] → C∗
[T ∗/α] = (B∗

→ C∗)[T ∗/α] = A∗
[T ∗/α].

(c) Assume A = ∀β.B: by possibly renaming β we have α ≠ β, Tm and β ∉ FV(T). Then A[T/α]
∗

= (by α ≠ β)
(∀β.B[T/α])∗ = ∀β.(β → Tm) → (Tm → β) → (B[T/α])∗ = (by induction hypothesis on B)= ∀β.(β → Tm) →

(Tm → β) → B∗
[T ∗/α] = (by α ≠ β, Tm) (∀β.(β → Tm) → (Tm → β) → B∗)[T ∗/α] = (∀β.B)∗[T ∗/α] =

A∗
[T ∗/α].

(2) By induction on t . We distinguish five cases, according to the first symbol of t .
(a) Assume t = y. Then t[u/x]∗ = y[u/x]∗ and t∗[u∗/x] = y[u∗/x]. If y = x then both expressions are u∗. If y ≠ x then

both expressions are y.
(b) Assume t = vw, an application to a term. Then t[u/x]∗ = (v[u/x]w[u/x])∗ = v[u/x]∗w[u/x]∗ = (by induction

hypothesis on v,w) v∗
[u∗/x]w∗

[u∗/x] = (v∗w∗)[u∗/x] = t∗[u∗/x].
(c) Assume t = λy : B.v: by possibly renaming y we may also assume x ≠ y ∉ FV(u). Then t[u/x]∗ = (by x ≠ y)

(λy : B.v[u/x])∗ = λy : B∗.(v[u/x])∗ = (by induction hypothesis on v) λy : B∗.(v∗
[u∗/x]) = (by x ≠ y)

(λy : B∗.v∗)[u∗/x] = t∗[u∗/x].
(d) Assume t = vT . The variable x is not free in fT , gT because x ≠ fβ , gβ for any β . Then t[u/x]∗ = (v[u/x]T)∗ =

v[u/x]∗T ∗fTgT = (by induction hypothesis on v) v∗
[u∗/x]T ∗fTgT = (by x not free in fT , gT) (v∗T ∗fTgT)[u∗/x] =

t∗[u∗/x].
(e) Assume t = λα.v. By possibly renaming we may assume that fα, gα ∉ FV(u∗). Then t[u/x]∗ = (λα.v[u/x])∗ =

λα.λfα : α → Tm.λgα : Tm → α.(v[u/x])∗ = (by induction hypothesis on v) λα.λfα : α → Tm.λgα : Tm →

α.(v∗
[u∗/x]) = (by x ≠ fα, gα and fα, gα ∉ FV(u∗)) (λα.λfα : α → Tm.λgα : Tm → α.v∗)[u∗/x] = t∗[u∗/x].

(3) Recall that σ = [T ∗/α, fT/fα, gT/gα]. We prove fA[T/α] = σ(fA) and gA[T/α] = σ(gA) by simultaneous induction on A. We
distinguish three cases according to the first symbol of A.
(a) Assume A = β , a type variable. Then fA[T/α] = fβ[T/α] and σ(fA) = (fβ)[fT/fα]. If β = α ≠ Tm then fβ is a variable

and fβ = fα: thus, both sides are fT . If β ≠ α then either β = Tm and fβ = idTm, or β ≠ Tm and fβ is a variable
≠ fα: in both cases, both sides are the term fβ . For the same reason if β = α then gA[T/α] = gT = σ(gA) and if β ≠ α
then gA[T/α] = gβ = σ(gA).

(b) Assume A = B → C . Then fA[T/α] = fB[T/α]→C[T/α] = λy : (B[T/α] → C[T/α])∗.lam(fC[T/α]◦y◦gB[T/α]) =

(by (1) and induction hypothesis on B, C) λy : (B∗
→ C∗)[T ∗/α].lam(σ (fC)◦y◦σ(gB)) = λy : σ(B∗

→

C∗).lam(σ (fC)◦y◦σ(gB)) = σ(λy : (B∗
→ C∗).lam(fC ◦y◦gB)) = σ(fA). In a similar way we have gA[T/α] =

gB[T/α]→C[T/α] = λy : Tm.gC[T/α]◦ap(y)◦fB[T/α] = (by induction hypothesis on B, C) λy : Tm.σ (gC)◦ap(y)◦σ(fB)) =

σ(λy : Tm.gC ◦ap(y)◦fB) = σ(gA).
(c) Assume A = ∀β.B: by possibly renaming y, β we may assume: fα, gα ≠ y, β is not free in T , and α ≠ β .

Therefore fα, gα ≠ fβ , gβ . As a consequence we have B[T/α][Tm/β] = B[Tm/β][T/α]. Then fA[T/α] = λy :

(∀β.B)[T/α]
∗.fB[T/α][Tm/β]

(y(Tm, idTm, idTm)) = (by (1), B[T/α][Tm/β] = B[Tm/β][T/α], and induction hypothesis
on B[Tm/β]) λy : (∀β.B)∗[T ∗/α].σ (fB[Tm/β]

)(y(Tm, idTm, idTm)) = λy : σ((∀β.B)∗).σ (fB[Tm/β]
)(y(Tm, idTm, idTm))

= σ(λy : (∀β.B)∗.fB[Tm/β]
(y(Tm, idTm, idTm))) = σ(fA). In a similar way we have gA[T/α] = (by α ≠ β)

g∀β.B[T/α] = λy : Tm.λβ.λfβ : β → Tm.λgβ : Tm → β.gB[T/α](y) = (by induction hypothesis on B) λy : Tm.λβ.λfβ :

β → Tm.λgβ : Tm → β.σ (gB) = (by fα, gα ≠ fβ , gβ , y) σ(λy : Tm.λβ.λfβ : β → Tm.λgβ : Tm → β.gB) = σ(gA).
(4) Recall that σ = [T ∗/α, fT/fα, gT/gα]. We argue by induction on t . We distinguish five cases, according to the first symbol

of t .
(a) Assume t = y. We have y ≠ fα, gα because fα, gα are not free in t . Then t[T/α]

∗
= y∗

= y and σ(t∗) = σ(y) = y.
(b) Assume t = vw. Then t[T/α]

∗
= v[T/α]

∗w[T/α]
∗

= (by induction hypothesis on v,w) σ(v∗)σ (w∗) = σ(v∗w∗) =

σ((vw)∗) = σ(t∗).
(c) Assume t = λy : B.v: by possibly renaming ywe have fβ , gβ ≠ y ∉ FV(T). Then t[T/α]

∗
= λy : B[T/α]

∗.v[T/α]
∗

=

(by (1) and induction hypothesis on v) λy : σ(B∗).σ (v∗) = (by fβ , gβ ≠ y) σ(λy : B∗.v∗) = σ(t∗).
(d) Assume t = vU . Then t[T/α]

∗
= v[T/α]

∗(U[T/α]
∗, fU[T/α], gU[T/α]) = (by induction hypothesis on v, (1) and (3))

σ(v∗)(U∗
[T ∗/α], σ (fU), σ (gU)) = σ(v∗)(σ (U∗), σ (fU), σ (gU)) = σ(v∗(U∗, fU , gU)) = σ(t∗).

(e) Assume t = λβ.v: by possibly renaming β, fβ , gβ we have α ≠ β and fα, gα ≠ fβ , gβ and fβ , gβ , β ∉

FV(T), FV(fT), FV(gT). Therefore t[T/α]
∗

= λβ.λfβ : β → Tm.λgβ : Tm → β.(v[T/α]
∗) = (by induction

hypothesis on v) λβ.λfβ : β → Tm.λgβ : Tm → β.σ (v∗) = (by α, fα, gα ≠ β, fβ , gβ) σ(λβ.λfβ : β → Tm.λgβ :

Tm → β.v∗) = σ(t∗).
(5) By definition of g , the term g∀α.A(y)(T ∗, fT , gT) β-reduces to gA[T ∗/α, fT/fα, gT/gα](y), that is σ(gA)(y). By (3) and

α ≠ Tm we conclude σ(gA)(y) = gA[T/α](y). �

20 S. Berardi, M. Tatsuta / Theoretical Computer Science 435 (2012) 3–20

References

[1] A. Abel, Weak beta-normalization and normalization by evaluation for system F, in: Proceedings of Logic for Programming Artificial Intelligence and
Reasoning’08, in: LNCS, vol. 5330, 2008, pp. 497–511.

[2] A. Abel, Typed applicative structures and normalization by evaluation for system Fω , in: Proceedings of Computer Science Logic 2009, in: LNCS,
vol. 5771, 2009, pp. 40–54.

[3] K. Aehlig, F. Joachimski, Operational aspects of untyped normalisation by evaluation, Math. Struct. Comput. Sci. 14 (4) (2004) 587–611.
[4] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North Holland, Amsterdam, 1984, Appendix C.
[5] U. Berger, M. Eberl, H. Schwichtenberg, Normalisation by evaluation, in: B. Moller, J.V. Tucker (Eds.), Prospects for Hardware Foundations, 1998,

pp. 117–137.
[6] F. Barbanera, S. Berardi, A full continuous model of polymorphism, Theoret. Comput. Sci. 290 (1) (2003) 407–428.
[7] S. Berardi, C. Berline, βη-complete models for system F, Math. Struct. Comput. Sci. 12 (6) (2002) 823–874.
[8] S. Berardi, C. Berline, Building continuous webbed models for system F, Theoret. Comput. Sci. 315 (1) (2004) 3–34.
[9] H. Friedman, Classically and intuitionistically provably recursive functions, in: D.S. Scott, G.H. Muller (Eds.), Higher Set Theory, in: Lecture Notes in

Mathematics, vol. 699, 1978, pp. 21–28.
[10] Jean-Yves Girard, The system F of variable types, fifteen years later, Theoret. Comput. Sci. 45 (2) (1986) 159–192.
[11] T. Joly, Codage, separabilite et representation, These de doctorat, Universite de Paris VII, 2000. http://www.cs.ru.nl/~joly/these.ps.gz.
[12] F. Garillot, B. Werner, Simple types in type theory: deep and shallow encodings, in: Proceedings of Theorem Proving in Higher Order Logics 2007,

in: LNCS, vol. 4732, 2007, pp. 368–382.
[13] P. Lescanne, Jocelyne Rouyer-Degli, Explicit substitutions with de Bruijn’s levels, in: Proceedings of the 6th International Conference on Rewriting

Techniques and Applications, in: Lecture Notes in Computer Science, vol. 914, 1995, pp. 294–308.
[14] G. Longo, E. Moggi, Constructive natural deduction and its ‘omega-set’ interpretation, Math. Struct. Comput. Sci. 1 (2) (1991) 215–254.
[15] J.C. Mitchell, Semantic models for second-order lambda calculus, in: Proceedings of 25th Annual Symposium on Foundations of Computer Science,

1984, pp. 289–299.
[16] E. Moggi, R. Statman, The maximum consistent theory of second order lambda calculus, Types mailing list, July 24, 1986.

http://www.di.unito.it/~stefano/MoggiStatman1986.zip.
[17] F. Pfenning, C. Elliott, Higher-order abstract syntax, in: Proceedings of PLDI 88, ACM SIGPLAN Notices 23 (7) (1988) 199–208.
[18] F. Pfenning, P. Lee, LEAP: a language with eval and polymorphism, in: Proceedings of Theory and Practice of Software Development 1989, in: LNCS,

vol. 352, 1989, pp. 345–359.
[19] V.B. Tannen, J.H. Gallier, Polymorphic rewriting conserves algebraic strong normalization and confluence, in: Proceedings of International Colloquium

on Automata, Languages and Programming 1989, in: LNCS, vol. 372, 1989, pp. 137–150.

http://www.cs.ru.nl/~joly/these.ps.gz
http://www.di.unito.it/~stefano/MoggiStatman1986.zip

	Internal models of system F for decompilation
	Introduction
	β η-completeness, internal decompilation and normalization for simply typed λ-calculus
	The system F and a type Tm c coding untyped λ-terms
	Models of F and β η-completeness
	There is no normalizer, compiler, nor decompiler for F inside F
	An interpretation (.)* c of F into itself whose image is decompilable
	Proof of main theorem
	What we can prove about F and β η-completeness
	
	References

