A CLASS OF SYMMETRIC POLYTOPES

A. Hill and D. G. Larman
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England

Abstract

In E^{3} a polytope which possesses two facets which can be interchanged always possesses a second pair. However, this is not so in $E^{n}, n \geqslant 4$.

INTRODUCTION

This paper is the outcome of an empirical observation of one of us (A.H.) that whenever a 3-polytope possesses a pair of facets which could be interchanged then it always seemed to possess a second pair. Our first theorem proves that this must always be the case. However, we shall also show that in $E^{d}, d \geqslant 4$, there exists a d-polytope which has exactly two facets which can be interchanged. It would be interesting to characterize all such polytopes which seems to belong, as the proof of Theorem 1 shows, to a somewhat limited class.

If we dualize our observations in E^{3} we are led to consider 3-polytopes with pairs of vertices which can be interchanged. Using Steinitz's theorem, Theorem 1 also holds for 3-connected planar graphs. However, we shall show that the result does not hold for all 3-connected graphs with at least 7 vertices.

Theorem 1

Let P be a polytope in E^{3} which possesses a pair of facets which can be interchanged by an isomorphism of the face lattice. Then P possesses at least two such pairs.

Example 1

There exists in $E^{d}, d \geqslant 4$, a d-polytope P which possesses only one pair of facets which can be interchanged by an isomorphism of the face lattice of P.

The first part of Theorem 2 is the dual version of Theorem 1 (using Steinitz's theorem).

Theorem 2

Let G be a 3-connected planar graph which possesses a pair of vertices which can be interchanged by an isomorphism of the graph. Then there are at least two such pairs. Further, the result holds for all 3-connected graphs with at most 6 vertices, but there exists a 3-connected graph with 7 vertices with only one pair of interchangeable vertices.

Proof of Theorem 1. Let P^{*} be a 3-polytope and let ϕ^{*} be an isomorphism which interchanges two facets A, B of P^{*}. Let P be the dual of P^{*} and let ϕ be the isomorphism of the face lattice which interchanges the corresponding two vertices \mathbf{a}, \mathbf{b} of P. We shall suppose, for the moment, that P is a d-polytope, $d \geqslant 3$, and specialize to $d=3$ only when necessary.

We claim that we can assume that any vertex \mathbf{c} of P which is joined to a by an edge is also joined to \mathbf{b} by an edge. If not, then $\phi(\mathbf{c})$ is joined to \mathbf{b} by an edge but not to \mathbf{a}. In particular $\phi(\mathbf{c}) \neq \mathbf{c}$. Indeed, repeating this process, we have that $\phi^{2 m}(\mathbf{c})$ is joined to \mathbf{a} by an edge but not to \mathbf{b}, and that $\phi^{2 m+1}(\mathbf{c})$ is joined to \mathbf{b} by an edge but not to \mathbf{a}. Eventually there exists $m, n ; n>m$ such that $\phi^{2 n}(\mathbf{c})=\phi^{2 m}(\mathbf{c})$. If we suppose that $n-m$ is minimal then $\phi^{n-m}(\mathbf{c}) \neq \mathbf{c}$. For, if $\phi^{n-m}(\mathbf{c})=\mathbf{c}$ then $n-m$ must be odd (by the minimality of $n-m$) but then $\phi^{n-m}(\mathbf{c})$ is joined to \mathbf{b} by an edge but \mathbf{c} is not, i.e. $\phi^{n-m}(\mathbf{c}) \neq \mathbf{c}$. So ϕ^{n-m} is an isomorphism of P which interchanges \mathbf{c} and $\phi^{n-m}(\mathbf{c})$ as required. Hence we may assume that any vertex \mathbf{c} of P which is joined to a by an edge is also joined to \mathbf{b} by an edge.

Let $\mathbf{c}_{1}, \ldots, \mathbf{c}_{k}, k \geqslant 2$ be a list of the vertices joined to both \mathbf{a} and \mathbf{b} by an edge. Let F be a facet of P containing a and let $\left[\mathbf{a}, \mathbf{c}_{1}\right], \ldots,\left[\mathbf{a}, \mathbf{c}_{t}\right]$ (possibly together with $[\mathbf{a}, \mathbf{b}]$) be a list of the edges
containing a and contained in F. We claim that we may suppose that $\left[\mathbf{b}, \mathbf{c}_{1}\right], \ldots,\left[\mathbf{b}, \mathbf{c}_{t}\right]$ (possibly together with $[\mathbf{a}, \mathbf{b}]$) form the list of edges containing \mathbf{b} and contained in some facet of G of P.

If not, then F cannot contain b for, if it did, then $\left[b, c_{1}\right], \ldots,\left[b, c_{t}\right]$ are the edges of F emanating from b. Hence $\phi(F) \neq F$. Eventually, there exists $m, n, n>m, n-m$ minimal such that $\phi^{2(n-m)} F=F$. So

$$
\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{t}\right\}=\left\{\phi^{2(n-m)}\left(\mathbf{c}_{1}\right), \ldots, \phi^{(n-m)}\left(\mathbf{c}_{t}\right)\right\}
$$

So for each $j, j=1, \ldots, t$ there will be a least positive integer k_{j} such that $\phi^{2 k_{j}}\left(\mathbf{c}_{j}\right)=\mathbf{c}_{j}$. If k_{j} were even, then $\phi^{k_{j}}\left(\mathbf{c}_{j}\right) \neq \mathbf{c}_{j}$ and so $\phi^{k_{j}}$ would be the required isomorphism. So each k_{j} can be supposed odd.

If there exists $j, 1 \leqslant j \leqslant t$, with $\phi^{k_{j}}\left(\mathbf{c}_{j}\right) \neq \mathbf{c}_{j}$ then $\phi^{k_{j}}$ is the required isomorphism interchanging \mathbf{c}_{j} and $\phi^{k_{j}}\left(\mathbf{c}_{j}\right)$. So we may suppose that $\phi^{k_{j}}\left(\mathbf{c}_{j}\right)=\mathbf{c}_{j}, j=1, \ldots, t$. So $\phi^{S}(F)$ is a facet of P containing \mathbf{b}, as required. Hence, we may suppose that $\left[\mathbf{b}, \mathbf{c}_{1}\right], \ldots,\left[\mathbf{b}, \mathbf{c}_{t}\right]$ (possibly together with $[\mathbf{a}, \mathbf{b}]$) form the list of edges containing b and containing in some facet G of P. If F and G are distinct then F is the convex hull of $\mathbf{a}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}$ and G is the convex hull of $\mathbf{a}, \mathbf{b}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}$. If $F=G$ then F is the convex hull of $\mathbf{a}, \mathbf{b}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{1}$. From above, it also follows that P is the convex hull of $\mathbf{a}, \mathbf{b}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}$ and the facets of P take one of the three forms $\operatorname{conv}\left\{\mathbf{a}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}\right\}$, $\operatorname{conv}\left\{\mathbf{b}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}\right\}$ and $\operatorname{conv}\left\{\mathbf{a}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{t}\right\}$.

If we now dualize the situation there are two possible cases arising.

(i) $[a b]$ is not an edge of P

In this case P^{*} is a cylinder with bottom facet A and top facet B, where A and B are the duals of \mathbf{a} and \mathbf{b}. For P^{*} in E^{3} any two consecutive side facets are interchangeable under an isomorphism of the face lattice of P^{*}. An isomorphism will be the (combinatorial) reflection in their common edge.

(ii) $[a b]$ is an edge of P

In this case P^{*} is the convex hull of A and B (where A and B are similar facets) with $A \cap B$ a $d-2$ face of P^{*}, i.e. P^{*} is almost a cylinder with bottom facet A and top facet B except that A meets B in a $d-2$ face $A \cap B$.

For P^{*} in E^{3} the two side facets adjacent to $A \cap B$ are interchangeable under an isomorphism of the face lattice of P^{*}. An isomorphism will be the (combinatorial) reflection in $A \cap B$.

This completes the proof of Theorem 1.

Construction of Example I

In order to construct the example let us continue the analysis of Theorem 1. An obvious candidate would be a cylinder P^{*} in E^{d} whose bottom facet A (and hence top face B) have no isomorphisms of their face lattice which interchanges $d-2$ faces. Then we could interchange A and B but there remains the possibility that there is some other isomorphism λ which interchanges some other pair of facets (and necessarily $\lambda A \neq A$ or B, or $\lambda B \neq B$ or A). To prevent this occurring we ensure that the number of $d-2$ faces of A (and B) exceed those of the side facets.

So dualizing this argument we need to construct in $E^{d-1}, d \geqslant 4$, a $d-1$ polytope Q^{d-1} with no interchangeable vertices and whose total number of vertices exceed the maximal valence of any one vertex by at least 3 . This we do by induction. For E^{3}, Q^{3} is as in Fig. 1.

We show that no pair of vertices can be interchanged (by exhaustion).
b is fixed. \mathbf{b} is the only six valent vertex.
$\boldsymbol{a}, \boldsymbol{d}$ are fixed. The only two five valent vertices are a and d. However, \mathbf{d} lies on a facet with 7 vertices and a does not. Hence a and d cannot be interchanged.
g is fixed. \mathbf{g} is the only vertex with edges to \mathbf{a}, \mathbf{d} and \mathbf{b}.
c is fixed. \mathbf{g} is the only other vertex with edges to a and d.
j is fixed. \mathbf{d} is the only other vertex with edges to a and \mathbf{c}.
\boldsymbol{i} is fixed. \mathbf{i} is the only vertex with edges to $\mathbf{a}, \mathbf{b}, \mathbf{j}$.
\boldsymbol{h} is fixed. \mathbf{h} is the only vertex amongst \mathbf{h}, \mathbf{e}, \mathbf{f} with an edge to \mathbf{i}.
f is fixed. \mathbf{f} is the only vertex amongst \mathbf{e}, \mathbf{f} with an edge to \mathbf{h}.
e is fixed. All the other vertices of Q^{3} have now been shown to be fixed.

Fig. 1

Fig. 2

So no pair of vertices of Q^{3}, which is a 3-polytope with 10 vertices and the maximum valence of its vertices is 6 , can be interchanged by an isomorphism of the face lattice of Q^{3}.

Suppose now that a $d-1$ polytope Q^{d-1} has been constructed, $d \geqslant 4$, with no interchangeable vertices. Suppose further that Q^{d-1} has X_{d-1} vertices with maximum valence Y_{d-1}, where $Y_{d-1}+3 \leqslant X_{d-1}$. As $X_{3}=10$ and $Y_{3}=6$, this is true for $d=4$.
For the construction of Q^{d} we suppose that Q^{d-1} has centroid \mathbf{O} and lies in the coordinate hyperplane $x_{d}=0$ of E^{d}. Now, if \mathbf{e}_{d} is the d th unit vector let

$$
Q^{d}=\operatorname{conv}\left\{\mathbf{O}, \frac{1}{2} \mathbf{e}_{d}+\frac{1}{\sqrt{2}} Q^{d-1}, \mathbf{e}_{d}+Q^{d-1}\right\} .
$$

The vertices of Q^{d} are \mathbf{O} and the vertices of the two copies of Q^{d-1}, i.e. Q^{d} has $2 X_{d-1}+1$ vertices. The valence of \mathbf{O} is X_{d-1} and the valences of any other vertex is at most two more than its valence in (the copy of) Q^{d-1}. So $Y_{d}=X_{d-1}, d \geqslant 4$ and hence $Y_{d}+3 \leqslant X_{d}$. Thus, Q^{d} has been constructed inductively. We claim that there is no isomorphism of the face lattice which interchanges two vertices. Firstly the vertex \mathbf{O} has uniquely the maximum valence and hence is fixed. There are no edges joining \mathbf{O} to any vertex within $\mathbf{e}_{d}+Q^{d-1}$. Consequently any such isomorphisms would have to permute the vertices of

$$
\frac{1}{2} \mathbf{e}_{d}+\frac{1}{\sqrt{2}} Q^{d-1}
$$

and $\mathbf{e}_{d}+Q^{d-1}$ separately. By the inductive assumption on Q^{d-1} this is only possible if all the vertices remain fixed.

Finally taking the dual of Q^{d-1}, say $\left(Q^{d-1}\right)^{*}$ and taking the cylinder in E^{d} over $\left(Q^{d-1}\right)^{*}$ we obtain an example of a d-polytope, $d \geqslant 4$ in which exactly two facets can be interchanged by an isomorphism of the face lattice.

Proof of Theorem 2. The first part of Theorem 2 follows from Theorem 1 using Steinitz's theorem. So if a 3 -connected graph G has just one interchangeable pair of vertices then it must be non-planar. Consequently G must contain a refinement of at least one of the two Kuratowski graphs.

If G has 5 vertices it is the complete 5 -graph which has all pairs of vertices interchangeable. If G has 6 vertices then it is either the complete (3,3) bipartite graph, in which case all pairs of vertices are interchangeable, or G contains a refinement of the completed 5 -graph C_{5}. In this latter case we consider G as a vertex \mathbf{v} being added (with edges) to C_{5}. There are two possibilities.
(i) \mathbf{v} does not lie on the edges of C_{5} and hence v is joined by edges to at least 3 of the 5 vertices of C_{5}. Then all the vertices of C_{5} joined by an edge to \mathbf{v} are interchangeable as are all the vertices of C_{5} which are not joined by an edge to \mathbf{v}. This yields at least two interchangeable pairs.
(ii) \mathbf{v} lies on one of the edges, $[\mathbf{a}, \mathbf{b}]$ say and so \mathbf{v} is joined to at least one other vertex of C_{5}. In this case a and b are interchangeable. Also amongst the other three vertices \mathbf{c}, \mathbf{d}, e there will be a pair which are either both joined to v or both are not joined to v. Such a pair is also interchangeable. So again there are two interchangeable pairs.

To complete the proof of Theorem 2, we construct a 3-connected graph G with 7 vertices which possesses exactly one pair of interchangeable vertices. This graph is illustrated in Fig. 2.

Clearly \mathbf{a}, \mathbf{b} are interchangeable and we claim that there are no other pairs of interchangeable vertices.

Firstly any isomorphism ϕ of the graph must fix \mathbf{a}^{\prime} and \mathbf{b}^{\prime} since they are respectively the only 4 and 5 valent vertices.

Since of the five remaining vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{c}^{\prime}$ only \mathbf{c}^{\prime} is not joined to $\mathbf{b}^{\prime}, \phi$ must also fix \mathbf{c}^{\prime}.
We next show that ϕ fixes \mathbf{d}. If not then $\phi \mathbf{d}$ must be one of $\mathbf{a}, \mathbf{b}, \mathbf{c}$. If $\phi \mathbf{d}=\mathbf{a}$ (or \mathbf{b}) then $\phi \mathbf{c}$, which also has to be one of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ is not joined by an edge to $\phi \mathbf{d}$, whereas [$\mathbf{c}, \mathbf{d}]$ is an edge; which is impossible. If $\phi \mathbf{d}=\mathbf{c}$ then again since [$\mathbf{c}, \mathbf{d}]$ is an edge, $\phi \mathbf{c}=\mathbf{d}$. However, $\left[\mathbf{c}, \mathbf{a}^{\prime}\right]$ is an edge but $\left[\phi \mathbf{c}, \phi \mathbf{a}^{\prime}\right]=\left[\mathbf{d}, \mathbf{a}^{\prime}\right]$ is not. So ϕ fixes \mathbf{d}.

It remains to show that $\phi \mathbf{c}=\mathbf{c}$. If $\phi \mathbf{c}=\mathbf{a}$ then [$\mathbf{c}, \mathrm{d}]$ is an edge but $[\phi \mathbf{c}, \phi \mathrm{d}]=[\mathbf{a}, \mathrm{d}]$ is not, which is impossible. So $\phi \mathbf{c}=\mathbf{c}$ which completes the proof of Theorem 2.

REFERENCES

1. B. Grünbaum, Convex Polytopes. Interscience, London (1967).
2. A. F. Hawkins, A. C. Hill, J. E. Reeve and J. A. Tyrrell, On certain polyhedra. Math. Gaz. L (372), 140-144 (1966).
