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Abs t rac t - - In  E 3 a polytope which possesses two facets which can be interchanged always possesses a 
second pair. However, this is not  so in E ", n t> 4. 

I N T R O D U C T I O N  

This paper is the outcome of  an empirical observation of  one of  us (A.H.) that whenever a 
3-polytope possesses a pair of  facets which could be interchanged then it always seemed to possess 
a second pair. Our first theorem proves that this must always be the case. However, we shall also 
show that in E d, d 1> 4, there exists a d-polytope which has exactly two facets which can be 
interchanged. It would be interesting to characterize all such polytopes which seems to belong, as 
the proof  of  Theorem 1 shows, to a somewhat limited class. 

If  we dualize our observations in E 3 we are led to consider 3-polytopes with pairs of  vertices 
which can be interchanged. Using Steinitz's theorem, Theorem 1 also holds for 3-connected planar 
graphs. However, we shall show that the result does not hold for all 3-connected graphs with at 
least 7 vertices. 

Theorem 1 

Let P be a polytope in E 3 which possesses a pair of  facets which can be interchanged by an 
isomorphism of  the face lattice. Then P possesses at least two such pairs. 

Example 1 

There exists in E d, d >>, 4, a d-polytope P which possesses only one pair of facets which can be 
interchanged by an isomorphism of  the face lattice of  P. 

The first part of  Theorem 2 is the dual version of  Theorem 1 (using Steinitz's theorem). 

Theorem 2 

Let G be a 3-connected planar graph which possesses a pair of  vertices which can be interchanged 
by an isomorphism of  the graph. Then there are at least two such pairs. Further, the result holds 
for all 3-connected graphs with at most 6 vertices, but there exists a 3-connected graph with 7 
vertices with only one pair of  interchangeable vertices. 

Proof of Theorem 1. Let P*  be a 3-polytope and let ~b * be an isomorphism which interchanges 
two facets A, B of P*.  Let P be the dual of  P*  and let tp be the isomorphism of the face lattice 
which interchanges the corresponding two vertices a, b of  P. We shall suppose, for the moment, 
that P is a d-polytope, d ~> 3, and specialize to d = 3 only when necessary. 

We claim that we can assume that any vertex c of  P which is joined to a by an edge is also joined 
to b by an edge. If not, then ~b(e) is joined to b by an edge but not to a. In particular ~b(e) #: e. 
Indeed, repeating this process, we have that ~b~(e) is joined to a by an edge but not to b, and 
that ~2m+l(e) is joined to b by an edge but not to a. Eventually there exists m, n; n > m such that 
tk~(e) = t ~ ( e ) .  If  we suppose that n - m is minimal then q~"-'~(e) :/: e. For, if tp"-"(e) = e then 
n - m  must be odd (by the minimality of  n - m )  but then ~bn-m(e) is joined to b by an edge but 
e is not, i.e. ~bn-m(c) # c. So ~b n-m is an isomorphism of  P which interchanges e and ~n-m(C) as 
required. Hence we may assume that any vertex e of  P which is joined to a by an edge is also joined 
to b by an edge. 

Let c~ . . . . .  ek, k >~ 2 be a list of  the vertices joined to both a and b by an edge. Let F be a facet 
of  P containing a and let [a, eli . . . . .  [a, e,] (possibly together with [a, b]) be a list of  the edges 
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containing a and contained in F. We claim that  we may suppose that [b, e~] . . . . .  [b, c,] (possibly 
together with [a, b]) form the list of  edges containing b and contained in some facet of  G of  P. 

I f  not, then F cannot contain b for, if it did, then [b, e~ ] , . . . ,  [b, e,] are the edges of  F emanating 
from b. Hence ~b(F)# F. Eventually, there exists m, n, n > m, n -  m minimal such that 
~b 2<,- m) F = F. So 

{ c ,  . . . . .  c , }  = . . . . .  

So for each j, j = 1 . . . . .  t there will be a least positive integer kj such that 4)2kj (ci) = c~. I f  kj were 
even, then ~bkJ (cj) ~ cj and so ~b kj would be the required isomorphism. So each k i can be supposed 
odd. 

I f  there exists j ,  1 ~<j ~< t, with ~bkJ(cj) ¢ cj then q~kj is the required isomorphism interchanging 
cj and qbkJ(cj). So we may suppose that ckj(cj) = c j , j  = 1 . . . .  , t. SO ckS(F) is a facet of  P containing 
b, as required. Hence, we may suppose that [b, ej ] . . . . .  [b, c,] (possibly together with [a, b]) form 
the list o f  edges containing b and containing in some facet G of  P. I f  F and G are distinct then 
F is the convex hull o f  a, ct . . . . .  c, and G is the convex hull of  a, b, c] . . . . .  c,. I f  F = G then F 
is the convex hull of  a, b, ct . . . . .  c,. F rom above, it also follows that P is the convex hull of  
a, b, c~ . . . . .  c, and the facets of  P take one of  the three forms conv{a,c~ . . . . .  c,}, 
conv(b, cl . . . . .  c,} and conv{a, cl . . . . .  ct}. 

I f  we now dualize the situation there are two possible cases arising. 

(i) [a b] is not an edge of  P 

In this case P* is a cylinder with bot tom facet A and top facet B, where A and B are the duals 
o f  a and b. For P*  in E 3 any two consecutive side facets are interchangeable under an isomorphism 
of  the face lattice of  P*. An isomorphism will be the (combinatorial) reflection in their common 
edge. 

(ii) [a bJ is an edge of  P 

In this case P*  is the convex hull of  A and B (where A and B are similar facets) with A f iB a 
d - 2 face of  P*,  i.e. P*  is almost a cylinder with bo t tom facet A and top facet B except that A 
meets B in a d - 2 face A fi B. 

For  P* in E 3 the two side facets adjacent to A fiB are interchangeable under an isomorphism 
of  the face lattice of  P*.  An isomorphism will be the (combinatorial) reflection in A fi B. 

This completes the proof  of  Theorem 1. 

Construction o f  Example 1 

In order to construct the example let us continue the analysis of  Theorem 1. An obvious 
candidate would be a cylinder P*  in E a whose bot tom facet A (and hence top face B) have no 
isomorphisms of their face lattice which interchanges d - 2 faces. Then we could interchange A 
and B but there remains the possibility that there is some other isomorphism 2 which interchanges 
some other pair of  facets (and necessarily 2A # A or B, or ;tB 4: B or A). To prevent this occurring 
we ensure that the number  of  d - 2 faces of  A (and B) exceed those of the side facets. 

So dualizing this argument we need to construct in E a- t , d >/4, a d - 1 polytope Qa- ~ with 
no interchangeable vertices and whose total number  of  vertices exceed the maximal valence of any 
one vertex by at least 3. This we do by induction. For  E 3, Q3 is as in Fig. 1. 

We show that no pair of  vertices can be interchanged (by exhaustion). 
b is fixed, b is the only six valent vertex. 
a, d are fixed. The only two five valent vertices are a and d. However,  d lies on a facet with 7 

vertices and a does not. Hence a and d cannot  be interchanged. 
g is fixed, g is the only vertex with edges to a, d and b. 
e is fixed, g is the only other vertex with edges to a and d. 
j is fixed, d is the only other vertex with edges to a and e. 
i is fixed, i is the only vertex with edges to a, b, j. 
h is fixed, h is the only vertex amongst  h, e, f with an edge to i. 
f is fixed, f is the only vertex amongst  e, f with an edge to h. 
e is fixed. All the other vertices of  Q3 have now been shown to be fixed. 
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So no pair of  vertices of  Q3, which is a 3-polytope with 10 vertices and the maximum valence 
of  its vertices is 6, can be interchanged by an isomorphism of  the face lattice of  Q3. 

Suppose now that a d - 1 polytope Qd- 1 has been constructed, d ~> 4, with no interchangeable 
vertices. Suppose further that Q a-! has Xa_ ~ vertices with maximum valence Yd-J, where 
Yd- l + 3 ~ Xd- j. As )(3 = l0 and /:3 = 6, this is true for d = 4. 

For  the construction of  ad  we suppose that Qd-i  has centroid O and lies in the coordinate 
hyperplane Xd = 0 of  E d. N o w ,  if  ed is the dth unit vector let 

-21 e~ 1--~--Q ed Qa-,}. Q a = conv(O,  + + 

The vertices of  Q a are O and the vertices of  the two copies of  Q a-~, i.e. Q a has 2Xa_ ~ + 1 vertices. 
The valence of  O is Xa_ 1 and the valences of  any other vertex is at most two more than its valence 
in (the copy of) Qd-~. So Yd = Xa_ l, d i> 4 and hence Ya+ 3 <~ Xz. Thus, Qdhas been constructed 
inductively. We claim that there is no isomorphism of  the face lattice which interchanges two 
vertices. Firstly the vertex O has uniquely the maximum valence and hence is fixed. There are no 
edges joining O to any vertex within ed + Qa-~. Consequently any such isomorphisms would have 
to permute the vertices of  

1 1 
-ed+--~_ Q a-J 
2 

and ed+ Qd-~ separately. By the inductive assumption on Qd-~ this is only possible if all the 
vertices remain fixed. 

Finally taking the dual of  Qd-J, say ( Q d - t ) .  and taking the cylinder in E a over (Qd-l) .  we 
obtain an example of  a d-polytope, d >/4 in which exactly two facets can be interchanged by an 
isomorphism of  the face lattice. 

Proof of  Theorem 2. The first part of  Theorem 2 follows from Theorem 1 using Steinitz's theorem. 
So if a 3-connected graph G has just one interchangeable pair of  vertices then it must be non-planar. 
Consequently G must contain a refinement of  at least one of  the two Kuratowski graphs. 

I f  G has 5 vertices it is the complete 5-graph which has all pairs of  vertices interchangeable. If 
G has 6 vertices then it is either the complete (3,3) bipartite graph, in which case all pairs of  vertices 
are interchangeable, or G contains a refinement of  the completed 5-graph Cs. In this latter case 
we consider G as a vertex v being added (with edges) to (?5. There are two possibilities. 

(i) v does not lie on the edges of  6"5 and hence v is joined by edges to at least 3 of  the 5 vertices 
of  6"5. Then all the vertices of  C5 joined by an edge to v are interchangeable as are all the vertices 
of  6'5 which are not joined by an edge to v. This yields at least two interchangeable pairs. 
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(ii) v lies on one o f  the edges, [a, b] say and so v is joined to at least one other  vertex of  C5. 
In this case a and b are interchangeable.  Also amongst  the other  three vertices e, d, e there will 
be a pair  which are either bo th  joined to v or  both  are not  joined to v. Such a pair is also 
interchangeable.  So again there are two interchangeable pairs. 

To  complete  the p r o o f  o f  Theorem 2, we construct  a 3-connected graph G with 7 vertices which 
possesses exactly one pair  o f  interchangeable vertices. This graph is illustrated in Fig. 2. 

Clearly a, b are interchangeable and we claim that  there are no other  pairs of  interchangeable 
vertices. 

Firstly any isomorphism th o f  the graph must  fix a' and b' since they are respectively the only 
4 and 5 valent vertices. 

Since o f  the five remaining vertices a, b, e, d, e' only e' is not  joined to b', q~ must  also fix e'. 
We next  show that  ~b fixes d. I f  not  then ~bd must  be one o f  a, b, c. I f  q~d = a (or b) then ~be, 

which also has to be one o f  a, b, e, fl is not  joined by an edge to tkd, whereas [e, fl] is an edge; 
which is impossible. I f  ~bfl = e then again since [e, fl] is an edge, ~bc = d. However ,  [e, a'] is an edge 
but  [q~ c, q~ a'] = [d, a'] is not.  So ~b fixes d. 

It remains to show that  ~be = e. I f  q~e = a then [e, d] is an edge but  [~be, q~d] = [a, d] is not,  which 
is impossible. So ~ e = e which completes the p roo f  of  Theorem 2. 
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