On the degree distance of a graph

P. Dankelmann ${ }^{\text {a,* }}$, I. Gutman ${ }^{\text {b }}$, S. Mukwembi ${ }^{\text {a }}$, H.C. Swart ${ }^{\text {a }}$
${ }^{\text {a }}$ University of KwaZulu-Natal, Durban, South Africa
${ }^{\text {b }}$ University of Kragujevac, Kragujevac, Serbia

ARTICLE INFO

Article history:

Received 19 January 2009
Received in revised form 1 April 2009
Accepted 8 April 2009
Available online 17 May 2009

Keywords:

Distance
Degree distance
Diameter

Abstract

If G is a connected graph with vertex set V, then the degree distance of $G, D^{\prime}(G)$, is defined as $\sum_{\{u, v\} \subseteq V}(\operatorname{deg} u+\operatorname{deg} v) d(u, v)$, where $\operatorname{deg} w$ is the degree of vertex w, and $d(u, v)$ denotes the distance between u and v. We prove the asymptotically sharp upper bound $D^{\prime}(G) \leq \frac{1}{4} n d(n-d)^{2}+O\left(n^{7 / 2}\right)$ for graphs of order n and diameter d. As a corollary we obtain the bound $D^{\prime}(G) \leq \frac{1}{27} n^{4}+O\left(n^{7 / 2}\right)$ for graphs of order n. This essentially proves a conjecture by Tomescu [I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. (98)(1999) 159-163].

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are concerned with an invariant of connected graphs called the degree distance. Let G be a connected graph of order n and $V(G)$ its vertex set. We denote the degree of a vertex $w \in V(G)$ by $\operatorname{deg} w$ and the distance between vertices $v \in V(G)$ and $u \in V(G)$ by $d(v, u)$. Then the degree distance of G is defined as

$$
D^{\prime}(G)=\sum_{\{u, v\} \subseteq V(G)}(\operatorname{deg} u+\operatorname{deg} v) d(u, v) .
$$

The degree distance seems to have been considered first by Dobrynin and Kochetova [6] and practically at the same time by Gutman [7], who used a different name for it (see below). In the mathematical literature $D^{\prime}(G)$ was investigated by Tomescu [20], Tomescu [21] and Bucicovschi and Cioabă [2]. However, somewhat earlier, the same quantity was encountered in connection with certain chemical applications.

In 1989 H.P. Schultz put forward a so-called "molecular topological index", MTI, defined as follows [15]: Let G be a (molecular) graph of order n whose vertices are labelled by $v_{1}, v_{2}, \ldots, v_{n}$. Then

$$
M T I=\operatorname{MTI}(G)=\sum_{i=1}^{n}[\mathbf{v}(\mathbf{A}+\mathbf{D})]_{i}
$$

where \mathbf{A} and $\mathbf{D}=\left\|d\left(v_{i}, v_{j}\right)\right\|$ are, respectively, the adjacency and distance matrices of G, and where $\mathbf{v}=$ (deg v_{1}, $\operatorname{deg} v_{2}, \ldots, \operatorname{deg} v_{n}$). For chemical research on MTI see [12-16,18,19,17].

It is easy to show that [7]

$$
\begin{equation*}
M T I(G)=M(G)+S(G) \tag{1}
\end{equation*}
$$

where

$$
M(G)=\sum_{i=1}^{n}\left(\operatorname{deg} v_{i}\right)^{2}
$$

[^0]and
$$
S(G)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\operatorname{deg} v_{i}+\operatorname{deg} v_{j}\right) d\left(v_{i}, v_{j}\right)
$$

The first term on the right-hand side of (1) has received much attention in the chemical literature, where it is known as the "Zagreb index" (see [8] and the references cited therein). For mathematical research on $M(G)$ see [4]. $M(G)$ is related in a simple manner to the variance of the vertex degrees of G (see [1]).

The second term on the right-hand side of (1) is the degree distance of G. In the chemical literature the name "Schultz index" was proposed for it in [7], and was eventually accepted by most other authors (see, for instance, [5,22]), including the members of the Schultz family (see [17]).

The relation between the degree distance and the Wiener index was investigated in $[5,7,9-11,14]$. Recall that the Wiener index of a graph G is defined as

$$
W(G)=\sum_{\{u, v\} \subseteq V} d(u, v)
$$

One such relation is provided by the following identity (see $[7,11]$): If T is a tree of order n, then

$$
D^{\prime}(T)=4 W(T)-n(n-1)
$$

2. An upper bound on the degree distance

In [20], Tomescu proved that the degree distance of a connected graph of order n cannot exceed $\frac{2}{27} n^{4}+O\left(n^{3}\right)$. He conjectured that this bound can be improved to $\frac{1}{27} n^{4}+O\left(n^{3}\right)$, and he constructed a family of graphs that attain this bound. In [2], Bucicovschi and Cioabă comment that "this conjecture seems difficult at present time". Our main result implies this conjecture, except for a weakening of the $O\left(n^{3}\right)$ error term to $O\left(n^{7 / 2}\right)$.

We will make use of the following lemma (see [3]).
Lemma 1. Let v be a vertex of eccentricity d, and let k be a real, $k>2$. Let A_{k} be the number of distance layers of v that contain only vertices of degree less than k. Then

$$
A_{k} \geq(d+1) \frac{k+1}{k-2}-\frac{3 n}{k-2}
$$

Theorem 1. Let G be a connected graph of order n and diameter d. Then

$$
D^{\prime}(G) \leq \frac{1}{4} n d(n-d)^{2}+O\left(n^{7 / 2}\right)
$$

Proof. Let $P=u_{0}, u_{1}, \ldots, u_{d}$ be a diametral path. We will find it convenient to identify P with the set of its vertices. Let \mathcal{C} be a maximum set of disjoint pairs of vertices in $V-P$ at distance at least 3 . If $\{a, b\} \in \mathcal{C}$, then we say that a and b are partners. Finally let $M \subset V$ be the set of vertices that are neither in a pair of vertices in \mathcal{C} nor on P. Let $m=|M|$ and $|\mathcal{C}|=c$.

For a vertex v of G define $D(v)=\sum_{w \in V} d(v, w)$ and $D^{\prime}(v)=\operatorname{deg} v D(v)$. We will make use of the following equation, observed by Tomescu [20].

$$
\begin{equation*}
D^{\prime}(G)=\sum_{v \in V} D^{\prime}(v) \tag{2}
\end{equation*}
$$

Claim 1: $\sum_{u \in P} D^{\prime}(u)=O\left(n^{7 / 2}\right)$.
Partition the set P into two sets P_{1} and P_{2}, where $P_{1}=\{v \in P \mid \operatorname{deg} v \leq \sqrt{n}\}$, and $P_{2}=P-P_{1}$. Substituting \sqrt{n} for k and u_{0} for v in Lemma 1 yields that $\left|P_{1}\right| \geq(d+1) \frac{k+1}{k-2}-\frac{3 n}{k-2}=d-O(\sqrt{n})$, and thus $\left|P_{2}\right|=O(\sqrt{n})$. Hence

$$
\begin{equation*}
\sum_{u \in P} D^{\prime}(u)=\sum_{u \in P_{1}} \operatorname{deg} u D(u)+\sum_{u \in P_{2}} \operatorname{deg} u D(u) \leq\left|P_{1}\right| n^{2} \sqrt{n}+\left|P_{2}\right| n n^{2}=O\left(n^{7 / 2}\right) \tag{3}
\end{equation*}
$$

CASE 1: $m \leq 1$.
We first show that, for all $\{a, b\} \in \mathcal{C}$,

$$
\begin{equation*}
D^{\prime}(a)+D^{\prime}(b) \leq \frac{1}{2} n d(n-d)+O\left(n^{2}\right) \tag{4}
\end{equation*}
$$

Since a has deg a vertices at distance 1, and no vertex has distance greater than d from $a, D(a) \leq \operatorname{deg} a+2+3+\cdots+(d-$ $1)+(n-\operatorname{deg} a-d+1) d=d\left(n-\frac{1}{2} d-\operatorname{deg} a\right)+O(n)$, and thus $D^{\prime}(a) \leq d \operatorname{deg} a\left(n-\frac{1}{2} d-\operatorname{deg} a\right)+O\left(n^{2}\right)$. (We note that throughout the proof we will replace small additive constants by $O(1)$ in order to keep the calculations simple. These $O(1)$ terms will lead to higher order error terms $O(n), O\left(n^{2}\right)$, etc.) Similarly we have $D^{\prime}(b) \leq d \operatorname{deg} b\left(n-\frac{1}{2} d-\operatorname{deg} b\right)+O\left(n^{2}\right)$,
and thus

$$
\begin{aligned}
D^{\prime}(a)+D^{\prime}(b) & \leq d\left(\operatorname{deg} a\left(n-\frac{1}{2} d-\operatorname{deg} a\right)+\operatorname{deg} b\left(n-\frac{1}{2} d-\operatorname{deg} b\right)\right)+O\left(n^{2}\right) \\
& =d(f(\operatorname{deg} a)+f(\operatorname{deg} b))+O\left(n^{2}\right)
\end{aligned}
$$

where f is the real function defined by $f(x)=x\left(n-\frac{1}{2} d-x\right)$. Let $K=\operatorname{deg} a+\operatorname{deg} b$. Elementary calculations show that $f\left(x_{1}\right)+f\left(x_{2}\right)$ is maximised, subject to $x_{1}+x_{2}=K$, if $x_{1}=x_{2}=\frac{1}{2} K$. Hence

$$
\begin{equation*}
D^{\prime}(a)+D^{\prime}(b) \leq K d\left(n-\frac{1}{2} d-\frac{1}{2} K\right)+O\left(n^{2}\right) \tag{5}
\end{equation*}
$$

Now deg $a+\operatorname{deg} b \leq n-d+5$ since a and b have no common neighbours, and each of a and b is adjacent to at most 3 vertices on P. Hence $K \leq n-d+O(1)$. Since the right-hand side of (5) is increasing for $K \leq n-\frac{1}{2} d$, we obtain (4) by substituting $K=n-d+O(1)$.
We now bound $D^{\prime}(G)$. By $m \leq 1$ and $D^{\prime}(v) \leq n^{3}$ for all $v \in M$, we have $\sum_{v \in M} D^{\prime}(v) \leq n^{3}$. Hence

$$
\begin{aligned}
D^{\prime}(G) & =\sum_{\{a, b\} \in \mathcal{C}}\left(D^{\prime}(a)+D^{\prime}(b)\right)+\sum_{v \in M} D^{\prime}(v)+\sum_{x \in P} D^{\prime}(x) \\
& \leq \frac{1}{2} c n d(n-d)+O\left(n^{7 / 2}\right) .
\end{aligned}
$$

Now $n=2 c+d+1+m$, so $c=\frac{1}{2}(n-d)+O(1)$. Substituting this now yields the theorem for Case 1 .
CASE 2: $m \geq 2$.
Fix a vertex $v \in M$. From each pair $\{a, b\} \in \mathcal{C}$ choose the vertex closer to v, or if $d(v, a)=d(v, b)$ choose one of the vertices arbitrarily, and let A be the set of vertices thus chosen, and let B be the set of partners of the vertices in A. So $|A|=|B|=c$. Let $A_{1}\left(B_{1}\right)$ be the set of vertices x in $A(B)$ whose partner is at distance at most 9 from x, and let $c_{1}=\left|A_{1}\right|=\left|B_{1}\right|$.
CLAIM 2: $d_{G}(x, y) \leq 8$ for all $x, y \in A \cup M$.
By the maximality of \mathcal{C}, the distance between any two vertices of M is at most 2 . We show that $d(v, a) \leq 4$ for each $a \in A$. Suppose to the contrary that there exists an $a \in A$ with $d(v, a) \geq 5$. Let $b \in V$ be the partner of a. Then also $d(v, b) \geq 5$. Choose a vertex $v^{\prime} \in M-\{v\}$. By $d\left(v, v^{\prime}\right) \leq 2$, we get $d\left(a, v^{\prime}\right) \geq 3$ and $d\left(b, v^{\prime}\right) \geq 3$. Hence removing the pair $\{a, b\}$ from \mathcal{C} and replacing it by the pairs $\{a, v\}$ and $\left\{b, v^{\prime}\right\}$, we obtain a larger number of pairs at distance at least 3 , contradicting the maximality of \mathcal{C}. Hence we have $d(v, a) \leq 4$ for all $a \in A$. Now let $x, y \in A \cup M$. From the above it follows that $d(x, v) \leq 4$ and $d(v, y) \leq 4$, and thus $d(x, y) \leq 8$.
Claim 3: Let $\{a, b\} \in \mathcal{C}$. If $d(a, b) \geq 10$ then

$$
D^{\prime}(a)+D^{\prime}(b) \leq d\left(\left(n-\frac{1}{2} d-m-c\right)(m+c)+\left(n-\frac{1}{2} d-c\right) c-(m+c) c_{1}\right)+O\left(n^{2}\right) .
$$

We may assume that $a \in A$. Consider a first. Since all vertices in $A \cup M$ are within distance 8 of a, and further c_{1} vertices of B_{1} are within distance 17 of a, we have

$$
\begin{aligned}
D(a) & \leq 8|A \cup M|+17\left|B_{1}\right|+18+19+\cdots+(d-1)+\left(n-d-m-c-c_{1}\right) d+O(n) \\
& =d\left(n-\frac{1}{2} d-m-c-c_{1}\right)+O(n) .
\end{aligned}
$$

Vertex a has at most c neighbours in $A \cup B$ since a cannot be adjacent to a vertex in $A \cup B$ and its partner. Also a has at most 3 neighbours on P, and at most m neighbours in M. Hence $\operatorname{deg} a \leq m+c+O(1)$, and so

$$
D^{\prime}(a) \leq(m+c) d\left(n-\frac{1}{2} d-m-c-c_{1}\right)+O\left(n^{2}\right) .
$$

Now consider b.

$$
\begin{aligned}
D^{\prime}(b) & \leq \operatorname{deg} b(\operatorname{deg} b+2+3+\cdots+d+(n-d-\operatorname{deg} b) d)+O\left(n^{2}\right) \\
& =\operatorname{deg} b\left(n-\frac{1}{2} d-\operatorname{deg} b\right) d+O\left(n^{2}\right)
\end{aligned}
$$

Define the real function f by $f(x)=x d\left(n-\frac{1}{2} d-x\right)$. Then $f^{\prime}(x)=d\left(n-\frac{1}{2} d-2 x\right)$, and so $f(x)$ is increasing for $x \leq \frac{1}{2} n-\frac{1}{4} d$. Now b has at most c neighbours in $A \cup B$, at most 3 neighbours in P, and no neighbours in M since $d(a, b) \geq 10$. Hence $\operatorname{deg} b \leq c+3$. Since $\frac{1}{2} n-\frac{1}{4} d=c+\frac{1}{2} m+\frac{1}{4} d+\frac{1}{2} \geq c+2$, we have

$$
D^{\prime}(b) \leq \max (f(c+2), f(c+3))+O\left(n^{2}\right)=c\left(n-\frac{1}{2} d-c\right) d+O\left(n^{2}\right)
$$

Adding the two bounds yields Claim 3.

Claim 4: Let $\{a, b\} \in \mathcal{C}$. If $d(a, b) \leq 9$ then

$$
D^{\prime}(a)+D^{\prime}(b) \leq d(n-d)\left(n-\frac{1}{2} d-c-m-c_{1}\right)+O\left(n^{2}\right) .
$$

We may assume that $a \in A$. By Claim 2, each of the $c+m$ vertices in $A \cup M$ is within distance 8 of a, and each vertex in B_{1} is within distance 9 of some vertex of A. Hence the distance between any two vertices of $A \cup M \cup B_{1}$ does not exceed 26 . Hence, for each $x \in\{a, b\}$,

$$
\begin{aligned}
D(x) & \leq\left(c+m+c_{1}\right) 26+27+28+\cdots+(d-1)+\left(n-d-c-m-c_{1}\right) d+O(n) \\
& =d\left(n-\frac{1}{2} d-c-m-c_{1}\right)+O(n)
\end{aligned}
$$

Now a and b have no common neighbour, and at most 3 neighbours each on P, so $\operatorname{deg} a+\operatorname{deg} b \leq n-d+O(1)$. Hence

$$
\begin{aligned}
D^{\prime}(a)+D^{\prime}(b) & \leq(\operatorname{deg} a+\operatorname{deg} b)\left(d\left(n-\frac{1}{2} d-c-m-c_{1}\right)+O(n)\right) \\
& \leq d(n-d)\left(n-\frac{1}{2} d-c-m-c_{1}\right)+O\left(n^{2}\right)
\end{aligned}
$$

as desired.
CLAIM 5: $D^{\prime}(u) \leq(n-d-c) d\left(n-\frac{1}{2} d-c-c_{1}-m\right)+O\left(n^{2}\right)$ for all $u \in M$.
Each of the $c+m$ vertices in $A \cup M$ is within distance 8 of each vertex $u \in M$, the c_{1} vertices in B_{1} are within distance 17 of u. Since all vertices in $A \cup M \cup B_{1}$ are within distance 17 of u, the sum of the distances from u to the remaining vertices is at most $18+19+\cdots+(d-1)+\left(n-c-c_{1}-m-d+18\right) d$. So

$$
\begin{aligned}
D(u) & \leq(c+m) 8+17 c_{1}+18+19+\cdots+(d-1)+\left(n-d-c-c_{1}-m\right) d+O(n) \\
& =d\left(n-\frac{1}{2} d-c-c_{1}-m\right)+O(n)
\end{aligned}
$$

Now u is adjacent to at most 3 vertices of P, and to at most c vertices of $A \cup B$. Hence $\operatorname{deg} u \leq n-d-c+O(1)$, and thus

$$
D^{\prime}(u) \leq(n-d-c) d\left(n-\frac{1}{2} d-c-c_{1}-m\right)+O\left(n^{2}\right)
$$

From Claims 3 and 4 we obtain

$$
\begin{aligned}
D^{\prime}(G)= & \sum_{\{a, b\} \in \mathbb{C}}\left(D^{\prime}(a)+D^{\prime}(b)\right)+\sum_{v \in M} D^{\prime}(v)+\sum_{x \in P} D^{\prime}(x) \\
\leq & \left(c-c_{1}\right) d\left(\left(n-\frac{1}{2} d-m-c\right)(m+c)+\left(n-\frac{1}{2} d-c\right) c-(m+c) c_{1}\right) \\
& +c_{1} d(n-d)\left(n-\frac{1}{2} d-c-c_{1}-m\right)+m(n-d-c) d\left(n-\frac{1}{2} d-c-c_{1}-m\right)+O\left(n^{7 / 2}\right)
\end{aligned}
$$

Since $c-c_{1} \geq 0$ and $n-\frac{1}{2} d-m-c \geq 0$, the right-hand side of the last inequality is at most

$$
\begin{aligned}
& \left\{\left(c-c_{1}\right) d\left(\left(n-\frac{1}{2} d-m-c\right)(m+1+c)+\left(n-\frac{1}{2} d-c\right) c-(m+c) c_{1}\right)\right. \\
& \left.\quad+c_{1} d(n-d)\left(n-\frac{1}{2} d-c-c_{1}-m\right)\right\}+m(n-d-c) d\left(n-\frac{1}{2} d-c-c_{1}-m\right)+O\left(n^{7 / 2}\right)
\end{aligned}
$$

Let $f\left(n, d, c, c_{1}\right)$ be the above expression, without the $O\left(n^{7 / 2}\right)$ term. Thus
$D^{\prime}(G) \leq f\left(n, d, c, c_{1}\right)+O\left(n^{7 / 2}\right)$. By first replacing m in the expression of f in curly brackets by $n-2 c-d-1$ and then differentiating we get

$$
\frac{\mathrm{d} f}{\mathrm{~d} c_{1}}=d\left(-(2 c+2) c_{1}-2 c\left(n-d-\frac{3}{2} c-1\right)-m(n-d-c)\right)<0
$$

Hence f is decreasing with respect to c_{1}, and so

$$
\begin{aligned}
D^{\prime}(G) & \leq f(n, d, c, 0)+O\left(n^{7 / 2}\right) \\
& =c d\left(\left(n-\frac{1}{2} d-m-c\right)(m+1+c)+\left(n-\frac{1}{2} d-c\right) c\right)+m(n-d-c) d\left(n-\frac{1}{2} d-c-m\right)+O\left(n^{7 / 2}\right)
\end{aligned}
$$

$$
=d\left\{\left(c+\frac{1}{2} d\right)(n-d-c)^{2}+c^{2}\left(n-\frac{1}{2} d-c\right)\right\}+O\left(n^{7 / 2}\right)
$$

Denote the term in curly brackets by $g(c)$. Differentiating and simplifying yield

$$
g^{\prime}(c)=(n-2 d)(n-d-2 c)
$$

so g is maximised for $c=\frac{1}{2}(n-d)$. Substituting back yields, after simplification, the theorem.
To see that this bound is best possible, except for the $O\left(n^{7 / 2}\right)$ error term, consider the graph $G_{n, d}$ obtained from two disjoint complete graphs H_{1} and H_{2} of orders $\left\lceil\frac{n-d+1}{2}\right\rceil$ and $\left\lfloor\frac{n-d+1}{2}\right\rfloor$, respectively, and a path P on $d-1$ vertices, by joining one of the two end vertices of P to all vertices in H_{1}, and the other end vertex of P to all vertices in H_{2}. It is easy to verify that

$$
D^{\prime}\left(G_{n, d}\right)=\frac{1}{4} n d(n-d)^{2}+O\left(n^{3}\right)
$$

A simple maximisation of the bound in Theorem 1 yields the following.
Corollary 1. Let G be a connected graph of order n. Then

$$
D^{\prime}(G) \leq \frac{1}{27} n^{4}+O\left(n^{7 / 2}\right)
$$

As pointed out by Tomescu [20], the graph $G_{n, n / 3}$ shows that, apart from the $O\left(n^{7 / 2}\right)$ term, this bound is best possible.

References

[1] F.K. Bell, A note on the irregularity of graphs, Linear Algebra Appl. 161 (1992) 45-54.
[2] O. Bucicovschi, S.M. Cioabă, The minimum degree distance of graphs of given order and size, Discrete Appl. Math. 156 (2008) 3518-3521.
[3] P. Dankelmann, I. Gutman, S. Mukwembi, H.C. Swart, The edge-Wiener index of a graph, Discrete Math. (2008), in press (doi:10.1016/j.disc2008.09.040).
[4] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1988) 245-248.
[5] A.A. Dobrynin, Explicit relation between the Wiener index and the Schultz index of catacondensed benzenoid graphs, Croat. Chem. Acta 72 (1999) 869-874.
[6] A.A. Dobrynin, A.A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) $1082-1086$.
[7] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
[8] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
[9] I. Gutman, S. Klavžar, Bounds for the Schultz molecular topological index of benzenoid systems in terms of the Wiener index, J. Chem. Inf. Comput. Sci. 37 (1997) 741-744.
[10] S. Klavžar, I. Gutman, A comparison of the Schultz molecular topological index with the Wiener index, J. Chem. Inf. Comput. Sci. 36 (1996) $1001-1003$.
[11] D.J. Klein, Z. Mihalić, D. Plavšić, N. Trinajstić, Molecular topological index: A relation with the Wiener index, J. Chem. Inf. Comput. Sci. 32 (1992) 304-305.
[12] Z. Mihalić, S. Nikolić, N. Trinajstić, Comparative study of molecular descriptors derived from the distance matrix, J. Chem. Inf. Comput. Sci. 32 (1992) 28-36.
[13] W.R. Müller, K. Szymanski, J.V. Knop, N. Trinajstić, Molecular topological index, J. Chem. Inf. Comput. Sci. 30 (1990) 160-163.
[14] D. Plavšić, S. Nikolić, N. Trinajstić, D.J. Klein, Relation between the Wiener index and the Schultz index for several classes of chemical graphs, Croat. Chem. Acta 66 (1993) 345-353.
[15] H.P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of alkanes, J. Chem. Inf. Comput. Sci. 29 (1989) $227-228$.
[16] H.P. Schultz, T.P. Schultz, Topological organic chemistry. 6. Theory and topological indices of cycloalkanes, J. Chem. Inf. Comput. Sci. 33 (1993) $240-244$.
[17] H.P. Schultz, T.P. Schultz, Topological organic chemistry. 12. Whole-molecule Schultz topological indices of alkanes, J. Chem. Inf. Comput. Sci. 40 (2000) 107-112.
[18] H.P. Schultz, E.B. Schultz, T.P. Schultz, Topological organic chemistry. 7. Graph theory and molecular topological indices of unsaturated and aromatic hydrocarbons, J. Chem. Inf. Comput. Sci. 33 (1993) 863-867.
[19] H.P. Schultz, E.B. Schultz, T.P. Schultz, Topological organic chemistry. 10. Graph theory and topological indices of conformational isomers, J. Chem. Inf. Comput. Sci. 36 (1996) 996-1000.
[20] I. Tomescu, Some extremal properties of the degree distance of a graph, Discrete Appl. Math. 98 (1999) 159-163.
[21] A.I. Tomescu, Unicyclic and bicyclic graphs having minimum degree distance, Discrete Appl. Math. 156 (2008) 125-130.
[22] B. Zhou, Bounds for the Schultz molecular tolological index, MATCH Commun. Math. Comput. Chem. 56 (2006) 189-194.

[^0]: * Corresponding author.

 E-mail address: dankelma@ukzn.ac.za (P. Dankelmann).

