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a b s t r a c t

Many predation experiments in streams are carried out in enclosures. Hence, the relevance of their results
to predict population dynamics is often unclear due to the relatively small spatial and temporal scale of
the experiments. To enhance the transferability of experimental results on the ecosystem scale the impact
of fish predators on a prey population was observed in a reach scale approach over 2 years in a natural
stream. A 400-m reach inhabited by the small benthivorous fishes gudgeon (Gobio gobio) and stone loach
(Barbatula barbatula) was compared with a fishless reference reach.

It was shown that fish predation may affect the population of the grazing mayfly Rhithrogena semi-
colorata on the ecosystem scale. Although the larvae grew slower in the fish reach than in the fishless
reach, the adults reached the same size and fecundity because they emerged 2–3 weeks later. By this
compensation, the prey species avoided a reduction of their individual fecundity. On the other hand, the
extended exposure to the fish predators resulted in an enhanced mortality and a reduced density of adult
mayflies. Thus, there was obviously a trade-off between maximising fecundity and minimising mortality
from fish predation.

The observed differences were almost certainly caused be fish predation and not by natural differences
of the reaches. This was concluded from results gained after eliminating all benthivorous fish from the
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former fish reach.
With the help of scenario analyses based on our empirical data and simple model assumptions we

could demonstrate that compensating the potential loss in fecundity by extending development time led
to higher average fitness of the prey population than emerging at an earlier fixed time to avoid additional
predation losses. Therefore, we concluded that this strategy was adaptive in the presence of benthivorous
fish.
ntroduction

The predation risk of a prey organism depends on a variety
f environmental factors such as substrate and habitat complex-
ty (Dahl and Greenberg, 1996, 1997; Nyström and Pérez, 1998;
osenfeld, 2000a; Turnbull and Barmuta, 2002), temperature (Kishi
t al., 2005), spatial scale (Englund and Cooper, 2003; Bergström
nd Englund, 2004) and biotic factors such as interactions between
ultiple predators (Griffen and Williamson, 2008) or between the

redator and its prey (Vance-Chalcraft and Soluk, 2005). It has been

hown in enclosure experiments that fish densities and fish species
etermined the strength of the lethal impact on the invertebrate
ommunity (Dahl, 1998a,b; Rosenfeld, 2000b; Ruetz et al., 2004).
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Reviewing the literature describing predation experiments with
benthic invertebrate prey suggests that strong predation effects are
likely at low habitat complexity or area size and optimal tempera-
ture for the predators (Power, 1992; Bechara et al., 1993; Englund
and Cooper, 2003; Kishi et al., 2005). The effects in enclosures may
be exaggerated due to simplified habitats, and predator effects at
the ecosystem scale in the absence of artefacts may be quite differ-
ent. Parallel, former large-scale field studies have recorded weak
or no lethal fish effects on the invertebrate community (Thorp and
Bergey, 1981; Allan, 1982; Flecker, 1984) most likely because of
high habitat heterogeneity or a community well adapted to fish.
Therefore, our first goal was to assess whether fish predation has an
impact on a potential invertebrate prey in the heterogeneous envi-
ronment of natural streams with natural densities of benthivorous
fish.
The second goal of this study was to determine the magni-
tude of sublethal and lethal effects of fish predation on a prey
population and how these two types of effects might interact.
Lethal impact of predation has been reported to be a major factor
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tructuring benthic communities in both mesocosm experiments
Flecker, 1984; McIntosh and Townsend, 1996; Dahl, 1998a,b;
osenfeld, 2000b) and field studies (Allan, 1982; Nyström et al.,
003) and generally mean an increased mortality by consump-
ion. However, some field and laboratory studies suggested that
ublethal predation effects can have even a stronger impact on
he dynamics of prey populations than lethal effects (Werner and
eacor, 2006) especially if the size of adults is correlated to their
ecundity (McPeek and Peckarsky, 1998). Sublethal effects mean
onsequences of predation for behaviour, growth and fitness of the
rey organisms and have been reported also from both mesocosm
xperiments (Baetis spp.: Peckarsky et al., 1993, 2001; Scrimgeour
nd Culp, 1994; Peckarsky and McIntosh, 1998) and large-scale
nvestigations (Baetis bicaudatus: Peckarsky et al., 2002; Drunella
oloradensis: Dahl and Peckarsky, 2002). A variety of sublethal
redation effects potentially resulting in a fecundity loss of the
rey have been described. Fish can alter prey behaviour by induc-

ng escape and higher drift activity (Forrester, 1994; Tikkanen
t al., 1994; Peckarsky, 1996; Huhta et al., 2000) or by decreas-
ng mobility and encounter to predators (Power, 1992; Muotka
t al., 1999; McIntosh and Peckarsky, 1999, 2004; Vance-Chalcraft
t al., 2004). Increased drift as well as reduced activity has been
bserved (Malmqvist, 1992; Peckarsky et al., 1993; Scrimgeour
nd Culp, 1994; McIntosh and Townsend, 1994; Peckarsky, 1996;
operski, 1997; Winkelmann et al., 2008). Especially, due to the
ffort spent for escaping and hiding behaviours energy reserves for
rowth and reproduction may be reduced (Briegel, 1990; Peckarsky
t al., 1993; Cavaletto et al., 2003). Besides behavioural responses,
ife history patterns of prey might change for instance by delay-
ng emergence because of slow larval growth and development
Scrimgeour and Culp, 1994; Peckarsky and McIntosh, 1998; Tseng,
003). This delay might enable the individuals to reach the same
ize and fecundity like individuals from fishless experimental units
Tseng, 2003) while in other cases prey organisms emerged smaller
nd with lower fecundity (Scrimgeour and Culp, 1994; Peckarsky
nd McIntosh, 1998). That means, due to predator avoidance of prey
n risky habitats, like the reduction of foraging activity, growth and
otentially also fecundity will be reduced (costs due to increasing
ublethal effects) but at the same time low vulnerability to pre-
ation and high survival probability will be achieved (benefit due
o decreasing lethal effects). There are, however, also experiments
howing a shorter development time indicating acceleration of lar-
al maturation (Peckarsky et al., 2001). In this case, the resource
ntake and therefore growth and fecundity will increase by reduced
voidance effort (benefit due to decreasing sublethal effects). How-
ver, that results in a high predation risk (costs due to increasing
ethal effects). These different findings are assumed to be different
ealisations of the trade-off between maximising the reproduction
ffort (being as large as possible at emergence) and minimising
he mortality due to predatory consumption (shortening the lar-
al period). The synthesis of both effect types, lethal and sublethal,
eflects the outcome of the mayfly population called average fitness
f a population. Similarly to our study, Greig and McIntosh (2008)
ave also measured the lethal and sublethal effects by trout on a
addisfly population and estimated the net effect by calculating a
otal egg number potentially produced. This can be understood as
he result of the fish effects on both the adult density and the indi-
idual fecundity, and represents the theoretically possible offspring
f one generation.

To assess the importance of lethal and sublethal predation
ffects of benthivorous fish on a mayfly population and the
ossible interaction between the two effects, we observed the

ensity and life history of the mayfly Rhithrogena semicolorata
urtis (Ephemeroptera, Heptageniidae) in its natural habitat. We
xpected that the combined survey of sublethal and lethal effects
ould show the benefit and costs of predator avoidance behaviour
ca 41 (2011) 256–265 257

and life history changes and thus the fitness consequences for
the development of a prey population. Therefore, we observed a
population of R. semicolorata on a reach-scale study over a two-
year period. A 400-m-long stream reach stocked with the small
benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Bar-
batula barbatula), was compared with a fishless reference reach. In a
second phase about two years after the initial study period we iden-
tified the natural differences in the mayfly population dynamics
between these two reaches when all fish were absent.

Methods

Study design

To assess the effect of benthivorous fish on a prey popula-
tion we compared a fish reach with the fishless reference reach.
The field study was conducted in a second-order stream over
two years (November 2004 to October 2006). The investigated
part of the stream was divided into three sections separated by
grids of high-grade steel (5 mm mesh size). The lower, 400 m long,
section (fish reach) was stocked with the benthivorous fishes,
gudgeon (G. gobio L., Cyprinidae) and stone loach (B. barbatula
(L.), Cobitidae). The mean fish density over the two-year period
(fish density: 0.47 ± 0.07 fish m−2; fish biomass: 3.52 ± 0.59 g m−2;
mean ± SE, weighted by time) was similar to natural densities
of small benthivorous fish species reported from Europe and
North America (Santoul et al., 2005: up to 0.76 stone loach m−2;
Fairchild and Holomuzki, 2005: 0.3–1 sculpin m−2; Erös et al., 2003:
0.21–0.95 stone loach m−2, 0.0–0.14 gudgeon m−2; Huhta et al.,
2000: 0.5–0.8 bullhead m−2). Upstream of the fish reach a 400 m
long reference reach was installed and kept almost completely fish-
less by electrofishing (fish density: 0.007 ± 0.0003 fish m−2; fish
biomass: 0.14 ± 0.003 g m−2; mean ± SE). The reach upstream of
the reference reach that was suitable for fish (500–700 m) was
also fished to ensure that the reference reach did not receive fish
kairomones. Between the two reaches a 200 m long buffer reach
was inserted to avoid edge effects. The buffer reach was stocked
with a similar biomass of the same fish species as the fish reach.
To assess the effect of benthivorous fish on a prey population we
compared the fish reach with the fishless reference. To minimise
confounding effects of the electrofishing procedure on invertebrate
abundances all reaches were fished four times a year. Stunned fish
were removed from the reference reach but not from the fish reach.
The fish and buffer reach were restocked in spring and autumn
every year to compensate for fish losses due to the sampling for gut
content analyses, winter mortality, migration and bird predation.

After October 2006 we manipulated the fish, buffer and fishless
reach similarly by eliminating all benthivorous fish. We controlled
the fishless conditions regularly to exclude potentially migrating
fish. To check the natural differences in larval growth and emer-
gence of R. semicolorata we compared both, the former fish reach
and fishless reach, again in spring 2009 after eliminating benthiv-
orous fish for two years.

Study site

The field study was conducted in a small second order stream
(Gauernitzbach) draining into the river Elbe about 15 km down-
stream of Dresden (Saxony, Germany, 51◦06′N, 13◦32′E, altitude of
source 225 m). The land use in the 400 ha catchment area is pre-
dominantly agriculture. The stream has a length of 4.6 km and runs

through a woodland valley (mainly alder, maple, beech, ash, and
oak trees). The geological bedrock was formed by syenite and gran-
ite whereas the upper layer is dominated by loess and loam with a
high proportion of calcium carbonate (Schmidt et al., 2008). At the
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anipulated reaches, the stream has a mean width of 1.2 m and
n average discharge of 27 ± 37 L s−1 (mean ± SD, November 2004
o October 2006, n = 40). The water temperature ranged between

and 16 ◦C with the maximum occurring in August (mean ± SD:
.7 ± 4.8 ◦C, November 2004 to October 2006, n = 41). Other envi-
onmental factors did not show strong seasonal changes during the
tudy period (means ± SD, November 2004 to October 2006: pH
.4 ± 0.3, n = 35; electrical conductivity 872 ± 42 �S cm−1, n = 35;
xygen saturation 95 ± 16%, n = 28).

tudied organisms

The predators feeding on the R. semicolorata population were
ainly the two stocked fish species stone loach and gudgeon.
hile gudgeon is mostly dwelling in pool sections (Erös et al.,

003; Winkelmann et al., 2007), stone loach prefers riffle sections
Mastrorillo et al., 1996; Watkins et al., 1997; Erös et al., 2003). Gut
nalyses showed that both species were benthivorous and used
mong others R. semicolorata as food (Winkelmann et al., 2007,
npublished data: S. Worischka, Institute of Hydrobiology of TU
resden).

The univoltine stream-dwelling mayfly R. semicolorata exhibited
highly synchronised life cycle in the studied stream. The larvae

rew rather slowly after hatching (autumn, winter) and acceler-
ted their growth during a short time span in spring until adults
merge in May (Winkelmann and Koop, 2007). During spring, R.
emicolorata was the most abundant grazer and mayfly species in
he study stream followed by Baetis spp. (Winkelmann et al., 2007).

ield sampling and laboratory analyses

The fish and the reference reach each contained three randomly
istributed floating emergence traps (type “week”, 0.16 m2, LeSage
nd Harrison, 1979). Animals were fixed in the trap chamber with
mixture of 2/3 ethanol (80%) and 1/3 ethylene glycol. All traps
ere sampled weekly from March to September. Insects caught in

he emergence traps must not necessarily have developed at the
ampling point but in the stream section upstream from each trap
30–50 m; Illies, 1983). Therefore we did not assume a habitat spe-
ific sampling (pools or riffles). The habitats used for positioning the
raps seemed to be less important for the emergence composition
ut we ensured a sufficient distance between the traps to avoid a
igh dependence between the samples.

In the laboratory all adults of R. semicolorata (mostly subima-
oes) were counted. In addition to body length and sex
etermination, the eggs were counted in all females. The eggs
ere removed from the abdomen, filled in 1 mL water and sepa-

ated from each other by short ultrasonic pulses (UW 70, Badelin
lectronic, Berlin). The water with the detached eggs was filtered
cellulose acetate, 0.45 �m) and the eggs were made more visible by
taining the filter with a drop of ink. All eggs of at least three out of
ight parts of the filter were counted under a dissecting microscope.

Six benthic samples were taken in each study reach with a
urber sampler (0.12 m2, 500 �m mesh size) every four weeks
hroughout the study period. Three samples were taken in ran-
omly chosen riffles and three in randomly chosen pools because
he distribution of riffle and pool areas in the studied stream was
ery similar. Larval body length, density, and biomass of R. semicol-
rata larvae were determined in each sample.

ata analyses
The adult density was calculated by averaging the three emer-
ence samples on every date. For analyses of the individual adult
ize and fecundity on the other hand, all measured individuals were
reated as replicates. The average fitness of the population was esti-
ca 41 (2011) 256–265

mated as the number of eggs produced annually by one mayfly
generation. This was calculated as the sum of all eggs of female
individuals emerged from an area of 1 m2 for each study reach in
one year (egg production m−2 a−1). This value served as a total esti-
mate of the average population fitness because lethal fish effects
on the adult density as well as sublethal fish effects on the adult
fecundity were included. Thus, the average population fitness was
no true mean but the total amount of eggs theoretically produced
during one emergence period.

To describe differences in larval size and growth between the
reaches all measured individuals were treated as replicates. The
individual growth rate g (d−1) was estimated from the linear slope
of larval size (BL in mm) in the spring (t in days after beginning
of the year) according to the equation BL = g · t + a. This was done
exclusively from end of March until May when the larval growth
was highest probably due to increased temperatures and food sup-
ply. From this linear relationship we calculated a theoretical larval
size at the actual beginning of emergence period in each stream
reach. To define the initial population density of mayfly larvae for
the adult emergence in both reaches we compared the mean larval
density (from 6 samples each) in March before starting the rapid
growth in springtime.

To estimate the consumptive mortality of R. semicolorata larvae,
we compared the fish consumption with the biomass production
of prey (for details see Winkelmann et al., 2007). This was exem-
plarily analysed for spring 2005 (April to June) shortly before and
during the emergence period because food analyses for the fish
were available for this period. Secondary production of R. semi-
colorata (mg dry mass m−2 month−1) was estimated using a model
approach, which calculates the individual growth rate as a func-
tion of mean temperature and larval body size (Morin and Dumont,
1994). The consumption of benthivorous fish in spring 2005 on R.
semicolorata (mg dry weight m−2 per 3 month) was estimated from
the proportion of mayfly larvae in the fish guts analysed in April
(gudgeon: n = 10; stone loach: n = 9), the daily food ration of fish
(mg dry weight g wet weight−1 d−1), and the mean fish biomass in
spring (mean from April until June 2005: 1.27 g wet weight m−2).
The daily food ration was estimated in spring following the method
of Elliott and Persson (1978) using one 24 h-field-sampling of each
fish species with 4 h-time segments (gudgeon: 25.05.2004, n = 63;
stone loach: 08.06.2005, n = 30) and gut evacuation experiments
(see details in Winkelmann et al., 2007). All fish for food analyses
were caught by electrofishing in the fish reach of the study stream.

Model approach

The consequences of sublethal and lethal fish effects on the egg
production of the mayfly population (average population fitness)
were simulated using two scenarios. Regarding the interaction of
the two effect types, two basic realisations are theoretically con-
ceivable: (1) unchanged emergence time with the result of reduced
individual fecundity of the adults but no additional mortality,
and (2) delayed emergence time with the result of compensated
(unchanged) individual fecundity of the adults but enhanced mor-
tality due to prolonged exposure to predation risk. Thus, both
scenario 1 (Sc 1) and scenario 2 (Sc 2) simulate lethal and sub-
lethal effects though in Sc 2 the consequences of sublethal effects
on individual fecundity are compensated (Table 1). Even though the
two compared scenarios are hypothetical, they contain assump-
tions and estimations derived from our observations during this
study in 2005. The lethal effect of benthivorous fish on the prey
abundance (m) is part of both scenarios and estimated by the dif-

ference between the mean female abundances at emergence of
the two reaches (mt: 6.2 females m−2). This value is assumed to
represent the mortality due to fish consumption during the lar-
val growth. It includes an additional larval mortality (ma) in the
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Table 1
Parameter values for the estimation of “population fitness” consequences of lethal and sublethal predation effects used in the scenario analysis.

m Consumptive mortality Females m2 5 Sc 1, Sc 2
ma Additional consumptive mortality due to emergence delay Females m2 1.2 Sc 2
F Fecundity loss (lethal effects) Eggs m2 7675 Sc 1, Sc 2
Fs Fecundity loss (sublethal effects) Eggs m2 12 995 Sc 1
Fa Additional fecundity loss (lethal effects) due to emergence delay Eggs m2 1842 Sc 2

Table 2
Growth rates g (d−1) of R. semicolorata derived from linear relationships between larval size and time (number of days from end of March to May in 2005 and 2006,
respectively). Using these parameters theoretical larval sizes at the actual beginning of the emergence (as number of day after the beginning of the year) were estimated.

Stream reach (year) g (d−1) a r2 P-value (n) Emergence (d) Larval size (mm)

Fish (2005) 0.048 1.248 0.21 <0.001 (200) 144 8.2
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Sublethal effects of benthivorous fish

The presence of fish resulted in a slower growth and a longer
larval development time of R. semicolorata. The factor ‘fish pres-

Table 3
Physical and chemical characteristics (means ± SD) of the fish and the fishless stream
reach measured in spring 1999 and 2010 (n = number of measures).

Characteristics Fish reach Reference reach n
Reference (2005) 0.082 −1.733 0.45
Fish (2006) 0.092 −3.477 0.54
Reference (2006) 0.122 −5.888 0.69

sh reach due to the delayed emergence, which therefore must
e subtracted (m = mt − ma). This additional mortality is calculated
sing Eq. (1) including the consumption rate of the fish predators
c: 0.36 mg dry weight d−1), an average delay of emergence (t) of 20
ays exemplarily following the measured data for the study year
005, and the mean individual dry weight of larvae in May (bm:
.9 mg). The sex ratio of adults and larvae is assumed to be nearly
:1 (ma/2):

a = c · t

bm
(1)

he annual fecundity loss due to lethal effects (F, in eggs m−2) is
alculated as: F = m · Ē using the assumed mortality (m) and the
ean individual egg number (Ē = 1535 eggs per female) derived

rom direct measurements in 2005. The additional fecundity loss
Fa) in scenario 2 is calculated similarly by using ma instead of m.
he sublethal predation effect is estimated to be a size reduction of
.0 mm (BLR) at emergence. This value was derived from the lower

arval growth observed in the fish reach which resulted in a differ-
nce in larval body length of 1.0 mm at the actual (measured) and
he theoretical (20 days earlier) beginning of emergence in 2005
Table 2). It is assumed that this larval size difference would have
ranslated in a similar adult size difference if the emergence time
ad not differed between the stretches. The loss of fecundity due
o size reduction (Fs) is calculated according to Eq. (2):

s = BLR · b · (A + ma) (2)

here b is obtained from the correlation E = b · BL − a of female body
ength (BL in mm) and individual egg number (E) observed in our
tudy (b = 822.5, a = 5160; n = 31; r2 = 0.79; 2005 and 2006); and A is
he mean adult female abundance measured in the fish stretch 2005
A = 14.6 females m−2) which must be corrected by the additional

ortality (ma) to exclude the effects of the delayed emergence.

tatistical analysis

All statistics were calculated using R computer software (Ver-
ion 2.4.1, R Development Core Team, 2006). To test the effects
f the factors ‘fish presence’ (f1) and ‘study year’ (f2) on the body
ength of larvae and adults, time of emergence and the egg num-
er, a maximum likelihood model selection method was applied
Johnson and Omland, 2004; Hobbs and Hilborn, 2006). Starting
ith the full linear model containing all factors and possible inter-

ctions we derived simplified models omitting one of the two
actors or the interaction between them. The alternative models

ere compared using F-tests according to the ANOVA which were
erformed between consecutive models, testing if the more com-
licated of the two models was significantly better compared to the
impler one. With this model selection technique we were able to
<0.001 (240) 124 8.4
<0.001 (81) 144 9.8
<0.001 (52) 130 9.8

identify the most adequate linear model from the candidate model
set, which explained the data reasonably well. This method was
used when the number of samples was not equal between the fac-
tors and a two-way ANOVA was not feasible. The differences in
larval density in March between the stream reaches (factor ‘fish
presence’) were tested with a two-way ANOVA also considering
the factor ‘study year’. The variable ‘emergence time’ was recip-
rocally transformed and the larval density was transformed by
log(y + 0.0001) to achieve the best approximation to normal dis-
tribution and homogeneity of variances.

Results

Potential environmental differences between the two study
reaches

Although differences in the abiotic and biotic environmental
conditions between both reaches cannot be completely excluded
they seemed unlikely. The physical and chemical measures did not
show differences between both experimental reaches (Table 3).
Substrate, habitat distribution, riparian vegetation and conse-
quently the light supply were very similar in the two reaches
of the experimental stream. The biomass of periphyton mea-
sured as ash free dry mass (AFDM), the main food resource
of the grazing mayfly larvae, was similar between the study
reaches in spring (March to June) in the two study years
(mean ± SE, n = 7; 2005: fish 0.92 ± 0.35 mg AFDM cm−2, reference
0.62 ± 0.23 mg AFDM cm−2; 2006: fish 0.57 ± 0.21 mg AFDM cm−2,
reference 0.52 ± 0.20 mg AFDM cm−2). Due to the short distance
between the fish and the reference reach (buffer reach 200 m) and
some measurements we assumed a similar temperature regime
in both reaches. Therefore, the conditions for growth and devel-
opment of the benthic grazing insects seemed to be very similar
between the reaches.
Temperature (◦C) 14.5 ± 2.1 14.2 ± 2.1 15
Oxygen (mg L−1) 9.4 ± 1.0 9.6 ± 2.0 9
Electrical conductivity (�S cm−1) 729 ± 63 726 ± 65 15
pH 8.3 ± 0.006 8.3 ± 0.09 14
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Table 4
Results of the model selection using F-tests. The dependent variable (y = larval or adult body length, time of emergence or number of eggs) was modelled as a function of
two factors (f1 = fish: presence or absence; f2 = study year: 2005 or 2006). The unconstrained model (y ∼ f1 · f2) was simplified by stepwise eliminating the factors f1, f2 or the
interaction and pairwise comparing the more complex model with the simpler one. Significant differences due to the elimination of the respective factor indicate that this
factor is necessary to explain the variation in the dependent variable.

Dependent y Eliminated factor F P-value

Larval body length Fish 13.41 <0.001
Study year 0.38 0.541
Interaction 0.40 0.529

Emergence time Fish 10.22 0.002
Study year 0.71 0.403
Interaction 0.23 0.637

Adult body length Fish 1.85 0.179
Study year 109.24 <0.001
Interaction 6.66 0.013

Individual number of eggs Fish 0.16 0.696
Study year 58.02 <0.001
Interaction 2.15 0.154

Table 5
Differences between the fish and the reference reach regarding the larval and adult size, individual egg number, adult densities and annual egg production of Rhithrogena
semicolorata in 2005 and 2006 (mean ± SE, n = number of replicates). Larval size was measured at the end of April, shortly before the start of the emergence. All other factors
were measured over the whole emergence period.

Measurement Year Fish n Reference n

Larval size (mm) 2005 6.9 ± 0.3 55 8.1 ± 0.2 85
2006 7.1 ± 0.3 36 8.5 ± 0.4 22

Adult size (mm) 2005 8.5 ± 0.2 15 8.0 ± 0.1 18
2006 9.9 ± 0.3 7 10.2 ± 0.2 13

Egg number (per individual) 2005 1663.3 ± 343.3 7 1444.6 ± 115.3 10
2006 3068.4 ± 276.1 6 3538.7 ± 221.0 8

Adult density, both sexes (individuals m−2 a−1) 2005 22.9 ± 19.9 3 39.6 ± 19.9 3
2006 14.6 ± 11.6 3 27.1 ± 7.5 3

Adult density, females only (m−2 a−1) 2005 14.6 ± 11.6 3 20.8 ± 12.7 3
2006 12.5 ± 9.5 3 16.6 ± 5.5 3
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2006

nce’ caused a significantly better fit of the model to our data of
arval body length and time of emergence than the simpler model
eglecting this factor (Table 4). At the last sampling date before
he beginning of emergence in the fishless reach, R. semicolorata
arvae were significantly smaller in the presence of fish than in

he reference reach in both study years (Table 5). These size dif-
erences seemed to be caused by the lower growth rates in the
sh reach during the last weeks before the beginning of emer-
ence (Fig. 1 and Table 2). In general, the larvae in both stretches

ig. 1. Mean larval size (mm) ± SE of the mayfly R. semicolorata after hatching in autumn
nd reference reach. The highest growth was observed in the last weeks (last three points)
ines) from March to May.
24 257 – 30 096 –
38 356 – 58 978 –

showed the highest growth in this spring period (March to May).
The beginning of the emergence period was delayed by two to three
weeks in the fish reach compared to the reference reach (Fig. 2 and
Table 4; 2005: fish 24.05.2005, reference 04.05.2005; 2006: fish
24.05.2006, reference 10.05.2006). Therefore the larvae in the fish

reach had a longer growth period that enabled them to achieve a
similar body length at the actual beginning of the emergence as the
larvae in the reference reach (Table 2). In the model selection pro-
cedure the factor ‘fish presence’ was not necessary to explain the

until spring in the following year in 2004/05 (left) and 2005/06 (right) in the fish
before the beginning of emergence (fish reach: solid lines, reference reach: dashed
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Fig. 2. Mean emergence (individuals m−2 week−1) of. R. semicolo

ata (Tables 4 and 5). Consequently, the adult body length and the
ecundity measured as egg number per female were not affected
y fish predation. In contrast, the factor ‘study year’ was impor-
ant for the model fit indicating strong interannual variation of
dult body length and individual egg number. Additionally, a signif-
cant interaction between ‘study year’ and ‘fish presence’ reflected
pposed differences in the adult length between the reaches in both
ears.

ethal effects of benthivorous fish

Predation by benthivorous fish was an important cause of mor-
ality at least for mature stages of R. semicolorata larvae. This was
ndicated by the relatively high consumption of mayfly larvae by
heir fish predators. From April to June 2005 17.5% of the biomass
roduction of R. semicolorata was consumed by fish predators
fish consumption: 34.8 mg dry mass m−2 per 3 months; mayfly
roduction: 198 mg dry mass m−2 per 3 months), wherein stone

oach consumed much more than gudgeon (stone loach: 16.1%,
udgeon 1.4%). For benthivorous fish, R. semicolorata was an impor-
ant food source in spring (April 2005: 22.3% of the gut content,
tone loach alone: 18.9%). This parallels with the observation that
he density of emerged adults was reduced in the fish reach by
bout 40% compared to the reference reach in both study years
Fig. 3a and Table 5). The assumption that the predation mainly

ffected the mature larvae was supported by the comparison of
he initial larval densities in March (2005: fish 274 ± 115 ind m−2,
eference 336 ± 156 ind m−2; 2006: fish 63 ± 18 ind m−2, reference
7 ± 10 ind m−2; mean ± SE, n = 6). Then all larvae still had no black

ig. 3. (a) Annual production of adults of R. semicolorata (adults produced m−2 year−1) (
f the average fitness of the R. semicolorata population measured as the total egg produ
olumns) in 2005 and 2006.
+SE, n = 3) in the reference and the fish reach in 2005 and 2006.

wing pads and the same size in both reaches. At this time no signif-
icant differences in the densities were found between the reaches
(ANOVA; F = 0.99, P = 0.33) or the years (ANOVA; F = 0.02, P = 0.88),
and no interaction between the factors was recorded (ANOVA;
F = 0.31, P = 0.58).

The reduced adult density resulted in a lower average fitness of
R. semicolorata at the population level in the presence of benthivo-
rous fish. This was indicated by a lower annual egg production per
m2 in the fish stretch compared to the reference stretch (Table 5 and
Fig. 3b). The reduced annual egg production was a consequence of
both the individual egg numbers (sublethal) and the number of all
emerged females per area and year (lethal). Because only the emer-
gence abundance and not the individual egg number per female
were reduced in the presence of benthivorous fish, the reduced
average population fitness is interpreted as a lethal predation effect.

Consequences of lethal and sublethal predation
effects on average population fitness

The fish-induced sublethal fitness losses were predicted to be
43% of the average population fitness using our simple model (sce-
nario 1 in Table 6). In the model the reduced body length of the
adults that would have occurred without the delay in the emer-
gence caused this loss in egg production. The total loss of the
average population fitness in scenario 1 including sublethal and

lethal predation effects was calculated to be about 68%. The com-
pensation of the sublethal fitness consequence on the other hand,
was predicted to reduce the average population fitness much less
(6%, scenario 2 in Table 6). This loss was caused in our model by

+SE, n = 3) emerging from the fishless reference and the fish reach. (b) Estimation
ction m−2 year−1 in the fishless reference (open columns) and the fish reach (grey
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Table 6
Extrapolations of collected data to estimate the importance of lethal effects, sublethal effects and the interaction between the two effect types. Scenario 1 contains the
observed lethal and assumed sublethal effect. Scenario 2 contains the lethal effect (as in scenario 1), the sublethal effect of delayed larval development (compensation),
including the additional mortality caused by this extended larval development according to our field data.

Reduction of Scenario 1 Scenario 2
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Lethal Sublethal

Annual egg production (eggs m−2 a−1) 7675 12 995
Average population fitness (%) 25.5 43.2

ortality of larvae consumed by fish during the time period of
elayed emergence. The combined losses of average population fit-
ess due to the lethal predation and the compensation of sublethal
sh effects were predicted to be 32%. This predicted value approx-

mated the loss of 19–35% of average population fitness observed
n this study (Fig. 3b).

atural differences in the mayfly population between the study
eaches

About two years after eliminating benthivorous fish from
he fish reach the mean production of adults of R. semicolorata
as clearly higher in the former fish reach compared to the

eference reach (fish 389.6 ± 154.4 individuals m−2 a−1, reference
0.4 ± 7.5 individuals m−2 a−1, mean ± SE, n = 3). In addition, lar-
ae were significantly bigger in the former fish reach than in the
eference reach in April 2009 shortly before the beginning of emer-
ence (fish 8.0 ± 0.2 mm, n = 88, reference 7.3 ± 0.2 mm, n = 107;
ean ± SE; Student’s t-test, t = −2.56, P = 0.01) because their growth

ate in the last weeks was slightly higher (fish: g = 0.061 d−1; refer-
nce: g = 0.05 d−1; Fig. 4a). The emergence period started two weeks
arlier in the fish reach compared to the reference (fish 29.04.2009,
eference 13.05 2009; Wilcoxon test, P = 0.01; Fig. 4b). Due to the
ater emergence in the reference reach the mayfly larvae could
heoretically achieve a mean body length of 7.9 mm in the refer-
nce reach at the actual beginning of emergence, and therefore
he same body length like larvae in the former fish reach. How-
ver, a significantly higher mean adult size of R. semicolorata was
easured in the former fish reach than in the reference reach (fish

.9 ± 0.08, n = 139, reference 7.7 ± 0.28, n = 5; mean ± SE; Student’s
-test, t = −2.8, P = 0.005).
iscussion

In this study two main goals were pursued. Firstly, we asked
hether benthivorous fish had any impact on an invertebrate prey

ig. 4. (a) Mean larval size (mm) ± SE of the mayfly R. semicolorata in the former refere
arch to May 2009. Growth rates were calculated in the last weeks before the beginn

inear relation between the larval size and the number of days during growth (fish: r2 = 0
individuals m−2 week−1) of. R. semicolorata (+SE, n = 3) in the former reference and fish re
Total Lethal Compensation Total

20 670 7675 1842 9517
68.7 25.5 6.1 31.6

population in the heterogeneous environment of a natural stream.
Secondly, the relative importance of sublethal and lethal effects
of fish predation on the prey population was assessed. The first
question could be answered clearly positive. Under natural condi-
tions the results showed dramatic consequences of fish predation
on survival and reproduction of a mayfly prey population. It is
important to emphasise that this result was found under natural
conditions because high habitat complexity as well as temporal and
spatial variation of environmental factors are assumed to blur prey
responses (Power, 1992; Bechara et al., 1993; Englund and Cooper,
2003; Kishi et al., 2005). Nevertheless, R. semicolorata emerged
later and in lower densities in the fish reach. We assume this phe-
nomenon to be caused by the fish predator. Comparing the two
studied reaches without fish (after the experiment) revealed nat-
urally higher abundances and earlier emergence in the former fish
reach. Therefore, the lower performance of the prey population
in the fish reach during the experiment seems not to be caused
by some unfavourable environmental factors but by the presence
of benthivorous fish instead. Lethal and sublethal effects of fish
predators on stream mayflies have been reported from labora-
tory and mesocosm experiments (e.g. Power, 1990; McIntosh and
Townsend, 1996; Dahl, 1998a,b; Peckarsky and McIntosh, 1998).
There are, however, only few field studies analysing both types
of predation effects in natural streams (but see: Peckarsky et al.,
2001, 2002; Dahl and Peckarsky, 2002; Winkelmann et al., 2007;
Greig and McIntosh, 2008) and in most of them drift feeding fish
species were used. Thus, the clear negative net effect of predation
on the abundance and on the reproduction of the grazing mayfly
R. semicolorata in this study underlines the importance of benthiv-
orous fish as predators in streams. Further on, the presence of the
observed fish effects in this field study was a categorical prerequi-
site for our second objective regarding the relative importance of

sublethal and lethal effects.

It has been argued that sublethal effects would result in fit-
ness consequences if the female fecundity depends on the size at
emergence and that they might be even more important for the sur-

nce and fish reach after elimination of benthivorous fish for two years. Data from
ing of emergence (fish reach: solid line, reference reach: dashed line) from the
.41, P < 0.001, n = 269; reference: r2 = 0.32, P < 0.001, n = 339). (b) Mean emergence
ach in 2009 (highest value showed as number).
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ival of a prey population than mortality (McPeek and Peckarsky,
998). However, no reduction of female fecundity due to fish pre-
ation was observed in our study. Even though this result seems to
ontradict McPeek and Peckarsky’s statement, in fact it underlines
he importance of sublethal fitness consequences. As our scenario
nalysis revealed, the compensation of sublethal predation effects
egarding the individual fitness by a prolonged larval development
as highly adaptive (6% reduction of the average population fitness

s. 43% reduction without prolongation). Thus, sublethal effects
ere largely compensated on the population level because they

therwise would have had an enormous negative effect on the
verage fitness of the population. It seems that other forms of com-
ensation are also possible. Greig and McIntosh (2008) observed a
artial compensation of strong lethal effects due to trout predation
y enhanced individual fecundity of a caddisfly. Although lethal
ffects cannot be neglected in our case (25% loss of the average pop-
lation fitness) the sublethal effects seem to pose the greater risk
or the population. Therefore, the compensation of sublethal effects
egarding the individual fitness was more important to reduce the
otential loss of egg production of the whole population than the

arval mortality due to predation during the prolonged larval devel-
pment.

In general, aquatic insects with a flexible life history seem to
ollow two different strategies of predator avoidance to optimise
heir reproduction and chance of survival. The first strategy is to
ccelerate larval development to escape the predation risk by ear-
ier emergence (Peckarsky and McIntosh, 1998; Peckarsky et al.,
001, 2002). This strategy may cause smaller size at metamorpho-
is (Peckarsky and McIntosh, 1998; Peckarsky et al., 2001, 2002)
hich consequently leads to lower female fecundity (Wickman

nd Karlsson, 1989; Honèk, 1993; Bonduriansky and Brooks, 1999),
horter adult life span (Taylor et al., 1998; Sokolovska et al., 2000)
r a lower mating success of males (Flecker et al., 1988; Sokolovska
t al., 2000). The benefit of this strategy seems to be a reduced
ime spent in the risky habitat and therefore less mortality by the
aster larval development (Peckarsky et al., 2002). If the mortal-
ty by predation is very high it seems to be best to emerge sooner
ven if the adults are undersize with low fecundity (first strategy).
n most studies this strategy was shown using drift-feeding fish
e.g. trout) and the drifting mayfly Baetis spp. as main prey in these
enclosure) experiments. This combination might have resulted
n a high predation pressure. Our scenario analysis demonstrated
hat the first strategy does not seem to be adaptive for the prey
nder the given predation regime, because it would more than
alve the average fitness of the population. The second strategy

s to delay metamorphosis to reach optimal size in spite of slower
arval growth (Scrimgeour and Culp, 1994; Tseng, 2003). Similarly
o the first strategy, if larval mortality by fish predation is rela-
ively low, sustaining the mortality risk to achieve a larger size and
igher fecundity (second strategy) might be a strategy that pays
ff. In our study, R. semicolorata larvae followed the second strat-
gy, as they needed a longer time for larval development in the
resence of fish. This almost certainly enabled them to achieve the
ptimal adult size and fecundity, similarly to Tseng’s speculation
Tseng, 2003). Thus, a loss of individual fecundity, which would
ave caused a reduction of the average population fitness by nearly
3%, was avoided. The enhanced mortality due to the longer devel-
pment time under fish predation pressure reduced the annual
gg production to a much smaller extent (6%). As the compari-
on of the two scenarios demonstrates, only the second behaviour
compensation of sublethal effects on the individual fitness) was
daptive for the prey population. Individuals following the second

trategy will be able to contribute much more offspring (exactly
1 153 eggs per m2 and year in 2005) to the next generation. The
ifference of this field study compared to most mesocosm studies
as the high supply of alternative prey for the benthivorous fish
ca 41 (2011) 256–265 263

out of a diverse benthic community in a natural environment (see
Appendix A), which might reduce the mortality risk for one prey
species. This finally resulted in the observed response in the life
history of the prey population to the presence of benthivorous fish.
Therefore, the predation rate, specific for each predator-prey pair,
relative to the potential sublethal predation consequences in a spe-
cific set of environmental factors might account for the differences
between the results of the various studies.

In ecosystem research, we have to consider that environmen-
tal conditions form a complex network that determines ecological
processes (Petersen and Englund, 2005). Hence, working under arti-
ficial conditions in microcosms or laboratory experiments reduces
the transferability of the results to natural ecosystems (Carpenter,
1996; Schindler, 1998; Petersen and Hastings, 2001; Petersen
and Englund, 2005). Undoubtedly, small-scale experiments are
an important tool to test hypotheses or gain special ecological
insights. Their main advantage is the possibility of replication of
the experimental units and therefore statistical analysis of the
results. Nevertheless, spatial scale and duration of ecological pro-
cesses might often be too large to investigate them adequately in
mesocosm experiments (Carpenter, 1996; Benndorf et al., 2002).
Especially when effects on the population level are to be observed, a
large-scale field experiment seems to be the preferred solution. The
best way to do this would be a spatially and temporally replicated
experiment by investigating a sufficient number of manipulated
ecosystems at the same time over a longer time period. This, how-
ever, requires a huge sampling and analytical effort. To analyse
predation effects on population level with a maintainable effort,
we decided to use two reaches of the same stream. This design
benefited from the natural environmental conditions and a com-
plex food web. However, due to the lack of real sample replicates
statistical analysis was complicated. Nevertheless, we used three
emergence traps within each reach to estimate spatial variation.
The high substrate heterogeneity led to large differences between
the traps. This variability was reflected in the mean emergence
abundances and in the outcome of the population (net production).
We chose to compare two reaches of one stream rather than two
streams (one with fish, one without fish) because we assumed a
higher similarity between the reaches within one stream. Because
there is no general agreement which environmental factors trig-
ger emergence (e.g. temperature: Langford, 1975; Watanabe et al.,
1999) we thought it was best to use reaches with environmental
factors as similar as possible. Therefore the two reaches of only
one stream allowed us to compare the development of the studied
mayfly under very similar environmental preconditions.

However, the study was not replicated and therefore it cannot be
excluded that other environmental factors (e.g. temperature, food,
competition) might have affected the differences in the mayfly
population dynamics between the study reaches. Nevertheless, we
assume that the observed pattern was mainly caused by the differ-
ent fish regimes. By comparing both reaches about two years after
the elimination of the benthivorous fish we observed that the differ-
ences concerning the mayfly populations developed in an opposite
direction than during the experimental study period. While R. semi-
colorata in the fish reach grew more slowly and produced less adults
and potential offspring than in the fishless reach in 2005 and 2006,
it showed a slightly faster larval growth, an earlier emergence and
a higher net production (number of adults per unit time) without
fish predation in 2009 in the former fish reach. The mayfly popula-
tion in the reach, which was fishless from 2005 through 2009 (the
former fishless reference reach) developed in 2009 similar to 2005
and 2006. Therefore, we assume that the environmental conditions

controlling the larval development besides predation were initially
better in the former fish section. In the presence of fish this advan-
tage for the mayfly population was not only compensated but also
inverted.
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We conclude that predation of benthivorous fish (stone loach
nd gudgeon) can affect the survival of their prey R. semicolorata in
atural streams in spite of high spatial heterogeneity and tempo-
al variation of environmental factors. Even though the observed
eduction of the average population fitness was caused by prey
ortality alone, sublethal predation effects, such as a slower lar-

al growth rate, were important for the survival of the population
s shown by the scenario analysis. The observed compensation of
otential fecundity loss by a delay of emergence was highly adap-
ive. We argue that compensation of fecundity loss is evolutionary

eaningful when mortality risk is not too high. That might be the
eason why consequences of predation regarding the average fit-
ess of a prey population are not that apparent in natural systems
here mortality risk of a single prey species is somewhat reduced

y the presence of numerous other prey organisms.
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ppendix A. The composition of the benthic community
nd the invertebrate biomass (mg dry mass m−2) found in
he fish and the fishless reach during the study period from
ovember 2004 to October 2006 (means ± SE, n = 25

amplings)

Taxon Fish reach Reference reach

Ancylus fluviatilis 7.2 ± 1.9 4.9 ± 1.1
Baetis muticus 20.8 ± 3.8 32.1 ± 6.5
Baetis rhodani 18.6 ± 3.9 14.5 ± 2.3
Capnia bifrons 30.0 ± 10.3 27.0 ± 9.7
Ceratopogonidae 9.3 ± 1.6 9.7 ± 1.4
Chironomidae 66.9 ± 25.1 54.2 ± 17.8
Dugesia gonocephala 17.3 ± 3.9 39.2 ± 7.8
Ecdyonurus subalpinus 3.1 ± 1.0 3.9 ± 1.0
Electrogena ujhelyii 12.4 ± 2.2 22.8 ± 3.9
Elmis spp. 1.6 ± 0.5 2.2 ± 0.4
Ephemera danica 85.3 ± 20.7 45.7 ± 11.4
Gammarus pulex 259.6 ± 38.5 400.7 ± 70.7
Hydraena spp. 30.4 ± 4.2 31.3 ± 4.4
Hydropsyche spp. 38.4 ± 7.4 29.3 ± 4.7
Isoperla grammatica 4.3 ± 0.9 2.6 ± 0.8
Leuctra spp. 9.7 ± 1.8 6.9 ± 1.6
Limnephilidae 87.2 ± 26.7 64.7 ± 15.6
Limoniidae 13.5 ± 6.0 32.4 ± 9.7
Nemoura cambrica 12.7 ± 3.8 14.9 ± 6.4
Odontocerum albicorne 16.2 ± 4.8 0.02 ± 0.02
Oligochaeta 0.9 ± 0.2 0.5 ± 0.1
Ostracoda 0.9 ± 0.5 7.4 ± 4.6
Pisidium spp. 0.6 ± 0.2 2.8 ± 0.5
Plectrocnemia conspersa 4.6 ± 2.6 5.7 ± 1.6
Psychodidae 10.4 ± 9.5 2.7 ± 1.4
Ptychopteridae 5.8 ± 2.4 44.5 ± 17.4
Rhithrogena semicolorata 65.7 ± 13.7 78.8 ± 20.0
Rhyacophila fasciata 23.2 ± 3.9 30.9 ± 11.0
Rhyacophila tristis 0.9 ± 0.4 0.5 ± 0.2
Scirtidae 1.4 ± 0.5 1.6 ± 0.4
Sericostoma spp. 71.1 ± 17.7 49.5 ± 10.2

Silo pallipes 8.1 ± 3.6 2.8 ± 4.2
Simuliidae 6.6 ± 2.6 21.8 ± 16.1
Tinodes rostoki 5.5 ± 2.1 1.4 ± 0.5
Tipulidae 38.5 ± 23.1 57.7 ± 24.9
ca 41 (2011) 256–265
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